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B-SERIES AND ORDER CONDITIONS FOR EXPONENTIAL
INTEGRATORS∗

HÅVARD BERLAND† , BRYNJULF OWREN† , AND BÅRD SKAFLESTAD†

Abstract. We introduce a general format of numerical ODE-solvers which include many of
the recently proposed exponential integrators. We derive a general order theory for these schemes
in terms of B-series and bicolored rooted trees. To ease the construction of specific schemes we
generalize an idea of Zennaro [Math. Comp., 46 (1986), pp. 119–133] and define natural continuous
extensions in the context of exponential integrators. This leads to a relatively easy derivation of
some of the most popular recently proposed schemes. The general format of schemes considered here
makes use of coefficient functions which will usually be selected from some finite dimensional function
spaces. We will derive lower bounds for the dimension of these spaces in terms of the order of the
resulting schemes. Finally, we illustrate the presented ideas by giving examples of new exponential
integrators of orders 4 and 5.
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1. Introduction. Numerical integration schemes which use the matrix exponen-
tial go back all the way to Certaine [4], but there are also early papers by Lawson [15],
Nørsett [20], Ehle and Lawson [6], and Friedli [7] to mention just a few. Recently there
has been a revived interest in these schemes, in particular for the solution of nonlinear
partial differential equations; see for instance [11, 17, 5, 3, 14, 13]. For a thorough
review of the history of exponential integrators; see [16] and the references therein.
The integrators found in these papers are derived in rather different ways, and they
are formulated for different types of systems of differential equations. On this note,
we consider the autonomous nonlinear system of ordinary differential equations

u̇ = Lu+N(u), u(0) = u0.(1.1)

Here L is a matrix and N(u) a nonlinear mapping. The order theory we consider is
valid for a large class of exponential integrators, including the Runge–Kutta–Munthe-
Kaas (RKMK) schemes [17], the commutator-free Lie group integrators [3], and those
schemes of Cox and Matthews [5], as well as Krogstad [14] which reduce to classical
Runge–Kutta schemes when L = 0.

We present the general format for integrators of (1.1) as

Nr = N
(
exp(crhL)u0 + h

s∑
j=1

ajr(hL)Nj

)
, r = 1, . . . , s(1.2)

u1 = exp(hL)u0 + h

s∑
r=1

br(hL)Nr.(1.3)
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1716 H. BERLAND, B. OWREN, AND B. SKAFLESTAD

Here we assume that the functions ajr(z) and br(z) are at least p times continuously
differentiable at z = 0 for integration schemes of order p.

Table 1

Examples of schemes in general format for exponential integrators.

(a) RKMK, order 4

0

1
2

1
2
φ0(z/2)

1
2

z
8
φ0(z/2) 1

2
(1 − z

4
)φ0(z/2)

1 φ0(z)

1
6
φ0(z)(1 + z

2
) 1

3
φ0(z) 1

3
φ0(z) 1

6
φ0(z)(1 − z

2
)

(b) Commutator-free, order 4

0

1
2

1
2
φ0(z/2)

1
2

1
2
φ0(z/2)

1 z
4
φ0(z/2)2 φ0(z/2)

1
2
φ0(z) − 1

3
φ0(z/2) 1

3
φ0(z) 1

3
φ0(z) − 1

6
φ0(z) + 1

3
φ0(z/2)

Table 1 gives the coefficient functions ajr(z) and br(z) for the fourth order RKMK
scheme introduced in [18] in this general format when applied to the problem (1.1)
with an affine Lie group action, and the commutator-free scheme of order 4 from [3];
in both tables φ0(z) = (ez − 1)/z.

For deriving order conditions, we expand the coefficient functions in powers of z,

ajr(z) =
∑
k≥0

αj,k
r zk and br(z) =

∑
k≥0

βr,kzk,

where the sum may terminate with a remainder term. For the schemes we consider
here, these functions are in fact all entire. If N(u) = 0 in (1.1), then any scheme in
the above class will reproduce the exact solution in every step. Whereas if L = 0,
the scheme (1.2)–(1.3) reduces to a classical Runge–Kutta method with coefficients
ajr = αj,0

r and br = βr,0. This scheme is henceforth called the underlying Runge–Kutta
scheme. We will always assume that cr =

∑
j α

j,0
r , 1 ≤ r ≤ s.

The schemes proposed by Friedli [7] closely resemble the format (1.2)–(1.3), the
difference being that the coefficient functions arj (resp. br) are evaluated in crhL
rather than in hL, thus a nontrivial discrepancy may occur whenever cr = 0. And
even though Friedli explicitly requires that the functions arj(z) and br(z) be of the
form ∫ 1

0

e(1−θ)zp(θ) dθ, p(θ) polynomial,

his analysis holds also for the case of more general coefficient functions, so that the
order conditions he obtains for p ≤ 4 are almost identical to those derived in section
2 here. However, the order theory presented here is general.

