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An empirical analysis of the masses of odd-mass nuclei is made, putting emphasis on 
the gross structure of the nuclear mass surface, especially on the 13-stability line. As a 

consequence of the analysis, three macroscopic (liquid-drop) mass formulas are derived. It 
is pointed out that large volume and surface symmetry-energies are necessary for the repro­
duction of the experimental 13-stability line. 

§ 1. Introduction 

Nuclear mass formulas have been very useful and important in nuclear phys­

Ics. They give us estimates of masses of unknown nuclei as well as informa­

tion about nuclear interactions. 
It is possible to consider that the mass surface has two characters: One 

is the gross and smooth character which may originate from the classical liquid­

drop nature of the nucleus, and the other is the fine structure which arises 

from the shell effects, nuclear deformation, etc. It is often necessary to use 

mass formulas with a large extrapolation in the study of, e.g. the nuclear fis­

sion, superheavy nuclei and nuclei far from the /1-stability line. When we make 

such extrapolations, a knowledge of gross properties of the mass surface will be 

indispensable. 
A number of liquid-drop-type mass formulas with rather phenomenological 

shell corrections have been published till now,I> and many of them represent the 

nuclear masses fairly well. The liquid-drop parts include effects such as surface 

symmetry energy, nuclear compressibility and surface diffuseness in addition to 

the ordinary W eizsacker-Bethe terms.2>' 3> However the magnitudes of these 

liquid-drop correction terms are considerably scattered. Different sets of para­

meters often do not show any significant differences in the JC2-fit, provided they 
are chosen in an appropriately correlated way. Thus it is rather difficult to 
single out the correct set of parameters only from the JC 2-fit of overall mass 

data. This difficulty is increased by the shell effects, because the differences 

among the effects of various parameter sets are often hidden in the uncertainty 

of the shell effects which cannot accurately be calculated at present. Therefore, 

it will be worthwhile to make a further study of gross properties of the nuclear 

mass surface and of liquid-drop correction terms. Once a good gross mass for­

mula is obtained, the fine structure of the mass surface may be added with the 
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{3~Stability Line and Liquid-Drop Mass Formulas 1113 

aid of, e.g. the binding energy systematics. 
In order to avoid the above-mentioned difficulty we put emphasis on the /3-

stability line rather than treat all masses equivalently. As has been pointed out 
by several authors,4

)-
7

) the {3-stability line shows a somewhat peculiar b~havior. 
The /3-stability line is a line on the N-Z plane that shows the most {3-stable 
isobars as a function of mass number A. We express the experimental {3-stabil­
ity line by Ioexp (A), which is, for a given A, the neutron number minus the 
proton number giving the minimum of the mass parabola. In order to be free 
from the pairing effects, we deal only with odd-A nuclides in this paper. Mass 
excesses of even-A nuclides can be represented by adding the usual even-odd 
term to the odd-A mass formula. For A <47, the effect of the V-shaped valley8

) 

of the mass surface at N = Z is taken into account. For the sake of graphical 
representation we use the reference mass formula of W eizsacker-Bethe type] (12C 
standard, in MeV) , 

MErerC
2 = (7.68004 -15.88485) A+ 0.39131] 

+ 18.32695A213 + 23.6433212
/ A+ 0.71994_£__, 

Alf3 
(1) 

where the coefficients are taken from Ref. 6). The reference /3-stability line is 
then given by 

L = 0.35997 A 2
1

3
- 0.39131 A 

Oref 0.35997 A 213 + 47.28664 • 
(2) 

The experimental /3-sta bility line measured from the reference line, together with 
"its gross tendency in which the shell effects are supposed to be eliminated, is 

0 50 100 150" 200 A 250 

Fig. 1. 13-stability lines measured from the reference line Ioexp (Eq. (2)). The zigzag line is the 
experimental one. The dotted curve is drawn as the "smoothed" ex-perimental line, in which 
the shell effects are supposed to be eliminated. The dashed curve is the one calculated from 
Eq. (9a), and the solid line is for both Eqs. (9b) and (9c) which give two indistinguishable 
curves on this figure. 
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given m Ref. 6), and we reproduce them in Fig. 1. This smoothed curve (a 
dotted line in Fig. 1) cannot be obtained by adjusting the constants in Eq. (1). 
Thus the W eizsacker-Bethe formula is insufficient for explaining the experimental 
11-stability line. 

