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Abstract: In this study, the Quintic B-spline Differential Quadrature method (QBDQM) is applied to find
the numerical solution of the modified Burgers’ equation (MBE). The efficiency and accuracy of the method
are measured by calculating the maximum error normL∞ and the discrete root mean square errorL2. The
obtained numerical results are compared with published numerical results and the comparison shows that the
method is an effective numerical scheme to solve the MBE. A rate of convergence analysis is also given.
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1. Introduction

The one-dimensional Burgers’ equation, which is a nonlinear partial differential equation of sec-

ond order, was first introduced by Bateman [1] and later treated by Burgers’ [2]. It has the form

Ut +UUx−vUxx = 0, (1)

wherev is a positive parameter and the subscriptsx and t denote space and time derivatives,

respectively. This equation is very important in fluid dynamics especially for turbulence problems,

gas dynamics, heat conduction, continuous stochastic processes and the theory of shock waves

[3]. Analytical solutions for the equation were found for restricted values ofv which represent the

kinematics viscosity of fluid motion. So the numerical solution of the Burgers’ equation has been

subject of many papers. Various numerical methods have beenstudied based on finite difference

[4, 5], the Runge-Kutta-Chebyshev method [6, 7], group-theoretic methods [8], finite element

methods including Galerkin, Petrov-Galerkin, least squares and collocation[9−17]. The modified

Burgers’ equation (MBE) which we discuss in this study is based upon the Burgers’ equation (BE)

of the form

Ut +U2Ux−vUxx = 0. (2)
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The equation has strong non-linear aspects and has been usedin many practical transport problems

such as non-linear waves in a medium with low-frequency pumping or absorption, turbulence

transport, wave processes in thermoelastic medium, transport and dispersion of pollutants in rivers

and sediment transport, ion reflection at quasi-perpendicular shocks. Recently, numerical studies

of the equation have been presented. M. A. Ramadan et al. [18]obtained numerical solutions of

the MBE using the quintic B-spline collocation finite element method. A special lattice Boltzmann

model has been developed by Y. Duan et al. [19]. B. Saka et al. [20] have developed a Galerkin

finite element solution of the equation using quintic B-splines and the time-split technique. A

solution based on the sextic B-spline collocation method has been proposed by D. Irk [21]. T.

Roshan et al. [22] applied a Petrov-Galerkin method using a linear hat function as the trial function

and a cubic B-spline function as the test function. A discontinuous Galerkin method has been

presented by Zhang Rong-Pei et al. [23]. A. G. Bratsos [24] has used a finite difference scheme

based on fourth-order rational approximates to the matrix-exponential term in a two-time level

recurrence relation to calculate the numerical solution ofthe equation.

Bellman et al. [26, 27] first introduced the Differential Quadrature Method (DQM) in 1972 to

solve partial differential equations. The method has widely become popular in recent years thanks

to its simplicity of application. The fundamental idea behind the method is to find the weighting

coefficients of the functional values at the nodal points by using base functions, derivatives of

which are already known at the same nodal points over the entire region. Numerous researchers

have developed different types of DQMs by utilizing varioustest functions. For example, Bellman

et al. [26, 27] have used Legendre polynomials and spline functions in order to obtain weighting

coefficients. Quan and Chang [28, 29] have introduced an explicit formulation to determine the

weighting coefficients using Lagrange interpolation polynomials. Shu and Richards [30] have pre-

sented explicit formulae including both Lagrange interpolation polynomials. Moreover, Shu and

Xue [31] have used the Lagrange interpolated trigonometricpolynomials to determine weighting

coefficients in an explicit manner. Zhong [32], Guo and Zhong[33] and Zhong and Lan [34] have

introduced another efficient DQM as a spline based DQM and applied it to numerous problems.

Cheng et al. [35] have used Hermite polynomials to find the weighting coefficients required for

DQM. Shu and Wu [36] have introduced some of the implicit formulations of weighting coeffi-

cients with the help of radial basis functions. The weighting coefficients have also been found

by Striz et al. [37] using harmonic functions implicitly. Sinc functions have been used as basis

functions in order to find the weighting coefficients by Bonzani [38]. In the past decades, DQM

has come to be a very efficient and effective method to obtain the numerical solutions of various

types of partial differential equations due to its simplicity of application. The DQM has many

advantages over the classical techniques. It prevents linearization and perturbation in order to find
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better solutions of given nonlinear equations. Since QBDQMdo not need transforming to solve

the equation, this method has been preferred.