We will discuss conditions on the coefficients αj,k
r and βr,k under which the scheme

(1.2)–(1.3) has order of consistency p for problems of the type (1.1). We will use the
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ORDER CONDITIONS FOR EXPONENTIAL INTEGRATORS 1717

well known approach involving rooted trees; see, for instance, [9, 2]. The conditions
we find will depend only on the first αj,k

r for k ≤ p− 2 and on βj,k for k ≤ p− 1. On
this note we will not address issues related to the behavior of the coefficient functions
ajr(z) and br(z) for large values of z.

In the recent paper [12], an order theory for explicit exponential integrators is
presented and its application to semilinear parabolic problems is discussed. While
classical or nonstiff order conditions are usually derived by assuming that a Lipschitz
constant exists, one needs to account for the unboundedness of the operator L when-
ever PDEs are considered. It is found that a set of additional order conditions must
be satisfied to guarantee convergence order p under suitable assumptions; one requires
the linear operator L to be the infinitesimal generator of an analytic semigroup, and
that the nonlinear function satisfies a Lipschitz condition. The authors are also able
to give an example where order reduction is seen numerically for schemes not satis-
fying the additional conditions. But the conditions are rather restrictive, and in [13]
exponential integrators of (nonstiff) order four are tried out numerically for a number
of well-known semilinear PDEs, and no order reduction is seen, despite the fact that
these integrators do not satisfy all the required conditions for order four as given
in [12]. This shows that the issue of determining the order behavior of exponential
integrators for PDEs is indeed a subtle one, and remains today in an unsatisfactory
state of nonresolution.

2. B-series and order conditions. Repeated differentiation of (1.1) with re-
spect to time yields

d2u

dt2
= Lu̇+N ′(u̇)

= L2u+ LN +N ′(Lu) +N ′(N)

d3u

dt3
= L3u+ L2N + LN ′(Lu) + LN ′(N)

+N ′′(Lu,Lu) + 2N ′′(Lu,N) +N ′(L2u)

+N ′(LN) +N ′′(N,N) +N ′N ′(Lu) +N ′N ′(N),

etc. The exact solution of (1.1) has a formal expansion

u(h) =

∞∑
q=0

hq

q!

dq

dhq

∣∣∣∣
h=0

u(h),

where each term in the qth derivative corresponds in an obvious way to a rooted
bicolored tree. Let for instance • ∼ F (•) = N(u) and ◦ ∼ F (◦) = Lu be the two
trees with one node. Next, define B+ as the operation which takes a finite set of
trees {τ1, . . . , τμ} and connects their roots to a new common black root. Similarly,
τ = W+(τ ′) connects the root of τ ′ to a new white root resulting in the tree τ
associated to F (τ) = L · F (τ ′). It suffices here to allow W+ to act on a single tree
and not on a set of trees. To each tree τ with q nodes formed this way, there exists
precisely one term, F (τ) called an elementary differential, in the qth derivative of the
solution of (1.1). For q > 1 it is defined recursively as

F (B+(τ1, . . . , τμ))(u) = N (μ)(F (τ1), . . . , F (τμ))(u)(2.1)

F (W+(τ ′))(u) = LF (τ ′)(u).(2.2)
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1718 H. BERLAND, B. OWREN, AND B. SKAFLESTAD

We may denote by T the set of all bicolored trees such that each white node has
at most one child, and set T = Tb ∪ Tw the union of trees with black and white
roots, respectively. Introducing the empty set ∅, and using the convention B+(∅) =
•, W+(∅) = ◦, we may write

T ∪ ∅ =
⋃
m≥0

Wm
+ (Tb ∪ ∅), Tw =

⋃
m≥1

Wm
+ (Tb ∪ ∅).(2.3)

The same bicolored trees used here also appear in the linearly implicit
W -methods; see Steihaug and Wolfbrandt [21] as well as the text [10] by Hairer
and Wanner. Following, for instance, the text by Hairer, Lubich, and Wanner [8],
we may work with formal B-series. For an arbitrary map c : T ∪ ∅ → R, we let the
formal series

B(c, u) = c(∅)u+
∑
τ∈T

h|τ |

σ(τ)
c(τ)F (τ)(u)(2.4)

be a B-series, where σ(τ) is the symmetry coefficient defined as σ(•) = σ(◦) = 1, and
for τ = B+(τ1, . . . , τμ),

σ(τ) = σ(τ1) · · ·σ(τμ)m1! ·m2! · · · ,

where the mis count the number of equal trees among τ1, . . . , τμ.
The further derivation of order conditions is based on the assumption that both

the exact and numerical solution possess B-series of the form (2.4), say B(e, u0) and
B(u1, u0), respectively. We refer to [1] for details, and present only the final result.

