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Abstract: In this study, the Quintic B-spline Differential Quadragumethod (QBDQM) is applied to find
the numerical solution of the modified Burgers’ equation @®)BThe efficiency and accuracy of the method
are measured by calculating the maximum error nagmand the discrete root mean square etrgr The
obtained numerical results are compared with publishedenigal results and the comparison shows that the
method is an effective numerical scheme to solve the MBE t&@convergence analysis is also given.
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1. Introduction

The one-dimensional Burgers’ equation, which is a nonlimeatial differential equation of sec-
ond order, was first introduced by Bateman [1] and later ekl Burgers’ [2]. It has the form

Ut + U UX - VUXX — O, (l)

wherev is a positive parameter and the subscriptandt denote space and time derivatives,
respectively. This equation is very important in fluid dynesrespecially for turbulence problems,
gas dynamics, heat conduction, continuous stochastiegses and the theory of shock waves
[3]. Analytical solutions for the equation were found fostrécted values of which represent the
kinematics viscosity of fluid motion. So the numerical swntof the Burgers’ equation has been
subject of many papers. Various numerical methods have $tedied based on finite difference
[4, 5], the Runge-Kutta-Chebyshev method [6, 7], groumtagc methods [8], finite element
methods including Galerkin, Petrov-Galerkin, least sgs@and collocatiof® — 17]. The modified
Burgers’ equation (MBE) which we discuss in this study isdahagpon the Burgers’ equation (BE)
of the form

Ur +U Uy — WUy = 0. 2)
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The equation has strong non-linear aspects and has beemumsady practical transport problems
such as non-linear waves in a medium with low-frequency pogpr absorption, turbulence

transport, wave processes in thermoelastic medium, tosihapd dispersion of pollutants in rivers
and sediment transport, ion reflection at quasi-perpetatiahocks. Recently, numerical studies
of the equation have been presented. M. A. Ramadan et aloft&8ined numerical solutions of

the MBE using the quintic B-spline collocation finite elerherethod. A special lattice Boltzmann

model has been developed by Y. Duan et al. [19]. B. Saka ef@].Have developed a Galerkin

finite element solution of the equation using quintic B4sp# and the time-split technique. A
solution based on the sextic B-spline collocation methasl heen proposed by D. Irk [21]. T.

Roshan et al. [22] applied a Petrov-Galerkin method usimgeaf hat function as the trial function

and a cubic B-spline function as the test function. A discwttus Galerkin method has been
presented by Zhang Rong-Pei et al. [23]. A. G. Bratsos [24]us®d a finite difference scheme
based on fourth-order rational approximates to the maixpenential term in a two-time level

recurrence relation to calculate the numerical solutiothefequation.

Bellman et al. [26, 27] first introduced the Differential Qature Method (DQM) in 1972 to
solve partial differential equations. The method has witelcome popular in recent years thanks
to its simplicity of application. The fundamental idea b@hthe method is to find the weighting
coefficients of the functional values at the nodal points bing base functions, derivatives of
which are already known at the same nodal points over thesemgijion. Numerous researchers
have developed different types of DQMs by utilizing vari¢est functions. For example, Bellman
et al. [26, 27] have used Legendre polynomials and splinetims in order to obtain weighting
coefficients. Quan and Chang [28, 29] have introduced arigéixfirmulation to determine the
weighting coefficients using Lagrange interpolation polymals. Shu and Richards [30] have pre-
sented explicit formulae including both Lagrange integhioh polynomials. Moreover, Shu and
Xue [31] have used the Lagrange interpolated trigonometrlgnomials to determine weighting
coefficients in an explicit manner. Zhong [32], Guo and Zh{88] and Zhong and Lan [34] have
introduced another efficient DQM as a spline based DQM andleapjt to numerous problems.
Cheng et al. [35] have used Hermite polynomials to find thegtting coefficients required for
DQM. Shu and Wu [36] have introduced some of the implicit fakations of weighting coeffi-
cients with the help of radial basis functions. The weigiptooefficients have also been found
by Striz et al. [37] using harmonic functions implicitly. rigi functions have been used as basis
functions in order to find the weighting coefficients by BaoniZ&8]. In the past decades, DQM
has come to be a very efficient and effective method to obteEmumerical solutions of various
types of partial differential equations due to its simpjicdf application. The DQM has many
advantages over the classical techniques. It preventization and perturbation in order to find
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better solutions of given nonlinear equations. Since QBDuVhot need transforming to solve
the equation, this method has been preferred.