Most of the liquid-drop mass formulas without shell corrections failed to 
represent the above-mentioned behavior of the 11-stability line., If shell correction 
terms are added the situation may be improved, but the convex feature of the 
smoothed 11-stability line in Fig. 1 would not be explained by the shell effects 
only. 

Yamada proposed a mass formula for compressible nuclei and succeeded in 
explaining the behavior of the 11-stability line.6

) However, the magnitude of the 
compressibility obtained in Ref. 6) is much larger than usually thought. 9

) Fur­
thermore, still there remains a question whether the nuclear compressibility is 
essential for explaining the property of the experimental 11-stability line. In the 
heaviest region the mass formula derived by Viola and Wilkins10

) represents the 
11-stability line much better than the usual formulas, but it does not in the other 
mass region. Thus a further investigation of gross properties of the nuclear 
mass surface, especially of the 11-stability line, is necessary. 

In this paper, we assume that the nucleus is incompressible, and investigate 
how the incompressible model can represent the gross property of the mass sur­
face, putting emphasis on the 11-stability line. 

§ 2. Analysis of experimental data and liquid-drop mass formulas 

For each fixed value of A, we consider the mass excesses of the isobars as 
a function of I ( = N- Z) . Since I/ A is not a large quantity for all A, we 
may express the mass excesses minus apparent Coulomb energies in a power 
series in Ij A. On the assumption that the nuclear forces are charge symmetric, 
we may neglect the odd-power terms in I except for the neutron-hydrogen mass 
difference which is linear in I. Among even powers in I, we take only the 
first term, i.e. the I 2 term. The contributions from the higher powers are neg­
ligibly small unless their coefficients are abnormally large. In addition, a term 
proportional to III was suggested by Wigner,11

) and its existence is apparent 
from the experimental evidence.8

)'
12

) Thus we write the mass excesses in the 
form (in MeV) ; 

ME(A, I)c2 =7.68004A+0.39131I+a(A) ·A+b(A) ·III +c(A) ·P/A 

+ Ec (A, Z) . (3) 

The first two terms arise from the rest masses of neutron and proton. The 
term Ec stands for' the Coulomb energies. This expression for nuclear masses 
was proposed previously by Ayres et al.13

) They examined A-dependences of the 
coefficients by simple many-body caculations and determined them semi-empiri-
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cally, but the results are not satisfactory as to the /3-stability line. 
In this section, we first investigate . the behavior of the coefficients by analyz­

ing experimental masses without making any theoretical assumption. Then we 
derive gross formulas for these coefficients by smoothing out apparent shell cor­
rections. In this process we put emphasis on the /3-stability line as stated in § 1. 

We calculate the the Coulomb energies based on a simple charge distribu­
tion. The trapezoidal charge distribution is applied for this purpose (see Fig. 2). 

Po.-------.,.. 

Fig.· 2. Trapezoidal model of nuclear charge distribution. 

We determine the parameters of this distribution referring to electron scattering 
data14

) as 

z= 1.5fm, 

r0 = 1.1 fm, 

where 2z IS the surface thickness and r0 is related to the central density as 

( 
4 \ -1/3 

ro= 31rPo) · 

We assume no difference between the neutron and proton distributions, and then 
the central charge density is given by 

where - e IS the electron charge. The half-density radius R is calculated to be 

The Coulomb energy of the trapezoidal charge distribution is approximately given 
by (in MeV) 

Ec(A,Z) = (4nPcY~{1+ ~ (~r+ ~ (~r+ ~ (~r- 4~(~r} 
_ o.66 (Z) 413 

·A, 
ro A 

(5) 

where the last term is the Coulomb exchange energy calculated on the Fermi-gas 
model. Since the exchange term is not so large compared to the direct term, 
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Fig, 3. Results of the first fitting. Also shown in 3 (b) with black squares are the estimates from the 
separation energy systematics. The dashed line in 3 (b) is the line calculated from Eq. (6). 
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the Fermi-gas approximation will not cause a serious error. 
For A>5, mass excesses of more than 3 isobars are known experimentally 

or by the systematics.15
) ..... 