In the present work, we have applied a quintic B-spline differential quadrature method to the MBE.

To show the performance and accuracy of the method and to makea comparison of numerical

solutions, we have taken different values ofv. A rate of convergence analysis is also given.

2. Quintic B-spline Differential Quadrature Method

We will consider (2) with the boundary conditions chosen from:

U(a, t) = g1 (t) , U(b, t) = g2 (t) , t ≥ 0, (3)

with the initial condition

U(x,0) = f (x), a≤ x≤ b, (4)

whereβ1 and β2 are constants. DQM can be defined as an approximation to a derivative of a

given function by using the linear summation of its values atspecific discrete nodal points over the

solution domain of the problem. If we take the grid distribution a= x1 < x2 < · · · < xN = b of a

finite interval[a,b] into consideration and provided that any given functionU (x) is smooth enough

over the solution domain, its derivatives with respect tox at a nodal pointxi can be approximated

by a linear summation of all the functional values in the solution domain, namely,

U (r)
x (xi) =

d(r)U

dx(r)
|xi=

N

∑
j=1

w(r)
i j U (x j) , i = 1,2, ...,N, r = 1,2, ...,N−1 (5)

wherer denotes the order of derivative,w(r)
i j represent the weighting coefficients of ther− th order

derivative approximation, andN denotes the number of nodal points in the solution domain. Here,

the indexj represents the fact thatw(r)
i j is the corresponding weighting coefficient of the functional

valueU (x j).

In this work, we need first and second order derivatives of thefunctionU(x). Therefore, we will

find the value of(5) for r = 1,2. If we consider(5) carefully, then it is seen that the fundamen-

tal process for approximating the derivatives of any given function through DQM is to find the

corresponding weighting coefficientsw(r)
i j . The main idea behind DQM approximation is to find

the corresponding weighting coefficientsw(r)
i j by means of a set of base functions spanning the

problem domain. While determining the corresponding weighting coefficients, a different basis

may be used. In the present study, we will attempt to compute the weighting coefficients with the

quintic B-spline basis.

Let Qm(x), be the quintic B-splines with knots at the pointsxi where the uniformly distributedN

nodal points are taken asa= x1 < x2 < · · ·< xN = b on the ordinary real axis. Then, the B-splines
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{Q−1,Q0, . . . ,QN+2} form a basis for functions defined over[a,b]. The quintic B-splinesQm(x)

are defined by the relationships:

Qm(x) =
1
h5
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5, x∈ [xm−1,xm],

(x−xm−3)
5−6(x−xm−2)

5+15(x−xm−1)
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20(x−xm)
5,

x∈ [xm,xm+1],

(x−xm−3)
5−6(x−xm−2)

5+15(x−xm−1)
5−

20(x−xm)
5+15(x−xm+1)

5,
x∈ [xm+1,xm+2],

(x−xm−3)
5−6(x−xm−2)

5+15(x−xm−1)
5−

20(x−xm)
5+15(x−xm+1)

5−6(x−xm+2)
5,

x∈ [xm+2,xm+3],

0, otherwise.

whereh= xm−xm−1 for all m.

TABLE 1. The value of quintic B-splines and derivatives functions atthe grid points.

x xm−3 xm−2 xm−1 xm xm+1 xm+2 xm+3
Q 0 1 26 66 26 1 0
Q

′
0 5

h
50
h 0 − 50

h − 5
h 0

Q
′′

0 20
h2

40
h2 − 120

h2
40
h2

20
h2 0

Q
′′′

0 60
h3 − 120

h3 0 120
h3 − 60

h3 0
Q(4) 0 120

h4
480
h4

720
h4 − 480

h4
120
h4 0

Using the quintic B-splines as test functions in the fundamental DQM equation(5) leads to the

equation

∂ (r)Qm(xi)

∂x(r)
=

m+2

∑
j=m−2

w(r)
i, j Qm(x j) , m=−1,0, . . . ,N+2, i = 1,2, ...,N. (6)

An arbitrary choice ofi leads to an algebraic equation system

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


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






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
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







W1 =Φ1

(7)

whereQi, j denotesQi (x j),

W1 =
[

w(r)
i,−3 w(r)

i,−2 · · · w(r)
i,N+3 w(r)

i,N+4

]T
(8)



