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1 Introduction

The B → ππ transition form factors encode the rich hadronic dynamics accompanying the

short-distance b→ u transition in the semileptonic B → ππ`ν` (B`4) decays (see e.g. [1, 2]),

which may provide a competitive determination of the CKM parameter |Vub| [3] if an accu-

rate knowledge of the form factors can be assessed. The B → ππ form factors are also an

essential hadronic input to the rare flavor-changing neutral-current decay B → ππ`+`− [4]

and to nonleptonic three-body B decays such as B → πππ [5, 6].

While B → ππ form factors are dominated by the resonant B → ρ transition (which

has been studied extensively in the narrow-width approximation), finite-width effects and

“nonresonant” contributions have not yet been addressed systematically. These effects are

considerably more difficult to describe theoretically, providing non-trivial challenges for

both analytical methods and lattice simulations. At large dipion invariant masses, the

form factors can be calculated in QCD factorization [7]. For small dipion masses at low

hadronic recoil, heavy-meson chiral perturbation theory may be combined with dispersion

theory as proposed in ref. [2]. At large hadronic recoil (and low dipion invariant mass),

the method of light-cone sum rules (LCSRs) is operative, and has been used in ref. [8] in

terms of dipion distribution amplitudes (DAs) [9, 10]. However, the limited knowledge of

these DAs asks for other QCD based methods to access the B → ππ form factors in the

same kinematic regime.
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In this paper we propose to use the LCSRs with B-meson DAs [11–13]. For definiteness

we will focus on the transition B̄0 → π+π0 with the isospin-one final dipion state; in the

future these sum rules can be easily extended to the other isospin states. We will obtain

a set of sum rules where the hadronic representation contains the B → ππ form factors of

interest convoluted with the timelike pion vector form factor. The latter is very accurately

measured within a wide range of dipion masses. The sum rules obtained in this paper

reproduce the known sum rules for the B → ρ form factors in the limit of ρ-dominance and

zero width, and can be used to test models for B → ππ form factors. We will illustrate

this point by performing a numerical study of the effects of excited ρ-resonances within a

three-resonance model that fits the pion form factor accurately, assessing the deviations

from ρ-meson dominance in B → ρ transitions.

The plan of the paper is the following. In section 2 we derive the LCSRs with B-

meson DAs for the full set of vector and axial-vector B → ππ form factors. The current

accuracy of the operator-product expansion (OPE) includes the contributions of two- and

three-particle DAs. In section 3 we adopt a model for B → ππ form factors in terms of

ρ-resonances. The LCSRs are then rewritten in the form of relations containing the model

parameters. These relations are analyzed numerically in section 4, taking as input a similar

model for the pion vector form factor, fitted to the experimental data on τ → π+π0ντ . This

analysis will allow us to quantify the deviations from the ρ dominance approximation. We

conclude in section 5. The appendices contain: A the relevant formulae for B-meson DAs

used in LCSRs, B the model for the pion timelike form factor, and C the two-point sum

rule used to fix the effective threshold in the sum rules.

2 Light-cone sum rules

Following ref. [12] we introduce the correlation function of the d̄γµu interpolation current

with the b→ u weak current:

Fµν(k, q) = i

∫
d4xeik·x〈0|T{d̄(x)γµu(x), ū(0)γν(1− γ5)b(0)}|B̄0(q + k)〉, (2.1)

sandwiched between the on-shell B-meson and vacuum states. The four-momenta of the

currents are k and q respectively, so that (q + k)2 = m2
B. The correlation function (2.1) is

decomposed into independent Lorentz structures:

Fµν(k, q) = εµνρσq
ρkσF(ε)(k

2, q2) + igµνF(g)(k
2, q2) + iqµkνF(qk)(k

2, q2)

+ ikµkνF(kk)(k
2, q2) + iqµqνF(qq)(k

2, q2) + ikµqνF(kq)(k
2, q2) , (2.2)

where the first term1 corresponds to the contribution of the vector b → u current. Only

the structures in the first line will be used in the sum rules below.

In the region q2 � m2
B and |k2| � Λ2

QCD, due to the large virtuality of the intermediate

u-quark, the correlation function is calculable by means of an OPE, involving the DAs of

the B-meson defined in HQET. To leading order, one contracts the u-quark fields in (2.1)

1In this paper we use the conventions ε0123 = −ε0123 = +1 and γ5 ≡ (i/4!) εµνρσγµγνγργσ.
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Figure 1. Diagram of the correlation function (2.1): (a) at leading order (two-body B-meson DA),

(b) the soft-gluon contribution (three-body B-meson DA). Wavy lines with four-momentum k and

q represent the dipion interpolating and weak b→ u currents, respectively.

as a free propagator, neglecting hereafter the u-quark mass. The remaining heavy-light

bilocal quark-antiquark operators sandwiched between the B-meson and vacuum states

are parametrized by the two-particle DAs φB+,−(ω), where ω is related to the momentum of

the light-quark in the B meson. We will also include the corrections due to a low virtuality

(“soft”) gluon emitted from the propagator and absorbed in the three-particle B-meson

DAs [12]. The diagrams corresponding to the two contributions to the correlation function

are shown in figure 1. The definitions of the DAs are listed in appendix A together with

the models we will use to describe them.

To outline the derivation of the sum rule, we choose the invariant amplitude F(ε)(k
2, q2),

for which the corresponding OPE result can be written as

FOPE
(ε) (k2, q2) = fBmB

∫ ∞
0

dσ
φB+(σmB)

σ̄(s− k2)
+ · · · , (2.3)

where

s = s(σ, q2) = σm2
B − σq2/σ̄ , σ̄ ≡ 1− σ , (2.4)

and the ellipsis denotes the subleading 3-particle DA contributions calculated in ref. [12].

The OPE expression (2.3) has the form of a dispersion integral in the variable k2:

FOPE
(ε) (k2, q2) =

1

π

∫ ∞
0

ds
ImFOPE

(ε) (s, q2)

s− k2
, (2.5)

with the imaginary part given by

1

π
ImFOPE

(ε) (s, q2) = fBmB

[(
dσ

ds

)
φB+(σmB)

(1− σ)

]
σ(s)

+ · · · , (2.6)

where σ(s) is obtained by solving eq. (2.4).

In parallel, for the same invariant amplitude we employ the hadronic dispersion relation

in the variable k2,

F(ε)(k
2, q2) =

1

π

∞∫
4m2

π

ds
ImF(ε)(s, q

2)

s− k2
. (2.7)
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The hadronic spectral function of the correlation function is obtained from the unitarity

relation, that is, inserting the complete set of states with quantum numbers of the d̄γµu

current between the two currents in eq. (2.1):

2 ImFµν(k, q) =

∫
dτ2π〈0|d̄γµu |π+(k1)π0(k2)〉〈π+(k1)π0(k2)|ūγν(1− γ5)b|B̄0(q+ k)〉+ · · · ,

(2.8)

where the lowest intermediate dipion state is included explicitly and the ellipsis de-

notes the contributions from other intermediate states with higher thresholds: 4π,KK̄,

etc. This hadronic representation is more general than the single-pole approximation

adopted in ref. [12], where the two-pion-state contribution was replaced by a single narrow

ρ-meson state.