17
) However, more than 2 mass excesses for different 

III values are necessary in order to determine the coefficients· a (A), b (A) and 
c (A). This requirement is met for A>17, and then the coefficients can be de­
termined by the least-squares fits. These coefficients are shown in Figs. 3 (a), 3 (b) 
and 3 (c). They fluctuate due to shell effects, and these fluctuations are amplified 
by the correlation among the parameters; e.g. even if we modify b (A) into a 
smooth curve, the fit' does not become much worse provided the other coefficients 
are adjusted appropriately. In spite of these shell effects, it is possible to extract 
gross tendencies {rom these figures. We express these coefficients by analytic 
functions of A in order to get a gross mass formula. The analytic representa­
tions of these coefficients are done one by one, because there exists a strong 
correlation among them and separate determinations of these coefficients will lead 
to inaccurate results. We first determine b (A) since the effects of this term is 
not so large as the other two terms. Secondly, we determine c (A) in order 
to preserve the property of the {3-stability line as far as possible. The coefficient 
a (A) is determined in the last by fitting the mass excesses on the {3-stability 
line. 

The Wigner-term coefficient b (A) can also be determined from the separa­
tion energy systematics17

) for A <55. For infinitely large A values, we assume 
that b (A) vanishes.12

) Then it is approximated by a power series in A -lfB as 
(in MeV) 

b (A) = - 3.9A-113 + 30.6A-213
, (6) 

where we have determined the numerical coefficients somewhat arbitrarily by 
looking into Fig. 3 (b). For very large A values, Eq. (6) gives negative values, 
but their absolute magnitudes are so small that no serious difficulty will arise. 

Substituting Eq. (6) into Eq. (3), we redetermine the coefficients a (A) and 
c (A) by the least-squares fits. This time we can determine them also for A 
<17, sine the mass excesses for two different III values are sufficient to deter­
mine a (A) and c (A) for each A value. The results of this second fitting are 
shown in Figs. 4 (a) and 4 (b). The A-dependent symmetry energy coefficient c (A) 
becomes fairly smooth in this case compared to the first fitting, Fig. 3 (c). Figure 
4 (b) clearly shows the gross tendency that c (A) increases with A; this is one of 
the best evidence for the surface symmetry energy. 

We approximate c (A) by a power series in A -l/
3

• As seen in Fig. 4 (b), the 
coefficient increases rather rapidly in the heaviest region. This property of the 
symmetry energy reflects the convex nature of the {3-stability line in Fig. 1. 
Because of this strong A-dependence, it is somewhat difficult to determine the 
best-fit curve uniquely, so that we give three different expressions for c (A). 

If we use the first three terms in the power series and put emphasis on the 
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Fig. 4. Results of the second fitting. The dashed line in 4(b) is the curve calculated from Eq. (7a), 

the solid curve from Eq. (7b), and the dotted curve from Eq. (7c). 

behavior in light and medium-weight nuclear regions, we get the formula (in 

MeV), 

c1 (A) = 37.61- 92.83A - 1
;

3 + 65A - 213
• (7a) 

On the other hand, if we fit the data mainly in the heavier region, we get (in 

MeV) 

c2 (A)= 48.1-184A-1
;

3 + 240A - 213
• (7b) 

Inclusion of the A - 1 term improves the fit of c2 (A) at A<30. In this case we 

obtain (in MeV) 
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c3 (A)= 57.25- 321.25A - 113 + 917.1A - 2
/
3 -1098A - 1

• (7c) 

As far as we do not concern with the lightest region A <20, it is difficult to 
give a preference among these three expressions. For A>150, Eqs. (7b) and 
(7c) are better than Eq. (7a), whereas for 40<A<100, the situation is reversed. 

With the aid of these analytic expressions and Eqs. (5) . and (6), we can 
calculate the /3-stability line; the calculated lines are shown in Fig. 1. The cal­
culated lines for Eqs. (7b) and (7c) are almost ·the same, and they are repre­
sented by one curve in Fig. 1 (the solid curve), while that for Eq. (7a) is drawn 
in dashed line. These curves should be compared to the smoothed experimental 
/3-stability line (the dotted line). As expected, Eq. (7a) is better than Eqs. (7b) 
and (7c) for A<100, and for A>150, Eqs. (7b) and (7c) are better. 