Theorem 2.1. Let T ′ ⊂ T be the set of bicolored rooted trees such that every
white node has precisely one child. An exponential integrator defined by (1.2)–(1.3)
has order of consistency p if

u1(τ) =
1

γ(τ)
for all τ ∈ T ′ such that |τ | ≤ p,

where

u1(∅) = Ur(∅) = 1, 1 ≤ r ≤ s,

u1(W
m
+ B+(τ1, . . . , τμ)) =

s∑
r=1

βr,mUr(τ1) · · ·Ur(τμ)

Ur(W
m
+ B+(τ1, . . . , τμ)) =

s∑
j=1

αj,m
r Uj(τ1) · · ·Uj(τμ).

The trees in T ′ with at most four nodes are listed in Table 2. Note that even
though all trees in the set T feature in the B-series for the exact and numerical
solutions, it suffices to consider a subset T ′ consisting of all trees in T except those
with a terminal white node. There is an interesting connection between the set of trees
T ′ and the trees used to develop the order theory for composition methods in [19].
White nodes appear as connected strings of nodes which, except for the root, have
exactly one parent and one child, and always terminate in a black node. Therefore
one can remove all white nodes and assign to the terminating black node the number
of removed nodes plus one. Black nodes not connected to a white node are assigned
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ORDER CONDITIONS FOR EXPONENTIAL INTEGRATORS 1719

the number one. These multilabelled trees are precisely those appearing in [19], they
can also be identified as the set of rooted trees of nonempty sets. The generating
function for these trees is well known,

M(x) =
x

1 − x
exp

(
M(x) +

M(x2)

2
+
M(x3)

3
+ · · ·

)
.

The number of order conditions for each order 1 to 9 is 1, 2, 5, 13, 37, 108, 332, 1042,
and 3360.

3. Construction of exponential integrators. The schemes of Lawson [15] are
exponential integrators derived simply by introducing a change of variable, w(t) =
e−tL u(t) in (1.1), and by applying a standard Runge–Kutta scheme to the resulting
ODE. This approach results in a formula for w1 in terms of w0. By setting un = etL wn

one gets a scheme of the form (1.2)–(1.3) in which

ajr(z) = αj,0
r e(cr−cj)z and br(z) = βr,0 e(1−cr)z,

as noted by Lawson in [15].
This scheme has order p if the underlying scheme determined by αj,0

r and βr,0 is of
order p. This gives us a very useful tool for constructing exponential integrators with
given underlying Runge–Kutta schemes. We express this in the following proposition.

Proposition 3.1. Suppose that the coefficients αj,0
r and βr,0, 1 ≤ r, j ≤ s define

a Runge–Kutta scheme of order p. Then, any exponential integrator of the form
(1.2)–(1.3) satisfying

αj,m
r =

1

m!
(ajr)

(m)(0) =
1

m!
αj,0
r (cr − cj)

m, 0 ≤ m ≤ p− 2,(3.1)

βr,m =
1

m!
(bjr)

(m)(0) =
1

m!
βr,0(1 − cr)

m, 0 ≤ m ≤ p− 1,(3.2)

is of order p. In the above expression we use 00 := 1.
Proof. Order conditions for exponential integrators of order p involve αj,m

r for
0 ≤ m ≤ p− 2 and βr,m for 0 ≤ m ≤ p− 1. On the other hand, the Lawson schemes
must satisfy the order conditions for exponential integrators, and their values for these
coefficients are precisely those specified in the proposition.

It is convenient to introduce finite dimensional function spaces Va and Vb to which
the respective coefficient functions ajr(z) and br(z) will belong. For the purpose of
calculations, it is also useful to work with basis functions ψk for these spaces,

ajr(z) =

Ka−1∑
k=0

Aj,k
r ψk(z) and br(z) =

Kb−1∑
k=0

Br,kψk(z),(3.3)

where Ka = dim(Va) and Kb = dim(Vb). There is a technical assumption that we will
adopt to the end of this note.