We use the definition of the pion vector form factor:

〈π+(k1)π0(k2)|ūγµd|0〉 = −
√

2 kµ Fπ(k2), (2.9)

where k = k1 + k2 and k̄ = k1 − k2. In the isospin symmetry limit Fπ(k2) = F em
π (k2),

where the pion electromagnetic form factor is normalized as F em
π (0) = 1. We also adopt

the following definition for the B → ππ form factors:2

i〈π+(k1)π0(k2)|ūγν(1−γ5)b|B̄0(p)〉 = F⊥(k2, q2, q · k)
2√
k2
√
λ
iεναβγq

αkβ k̄γ

+ Ft(k
2, q2, q · k)

qν√
q2

+ F0(k2, q2, q · k)
2
√
q2

√
λ

(
kν −

k · q
q2

qν

)
+ F‖(k

2, q2, q · k)
1√
k2

(
kν −

4(q · k)(q · k)

λ
kν +

4k2(q · k)

λ
qν

)
, (2.10)

where λ ≡ λ(m2
B, q

2, k2) = m4
B + q4 + k4− 2(m2

Bq
2 +m2

Bk
2 + q2k2) is the kinematic Källén

function. In addition, q · k = 1
2(m2

B − q2 − k2) and

q · k =
1

2

√
λ βπ(k2) cos θπ , (2.11)

where βπ(k2) =
√

1− 4m2
π/k

2, and θπ is the angle between the 3-momenta of the neutral

pion and the B-meson in the dipion rest frame. Note that the form factor F⊥ in the decom-

position of eq. (2.10) parametrizes the transition matrix element of the vector weak b→ u

current, whereas the other three form factors correspond to the axial-vector weak current.

For the form factors in eq. (2.10) we will use the partial wave expansions

F0,t(k
2, q2, q · k̄) =

√
3F

(`=1)
0,t (k2, q2)P

(0)
1 (cos θπ) + · · · ,

F⊥,‖(k
2, q2, q · k̄) =

√
3F

(`=1)
⊥,‖ (k2, q2)

P
(1)
1 (cos θπ)

sin θπ
+ · · · , (2.12)

where P
(0)
1 (cos θπ) = cos θπ and P

(1)
1 (cos θπ) = − sin θπ are the associated Legendre poly-

nomials. Only the P -wave (` = 1) components shown explicitly in the above expansions

2See e.g. ref. [1]. Here we use the phase convention of ref. [8].
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survive in the convolution of the two hadronic matrix elements in eq. (2.8). Indeed, the

hadronic matrix element of the local JP = 1− current d̄γµu parametrized with the pion

vector form factor contains only the P -wave dipion contribution and hence effectively serves

as a P -wave projector for the B → ππ form factors. In order to extend the method sug-

gested here to other partial waves one needs to replace the d̄γµu interpolating current in

the correlation function with a different current or combination of currents.

Substituting the definitions (2.9) and (2.10) in eq. (2.8), integrating over the angles in

the dipion phase space and sorting out the different kinematic structures, we obtain the

imaginary parts of all relevant invariant amplitudes. In particular, the one generated by

the vector b→ u current reads:

1

π
ImF(ε)(s, q

2) =

√
s [βπ(s)]3

4
√

6π2
√
λ
F ?π (s)F

(`=1)
⊥ (s, q2) + · · · , (2.13)

where hereafter λ ≡ λ(m2
B, q

2, s) and again the ellipsis denote contributions from the inter-

mediate states 4π, K̄K, etc. Judging by studies on pion form factors at s . 1.0–1.5 GeV2,

these contributions are expected to be suppressed (see e.g. ref. [14] and the discussion

in ref. [2]).

We then insert the hadronic spectral function (2.13) in the r.h.s. of eq. (2.7). For the

l.h.s. we use eq. (2.5), as the OPE is a good approximation to the correlation function in the

region −k2 � Λ2
QCD. At this point, we Borel-transform both sides of the resulting equality,

effectively replacing the variable k2 with the Borel parameter squared M2. In addition, we

employ the quark-hadron duality approximation, which amounts to the assumption that

the integrals over the hadronic spectral density ImF(ε)(s) and over ImFOPE
(ε) are equal:

∞∫
s2π0

ds e−s/M
2

ImF(ε)(s, q
2) =

∞∫
s2π0

ds e−s/M
2

ImFOPE
(ε) (s, q2) , (2.14)

where s2π
0 is the effective threshold. The above semi-local duality relation allows one to

effectively cut-off the integrals over the dipion mass in the sum rule. Note that we use a

quark-hadron duality ansatz, which is more general than a local duality, that would assume

equality of the integrands on both sides of eq. (2.14) for every s > s2π
0 . Note also that the

falling Borel exponent (provided M2 is not too large) suppresses the large s region of the

integrals, making the duality relation less sensitive to multihadron states with thresholds

larger than s2π
0 . Depending on the choice of s2π

0 , the 4π and KK̄ states may still contribute

to the region 4m2
π < s < s2π

0 but their expected suppression with respect to the dipion

state justifies to retain only the latter in ImF(ε)(s, q
2).

Finally, we obtain the following LCSR:∫ s2π0

4m2
π

ds e−s/M
2

√
s [βπ(s)]3

4
√

6π2
√
λ
F ?π (s)F

(`=1)
⊥ (s, q2)

= fBmB

[∫ σ2π
0

0
dσ e−s(σ,q

2)/M2 φB+(σmB)

σ̄
+mB ∆V BV (q2, σ2π

0 ,M2)

]
, (2.15)
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where σ2π
0 is the solution of the relation σm2

B − σq2/σ̄ = s2π
0 and the explicit expression

for the three-particle DA contribution ∆V BV can be found in the appendix of ref. [12].3

Repeating the same steps for the invariant amplitudes F(g) and F(qk) in eq. (2.2), we

obtain two additional LCSRs containing the integrals over the B → ππ form factors F
(`=1)
‖,0

and F
(`=1)
0 respectively:∫ s2π0

4m2
π

ds e−s/M
2

√
s [βπ(s)]3

4
√

6π2
F ?π (s)F

(`=1)
‖ (s, q2) (2.16)

= fBmB

[∫ σ2π
0

0
dσ e−s(σ,q

2)/M2 σ̄2m2
B − q2

σ̄2
φB+(σmB) +m2

B ∆ABV1 (q2, σ2π
0 ,M2)

]
,

and∫ s2π0

4m2
π

ds e−s/M
2

√
s [βπ(s)]3

2
√

6π2λ
F ?π (s)

[
(m2

B − q2 − s)
2

F
(`=1)
‖ (s, q2) +

√
s
√
q2

βπ(s)
F

(`=1)
0 (s, q2)

]

= fBmB

{∫ σ2π
0

0
dσ e−s(σ,q

2)/M2

[
σ̄ − σ
σ̄

φB+(σmB) +
2σσ̄m2

B

σ̄2m2
B − q2

[
φB+(σmB)− φB−(σmB)

]
+

(
4σσ̄2m3

B

(σ̄2m2
B − q2)2

+
2(1− 2σ)mB

σ̄2m2
B − q2

)
Φ̄B
±(σmB)

]
+ ∆ABV2 (q2, σ2π

0 ,M2)

}
, (2.17)

where Φ̄B
± is defined in appendix A, and the three-particle contributions ∆ABV1,2 (q2, σ2π

0 ,M2)

can be again found in the appendix of ref. [12].3

The remaining Lorentz structures in the correlation function provide additional, more

complicated relations between the three form factors, hence we do not consider them here.