In the present work, we have applied a quintic B-spline déff¢ial quadrature method to the MBE.
To show the performance and accuracy of the method and to emakenparison of numerical
solutions, we have taken different values/ofA rate of convergence analysis is also given.

2. Quintic B-spline Differential Quadrature Method

We will consider (2) with the boundary conditions chosemfro

U(avt) :gl(t)> U(bvt) ZQZ(t)v t>0, )

with the initial condition
U(x,0)=f(x), a<x<b, (4)

where 3; and 3, are constants. DQM can be defined as an approximation to eatieei of a
given function by using the linear summation of its valuesyacific discrete nodal points over the
solution domain of the problem. If we take the grid distribota=x; < X < --- <xy =bofa
finite interval[a, b] into consideration and provided that any given functibfx) is smooth enough
over the solution domain, its derivatives with respect & a nodal poink; can be approximated
by a linear summation of all the functional values in the soludomain, namely,

du, _ g Dy (xi), i=1.2,..N, r=12..N—1 5
X0 \,q_glwij (xp), i=1,2..,N, r=12..,N— (5)

Ui (%) =

wherer denotes the order of derivativngr) represent the weighting coefficients of theth order
derivative approximation, and denotes the number of nodal points in the solution domaime He
the indexj represents the fact thwfjr) is the corresponding weighting coefficient of the functiona
valueU (x;).

In this work, we need first and second order derivatives ofthetionU (x). Therefore, we will
find the value of(5) for r = 1,2. If we considen(5) carefully, then it is seen that the fundamen-
tal process for approximating the derivatives of any givenction through DQM is to find the
corresponding weighting coefficieméjr). The main idea behind DQM approximation is to find
the corresponding weighting coefficiemér) by means of a set of base functions spanning the
problem domain. While determining the corresponding winghcoefficients, a different basis
may be used. In the present study, we will attempt to compheveighting coefficients with the
quintic B-spline basis.

Let Qm(x), be the quintic B-splines with knots at the poisgsvhere the uniformly distributedil
nodal points are taken @as=x; < X < --- < Xy = b on the ordinary real axis. Then, the B-splines
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{Q-1,Qo,...,Qn+2} form a basis for functions defined ovi b]. The quintic B-spline®Qm(X)
are defined by the relationships:

(X—Xm-3)°, X € [Xm-3,Xm-2],
(X—%m-3)° — 6(X—Xm_2)°, X € [Xm-2,Xm-1],
(X—Xm-3)° — 6(X—Xm_2)° 4+ 15(X — Xm_1)°, X € [Xm—1,Xm),
(X—Xm-3)° — 6(X— Xm_2)° + 15(X — Xm_1)°—
Qn(X) = = 20(x— Xm)®, b sl
K h° ] (x—%n-3)° — 6(X— Xm_2) + 15(X— Xn_1)°—

X € [Xmt1,Xm+2],
20(X — Xm)3 + 15(X — Xm1)°, e

(X—Xm-3)° — 6(X— Xm_2)° + 15(X — Xm_1)°—
20(X — Xm)® + 15(X — Xm+1)® — 6(X— Xm+2)>,
0, otherwise

€ [Xm+2,Xm+3),

whereh = Xy — Xm—1 for all m.

TABLE 1. The value of quintic B-splines and derivatives functiontghatgrid points.

X Xn-3 Xm-2 Xm-1 Xm Xm+1l  Xm42  Xmy3
Q 0 1 26 66 26 1 0
/ 5 50 50 5
RO NS SR Co o s
QR0 % kB “w g w 0
Q' o % _lo g o ko g
4 120 480 720 _ 480 120

QW o R @ O - W 0

Using the quintic B-splines as test functions in the fundataleDQM equation(5) leads to the
equation

9Qm(x) _ & ) |
W:J:%_ZWI’JQW](XJ)’ m:—l,o,...,N+27 |:1,2,...,N. (6)

