
B - S p l i n e C o n t o u r R e p r e s e n t a t i o n a n d S y m m e t r y D e t e c t i o n 1

Philippe Saint-Marc and G~rard Medioni
Institute for Robotics and Intelligent Systems

University of Southern California
Los Angeles, California 90089-0273

Emaih medioni@usc.edu

The detection of edges is only one of the first steps in the understanding of images. Further
processing necessarily involves grouping operations between contours. We present a representation
of edge contours using approximating B-splines and show that such a representation facilitates the
extraction of symmetries between contours. Our representation is rich, compact, stable, and does
not critically depend on feature extraction whereas interpolating splines do. We turn our attention
to the detection of two types of symmetries, parallel and skewed, which have proven to be of great
importance to infer shape from contour, and show that our representation is computationally attrac-
tive. As an application, we show how parallel symmetries can be used to infer the 3-D orientation
of a torus from its intensity image. Due to lack of space, the reader is referred to [4] for complete
mathematical details, survey of previous work, and proper references.

C o n t o u r R e p r e s e n t a t i o n

A very promising idea to represent image contours is to use piecewise polynomials. The advantages
are obvious: this representation is rich, compact, analytical and local in the sense that a small
change in the original curve does not affect the representation entirely. The approach commonly used
consists of first extracting a set of knots from the discrete curve and then to approximate the curve
between each pair of knots by polynomials under continuity constraints at the knots. For example,
Plass and Stone [2] propose to take the knots as the vertices of a polygonal approximation, then
to use dynamic programming in order to select those knots which provide the best approximation
by cubics. The main point that we formulate against these methods is that they rely heavily on
the always critical segmentation step, which brings up the stability issue. Also, techniques such as
dynamic programming can yield a complexity of O(n s) where n is the number of initial knots [2].
Instead, we propose to use the following B-spline least-squares fitting method which, as we shall see,
does not require any knot selection and is relatively insensitive to noise.

A sptine can be expressed as a linear combination of B-splines which are themselves piecewise
polynomials [I], the coefficients being the vertices of the spline's guiding polygon. Thus, a spline can
be easily manipulated by modifying its guiding polygon, hence its popularity in CAD/CAM systems.
Furthermore, as B-splines are defined locally, modifying the position of a vertex does not affect the
spline entirely. In the case of ~ planar curve, a spline Q(u) = (X(u), Y(u)) with m + 1 vertices can
be defined as Q(u) -- E~=o VjBj(u) = ETa=o(XjBj(u) , YjBj(u)); where (Xj, Yj) are the vertices of the
guiding polygon and Bj(u) the B-splines.

Let C be an ordered set of p + 1 points Pi = (xl, Yi), what is the spline which best approximates
C? An approach proposed in [1] consists of minimizing the distance R = ~ = 0 HQ(u~) - P~I] 2 =
~=o(~=o X~Bj(u,) - z,) ~ + (~=o YjBj(u,) - Yi)', where ul is some parameter value associated with
the i th data point. Minimizing R is equivalent to setting all partial derivatives OR/OXt and OR/OYz to
0, for 0 < I < m, which yields two linear systems of equations. These are easily solved for all Xj and
Yj respectively using standard linear algebra, yielding the guiding polygon of the spline which best
approximates the original Curve. In the case of open curves, we have the option to force end-points
to be interpolated. In this case, the first and last vertices are simply set to lie at the end-points so
that the linear systems are reduced to m - 1 equations of m - 1 unknowns. In the case of closed
curves~ the linear systems are over constrained since some vertices are required to be identical. This
method has proven to be relatively insensitive to noise [4]. The choice of m (the number of vertices)

1This research was supported by the Defense Advanced Research Projects Agency Under contract F33615-87-C~1436
monitored by the Wright-Patterson Air Force Base.

605

(b) Segmented Edges (a) Intensity Image (e) Reconstruction

Figure 1: Eine Kleine Nachtmusik...

determines how close to the original data the approximation is, which is measured by R (see above).
The automatic selection of the number of vertices is not trivial. Our approach is to first set a fitting
tolerance r0, then find the value of m which yields the normalized distance r = R/(p + 1) closer to
r0 using a binary search approach.

The input for our system is an edge map produced by an edge detector such as Canny's. Three
stages are sequentially considered: linking, corner detection, and spline approximation. Linking of
the edgels is done using a simple and fast algorithm which looks for 8-connected components [4]. No
gap-bridging or other task is performed since it is our belief that point-wise surgery is too myopic, and
that if grouping is needed, it has to be performed at a higher level. Corner detection is performed by
detecting tangent discontinuities in connected components after application of the adaptive smoothing
operator [4]. The final step consists of approximating each elementary curve by a spline. When a
closed curve with no corners is considered, a global least-squares approximation is performed. In the
case of an open curve or a closed curve with corners, each curve segment between pairs of corners is
approximated with the constraint that the end-points be interpolated. This insures the reconstructed
curves to be continuous at corner locations. Figure 1 shows the results obtained on a real example.
The 167 x 222 intensity image of a Mozart bust is displayed in figure l(a) and the contours obtained
after edge detection and linking in figure l(b), with detected corners overlaid. Finally, a quadratic
B-spline approximation of each curve segment between corners is done using a fitting tolerance Of
0.5 which leads to ihe reconstruction displayed in figure 1(c).