Instead, we obtain a new sum rule for the “timelike-helicity” form factor F
(1)
t by considering

a different correlation function with the pseudoscalar heavy-light current,

Fµ(k, q) = i

∫
d4xeik·x〈0|T{d̄(x)γµu(x), imbū(0)γ5b(0)}|B̄0(q + k)〉

= ikµF(k)(k
2, q2) + iqµF(q)(k

2, q2). (2.18)

The form factor Ft can be isolated by multiplying both sides of eq. (2.10) with qµ, giving

〈π+(k1)π0(k2)| imbūγ5b |B̄0(p)〉 =
√
q2 Ft(k

2, q2, q · k) . (2.19)

After inserting the dipion intermediate state in eq. (2.18), only the above form factor

contributes. Considering the invariant amplitude F(q) and carrying out a similar derivation

as for the previous correlation function, we obtain the following LCSR for F
(`=1)
t :∫ s2π0

4m2
π

ds e−s/M
2 s

√
q2 [βπ(s)]2

4
√

6π2
√
λ

F ?π (s)F
(`=1)
t (s, q2) (2.20)

= −fBm2
Bmb

{∫ σ2π
0

0
dσ e−s(σ,q

2)/M2

[
σ

σ̄
φB−(σmB)−

Φ̄B
±(σmB)

σ̄mB

]
+ ∆ABV0 (q2, σ2π

0 ,M2)

}
,

3Note that the factor em
2
V /M

2

has to be removed from the integrand.
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where the OPE result in the r.h.s. is new and has not been given before. The new expression

for the three-particle contribution ∆ABV0 (q2, σ2π
0 ,M2) is given explicitly in appendix A.

The sum rules in eqs. (2.15)–(2.17) and (2.20) with generalized hadronic part represent

the main results of this paper. They provide additional constraints and normalization for

B → ππ form factors if one adopts a certain ansatz or model for them. On the other hand,

if the B → ππ form factors are calculated via an alternative method, one can check the

validity and consistency of the results. In addition to the universal B-meson DAs, the pion

vector form factor in the timelike region represents the necessary input in these sum rules.

The magnitude of this form factor is well known experimentally from τ− → π−π0ντ [15]

and e+e− → π+π− [16].

Our last comment in this section concerns the final state interaction phase. Below

the inelastic threshold for the pion form factor this phase coincides with the dipion elastic

scattering phase according to Watson’s theorem. Here an analogous condition should

be fulfilled in the adopted approximation of two-pion intermediate state in the hadronic

dispersion relation. Due to the reality of the imaginary parts, such as the one in eq. (2.13),

the strong phase of all B → ππ form factors should be universal (modulo π) and equal to

the phase of the pion vector form factor:

Im
[
F

(`=1)
k (s, q2) F ?π (s)

]
= 0 , k = {⊥, ‖, 0, t} . (2.21)

This condition was already mentioned and used in the elastic scattering region in ref. [2].

Note that since eq. (2.21) follows from the general unitarity relation, it enforces any

parametrization of the B → ππ form factors to be chosen such that the phases of separate

q2-dependent components in each form factor can only depend on s, being correlated with

the phase of the pion form factor. In the following we will take this condition into account

when choosing a particular ansatz for the B → ππ form factors.

3 Probing resonance models for B → ππ form factors

Originally, the LCSRs with B-meson DAs derived from the correlation function in eq. (2.1)

were used in ref. [12] to determine the B → ρ form factors. In what follows we use the

standard definition of these form factors:

〈ρ+(k)|ūγν(1−γ5)b|B̄0(p)〉 = εναβγε
∗αqβkγ

2V Bρ(q2)

mB +mρ
− iε∗ν(mB +mρ)A

Bρ
1 (q2) (3.1)

+ i(2k+q)ν(ε∗ ·q) A
Bρ
2 (q2)

mB+mρ
+iqν(ε∗ ·q)2mρ

q2

(
ABρ3 (q2)−ABρ0 (q2)

)
,

where 2mρA
Bρ
3 (q2) = (mB +mρ)A

Bρ
1 (q2)− (mB −mρ)A

Bρ
2 (q2).

To recover the sum rules obtained in ref. [12] from the sum rules derived in the previous

section, one has to employ the dispersion relation in k2 = s for the B → ππ form factors re-

taining only the single ρ-pole contribution. E.g., for the vector-current form factor one has:

√
3F

(`=1)
⊥ (s, q2)
√
s
√
λ

=
gρππV

Bρ(q2)

(mB +mρ)
[
m2
ρ − s− i

√
s Γρ(s)

] + · · · (3.2)

– 7 –
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where the excited state contributions with the ρ quantum numbers indicated by the el-

lipsis are assumed to be accounted for by the duality approximation. Note that in the

above, for the sake of generality, we go beyond the narrow ρ approximation and adopt the

energy-dependent ρ→ ππ width

Γρ(s) =
g2
ρππ[βπ(s)]3

√
s

48π
θ(s− 4m2

π) = Γtot
ρ

[
βπ(s)

βπ(m2
ρ)

]3 √s
mρ

θ(s− 4m2
π) , (3.3)

so that Γtot
ρ is the total width and the function Γρ(s) vanishes below the dipion threshold

s = 4m2
π. The energy-dependent width can be interpreted as a result of the resummation

of two-pion loops coupled to the ρ state. For consistency, a ρ-dominance approximation

for the pion form factor Fπ has to be adopted too:

F ?π (s) =
fρgρππmρ√

2(m2
ρ − s+ i

√
s Γρ(s))

, (3.4)

where the ρ-meson decay constant and strong coupling are normalized as:

〈ρ+|d̄γµu|0〉 = fρmρε
?
µ, 〈π+(k1)π0(k2)|ρ+〉 = gρππ(k1 − k2)αεα . (3.5)

Using the approximations of eqs. (3.2) and (3.4) and taking into account eq. (3.3), the l.h.s.

of eq. (2.15) becomes

2fρmρV
Bρ(q2)

(mB +mρ)

∫ s2π0

4m2
π

ds e−s/M
2

(
1

π

Γρ(s)
√
s

(m2
ρ − s)2 + sΓ2

ρ(s)

)
Γtot
ρ →0
−−−−→ 2fρmρV

Bρ(q2)

(mB +mρ)
e−m

2
ρ/M

2
,

(3.6)

where we have used that in the zero-width limit (Γtot
ρ → 0), the expression in parentheses

reduces to δ(s − m2
ρ). Thus, we recover the LCSR for the B → ρ form factor V Bρ(q2)

obtained in ref. [12]. Analogously, starting from eqs. (2.16), (2.17) and (2.20) we recover

the LCSRs for the B → ρ form factors ABρ1 (q2), ABρ2 (q2) and ABρ0 (q2) respectively.

We note at this point that relating the form factor A3 with the form factors A1,2 accord-

ing to the relation quoted after eq. (3.1), and using the kinematic relation A0(0) = A3(0),

we obtain an alternative sum rule for A0(0). This sum rule coincides with eq. (3.6) up to

O(Λ̄/mB) power corrections, with Λ̄ ∼ mB − mb, i.e., within the usual accuracy of the

LCSRs with B-meson DAs [12]. Thus our sum rule for A0 satisfies the kinematic relation

A0(0) = A3(0) up to power corrections.

Returning to the LCSRs in eqs. (2.15)–(2.17) and (2.20) with a general hadronic rep-

resentation of the dipion state, we note that these sum rules offer the opportunity to go

beyond the ρ-dominance approximation and to investigate the role of excited ρ resonances

in B → ππ form factors. From the measurements of the pion e.m. form factor in e+e− an-

nihilation (see e.g. ref. [16]) and the pion vector form factor in τ → π−π0ντ [15], it is known

that in the region s . 1.5 GeV2 both form factors are accurately described by including,

apart from the ρ ≡ ρ(770), its two radial excitations: ρ′ ≡ ρ(1450) and ρ′′ ≡ ρ(1750) [17].