An arbitrary choice of leads to an algebraic equation system

Q.13 Q12 Q11 Q-1p Q-11
Qo2 Qo1 Qo0 Qo1 Qo2
. . . . . Wl — ¢l

On+in-1 OnsiN Ongintgr OngrNi2 Ontings

On+2N Onson+r Ongont2 Oneon+3  OnioNt4
(7
whereQ; ; denoteQ; (x;),

.
W = [Wi(fls Wi(rzz Wi(7rr\)1+3 Wi(7rr\)1+4] (8)
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and
-

O — 0"Q 1 (x) 9UQo(x)  9WQnia(x) 9" Qni2(x)
P ox® ox") X" a1

(9)

The weighting coefficientwi(fj) related to the —th grid point are determined by solving equation
system(7). Equation systeni7) consists oN + 8 unknowns and\ + 4 equations. For this system
to have a unique solution, it is required to add four add#@losquations to the system. By the
addition of the equations

5(r+1)Q,1(Xi) 1 (1)

ax(r+1) = . sti,j Q,l (XJ) 9 (10)
j=—
O Qo (x) _ & /
oD _Zzwi(7rj)Q0 (X)), (11)
j=—
d(rJrl)QN 1(Xi) N+3 ,
le) - % 1Wi(7ri)QN+1 (%), (12)
j=N—
a(r+1)QN Z(Xi) N+4 ,
oxrd = 2 Wi Quez(9), (13)
J:
equation systeni7) becomes
MW, = D, (14)
where
Q.13 Q12 Q11 Q10 Q_11
Qi3 Q1o Qi g Qo Q.11
Qo,—2 Qo,-1 Qo0 Qo.1 Qo2
Q-2 -1 Qo Qo1 Qo2
N Q-1 Q10 Q11 Q12 Q13
1_ . . . . .
On+iN-1 OngiN Oniinet Ontin+2 ONFLN+3
/ / / / /
N+iN-1 Ontin Oniintt Oniiniz Oniings
Ont2N Ons2ntr Ongang2 Oneon+d  Ontonts
L f\l+27N f\l+27N+1 i\l+27N+2 i\l+27N+3 Qf\l+27N+4 |
and .
(r r r r)
W = Wi723 Wi(7—2 Wi(7l\>l+3 Wi(7N+4
and
®, = (299100 2V0a0) 2V IVoun)  20Qux)
2 = ax") ENGE) ax" ENGEY ax"

00Qns1(x) 9" YQNsa(6) 9 Qni2(X) 5<r+1)QN+2(Xi)]T
ox(r) ox(r+1) ox(r) ox(r+1) :
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After using the values of the quintic B-splines at the grithpoand eliminatingvi(QS,wi(.rlz,wi(’r,\)l+3
and wi(’r,zl 44 from the equation system, we obtain an algebraic equatistesyhaving 5-banded

coefficient matrix of the form

MWs = @3, (15)
where

o

(37 82 21 ] i

8 33 18 1 :

1 26 66 26 1 W,

1 26 66 26 1 w

. and W= | uy
1 26 66 26 1 w,

1 26 66 26 1 W,

1 18 33 :

I 21 82 37| Wiy
_Wi(.rl\)l+2_

The nonzero entries of the load vectbs are given as,

@ 1= o [-50% 06+ Q% (x) + 40QF” () + 8hQP* (x)].

@0 = 25 [5QF” (x) e ¥ (x)]

o= QP (%),
o1 = Q) (%),
= QP (x),

®j 1 = Qi(E)J. (%),
2= QP (x).
@1 = 15 [5Q40): 0 +hall Y ()]

Prvsz = o | ~40QWL; (% >+8hQN":f (%) +5Q0), (%) +hQlL (%)

Equation systenl15) is solved by the 5-banded Thomas algorithm.
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3. Numerical discretization

The modified Burgers’ equation of the form
Ur +U?Uy — WUy = 0,
with boundary condition$3) and initial condition(4) is rewritten as
Up = —U2Uy + Uy (16)

Then, the differential quadrature derivative approximsgi given in(5), for the value off = 1,2
are used in(16). The application of the boundary conditions results in

du (x)
dt

N—-1 N—-1
= —U2(x,t) ;wﬁ?u (Xj,t)+ U ;wﬁ?u (x,t)+BU),i=23..N-1 (17)
= =

where

BU) = —U%00,t) [w{ios () +wiRgz 0] +0 (W (0 +wifig= 1) .