It is interesting to point out that the method is very tolerant of segmentation errors since, if a
corner is missed, more vertices will be used, hence the reconstruction will still be satisfying [4]. In
the following section, we show how this piecewise polynomial representation of image contours can
be used to detect symmetries in the image plane.

Symmetry Detection
The detection of symmetries is an essential step when inferring shapes from contours. In [5], Ulupinar
and Nevatia claim that there exist two kinds of symmetry which give significant information about
the surface shape for a variety of 3-D objects: parallel and skewed symmetry. Most methods for
detecting symmetries in edge maps use local properties in order to identify symmetric edge points.
In this case, it is necessary to test every possible pair of edge points against the property which leads
to an O(n 2) algorithm where n is the number of points [3]. Instead, we propose to use the B-spline
representation in order to identify symmetric edge segments. On one hand, the complexity is reduced
since n now represents the number of edge segments. On the othe~ hand, the computation is more
global, hence less sensitive to noise. Let us go into more details in the case of parallel symmetries
knowing that a similar approach is used to detect skewed symmetries [4].

Let cl(u) and c2(v) be two parametric planar curves, and 01(u) and O2(v) their respective tangent
orientations. These curves are said [5] to be parallel symmetric if there exists a continuous monotonic
function f such that 02(f(u)) = 01(u). It is easy to show that when considering two conics, then f(u)

606

(a) Intensity Image (b) Parallel Symmetries

/m
(c) Positioning

Figure 2: Positioning of a Toms using Parallel Symmetries

is unique and is simply the ratio of two linear functions of u, with the result that two conics are always
parallel symmetric [4]. Now supposing that cl(u) and c2(v) are 0nly defined on the interval [0, 1], we
will say that these two segments are parallel symmetric o__~n [u0, ul] C [0, 1] iff [f(u0), f(ul)] C [0, 1].
The detection of parallel symmetries between quadratic B-splines then follows: A quadratic B-sp]~ne
can be expressed as a collection of connected conic segments S = {c~(u)}, for i = 0 , . . . ,m , each
defined on the interval [0,1]. Given another quadratic B-spline S' = {c~(v)}, for j = 0 , . . . , n , each
conic Segment of S is compared against each conic segment of S' to eventually detect an elementary
parallel symmetry between them. Given the simplicity of f and because of the usually small number
of conic segments involved, the method is computationally very attractive. Grouping elementary
symmetries can then be done by using simple connectivity criteria between segment pairs [4]. As an
example, figure 2(b) shows the parallel symmetries detected in the edge map of the intensity image
of figure 2(a).

The toms is an interesting example on which to demonstrate the application of parallel symmetry.
Assuming that the object is far enough from the camera, and ignoring its actual size, it is reasonable
to model the imaging process by an orthographic projection. The toms is a smooth solid of revolution,
and the contours generated in its image correspond only to limbs or occluding contours, which are
unfortunately viewer dependent. Even though it is possible, although complicated, to recover the
position and orientation of a toms from its limbs, we propose instead to use the property of the toms
that the axes of parallel symmetry in its image are the projection of its circular spine (3-D skeletal
axis). This property allows us to recover the 3-D orientation quite simply: we fit an ellipse to the
detected parallel symmetry axis, the orientation of the plane on which the toms is lying is given by
the eccentricity of the ellipse and the angle of the major axis w~th the horizontal. Figure 2(c) shows
the position of the toms recovered from the detected parallel symmetries of figure 2(b).

Conclusion
We have presented an approach to representing contours using approximating B-splines. It has
attractive properties for use in Computer Vision: the representation is rich, compact, stable, local
and segmented. We have shown how this representation can be used to extract parallel symmetries
from edge maps. Similar ideas are used to extract skewed symmetries [4]. We are currently working
on the selection of elementary symmetries, their grouping, and interpretation in order to generate
higher level primitives. We also intend to apply these tools to the detection of local symmetries.

R e f e r e n c e s

[1] R. Barrels, J. Beatty, and B. Barsky. An Introduction to SpIines for use in Computer Graphics and Geometric
Modeling. Morgan Kaufmann, Los Altos, CA 94022, 1987.

[2] M. Plass and M. Stone. Curve-Fitting with Pieeewise Parametric Cubies. ACM Transactions on Computer
Graphics, 17(3):229-239, 1983.

[3] J. Ponce. Ribbons, Symmetries~ and Skew Symmetries. In Proceedings of the DARPA Image Understanding
Workshop, pages 1074-1079, Cambridge, Massachusetts, !988.

[4] P. Saint-Marc and G. Medioni. B-Spline Contour Representation and Symmetry Detection, Technical report,
Institute for Rabotics and Intelligent Systems, USC, Los Angeles, California 90089-0273, 1990.

[5] F. Ulupinar and R. Nevatia. Using Symmetries for Analysis of Shape from Contour. In Proceedings of the
International Conference on Computer Vision, pages 414-426, 1988.