In what follows, we adopt the three-resonance parametrization of Fπ(s) used by the Belle

collaboration [15] to fit their so far most accurate data on τ → π−π0ντ (see appendix B).
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Various other parametrizations for the pion form factors in the timelike region can be found

in the literature (see e.g. [18–22]). The important point is that, at least in the low dipion-

mass region, the “nonresonant” contributions can be described well by the interference of

the ρ with the ρ′ and ρ′′, and these excited states contribute at the level of 15–20% to the

total form factor.4

Assuming that the formation and hierarchy of ρ-resonances in the B → ππ transition

is similar to that in Fπ(s), we adopt a three-resonance ansatz generalizing eq. (3.2) for

all vector and axial-vector P -wave form factors. For the form factors F
(`=1)
⊥ and F

(`=1)
‖

we write:5

F
(`=1)
⊥ (s, q2) =

√
s
√
λ√

3

∑
R

gRππV
BR(q2) eiφR(s,q2)

(mB +mR)
[
m2
R − s− i

√
s ΓR(s)

] , (3.7)

F
(`=1)
‖ (s, q2) =

√
s√
3

∑
R

(mB +mR)gRππA
BR
1 (q2) eiφR(s,q2)[

m2
R − s− i

√
s ΓR(s)

] , (3.8)

where the sum runs over R = {ρ, ρ′, ρ′′}. The linear combination of F
(`=1)
‖ and F

(`=1)
0

entering the LCSR in eq. (2.17) is related to the B → R form factors ABR2 :

(m2
B − s− q2)√

s
F

(1)
‖ (s, q2) +

2
√
q2

βπ(s)
F

(1)
0 (s, q2) =

λ√
3

∑
R

gRππA
BR
2 (q2) eiφR(s,q2)

(mB +mR)
[
m2
R − s− i

√
s ΓR(s)

] .
(3.9)

Finally, for the form factor F
(`=1)
t , we have

F
(`=1)
t (s, q2) = −βπ(s)

√
λ

√
3
√
q2

∑
R

mRgRππA
BR
0 (q2) eiφR(s,q2)[

m2
R − s− i

√
s ΓR(s)

] . (3.10)

For our exploratory study we refrain from using the more involved resonance representa-

tion of ref. [24], adopting instead a simpler Breit-Wigner approximation with an energy-

dependent width [25]. We also tacitly assume that the phase factors φR of resonance

contributions are independent of the form factor type. On the other hand, it is conceiv-

able that q2-dependence of the B → R form factors is different for R = ρ, ρ′, ρ′′. Hence

the simplest way to enforce the imaginary part condition of eq. (2.21) is to assume that

this condition holds separately for each resonance term in the models of eqs. (3.7)–(3.10).

Then the phase φR is s-dependent but q2-independent, and the general condition (2.21) is

replaced with the following relation specific to our resonance model:

tan[δπ(s)− φR(s)] =

√
s ΓR(s)

m2
R − s

, with Fπ(s) = |Fπ(s)|eiδπ(s) . (3.11)

This relation essentially restricts the resulting phase dependence of the B → ππ form

factors, in full analogy with the well-known situation for the timelike pion form factor.

4Note that at larger s the infinite tail of vector resonances may influence the form factor and it presumably

has to be taken into account [18, 19, 23].
5For the sake of generality, we include also the relative phase of the ρ term.
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Adopting a more general condition than eq. (3.11), would enforce an artifitial compensa-

tion of q2-dependences in the phases φR(s, q2) and B → R form factors, in order to formally

obey eq. (2.21). Moreover, there are several physical arguments in favour of q2-independent

phases of B → ππ form factors in the region of dipions with large recoil and small invari-

ant mass. First, varying q2 corresponds to varying the total energy of the dipion state,

produced in the B-meson rest frame, whereas the (Lorentz-invariant) amplitude of the

final-state strong interaction developing the phase depends only on the invariant mass s of

the dipion. Second, similar to the factorization in nonleptonic B-decays to light hadrons,

the hadronization and related strong interaction of the fast dipion system in the B-meson

rest frame takes place beyond the weak b→ u transition domain.

We parametrize the q2-dependence of the B → R form factors entering eqs. (3.7)–

(3.10) with the standard z-series expansion [26], in the form adopted in ref. [27]. The

z-parametrization of the momentum transfer is given by

zR(q2) =

√
tR+ − q2 −

√
tR+ − tR0√

tR+ − q2 +
√
tR+ − tR0

, (3.12)

where tR± ≡ (mB ± mR)2 and tR0 = tR+

(
1−

√
1− tR−/tR+

)
. For a generic form factor

FBR(q2), where F = {V,A1, A2, A0} and R = ρ, ρ′, ρ′′, we have:

FBR(q2) =
FBR(0)

1− q2/m2
F

{
1 + bRF ζR(q2) + · · ·

}
, (3.13)

where we use the shorthand notation

ζR(q2) = zR(q2)− zR(0) +
1

2

[
zR(q2)2 − zR(0)2

]
,

and mF is the lowest heavy-light pole mass in the q2 channel with spin-parity depending

on the type of the form factor.

We now substitute the resonance models of eqs. (3.7)–(3.10) into the sum rules (2.15)–

(2.17) and (2.20) respectively. For the sake of brevity we introduce the following notation:

κRF ≡ gRππFBR(0) , ηRF ≡ gRππFBR(0)bRF ,

XR
V = XR

A2
= (mB +mR)−1 , XR

A1
= (mB +mR) , XR

A0
= −mR , (3.14)

so that all four sum rules can be rewritten in a generic form:∑
R

κRF + ηRF ζR(q2)

1− q2/m2
F

XR
F IR(s2π

0 ,M2) = IOPE
F (s2π

0 ,M2, q2) . (3.15)

In the above, the functions IOPE
F (s2π

0 ,M2, q2) with F = {V,A1, A2, A0} represent the r.h.s.

of eqs. (2.15)–(2.17) and (2.20) respectively and the coefficients of the B → R form factors

are given by the integrals:

IR(s2π
0 ,M2) =

1

12
√

2π2

s2π0∫
4m2

π

ds e−s/M
2 s [βπ(s)]3 |Fπ(s)|√

(m2
R − s)2 + sΓ2

R(s)
. (3.16)
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The set of sum rule relations (3.15) can be used to fit the parameters κRF and ηRF of the

resonance models in eqs. (3.7)–(3.10) for the B → ππ form factors.

4 Input and numerical analysis

The input in the LCSRs (2.15)–(2.17) and (2.20) includes the parameters of B-meson DAs

described in appendix A. The most important one is the inverse moment λB, which has

still a rather large uncertainty. The interval

λB ≡ λB(1 GeV) = 460± 110 MeV , (4.1)

predicted from QCD sum rules [28], is in agreement with the lower limit λB > 238 MeV

(at 90% C.L.) recently obtained by the Belle collaboration [31], combining the search

for B → γ`ν` with the theory prediction for its branching ratio [32, 33]. This limit is

starting to challenge the lower values around λB = 200–250 MeV preferred by the QCD

factorization analysis of B → ππ nonleptonic decays (see e.g., refs. [29, 30]). In addition,

a recent estimate λB = 358+38
−30 MeV [34] has been obtained by comparing the LCSRs with

pion [35] and B-meson DAs for the B → π form factor and using the same model for the

B-meson DA as the one used here. In our numerical analysis we adopt the central value

and uncertainty of the sum rule prediction quoted in eq. (4.1).