Assumption 3.2. Any finite dimensional function space V of dimension K used
for coefficient functions ajr(z) or br(z) has the property that the map from V to RK

defined by

f 
→ (f(0), f ′(0), . . . , f (K−1)(0))T

is injective. Equivalently, any function in V is uniquely determined by its first K
Taylor coefficients.
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1720 H. BERLAND, B. OWREN, AND B. SKAFLESTAD

Table 2

Trees, elementary differentials and coefficients for τ ∈ T ′ with |τ | ≤ 4.

|τ | Tree F (τ) γ(τ) u1(τ) σ(τ)

1 1 N 1
∑

r β
r,0 1

2 2 N ′N 2
∑

r β
r,0cr 1

3 2 LN 2
∑

r β
r,1 1

4 3 N ′′(N,N) 3
∑

r β
r,0c2r 2

5 3 N ′N ′N 6
∑

r,j β
r,0αj,0

r cj 1

6 3 N ′(LN) 6
∑

r,j β
r,0αj,1

r 1

7 3 LN ′N 6
∑

r β
r,1cr 1

8 3 L2N 6
∑

r β
r,2 1

9 4 N ′′′(N,N,N) 4
∑

r β
r,0c3r 6

10 4 N ′′(N ′N,N) 8
∑

r,j β
r,0αj,0

r cjcr 1

11 4 N ′′(LN,N) 8
∑

r,j β
r,0αj,1

r cr 1

12 4 N ′N ′′(N,N) 12
∑

r,j β
r,0αj,0

r c2j 2

13 4 LN ′′(N,N) 12
∑

r β
r,1c2r 2

14 4 N ′N ′N ′N 24
∑

r,j,k βr,0αj,0
r αk,0

j ck 1

15 4 N ′N ′(LN) 24
∑

r,j,k βr,0αj,0
r αk,1

j 1

16 4 N ′(LN ′N) 24
∑

r,j β
r,0αj,1

r cj 1

17 4 N ′(L2N) 24
∑

r,j β
r,0αj,2

r 1

18 4 LN ′N ′N 24
∑

r,j β
r,1αj,0

r cj 1

19 4 LN ′(LN) 24
∑

r,j β
r,1αj,1

r 1

20 4 L2N ′N 24
∑

r β
r,2cr 1

21 4 L3N 24
∑

r β
r,3 1

3.1. Deriving schemes with natural continuous extensions. The approach
of Krogstad in [14] is to approximate the nonlinear function N(u(t0 + θh)), 0 < θ < 1
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ORDER CONDITIONS FOR EXPONENTIAL INTEGRATORS 1721

with a polynomial in θ. Assuming that the functions ajr(z) for the internal stages are
given, one lets N(u(tn + θh)) be approximated by

N̄(t0 + θh) =

s∑
r=1

w′
r(θ)Nr,(3.4)

where Nr = N(Ur) are the stage derivatives and wr(θ) are polynomials of degree
d, with w(0) = 0, such that N̄(t0 + θh) approximates N(u(t0 + θh)) uniformly for
0 < θ < 1 to a given order. Replacing the exact problem with the approximate one,
v̇ = Lv + N̄(t), v(t0) = u0 one finds

u1 := v(t0 + h) = ehLu0 +

s∑
r=1

br(hL)Nr, where br(z) =

∫ 1

0

e(1−θ)zw′
r(θ) dθ;

we then define the functions

φk(z) =

∫ 1

0

e(1−θ)zθk dθ, k = 0, 1, . . . .(3.5)

Thus, here the function space Vb = span{φ0, . . . , φd−1}, so ψk = φk and Kb = d
in (3.3). Cox and Matthews [5] presented a fourth order scheme using these basis
functions with Kb = 3. Krogstad [14] also derived a variant of their method by using
a continuous extension as just explained. In [22] Zennaro developed a theory which
generalizes the collocation polynomial idea to arbitrary Runge–Kutta schemes. The
approach was called natural continuous extensions (NCE). By making a slight modi-
fication to the approach of Zennaro, one can find a useful way of deriving exponential
integrators as well as providing them with a continuous extension.

Suppose w1(θ), . . . , ws(θ) are given polynomials of degree d, and that the stage
derivatives N1, . . . , Ns of an exponential integrator are given from (1.2). We define
the d− 1 degree polynomial N̄(t) by (3.4).

Definition 3.3. We call N̄(t) of (3.4) a natural continuous n-extension (NCNE)
of degree d of the exponential integrator (1.2)–(1.3) if

1.

wr(0) = 0, wr(1) = br(0), r = 1, . . . , s,

2.

max
t0≤t≤t1

|N(u(t)) − N̄(t)| = O(hd−1),(3.6)

where u(t) is the exact solution of (1.1) satisfying u(t0) = u0;
3. ∫ t1

t0

G(t)(N(u(t)) − N̄(t)) dt = O(hp+1)(3.7)

for every smooth matrix-valued function G(t).
It is important to note that the polynomial N̄(t) only depends on the stages Nr

and the weights br(0) = βr,0 corresponding to the underlying Runge–Kutta scheme.
We also observe that since the wr(θ) does not depend on L, an NCNE as defined above
is also an NCE in the sense of Zennaro for the system u̇ = N(u). Before discussing the
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1722 H. BERLAND, B. OWREN, AND B. SKAFLESTAD

existence of NCNEs, we motivate their usefulness in designing exponential integrators.
Suppose an underlying Runge–Kutta method has been chosen, and that an NCNE
has been found. Then we can determine the functions br(z) in order to obtain an
exponential Runge–Kutta method of the same order as the underlying scheme.