)

Then, the ordinary differential equation given fy7) is integrated in time by means of any ap-
propriate method. Here, we have selected the fourth-ordemg&Kutta method thanks to its
advantages such as accuracy, stability and memory albocptbperties.

4. Numerical examples and results

In this section, we obtain the numerical solutions of the MiB&he QBDQM. The accuracy of
the numerical method is checked using the error ndrgrendL., respectively:

2

9

N
L, — HUexact_UNsz\/hJZ ‘Ujexact_(UN)j
=1

L, = HUexact_UNHm:m_ax‘U]_ewct_ (UN)j‘,jZl,Z,...,N—l.
J

Stability analysis of a numerical method for a nonlineafedéntial equation requires the determi-
nation of eigenvalues of coefficient matrices. With the nrioa¢ discretization of partial differ-
ential equation MBE, it turns into an ordinary differenteduation. These necessary operations
cause enormous difficulties for the stability and convetgeanalysis. Many times, instead of
stability analysis, numerical rate of convergence (ROG@)\asis is preferred. Therefore, in order
to overcome the difficulties, we calculate the ROC with thip loé following formula

In(E (N2) /E (Ny))

ROC~
In (Nl/Nz)
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HereE (Nj) denotes either thie; error norm or the., error norm in case of usinyj grid points.
Therefore, some further numerical runs for different nuralod space steps are performed. Ul-
timately, some computations are made about the ROC by asguhmat these methods are alge-
braically convergent in space. In particular, we supposeHEH{N) ~ NP for somep < 0 when

E (N) denotes thé, or theL., error norms by using\ subintervals. The analytical solution of the
MBE is given in [25] as:

_ (x/t)

1+ (Vt/co) exp(x2/4vt)’
wherecg is a constant and €@ ¢y < 1. For our numerical calculation, we takg= 0.5. We use the
initial condition for (18) evaluating at = 1 and the boundary conditions are takertJg6,t) = 0
andU (1,t) =0.

U(x,t)

(18)

For the numerical simulation, we have chosen the variousosity parameters = 0.01,0.001
and time step\t = 0.01 over the interval &€ x < 1 and 0< x < 1.3. As seen from Figure 1, when
we select the solution domain<0x < 1, the right part of the shock wave cannot be seen clearly.
By using a larger domain such asx < 1.3 as seen in Figure 2, the solution is better than for the
narrow domain & x < 1, as shown in Figure.1

0.05

0.04 4

0.03

0.02 4

0.01 4

FIGURE 1. Solutions forv=0.01 h=0.02, At = 0.01, 0 < x < 1.

The computed values of the error norinsandL., are presented at some selected times up to
t = 10. The obtained results are tabulated in Tables 2 and 3.

As seen from Tables 2 and 3, the error nolmsandL., are sufficiently small and satisfactorily
acceptable. Furthermore, it is clear from these tablesitlle value of viscosity decreases,
the value of the error norms will decrease. We obtain be#sults if the value of the viscosity
parameter is smaller. The behaviors of the numerical swistfor viscosityv = 0.01 and 0001
and time ste\t = 0.01 at timegs = 1,3,5,7 and 9 are shown in Figures 1 to 3.
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0.05 —

0.04

0.03 o4

0.02 -4

001/

FIGURE 2. Solutions forv=0.01, h=0.02 At =0.01,0<x<1.3.

TABLE 2. Ly andLe error norms fov = 0.01, h=0.02, At = 0.01

QBDQM
Ly x 10° Lo x 10°
0.6883159313 1.4061155014

QBDQMO0,1.3] Ramadan et al.[16]
Lo x 10° Lo x 10° Lo x 10° Lo x 10°
0.6475135665 1.4186922577904296620 1.7030921188

Time

N

© 00 ~NO Ul W

[EnY
o

0.6111942976
0.5518907404
0.5243679591
0.5360036465
0.5837932334
0.6527370179
0.7279265681
0.8001311820

1.2284699151
1.0470408075
0.9114703246
0.8147368174
1.0140945729
1.3014950978
1.5456068136

1.7425840423

0.6038312099
0.5597368097
0.5248818857
0.4962790307
0.4729494376
0.4556226380
0.4457470777

0.4443904541

1.2481612626551928290
1.074431736857@194264
0.93939402481 03617536
0.8341732149161229575
0.751100575267 1438614
0.6853562198421642266

1.1832698216
0.9964523368
0.8561342445
0.7610530060
1.0654548090
1.3581113635

0.631350300823@130257
0.5873008198002564201

TABLE 3.