Since we do not include NLO corrections in the correlation functions, we also do not

take into account the renormalization of λB. In the absence of perturbative corrections,

the choice of renormalization scale for the correlation function remains an open issue. This

choice concerns especially the sum rule (2.20) for which the b-quark mass is needed. We

choose a typical MS value mb(mb) = 4.2 GeV. The value of the (scale-independent) B-

meson decay constant entering the OPE part of all LCSRs is known with a reasonable

accuracy from the 2-point QCD sum rules. We use fB = 207+17
−9 MeV from ref. [36], which

agrees well with lattice QCD determinations [37].

For the Borel parameter M2 in all the sum rules we take values inside the interval

M2 = 1.0− 1.5 GeV2, which is slightly narrower than the one used in ref. [11]. For this

interval, the convergence of OPE is manifested by relatively small three-particle DA contri-

butions (with IOPE, 3-particle
F /IOPE, 2-particle

F . 20% at q2 = 0 and . 30% at q2 = 10 GeV2).

Simultaneously, the integral over the spectral density of the correlation function (r.h.s. of

eq. (2.14)) does not exceed 40% of the total integral, making the result not too sensitive

to the quark-hadron duality approximation.

The choice of the threshold parameter s2π
0 deserves a separate investigation. We em-

phasize that here a quark-hadron duality pattern is used that is more involved than the

conventional one-pole-plus-continuum ansatz. Hence, for consistency we fix the threshold

employing the two-point SVZ sum rule [38] for the isospin-one light-quark vector currents,

where we substitute the pion timelike form factor in the hadronic part. The details are

given in appendix C. The result depends mildly on the value of the Borel parameter M2,

and within our chosen range it leads to s0 ' 1.5 GeV2 quite generically, in the same ballpark

as the one obtained with the one-pole ansatz.
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The remaining input concerns the hadronic parameters in eq. (3.16). For the pion form

factor Fπ(s) we use the model of ref. [15] and the fit results for its parameters given in that

paper, which are collected in appendix B for convenience. These include determinations

for mR and ΓR appearing explicitly in eq. (3.16). For the pole masses mF in eqs. (3.13)

and (3.15), we use [17]:

mV = mB∗ = 5.325 GeV (JP = 1−) ,

mA1,2 = mB1 = 5.726 GeV (JP = 1+) , (4.2)

mA0 = mB = 5.279 GeV (JP = 0−) .

After specifying all input parameters, we calculate the coefficients IR and IOPE
F in

eq. (3.15). In order to have an impression on the relative contributions of all three reso-

nances to the sum rule relations (3.15) we quote the values of the coefficients IR, varying

the values for all masses, widths, and the parameters in Fπ as given in table 4:

Iρ = (26± 3) · 10−3 , I ′ρ = (4.3± 0.8) · 10−3 , I ′′ρ = (2.5± 0.5) · 10−3 , (4.3)

calculated at s2π
0 = 1.5 GeV2 and M2 = 1.0 GeV2. We also quote here the value of the

strong coupling gρππ derived from eq. (3.3):

gρππ = 5.96± 0.04 , (4.4)

which is necessary to relate the coefficients κρF to the form factors FBρ. In the following

we will consider all uncertainties entering IOPE
F , but fix the hadronic parameters entering

IR and gρππ to their central values.

4.1 Finite-width effects in B → ρ form factors

We start our numerical analysis reproducing the results of ref. [12] for the B → ρ form

factors by taking the one-pole ansatz for the B → ππ form factors, i.e. retaining only the

ρ in eqs. (3.7)–(3.10) in the narrow width approximation, and subsequently taking into

account the corrections arising from the finite width of the ρ and the effect from higher

resonances (acting effectively as a “nonresonant” background). We do this in several steps,

as follows, with the results summarized in table 1.

Employing the one-resonance models in eqs. (3.2), (3.4) — and the analogous models

for F‖,0,t — in the limit Γtot
ρ → 0, we use the sum rules to calculate the form factors

V Bρ(q2) and ABρ1,2,0(q2) at q2 = 0. With the same inputs as used in ref. [12] we find good

agreement with the central values quoted in that paper.6 These numbers are collected in

the first row of table 1. Updating the input parameters to the ones quoted at the beginning

of this section (but still keeping M2 = 1.0 GeV2 fixed), we find a ∼ 10% enhancement in

the central values, due mostly to the change in the numerical input for the B-meson decay

constant: fB = 180 MeV → 207 MeV (second row of table 1). Performing a gaussian scan

over the parameters with uncertainties, we calculate central values and errors for the form

factors by taking the mean and standard deviation of the resulting distributions for the

6The form factor ABρ0 was not calculated in ref. [12]. Thus the results for ABρ0 given here are new.

– 12 –



J
H
E
P
0
5
(
2
0
1
7
)
1
5
7

V Bρ(0) ABρ1 (0) ABρ2 (0) ABρ0 (0)

Inputs of ref. [12] 0.31 0.23 0.19 0.26

Updated inputs 0.34 0.26 0.21 0.30

Gaussian scan 0.36± 0.17 0.27± 0.13 0.22± 0.15 0.30± 0.06

ref. [39] (ρ-DAs) 0.33± 0.03 0.26± 0.03 0.23± 0.04 0.36± 0.04

Full Fπ, M2 = 1 GeV2 0.40± 0.19 0.30± 0.14 0.24± 0.16 0.33± 0.07

Final results for ρ-model 0.41± 0.11 0.31± 0.08 0.25± 0.10 0.34± 0.04

Table 1. Results for the B → ρ form factors in the one ρ-resonance model for the B → ππ form

factors. The first four rows correspond to the zero-width approximation, while the last two rows

include finite-width effects.

form factors (third row of table 1). This shifts the central values further up slightly (but

well within the uncertainties). The larger error bars with respect to ref. [12] are due to

the different approach used here (gaussian versus flat scans). These are our results in the

single-pole approximation (ρ-dominance, zero-width). For reference we show in the fourth

row in table 1 the results for the form factors obtained in ref. [39] (updating ref. [40]) using

the LCSRs with ρ-meson DAs, in which the zero-width approximation is also adopted.

We now maintain the one-resonance model for the B → ππ form factors, but adopt

the full Belle [15] data-based model for Fπ (see appendix B). Keeping M2 = 1.0 GeV2, we

obtain the results quoted in the fourth row of table 1, which imply a ∼ 10% enhancement

with respect to the zero-width limit. Our final results for the single resonance model are

obtained by simultaneously fitting the sum rules with different values of the Borel parameter

M2 = {1.0, 1.25, 1.5}GeV2. The results are given in the last row of table 1. The central

values are essentially unchanged, but the uncertainties are reduced because each value of

M2 acts as a separate constraint.

We conclude that the finite width of the ρ and the presence of higher resonances in Fπ
impact the B → ρ form factors at the level of ∼ 10 to 15%, when the B → ρ form factors

are defined from the B → ππ form factors by neglecting the contributions from excited

resonances in eqs. (3.7)–(3.10). This is in agreement with the findings in ref. [8].

4.2 Assessing the ρ′ contribution to B → ππ form factors

In order to estimate the ρ′ contribution, we now assume that the B → ρ form factors are well

determined from the LCSRs with ρ-meson DAs, obtained in the narrow-ρ approximation.

We thus take the models in eqs. (3.7)–(3.10), neglecting the ρ′′ contribution, and use the

results from ref. [39] to fix the parameters κρF and ηρF . The free parameters in the resulting

models are then only κρ
′

F and ηρ
′

F .