Theorem 3.4. If N̄(t) defined from (3.4) is an NCNE of degree d for a pth order
scheme, then the functions

br(z) =

∫ 1

0

e(1−θ)zw′(θ) dθ = βr,0 + z

∫ 1

0

e(1−θ)zw(θ) dθ,

define the weights of an exponential integrator of order p.
Proof. The exponential integrator we consider is obtained by replacing (1.1) by

v̇ = Lv + N̄(t), v(t0) = u0(3.8)

over the interval [t0, t1] and by solving (3.8) exactly. We subtract (3.8) from (1.1) to
obtain

u̇− v̇ = L(u̇− v̇) +
(
N(u) − N̄(t)

)
.

We may solve this equation to obtain

u(t1) − v(t1) =

∫ t1

t0

e(t1−t)L
(
N(u(t)) − N̄(t)

)
dt = O(hp+1),

the last equality is thanks to (3.7).
A reinterpretation of a result by Zennaro [22] combined with Proposition 3.1 leads

to the following theorem.
Theorem 3.5. Suppose that an underlying Runge–Kutta scheme with coefficients

αj,0
r and βr,0 of order p is given. Then it is possible to find a set of coefficient functions
ajr(z) with ajr(0) = αj,0

r such that an NCNE of degree d = �p+1
2 � exists. Moreover, if

N̄(t) is a NCNE of degree d, then⌊
p+ 1

2

⌋
≤ d ≤ min(ν∗, p),

where ν∗ is the number of distinct elements among c1, . . . , cs.
Corollary 3.6. For every underlying Runge–Kutta scheme, there exists an

exponential integrator whose coefficient functions br(z) are in the linear span of the
functions {φ0(z), . . . , φd−1(z)}, where d = �p+1

2 �.
Note, in particular, that one can derive fourth order exponential integrators using

linear combinations of just φ0(z) and φ1(z) for br(z), which is one less than what Cox
and Matthews used; we present a specific example in section 4.

3.2. Lower bounds for Ka and Kb. We start establishing lower bounds for
the number of necessary basis functions ψk by proving an ancillary result.

Lemma 3.7. Let q ≥ 0 be an integer. The matrix Tq ∈ Rd×d with elements

(Tq)m+1,k+1 =
1

(q +m+ k + 1)!
, 0 ≤ m, k ≤ d− 1

is invertible.
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ORDER CONDITIONS FOR EXPONENTIAL INTEGRATORS 1723

Proof. Let w = (w1, . . . , wd)
T ∈ Rd be arbitrary, and consider the polynomial

p(x) =

d−1∑
k=0

wk+1
xq+d+k

(q + d+ k)!
.

We compute

p(d−m−1)(1) =

d−1∑
k=0

wk+1
1

(q +m+ k + 1)!
= (Tqw)m+1, 0 ≤ m ≤ d− 1.

So Tqw = 0 is equivalent to p(j)(1) = 0 for 0 ≤ j ≤ d − 1. Since p(x) is of the form
xq+dr(x) where r(x) is a polynomial of degree at most d− 1, it follows that p(x) ≡ 0
so that w = 0.

As φ
(m)
k (0) = m!k!/(m+ k + 1)! for φk defined by (3.5), we get as an immediate

consequence of this lemma that the function spaces V = span(φq, . . . , φq+K−1), q ≥ 0
satisfy Assumption 3.2.

Theorem 3.8. For an exponential integrator of order p, the dimension of the
function spaces Va and Vb are bounded from below as follows:

Ka = dimVa ≥
⌊
p

2

⌋
, Kb = dimVb ≥

⌊
p+ 1

2

⌋
.(3.9)

Proof. We will show that using smaller values of Ka or Kb than dictated by (3.9)
is incompatible with the order conditions for a scheme of order p. Let Va and Vb be
arbitrary function spaces, satisfying Assumption 3.2, let V denote either of them, and
let d = dimV . If f ∈ V , then there are numbers w0, . . . , wd−1 such that

f (d)(0) =

d−1∑
m=0

wm f (m)(0).(3.10)

Suppose now that da := dimVa = �p/2� − 1 and db := dimVb = �(p+ 1)/2� − 1.
Consider the bicolored trees τm,k

q defined by

τm,k
q = Bq

+

(
Wm

+ B+(

k︷ ︸︸ ︷•, . . . , •))
which consist of a string of q ≥ 0 black nodes followed by a string of m > 0 white
nodes with a bushy tree of k + 1 black nodes grafted onto the topmost leaf of the
white nodes. We shall use these trees with q = 0 for proving the bound on Kb and
with q = 1 for Ka. The density of τm,k

q is given by

γ(τm,k
q ) =

(q +m+ k + 1)!

k!
.