CUJSE 12, No. 1 (2015) Differential Quadrature Method for the Modified Burgers’ Equation 5

and

Φ1 =

[

∂ (r)Q−1(xi)

∂x(r)
∂ (r)Q0(xi)

∂x(r)
· · · ∂ (r)QN+1(xi)

∂x(r)
∂ (r)QN+2(xi)

∂x(r)

]T

. (9)

The weighting coefficientsw(r)
i, j related to thei − th grid point are determined by solving equation

system(7). Equation system(7) consists ofN+8 unknowns andN+4 equations. For this system

to have a unique solution, it is required to add four additional equations to the system. By the

addition of the equations

∂ (r+1)Q−1(xi)

∂x(r+1)
=

1

∑
j=−3

w(r)
i, j Q

′
−1(x j) , (10)

∂ (r+1)Q0(xi)

∂x(r+1)
=

2

∑
j=−2

w(r)
i, j Q

′
0(x j) , (11)

∂ (r+1)QN+1(xi)

∂x(r+1)
=

N+3

∑
j=N−1

w(r)
i, j Q

′
N+1(x j) , (12)

∂ (r+1)QN+2(xi)

∂x(r+1)
=

N+4

∑
j=N

w(r)
i, j Q

′
N+2(x j) , (13)

equation system(7) becomes

M1W1 = Φ2, (14)
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and

W1 =
[

w(r)
i,−3 w(r)

i,−2 · · · w(r)
i,N+3 w(r)

i,N+4

]T

and
Φ2 = [∂ (r)Q−1(xi)

∂x(r)
∂ (r+1)Q−1(xi )

∂x(r+1)
∂ (r)Q0(xi)

∂x(r)
∂ (r+1)Q0(xi )
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∂x(r)
∂ (r+1)QN+1(xi )

∂x(r+1)
∂ (r)QN+2(xi)

∂x(r)
∂ (r+1)QN+2(xi )

∂x(r+1) ]T .
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After using the values of the quintic B-splines at the grid points and eliminatingw(r)
i,−3,w

(r)
i,−2,w

(r)
i,N+3

andw(r)
i,N+4 from the equation system, we obtain an algebraic equation system having 5-banded

coefficient matrix of the form

M2W2 = Φ3, (15)

where
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
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The nonzero entries of the load vectorΦ3 are given as,

Φ−1 =
1
30

[

−5Q(p)
−1 (xi)+hQ(p+1)

−1 (xi)+40Q(p)
0 (xi)+8hQ(p+1)

0 (xi)
]

,

Φ0 =
1
10

[

5Q(p)
0 (xi)−hQ(p+1)

0 (xi)
]

,

Φi−2 = Q(p)
i−2(xi) ,

Φi−1 = Q(p)
i−1(xi) ,

Φi = Q(p)
i (xi) ,

Φi+1 = Q(p)
i+1(xi) ,

Φi+2 = Q(p)
i−2(xi) ,

ΦN+1 =
1
10

[

5Q(p)
N+1(xi)+hQ(p+1)

N+1 (xi)
]

,

ΦN+2 =
−1
30

[

−40Q(p)
N+1(xi)+8hQ(p+1)

N+1 (xi)+5Q(p)
N+2(xi)+hQ(p+1)

N+2 (xi)
]

.

Equation system(15) is solved by the 5-banded Thomas algorithm.
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3. Numerical discretization

The modified Burgers’ equation of the form

Ut +U2Ux−vUxx = 0,

with boundary conditions(3) and initial condition(4) is rewritten as

Ut =−U2Ux+υUxx. (16)

Then, the differential quadrature derivative approximations given in(5), for the value ofr = 1,2

are used in(16). The application of the boundary conditions results in

dU (xi)

dt
=−U2(xi , t)

N−1

∑
j=2

w(1)
i, j U (x j , t)+υ

N−1

∑
j=2

w(2)
i, j U (x j , t)+B(U) , i = 2,3, ...,N−1 (17)

where

B(U) = −U2(xi , t)
[

w(1)
i,1 g1 (t)+w(1)

i,Ng2 (t)
]

+υ
[

w(2)
i,1 g1 (t)+w(2)

i,Ng2 (t)
]

.

Then, the ordinary differential equation given by(17) is integrated in time by means of any ap-

propriate method. Here, we have selected the fourth-order Runge-Kutta method thanks to its

advantages such as accuracy, stability and memory allocation properties.