We then use the sum rules (2.15)–(2.17) and (2.20) to determine these parameters.

Besides using, as in the previous section, three different values for the Borel parameter

M2 = {1.0, 1.25, 1.5}GeV2, we consider various q2 points: q2 = {0, 1, . . . , 10}GeV2, in

order to determine the slope parameters ηρ
′

F . The results of this fit are shown in table 2.
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V A1 A2 A0

κρF 2.0± 0.2 1.6± 0.2 1.4± 0.2 2.1± 0.2

ηρF −5.1± 1.1 2.3± 0.8 −2.8± 1.2 −5.0± 1.2

κρ
′

F 3.0± 2.5 1.5± 1.4 1.0± 2.2 −0.3± 0.4

ηρ
′

F −52± 74 −2± 35 26± 65 −8± 12

correlation + 0.8 + 0.9 + 0.8 + 0.8

Table 2. Results of the fit to the ρ′ contribution.

Due to the suppressed sensitivity of the sum rules to the ρ′ region (see eq. (4.3)), the

uncertainties on the parameters κρ
′

F and ηρ
′

F are rather large. Thus our fit allows for a quite

appreciable ρ′ contribution relative to the (fixed) ρ contribution.

4.3 Three-resonance model

We now consider the full three-resonance models given in eqs. (3.7)–(3.10). This model

however contains too many parameters to be independently fitted from the sum rules, in

which the contributions of ρ′, ρ′′ enter with suppressed coefficients with respect to the ρ

contribution (see eq. (4.3)). In the future, when sufficient amount of data on B → ππ`ν` is

accumulated, one should be able to isolate the P -wave dipions in this decay and perform

a more refined analysis combining these data with the sum rule constraints. For the time

being, the only information on the role of higher resonances we have is provided by the Fπ
measurement given by the parametrization in eq. (B.2). Note that in the pion vector form

factor the R-resonance (R = ρ, ρ′, ρ′′, . . . ) contribution is determined by the product of the

decay constant of R and the strong coupling gRππ, whereas in the B → ππ form factor the

R-contribution to the resonance model is determined by the B → R form factor multiplied

by the coupling gRππ. Owing to quite different physical processes, the ratios of B → R form

factors may deviate considerably from the ratios of R decay constants. E.g., it is plausible

that at large recoil the B → ρ′ transition is even enhanced with respect to B → ρ transition

because the hadronization into a larger mass is more probable. Nevertheless, since in this

paper we want to illustrate numerically the influence of the nonresonant background in the

B → ππ transitions at small dipion mass, it is conceivable to assume that the relative size

of the contributions from ρ, ρ′ and ρ′′ is the same as in Fπ. We do that by imposing the

following conditions:

κρ
′

F = β κρF , ηρ
′

F = β

[
lim
q2→0

ζρ(q
2)

ζρ′(q2)

]
ηρF ,

κρ
′′

F = γ κρF , ηρ
′′

F = γ

[
lim
q2→0

ζρ(q
2)

ζρ′′(q2)

]
ηρF , (4.5)

where β and γ are the parameters in the parametrization of Fπ in eq. (B.1). The conditions

on κRF fix the relative contributions at q2 = 0 and the conditions on ηRF fix the derivatives.

At the end we find that the conditions (4.5) fix the relative contributions in the full q2

region with good accuracy.
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V A1 A2 A0

κρF 2.4± 0.4 1.8± 0.3 1.5± 0.3 1.9± 0.1

ηρF −11.0± 8.4 2.0± 4.9 0.2± 7.3 −6.5± 2.8

correlation + 0.8 + 0.9 + 0.8 + 0.8

FBρ(0) 0.39± 0.06 0.30± 0.04 0.25± 0.05 0.32± 0.02

κρ
′

F 0.35± 0.06 0.27± 0.04 0.22± 0.05 0.29± 0.02

ηρ
′

F −2.11± 1.62 0.38± 0.94 0.03± 1.41 −1.25± 0.54

κρ
′′

F 0.09± 0.01 0.07± 0.01 0.05± 0.01 0.07± 0.00

ηρ
′′

F −0.57± 0.44 0.10± 0.25 0.01± 0.38 −0.34± 0.14

Table 3. Results of the three-resonance fit.

These simplified models depend only on two parameters for each form factor: κρF and

ηρF . We use the sum rules to determine these parameters, using again the three values of

M2 = {1.0, 1.25, 1.5}GeV2, and also q2 = {0, 1, . . . , 10}GeV2. The results of the fit are

given in table 3. We note that the values for κρF and ηρF are strongly correlated within

each form factor, with correlation coefficients given in the third row. We provide for

completeness also the resulting form factors V Bρ, ABρ1,2,0 at q2 = 0 and the values of the

parameters κRF and ηRF for R = ρ′, ρ′′, although all these numbers can be obtained rather

trivially from the first three rows.

Given the fact that the ρ′ and ρ′′ contributions to the pion form factor are relatively

small, the results of the B → ρ form factors obtained in the constrained three-resonance

model are in good agreement with the ones obtained in the ρ-model (compare the third

row in table 3 with the fifth row in table 1). The effect of the higher ρ′, ′′ resonances is to

decrease slightly the B → ρ form factors. The uncertainties obtained in this section are

smaller only because the fit includes many points in the full q2 region, all acting as separate

(and consistent) constraints, while in table 1 we only considered the form factors at q2 = 0.

In figure 2 we show the results for the absolute values of the form factors, comparing

the model results in table 2 (Model 1) and table 3 (Model 2). The results for F
(`=1)
0 depend

on the correlations between κRA1
and κRA2

, and in order to ignore this correlation we plot

instead F
(`=1)
A2

defined as

F
(`=1)
A2

(s, q2) ≡
m2
B − s− q2

m2
B

F
(`=1)
‖ (s, q2) +

2
√
sq2

βπ(s)m2
B

F
(`=1)
0 (s, q2) , (4.6)

which at q2 = 0 depends only on κRA2
. There is good agreement between both models.

Due to large uncertainties in κρ
′

F , Model 1 yields broader intervals for the form factors at s

above the ρ region. Larger form factors in this region are compensated by slightly smaller

values around s ∼ m2
ρ in order to satisfy the sum rules.

Within Model 1 (table 2), the fitted intervals for B → ρ′ form factors (albeit with very

large uncertainties) do not exclude a noticeable (up to 20%) contribution of the B → ρ′
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Figure 2. B → ππ form factors at q2 = 0 as a function of the dipion mass, within the models of

table 2 (Model 1) and table 3 (Model 2). Shaded regions and error bars account for all uncertainties.

transition to the total budget of the B → ππ form factors at small dipion masses. In

Model 2 (table 3) where the relatively small (most probably underestimated) contributions

of both ρ′ and ρ′′ are fixed, the resulting B → ρ form factor grows insignificantly with

respect to the one in Model 1, staying within the estimated uncertainties of the latter. We

conclude that the LCSRs with B meson DAs provide a stable prediction for the dominant

B → ρ part of the P -wave B → ππ form factors, provided the B → ρ′ component remains

bounded. The transitions to excited ρ-mesons, being subdominant in the sum rules, cannot

be predicted with a high degree of accuracy unless one adopts some particular ansatz for

their pattern. At the same time a sizeable contribution from excited states is consistent

with our LCSRs, and is supported by the independent LCSRs in terms of dipion DAs

considered in ref. [8]. Hence, in the future, more precise measurements of B → ππ form

factors must include these contributions with interfering phases in their fits. This is a

necessary step in accurately determining the B → ρ form factors. Restricting the dipion

mass in the ρ-mass region, as it is usually done (see e.g. ref. [3]), is not sufficient if an

accuracy better than 15-20% is sought.