The trees corresponding to order conditions for a scheme of order p have at most p
nodes, |τm,k

q | = q+m+ k+ 1 ≤ p⇒ 0 ≤ k ≤ p−m− 1− q. The definition of da and
db implies that p− 2 ≥ 2da and p− 1 ≥ 2db. If we set q = 1, m = da we thus obtain
conditions for 0 ≤ k ≤ da, whereas q = 0, m = db results in 0 ≤ k ≤ db.

The conditions corresponding to τda,k
1 can be expressed as

1

da!

s∑
r,j=1

βr,0(ajr)
(da)(0)ckj =

k!

(da + k + 2)!
, 0 ≤ k ≤ da
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1724 H. BERLAND, B. OWREN, AND B. SKAFLESTAD

which, upon insertion of (ajr)
(da)(0) =

∑
wm(ajr)

(m)(0) as in (3.10), yields

k! da!

(k + da + 2)!
=

da−1∑
m=0

wm

(
s∑

r=1

βr,0(ajr)
(m)(0)ckj

)
=

da−1∑
m=0

wm
m! k!

(m+ k + 2)!
.

The conditions for τdb,k
0 similarly yield

k! db!

(k + db + 1)!
=

db−1∑
m=0

wm

(
s∑

r=1

(br)(m)(0) ckr

)
=

db−1∑
m=0

wm
m! k!

(m+ k + 1)!
.

In both cases (d = da or db), we end up with a (d+ 1)× d linear system of equations
for determining wm, m = 0, . . . , d− 1. This system is of the form

d−1∑
m=0

m! k!

(q +m+ k + 1)!
wm =

k! d!

(q + k + d+ 1)!
, 0 ≤ k ≤ d

for q ∈ {0, 1} and is solvable only if the matrix with elements

(Tq)m+1,k+1 =
m! k!

(q +m+ k + 1)!
, 0 ≤ m, k ≤ d

is singular. However, Lemma 3.7 implies that the matrix Tq is invertible so the linear
system is inconsistent. It is hence not possible to choose Ka = da or Kb = db.

Some remarks regarding the implications of Theorem 3.8 are in order. First, note
that the bounds in the theorem are not proved to be sharp; however, Theorem 3.5
ensures that the lower bound is attainable for the dimension of Vb if a basis is given
by the functions φk of (3.5). However, this result does not apply to the space Va of
the functions ajr(z). For instance, in the case p = 5, one can prove that it is indeed
possible to take Ka = 2, but Va cannot be the span of φ0 and φ1. But an example of a
feasible two-dimensional space is that with basis ψ0(z) = φ1(z) and ψ1(z) = φ1(

3
5z).

A particular scheme is given in Table 4, though the usefulness of the bounds are
questionable in this particular example. Using say Vb = span{φ0, φ1, φ2} combined
with the above choice of Va requires the computation with a total of 4 basis functions,
whereas only 3 are necessary if one instead chooses Va = Vb.

Furthermore, we note that the minimum attainable value of the parameters Ka

and Kb depend only on the order p of the underlying Runge–Kutta scheme and the
choice of the basis functions ψk. Specifically, the coefficients of the underlying Runge–
Kutta scheme do not influence the minimum values of Ka and Kb.

4. Examples of exponential integrators. In this section we will present ex-
amples of exponential integrators. For fourth order methods, one will notice that some
well-known schemes are obtained for particular choices of the free parameters, sug-
gesting that a search on the entire space of parameters may result in schemes which in
some sense may have better properties than the known methods. The scheme of order
5 presented at the end is only included as an illustration of the proposed procedure
for solving the order conditions. It remains a subject of future research to establish
to which extent higher order exponential integrators are useful for practical purposes.