4. Numerical examples and results

In this section, we obtain the numerical solutions of the MBEby the QBDQM. The accuracy of

the numerical method is checked using the error normsL2 andL∞ respectively:

L2 =
∥

∥Uexact−UN

∥

∥

2 ≃
√

h
N

∑
J=1

∣

∣

∣
Uexact

j − (UN) j

∣

∣

∣

2
,

L∞ =
∥

∥Uexact−UN
∥

∥

∞ ≃ max
j

∣

∣

∣
Uexact

j − (UN) j

∣

∣

∣
, j = 1,2, ...,N−1.

Stability analysis of a numerical method for a nonlinear differential equation requires the determi-

nation of eigenvalues of coefficient matrices. With the numerical discretization of partial differ-

ential equation MBE, it turns into an ordinary differentialequation. These necessary operations

cause enormous difficulties for the stability and convergence analysis. Many times, instead of

stability analysis, numerical rate of convergence (ROC) analysis is preferred. Therefore, in order

to overcome the difficulties, we calculate the ROC with the help of following formula

ROC≈

ln(E (N2)/E (N1))

ln(N1/N2)
.
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HereE (Nj) denotes either theL2 error norm or theL∞ error norm in case of usingNj grid points.

Therefore, some further numerical runs for different numbers of space steps are performed. Ul-

timately, some computations are made about the ROC by assuming that these methods are alge-

braically convergent in space. In particular, we suppose that E (N) ∼ Np for somep < 0 when

E (N) denotes theL2 or theL∞ error norms by usingN subintervals. The analytical solution of the

MBE is given in [25] as:

U(x, t) =
(x/t)

1+(
√

t/c0)exp(x2/4vt)
, (18)

wherec0 is a constant and 0< c0 < 1. For our numerical calculation, we takec0 = 0.5. We use the

initial condition for(18) evaluating att = 1 and the boundary conditions are taken asU(0, t) = 0

andU(1, t) = 0.

For the numerical simulation, we have chosen the various viscosity parametersv = 0.01,0.001

and time step∆t = 0.01 over the interval 0≤ x≤ 1 and 0≤ x≤ 1.3. As seen from Figure 1, when

we select the solution domain 0≤ x≤ 1, the right part of the shock wave cannot be seen clearly.

By using a larger domain such as 0≤ x≤ 1.3 as seen in Figure 2, the solution is better than for the

narrow domain 0≤ x≤ 1, as shown in Figure 1.

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.01

0.02

0.03

0.04

0.05

U

X

 t=1
 t=3
 t=5
 t=7
 t=9

FIGURE 1. Solutions forv= 0.01, h= 0.02, ∆t = 0.01, 0≤ x≤ 1.

The computed values of the error normsL2 andL∞ are presented at some selected times up to

t = 10. The obtained results are tabulated in Tables 2 and 3.

As seen from Tables 2 and 3, the error normsL2 andL∞ are sufficiently small and satisfactorily

acceptable. Furthermore, it is clear from these tables thatif the value of viscosityv decreases,

the value of the error norms will decrease. We obtain better results if the value of the viscosity

parameter is smaller. The behaviors of the numerical solutions for viscosityv= 0.01 and 0.001

and time step∆t = 0.01 at timest = 1,3,5,7 and 9 are shown in Figures 1 to 3.
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0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
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U
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 t=1
 t=3
 t=5
 t=7
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FIGURE 2. Solutions forv= 0.01, h= 0.02, ∆t = 0.01, 0≤ x≤ 1.3.

TABLE 2. L2 andL∞ error norms forv= 0.01, h= 0.02, ∆t = 0.01.

QBDQM QBDQM[0,1.3] Ramadan et al.[16]
Time L2×103 L∞ ×103 L2×103 L∞ ×103 L2×103 L∞ ×103

2 0.6883159313 1.4061155014 0.6475135665 1.4186922574 0.7904296620 1.7030921188
3 0.6111942976 1.2284699151 0.6038312099 1.2481612622 0.6551928290 1.1832698216
4 0.5518907404 1.0470408075 0.5597368097 1.0744317361 0.5576794264 0.9964523368
5 0.5243679591 0.9114703246 0.5248818857 0.9393940240 0.5105617536 0.8561342445
6 0.5360036465 0.8147368174 0.4962790307 0.8341732147 0.5167229575 0.7610530060
7 0.5837932334 1.0140945729 0.4729494376 0.7511005752 0.5677438614 1.0654548090
8 0.6527370179 1.3014950978 0.4556226380 0.6853562194 0.6427542266 1.3581113635
9 0.7279265681 1.5456068136 0.4457470777 0.6313503003 0.7236430257 1.6048306653
10 0.8001311820 1.7425840423 0.4443904541 0.5873008192 0.8002564201 1.8023938553

TABLE 3. L2 andL∞ error norms forv= 0.001, ∆t = 0.01, N = 166.