We finish this section with a brief discussion on the q2 dependence of the form factors,

and comparing our results to the ones obtained in ref. [8]. This is shown in figure 3.

We find that our results are compatible with the results of ref. [8] for F⊥,‖, with the

absolute magnitude of the latter a bit below our results. The calculation of F0,t in terms

of dipion DAs is still work in progress (only a relationship between Ft, F0 and F‖ is given

in ref. [8]), and thus we cannot perform such comparison for FA2 and Ft. Our results
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Figure 3. B → ππ form factors as a function of the momentum transfer q2 at the dipion threshold

s = 4m2
π (Ft is plotted instead at s = 5m2

π). The models of table 2 (Model 1) and table 3 (Model 2)

are compared to the predictions for F⊥,‖ from the LCSRs with dipion DAs given in ref. [8] (only

central values). Shaded regions and error bars account for all uncertainties.

for the slope parameters ηF have a significant error, and thus one would naively expect

that the uncertainties in the form factors increase visibly with q2, contrary to what is seen

in figure 3 where the uncertainties are rather constant. The reason for this is the large

positive correlation between κF and ηF (of around +0.8, see tables 2 and 3). Since ζR(q2)

is negative, lower values of κF (corresponding to lower values of the form factors at q2 = 0)

are correlated with lower values of ηF (corresponding to larger slopes for the form factors

and larger values at q2 = 12 GeV2), and viceversa.

5 Conclusions

In this paper we have suggested a new approach to the B → ππ transition form factors

in the region of small dipion mass, employing the LCSRs with B-meson DAs. We have

focused on the particular B̄0 → π+π0 transition, generated by the weak b → u current,

with an isospin-one and P -wave dipion final state. The fact that this state is interpo-

lated by the light-quark vector current allows one to go beyond the single narrow ρ-meson

approximation, probing also the contributions of other intermediate states with the same

quantum numbers. We have obtained the LCSRs in a general form in which the convolu-

tions of B → 2π P -wave form factors with the pion vector form factor integrated over the

quark-hadron duality interval are related to the integrals over B-meson DAs. The latter
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are calculated from the OPE of the underlying correlation function, taking into account

the two- and three-particle B-meson DAs and reproducing the results obtained earlier in

refs. [11, 12]. In addition, we have derived a new sum rule for the form factor Ft starting

from a slightly modified correlation function and including the three-particle contribution

∆ABρ0 , which is given here explicitly for the first time (see appendix A).

We have performed an exploratory numerical analysis using as an input the vector form

factor measured by the Belle collaboration, and fitted in a form of a superposition of three

resonances. We have then investigated the impact of the nonresonant and excited states on

the sum-rule results for the dominant B → ρ form factor, including the effects of the total

width of ρ, and of the excited resonance contributions to the vector form factor. Using an

independent calculation of B → ρ form factors from LCSRs with zero-width ρ-meson DAs,

we find that the contributions from ρ′ and other states in the region of low dipion mass

can be typically at the level of 15–20%. This is consistent with the results of ref. [8] based

on LCSRs for B → ππ form factors in terms of dipion DAs. Hence, the combination of

these two independent methods (LCSRs with dipion or B-meson distribution amplitudes)

can be used in the future for reciprocal tests of the results.

Further development of the approach suggested in this paper is foreseeable in several

directions. First, the accuracy of the OPE can be improved further, by calculating the

perturbative NLO corrections and pinning down the uncertainty in the parameters of the

B meson DAs. Second, the description of the pion vector form factor and probably also of

the of B → ππ form factors in the small dipion mass region can be implemented in a more

model-independent fashion employing the dispersion approach and the Omnès representa-

tion in the spirit of ref. [2], that is, with no explicit resonance ansatz. Finally, the method

can be extended to other B → P1P2 form factors with P1,2 = π,K, . . . and with various

spin-parities and flavor combinations, for example to B → Kπ form factors.

One of the necessary requirements to improve on the accuracy of the observable-rich

exclusive B-decays with unstable mesons in the final states (such as B → ρ`ν`, B → ρπ

or B → K∗`+`−) is a reliable and maximally comprehensive description of the nonreso-

nant background stemming from excited and continuum states. Such a description should

already begin at the stage of fitting the data, and the general B → ππ or B → Kπ form

factors, respectively, should serve as a starting point. The sum rules considered in this pa-

per provide a useful theoretical tool for such purpose. Our analysis is a first step towards

a coherent approach to B decays into unstable hadrons.
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A B-meson distribution amplitudes

We use the standard definition of the two-particle B-meson DAs φB±(ω) in the momentum

representation [41, 42]:

〈0|d̄α(x)[x, 0]hvβ(0)|B̄0
v〉 (A.1)

= − ifBmB

4

∞∫
0

dωe−iωv·x
{

(1 + v/)

(
φB+(ω) +

φB−(ω)− φB+(ω)

2v · x
x/

)
γ5

}
βα

,

where [x, 0] is the gauge factor and the Bv meson state with four velocity v is defined in

HQET. We retain the relativistic normalization |B(pB)〉 = |Bv〉 up to 1/mb corrections;

also the b quark field is replaced by the effective field using b(x) = e−imbvxhv(x). The

variable ω is the plus component of the light-quark momentum in the B meson. We also

use the notation:

Φ̄B
±(ω) =

ω∫
0

dτ
(
φB+(τ)− φB−(τ)

)
. (A.2)

The four three-particle DAs emerge in the decomposition of the quark-antiquark-gluon

matrix element (see ref. [12] for details):

〈0|q̄2α(x)Gλρ(ux)hvβ(0)|B̄0(v)〉 =
fBmB

4

∞∫
0

dω

∞∫
0

dξ e−i(ω+uξ)v·x

×

[
(1 + v/)

{
(vλγρ − vργλ)

(
ΨA(ω, ξ)−ΨV (ω, ξ)

)
− iσλρΨV (ω, ξ)

−
(
xλvρ − xρvλ

v · x

)
XA(ω, ξ) +

(
xλγρ − xργλ

v · x

)
YA(ω, ξ)

}
γ5

]
βα

, (A.3)

where the path-ordered gauge factors in the l.h.s. are omitted for brevity. The DA’s ΨV ,ΨA,

XA and YA depend on ω > 0 and ξ > 0 being, respectively, the plus components of the

light-quark and gluon momenta in the B meson.