The coefficient a (A) is determined by fitting the masses on the /3-stability 
line. The experimental mass excesses on the /3-stability line given in Ref. 6) 
are reproduced in Figs. 5 (a), 5 (b) and 5 (c). The analytic expression for a (A) 
is so determined that the mass formula including it represents the gross feature 
of the experimental mass excesses on the /3-stability line. For each ci (A), we 
obtain (in MeV) 

a1 (A)= -18.0007 + 39.846H)A - 113
- 68.0739A - 2

;
3 + 71.685A-I, (Sa) 

a 2 (A)= -18.6115 + 48.4575A - 1
;

3 -107.409A - 2
;

3 + 129.42A-I, (Sb) 

a 3 (A)= -18.64314 + 48.8946A- 1
;

3 -109.3385A - 2
;

3 + 132.093A - 1
• (Sc) 

Thus we get three gross mass formulas (in MeV) 

ME1 (A, I) c2 = 7 .68004A + 0.39131I + (- 18.0007 + 39 .84616A - 1
/
3 

- 68.0739A - 213 + 71.685A - 1
) • A+ (- 3.9A -l/S + 30.6A - 213) III 

+ (37.61- 92.83A - 113 + 65A-213
) I 2

/ A+ Ec (A, Z), (9a) 

ME2 (A, I) c2 = 7.68004A + 0.39131I + ( -18.6115 + 48.4575A -l/
3 

-107.409A - 213 + 129.42A -l) A+ (- 3.9A - 113 + 30.6A - 213) III 

+ (48.1-184A-1
1

3 + 240A - 213
) I 2

/ A+ Ec (A, Z), 

MEa (A, I) c2 = 7 .68004A + 0.39131I + (- 18.64314 + 48.8946A -I;a 

(9b) 

-109.3385A - 213 + 132.093A - 1
) A+ (- 3. 9A - 113 + 30.6A - 2

/
3
) III 

+ (57.25- 321.25A-113 + 917.1A - 2
;

3 -1098A - 1
) I 2

/ A+ Ec (A, Z), 
(9c) 

where Ec is given by Eqs." ( 4) and (5). 
The mass excesses on the /3-stability line calculated from the new mass 

formulas (9a), (9b) and (9c) are shown in Figs. (5a), (5b) and (5c) respec­
tively. In the heaviest region, the calculated mass excesses seem to increase 
somewhat too rapid, compared to the experimental data. 
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Fig. 5. Figure captions a printed on the next page below. 
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§ 3. Discussion 

In § 2, we have derived three gross mass formulas based on an incompres­

sible liquid-drop model. They exhibit the gross tendency of the experimental 

{3-stability line and the masses on it fairly well. They are of the best formulas 
for the gross features of masses, in particular for the {3-stability line. The values 

of the parameters in these formulas are significantly larger than those of the 

usual mass formulas. Our volume energy is about 18 MeV which is 1rv3 MeV 

greater than the usual values. Our surface coefficients are very large; even the 

smallest one among the three is about 39 MeV, which should be compared with 

the ordinary mass-formula values of l8rv20 MeV and recent theoretical estimates 
of rv20 MeV. 18

) 

Equation (9a) has a symmetry term c (A) · 12
/ A just comparable to that of 

Myers and Swiatecki.19
) The surface symmetry energy obtained by Viola and 

Wilkins11
) in their analysis of the trans-radium nuclei, is about 311 MeV and 

close to our value 321.3 MeV in Eq. (9c). 

In Ref. 6), it was shown that if one introduces the effect of nuclea! com­

pressibility the behavior of the {3-stability line, in particular that in the heaviest 

region, can be explained. Also it can be known from Fig. 3 of Ref. 6) that the 

compressibility causes an energy decrease in the heaviest region. Therefore, 

introduction of the nuclear compressibility is expected to improve Eq. (9a), in 

regard both to the {3-stability line and to the masses on it in the heaviest region. 

However, the deviations of Eq. (9a) from the experimental data are rather small 

and the magnitude of the compressibility to be introduced will be considerably 

smaller than that of Ref. 6). Thus it is probable that Eq. (9a) becomes the 

best one among the three by the introduction of the effect of nuclear compres­

sibility. 
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Fig. 5. Mass excesses on the a-stability line measured from the reference formula. The zigzag line 
represents the experimental mass excesses, namely the minimum values of the mass parabolas. 

The solid curves in (a), (b), (c) represent the mass excesses on the a-stability lines calculated 
from Eqs. (9a), (9b) and (9c), respectively. 
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