The procedure we have used in constructing schemes may be summarized as
follows:

1. Choose an underlying Runge–Kutta scheme. This determines αj,0
r and βr,0.
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ORDER CONDITIONS FOR EXPONENTIAL INTEGRATORS 1725

Table 3

Coefficient function for a fourth order ETD scheme with classical RK4 as underlying scheme.
Basis functions given by (3.5).

a1
2(z) = −( 1

2
+ ρ1)φ0(z) + (2ρ1 + 2)φ1(z)

a1
3(z) = (1 + ρ1 − 1

4
(ρ2 + ρ3))φ0(z) + (−2 − 2ρ1 + 1

2
(ρ2 + ρ3))φ1(z)

a2
3(z) = (−1 + 1

4
(ρ2 + ρ3))φ0(z) + (3 − 1

2
(ρ2 + ρ3)φ1(z)

a1
4(z) = 1

2
(ρ2 + ρ3)φ0(z) − (ρ2 + ρ3)φ1(z)

a2
4(z) = −ρ2

2
φ0(z) + ρ2φ1(z)

a3
4(z) = (1 − 1

2
ρ3)φ0(z) + ρ3φ1(z)

b1(z) = (1 + γ2)φ0(z) + (−3 − 6γ2)φ1(z) + (6γ2 + 2)φ2(z)

b2(z) = (−γ1 − 2γ2)φ0(z) + (6γ1 + 12γ2 + 2)φ1(z) + (−6γ1 − 12γ2 − 2)φ2(z)

b3(z) = γ1 φ0(z) + (−6γ1 + 2)φ1(z) + (6γ1 − 2)φ2(z)

b4(z) = γ2 φ0(z) + (−6γ2 − 1)φ1(z) + (6γ2 + 2)φ2(z)

2. Choose basis functions ψk(z) for the coefficient functions and determine Ka

and Kb.
3. Use the order conditions for the trees of the form Wm

+ (τC), where τC is a
tree with only black nodes, and determine βr,m, for 1 ≤ m ≤ Kb − 1; see
also (3.2).

4. Identify order conditions which are linear in c′r =
∑s

j=1 α
j,1
r and which oth-

erwise depend only on βj,m
r , 0 ≤ m ≤ Kb − 1 and αj,0

r , and solve for c′r.
5. Identify remaining conditions which depend linearly on αj,1

r . Solve for αj,1
r

together with c′r =
∑s

j=1 α
j,1
r . Repeat this procedure to solve for αj,m

r , 2 ≤
m ≤ Ka − 1.

6. βr,m are now uniquely determined form ≥ Kb and αj,m
r form ≥ Ka by (3.10).

Verify all remaining order conditions for βr,m, Kb ≤ m ≤ p− 1 and for αj,m
r ,

Ka ≤ m ≤ p−2. If inconsistencies appear, the basis functions are not feasible.
7. Verify all remaining order conditions.

In most cases we have considered, once αj,0
r and βr,0 have been chosen, one can

find the remaining αj,m
r independently of the βr,m. Most of the exponential integrators

we find in the literature are based on the classical fourth order scheme of Kutta, and
it is typical that one can combine ajr(z) from one scheme with br(z) from another
scheme and still get overall order four.

In the class of ETD schemes, proposed by Cox and Matthews in [5] and Krogstad
in [14], the space Vb is spanned by the three functions φ0, φ1, and φ2 of (3.5). How-
ever, in the former reference, dimVa = 2 with a basis {φ0(z/2), zφ0(z/2)2}. This Va
coincides with the one used in [3] given in Table 1(a).

Another choice is to use φk(z) of (3.5) both for Va and Vb. In Table 3 we char-
acterise all resulting schemes with Ka = 2 and Kb = 3. It is interesting to note
that Theorem 3.8 predicts Ka ≥ 2 and Kb ≥ 2, and indeed, by choosing γ1 = 1

3 and
γ2 = − 1

3 , we see that φ2 disappears from the br(z)-functions. Choosing γ1 = γ2 = 0,
we recover the br(z)-functions obtained in [5].

Letting Vb be spanned by ψ0(z) = φ0(z) and ψ1(z) = φ0(z/2), one obtains the
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1726 H. BERLAND, B. OWREN, AND B. SKAFLESTAD

Table 4

Coefficient functions for a fifth order exponential integrator with Fehlberg’s fifth order RK as
the underlying scheme. Here aji (z) = ajiφ1(z) + âjiφ1( 3

5
z).