L, andL error norms fov = 0.001, At = 0.01, N = 166

QBDQM

Ramadan et al.[16]

Time

Lo x 10°

Lo x 10°

Ly x 10°

Lo x 10°

©CooO~NO O WN

[EnY
o

0.1272271131
0.1108493122
0.0985692037
0.0902342480
0.0840729951
0.0791869199
0.0751261273
0.0716455900
0.0685991848

0.4571371972
0.3892325088
0.3332002275
0.2885116847
0.2546793589
0.2283464335
0.2071234782
0.1900234319
0.1759277031

0.1835491190
0.1441424335
0.1144110783
0.0947865272
0.0814174677
0.0718977757
0.0648368942
0.0594114970

0.0551151456

0.8185211112
0.5234833346
0.3563537207
0.2549790058
0.2134847835
0.1880048432
0.1682601770
0.1524074966
0.1394312127

1.6048306653
1.8023938553

Itis observed from the figures that the top curve is-atl and the bottom curve ist& 9. Itis ob-
vious that a smaller viscosity valwan the shock wave with a smaller amplitude and propagation
front becomes smoother. Moreover, we have seen from theeBghat as the time increases, the
curve of the the numerical solution decays. With smallecasity values, the numerical solution
decay gets faster. These numerical solution graphs alse® agjth earlier published work [16].
Table 2 presents a comparison of the values of the error nobtaned by the QBDQM with
those which were obtained by the other method [16]. It isrbleseen from Table 2 that the error
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0.014 4

0.012

0.010 o

0.008

FIGURE 3. Solutions forv= 0.001, At = 0.01, N = 166 0 < x < 1.

normsL, andL. obtained by the present method are smaller than at the begiand at the end
of the run of these given in [16]. Additionally, in Table 3gtkerror norms of., andL. obtained
by the present method are acceptably small. Error varisioe drawn at time= 10 in Figures 4
and 5 from which the maximum error occurs at the right hanchdaty when the greater value of
viscosityv = 0.01 is used and with the smaller value of viscosity 0.001, the maximum error is
recorded around the location where the shock wave has thegtigmplitude. The, andL., error
norms and the numerical rate of convergence analysig f#0.001 andAt = 0.01 and different
numbers of grid points are tabulated in Table 4

0.0020 —
0.0015 <

0.0010 o

Error

0.0005

0.0000

0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 4. Errorforv=0.01, At =0.01, h=0.02 0<x< 1.

As seen in Table Avhen the number of grid points is increased, the error noeusséise and both
of ROC(L,) andROC(L,) change similarly. The values 80C(L,) andROC(L.) change in the
region of[0.27,1.07] and[0.17,1.17] , respectively.
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0.00020 —

0.00015

0.00010 o

Error

0.00005

0.00000

0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 5. Error forv=0.001 At = 0.01, N = 166, 0 < x < 1.

TABLE 4. Error norms and rate of convergence for various numbersidfpgints att = 10.

N Lpx10° ROC(Lp) Leox10° ROC(Lw)

11 0.26 - 0.64 -

21 0.13 1.07 0.30 1.17
31 0.11 0.43 0.25 0.47
41 0.10 0.34 0.23 0.30
61 0.09 0.27 0.21 0.23
81 0.08 0.42 0.20 0.17

5. Conclusions

In this study, we have implemented DQM based on quintic Bspl for a numerical solution
of modified Burgers’ equation. The performance and accucdayie method were shown by
calculating theL, andL. error norms Numerical rate of convergence analysis of the numerical
approximation was also obtained. It is observed that by @mg between the obtained values
of the L, and L., error norms by the present method and earlier works, QBDQMIt® were
considered acceptable. The obtained results show that QBEHD be used to produce reasonably
accurate numerical solutions of the modified Burgers’ dqnafTherefore, QBDQM is a reliable
method to obtain the numerical solutions of some physidailyortant nonlinear problems.
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