QBDQM Ramadan et al.[16]
Time L2×103 L∞ ×103 L2×103 L∞ ×103

2 0.1272271131 0.4571371972 0.1835491190 0.8185211112
3 0.1108493122 0.3892325088 0.1441424335 0.5234833346
4 0.0985692037 0.3332002275 0.1144110783 0.3563537207
5 0.0902342480 0.2885116847 0.0947865272 0.2549790058
6 0.0840729951 0.2546793589 0.0814174677 0.2134847835
7 0.0791869199 0.2283464335 0.0718977757 0.1880048432
8 0.0751261273 0.2071234782 0.0648368942 0.1682601770
9 0.0716455900 0.1900234319 0.0594114970 0.1524074966
10 0.0685991848 0.1759277031 0.0551151456 0.1394312127

It is observed from the figures that the top curve is att = 1 and the bottom curve is att = 9. It is ob-

vious that a smaller viscosity valuev in the shock wave with a smaller amplitude and propagation

front becomes smoother. Moreover, we have seen from the figures that as the time increases, the

curve of the the numerical solution decays. With smaller viscosity values, the numerical solution

decay gets faster. These numerical solution graphs also agree with earlier published work [16].

Table 2 presents a comparison of the values of the error normsobtained by the QBDQM with

those which were obtained by the other method [16]. It is clearly seen from Table 2 that the error
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FIGURE 3. Solutions forv= 0.001, ∆t = 0.01, N = 166, 0≤ x≤ 1.

normsL2 andL∞ obtained by the present method are smaller than at the beginning and at the end

of the run of these given in [16]. Additionally, in Table 3, the error norms ofL2 andL∞ obtained

by the present method are acceptably small. Error variations are drawn at timet = 10 in Figures 4

and 5 from which the maximum error occurs at the right hand boundary when the greater value of

viscosityv= 0.01 is used and with the smaller value of viscosityv= 0.001, the maximum error is

recorded around the location where the shock wave has the highest amplitude. TheL2 andL∞ error

norms and the numerical rate of convergence analysis forv= 0.001 and∆t = 0.01 and different

numbers of grid points are tabulated in Table 4.

0.0 0.2 0.4 0.6 0.8 1.0
0.0000

0.0005

0.0010

0.0015

0.0020

Er
ro
r

X

FIGURE 4. Error forv= 0.01, ∆t = 0.01, h= 0.02, 0≤ x≤ 1.

As seen in Table 4, when the number of grid points is increased, the error norms decrease and both

of ROC(L2) andROC(L∞) change similarly. The values ofROC(L2) andROC(L∞) change in the

region of[0.27,1.07] and[0.17,1.17] , respectively.
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FIGURE 5. Error forv= 0.001, ∆t = 0.01, N = 166, 0≤ x≤ 1.

TABLE 4. Error norms and rate of convergence for various numbers of grid points att = 10.

N L2×103 ROC(L2) L∞ ×103 ROC(L∞)

11 0.26 - 0.64 -
21 0.13 1.07 0.30 1.17
31 0.11 0.43 0.25 0.47
41 0.10 0.34 0.23 0.30
61 0.09 0.27 0.21 0.23
81 0.08 0.42 0.20 0.17

5. Conclusions

In this study, we have implemented DQM based on quintic B-splines for a numerical solution

of modified Burgers’ equation. The performance and accuracyof the method were shown by

calculating theL2 andL∞ error norms. Numerical rate of convergence analysis of the numerical

approximation was also obtained. It is observed that by comparing between the obtained values

of the L2 and L∞ error norms by the present method and earlier works, QBDQM results were

considered acceptable. The obtained results show that QBDQM can be used to produce reasonably

accurate numerical solutions of the modified Burgers’ equation. Therefore, QBDQM is a reliable

method to obtain the numerical solutions of some physicallyimportant nonlinear problems.
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