0
2
9 a1

2(z)
1
3 a1

3(z) a2
3(z)

3
4 a1

4(z) a2
4(z) a3

4(z)

1 a1
5(z) a2

5(z) a3
5(z) a4

5(z)
5
6 a1

6(z) a2
6(z) a3

6(z) a4
6(z) a5

6(z)

b1(z) b2(z) b3(z) b4(z) b5(z) b6(z)

,

b1(z) = 47
150φ0 − 188

75 φ1 + 47
15φ2

b2(z) = 0

b3(z) = − 43
25φ0 + 132

5 φ1 − 33φ2

b4(z) = 4124
75 φ0 − 6152

15 φ1 + 1352
3 φ2

b5(z) = 189
10 φ0 − 662

5 φ1 + 142φ2

b6(z) = − 1787
25 φ0 + 12966

25 φ1 − 2814
5 φ2

(i, j) (2, 1) (3, 1) (3, 2) (4, 1) (4, 2) (4, 3) (5, 1) (5, 2)

aji − 2
3

569
11544 − 831

3848 − 77157
61568

587979
61568 − 405

64
655263
7696 − 1148769

7696

âji
10
9

1355
11544

2755
3848

143535
61568 − 821745

61568
675
64 − 2031205

23088
1252665

7696

(i, j) (5, 3) (5, 4) (6, 1) (6, 2) (6, 3) (6, 4) (6, 5)

aji
1593
40

144
5 − 2212835

277056
477285
30784 − 39

16 − 4
9 − 185

96

âji − 405
8 − 80

3
6888625
831168 − 496525

30784
65
16

20
27

575
288

unique solution

b1(z) = 1
2φ0(z) − 1

3φ0(z/2)

b2(z) = b3(z) = 1
3φ0(z)

b4(z) = − 1
6φ0(z) + 1

3φ0(z/2).

(4.1)

These weights coincide with the ones derived in the fourth order scheme in [3] given
in Table 1. Yet another choice is to let Vb consist of functions of the form p(z)φ0(z),
where p(z) is a polynomial of degree 1, and we recover br(z) as in Table 1(b).

Finally, we give an example of a fifth order exponential integrator based on a
scheme of Fehlberg. As indicated in section 3.2, we take dimVa = 2 with basis
ψ0(z) = φ1(z) and ψ1(z) = φ1(

3
5z). For Vb we use the basis ψk(z) = φk(z) for

k = 0, 1, 2. The resulting coefficient functions are given in Table 4.

In summary, this paper presents a complete order theory for exponential integra-
tors of the form (1.2)–(1.3). From deriving order conditions by means of bicolored
trees to proving bounds for the lowest possible number of basis functions, the results
presented herein provide a general framework for constructing schemes of this type.
A number of issues are, however, not addressed in the present paper. These include
systematically choosing basis functions ψk, and how to construct schemes with low
error constants.

Exponential integrators are interesting from the point of view of handling un-
bounded or stiff operators, yet the order theory does not say anything about what
happens for large eigenmodes of L in (1.1). Determining conditions for favorable
behavior in light of such operators should be an arena for future work.
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CORRECTION TO “B-SERIES AND ORDER CONDITIONS FOR
EXPONENTIAL INTEGRATORS”

There were errors in the trees in Table 2 in the published version of “B-Series
and Order Conditions for Exponential Integrators.” The correct table follows.

1

D
ow

nl
oa

de
d 

09
/1

8/
17

 to
 1

31
.1

11
.1

85
.9

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



Table 2

Trees, elementary differentials and coefficients for τ ∈ T ′ with |τ | ≤ 4.

|τ | Tree F (τ) γ(τ) u1(τ) σ(τ)

1 1 N 1
∑

r βr,0 1

2 2 N ′N 2
∑

r βr,0cr 1

3 2 LN 2
∑

r βr,1 1

4 3 N ′′(N, N) 3
∑

r βr,0c2r 2

5 3 N ′N ′N 6
∑

r,j βr,0αj,0
r cj 1

6 3 N ′(LN) 6
∑

r,j βr,0αj,1
r 1

7 3 LN ′N 6
∑

r βr,1cr 1

8 3 L2N 6
∑

r βr,2 1

9 4 N ′′′(N, N, N) 4
∑

r βr,0c3r 6

10 4 N ′′(N ′N, N) 8
∑

r,j βr,0αj,0
r cjcr 1

11 4 N ′′(LN, N) 8
∑

r,j βr,0αj,1
r cr 1

12 4 N ′N ′′(N, N) 12
∑

r,j βr,0αj,0
r c2j 2

13 4 LN ′′(N, N) 12
∑

r βr,1c2r 2

14 4 N ′N ′N ′N 24
∑

r,j,k βr,0αj,0
r α

k,0
j ck 1

15 4 N ′N ′(LN) 24
∑

r,j,k βr,0αj,0
r α

k,1
j 1

16 4 N ′(LN ′N) 24
∑

r,j βr,0αj,1
r cj 1

17 4 N ′(L2N) 24
∑

r,j βr,0αj,2
r 1

18 4 LN ′N ′N 24
∑

r,j βr,1αj,0
r cj 1

19 4 LN ′(LN) 24
∑

r,j βr,1αj,1
r 1

20 4 L2N ′N 24
∑

r βr,2cr 1

21 4 L3N 24
∑

r βr,3 1

2
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