In the numerical analysis we adopt the popular exponential model [41] of the B-meson

two-particle DAs:

φB+(ω) =
ω

ω2
0

e−ω/ω0 ; φB−(ω) =
1

ω0
e−ω/ω0 , (A.4)

where the parameter ω0 is equal to the inverse moment λB, defined as

1

λB
=

∞∫
0

dω
φB+(ω)

ω
. (A.5)

We also use the related models for the three-particle DAs developed in ref. [12]:

ΨA(ω, ξ) = ΨV (ω, ξ) =
λ2
E

6ω4
0

ξ2e−(ω+ ξ)/ω0 ,

XA(ω, ξ) =
λ2
E

6ω4
0

ξ(2ω − ξ) e−(ω+ ξ)/ω0 ,

YA(ω, ξ) = −
λ2
E

24ω4
0

ξ(7ω0 − 13ω + 3ξ)e−(ω+ ξ)/ω0 , (A.6)
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where λ2
E = 3

2ω
2
0 is adopted. The three-particle contributions to the sum rules ∆V BV and

∆ABV1,2 can be found in ref. [12]. However, the expression for ∆ABV0 has not yet been given

in the literature. In complete analogy with the calculation of ref. [12], we find:

∆ABV0 (q2, s2π
0 ,M2) =

σ2π
0∫

0

dσ exp

(
−s(σ, q2)

M2

)
×

(
−I(A0)

1 (σ)+
I

(A0)
2 (σ)

M2
− I

(A0)
3 (σ)

2M4

)
(A.7)

+
e−s

2π
0 /M2

m2
B

{
η(σ)

[
I

(A0)
2 (σ)− 1

2

(
1

M2
+

1

m2
B

dη(σ)

dσ

)
I

(A0)
3 (σ)− η(σ)

2m2
B

dI
(A0)
3 (σ)

dσ

]}∣∣∣∣∣
σ=σ0

,

where

η(σ) =

(
1− q2

σ̄2m2
B

)−1

,

and the integrals over the three-particle DA’s multiplying the inverse powers of the Borel

parameter 1/M2(n−1) with n = 1, 2, 3 are defined as:

I(A0)
n (σ) =

1

σ̄n

σmB∫
0

dω

∞∫
σmB−ω

dξ

ξ

[
C(A0,ΨA)
n (σ, u, q2)ΨB

A(ω, ξ) + C(A0,ΨV )
n (σ, u, q2)ΨB

V (ω, ξ)

+ C(A0,XA)
n (σ, u, q2)X

B
A(ω, ξ)+C(A0,Y A)

n (σ, u, q2)Y
B
A(ω, ξ)

]∣∣∣∣∣
u=(σmB−ω)/ξ

, (A.8)

where:

X
B
A(ω, ξ) =

ω∫
0

dτXB
A (τ, ξ), Y

B
A(ω, ξ) =

ω∫
0

dτY B
A (τ, ξ). (A.9)

The non-vanishing coefficients entering eq. (A.8) are given by:

C
(ABV0 ,ΨA)
1 = −C(ABV0 ,ΨV )

1 =
−2u

m2
Bσ̄

,

C
(ABV0 ,ΨA)
2 =

(2q2u+m2
Bσ̄(4σu− 2u− 3σ))

m2
Bσ̄

,

C
(ABV0 ,ΨV )
2 =

(−2q2u+m2
Bσ̄(2uσ + 2u− 3σ)

m2
Bσ̄

,

C
(ABV0 ,XA)
2 =

mB(2u− 1)(1 + σ)

m2
Bσ̄

,

C
(ABV0 ,Y A)
2 = −2(2u− 1)(1 + σ)

mBσ̄
,

C
(ABV0 ,XA)
3 =

2

m2
Bσ̄

[
m3
B(2u− 1)σσ̄2 + q2mB(1− 2u)σ

]
,

C
(ABV0 ,Y A)
3 = − 4

mBσ̄

[
m2
B(2u− 1)σσ̄2 + q2(1− 2u)σ

]
. (A.10)
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Resonance mR (MeV) ΓR (MeV) weight factor

ρ 774.6± 0.2± 0.5 148.1± 0.4± 1.7 1.0

ρ′ 1446± 7± 28 434± 16± 60
|β| = 0.15± 0.05+0.15

−0.04

φβ = (202± 4+41
−8 )◦

ρ′′ 1728± 17± 89 164± 21+80
−26

|γ| = 0.037± 0.006+0.065
−0.009

φγ = (24± 9+118
−28 )◦

Table 4. Numerical parameters for the pion timelike form factor model from ref. [15].

B The pion timelike form factor

We use the results for the pion vector form factor obtained from the measurement of

τ → π−π0ντ decay by Belle Collaboration [15] and fitted to the combination of three

ρ-resonances, for which the Gounaris-Sakurai model [24] was adopted

Fπ(s) =
BWGS

ρ (s) + |β|eiφβBWGS
ρ′ (s) + |γ|eiφγBWGS

ρ′′ (s)

1 + |β|eiφβ + |γ|eiφγ
, (B.1)

where

BWGS
R (s) =

m2
R +mRΓRd

m2
R − s+ f(s)− i

√
s ΓR(s)

, (B.2)

and the functions f(s) and d entering the resonance model are not shown here for the sake

of brevity and can be found e.g., in eqs. (14)-(16) of [15], so that BWGS
R (0) = 1. (For a

simple derivation of the GS model see e.g., [18].) Furthermore, we use the parameters of

the constrained fit (|Fπ(0)| = 1) taken from the table VII of ref. [15], which we reproduce

in table 4. We also note that the masses of resonances and their total widths are in a good

agreement with the averages in [17].

C Fixing the effective threshold

We employ the QCD (SVZ) sum rules [38] for the two-point correlation function:

Πµν(q) = i

∫
d4xeikx〈0|T{d̄(x)γµu(x), ū(0)γνd(0)|0〉 = (qµqν − q2gµν)Π(q2) , (C.1)

where the lowest two-pion contribution to the hadronic spectral density is written in a

general form, proportional to the square of the pion vector form factor:

1

π
ImΠ(s) =

[βπ(s)]3

48π2
|Fπ(s)|2 . (C.2)

It is easy to check that replacing the form factor by the single ρ approximation in the zero-

width limit Γtot
ρ → 0, brings this expression to the familiar form 1

π ImΠ(s) = f2
ρ δ(s−m2

ρ).
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Furthermore, we substitute in eq. (C.2) the measured form factor squared and calculate

numerically the integral over ImΠ(s) weighted with the Borel exponent:

Π2π(M2, s2π
0 ) ≡ 1

π

s2π0∫
4m2

π

dse−s/M
2
ImΠ(s) =

s2π0∫
4m2

π

dse−s/M
2 [βπ(s)]3

48π2
|Fπ(s)|2 . (C.3)

The above integral is equated to the Borel-transformed correlation function calculated

in QCD and containing the perturbative loop contribution (to NLO) and the vacuum

condensate terms (up to d = 6):

ΠOPE(M2, s2π
0 ) =

M2

8π2

(
1− e−s2π0 /M2) (

1 +
αs
π

)
+

v4

M2
+

v6

2M4
, (C.4)

where

v4 = −1

4
f2
πm

2
π +

1

24
〈0|αs

π
GaµνG

aµν |0〉 , v6 = −112π

81
αs〈0|q̄q|0〉2 (C.5)

is the compact notation for the contributions from dimension-4 (quark and gluon) and

dimension-6 (four-quark) condensates, respectively. In the above expressions the quark-

condensate contribution is related to the pion decay constant fπ = 130.4 MeV and the

input parameters are: αs(1 GeV) = 0.47 [17], 〈0|q̄q|0〉(1 GeV) = (−250±10 MeV)3 [17, 43]

and 〈0|αsπ G
a
µνG

aµν |0〉 = 0.012+0.006
−0.012 GeV4 [44].

Fitting the integral Π2π(M2, s2π
0 ) to its QCD sum rule counterpart ΠOPE(M2, s2π

0 ) we

find the following values depending on the Borel parameter:

s2π
0 (M2 = 1.00 GeV2) = 1.55± 0.04 GeV2

s2π
0 (M2 = 1.25 GeV2) = 1.53± 0.03 GeV2 (C.6)

s2π
0 (M2 = 1.50 GeV2) = 1.51± 0.02 GeV2

which is close to the duality interval in the original SVZ sum rule [38] for the ρ meson.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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