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The mammalian gut microbiome is one of the densest known microbial communities [1].

These microbial communities are largely composed of four major phyla (Bacteroidetes, Firmi-

cutes, Proteobacteria, and Actinobacteria). Our understanding of the factors that shape gut

microbial community composition is largely based on the “primary economy” of this ecosys-

tem: the flow of carbon from the diet to bacterial biomass and fermentation products [2].

However, many enzymatic reactions in this primary economy depend on cofactors that are

derived from vitamins, which are much less abundant but no less important. Vitamins may

play a critical role in driving microbiome dynamics and thus provide new avenues for modifi-

cation of the microbiome.

Microbes require different combinations of a variety of vitamins. These include fat-soluble

vitamins, such as vitamins A, D, E, and K, and water-soluble vitamins, such as vitamin C and

the B vitamins. The B vitamins are a broad category of small molecules that are important for

cell metabolism but otherwise do not necessarily share structural or functional characteristics.

The family of B vitamins includes thiamine (B1) (Fig 1A), riboflavin (B2), niacin (B3), panto-

thenic acid (B5), pyridoxine (B6), biotin (B7), folate (B9), and cyanocobalamin (B12) (Fig 1C).

Cyanocobalamin belongs to the cobamide family, which includes many different vitamin B12–

like molecules. Thiamine and cobamide provide examples of the elaborate mechanisms gut

microbes use to capture vitamins.

Thiamine is required by all organisms due to its role in essential metabolic pathways,

including glycolysis and the tricarboxylic acid (TCA) cycle [3]. Among gut microbes, approxi-

mately half encode the enzymes for de novo thiamine synthesis [3]. This synthesis includes

production of the precursors thiazole and hydroxymethyl pyrimidine followed by the combi-

nation of these precursors into thiamine [4]. Bacteria, both within the gut and in other systems

such as aquatic bacterioplankton, can acquire these precursors or mature thiamine via trans-

port from their environment instead of or in addition to synthesis [5]. Transport of mature thi-

amine occurs through systems such as the ATP-binding cassette (ABC)-type transporter

ThiBPQ (in Proteobacteria) and the group II energy-coupling factor (ECF) transporter ThiT

(in Firmicutes) [6, 7]. Additionally, some proteins annotated as vitamin B3 transporters can

transport thiamine, including NiaP and some Pnu transporters [8, 9]. Although the gut Bacter-

oidetes do not encode any previously characterized thiamine transporters, they do encode

PnuT as a putative inner membrane transporter [3, 9]. Genes encoding PnuT can be in close

proximity to genes for TonB-dependent outer-membrane transporters in Bacteroidetes, sug-

gesting a functional link between TonB-dependent outer-membrane transport and PnuT-

based inner-membrane transport of thiamine [4]. A heterologous expression system in Escher-

ichia coli provided the first experimental support for this hypothesis [9]. Additional studies in

the gut commensal Bacteroides thetaiotaomicron have shown that a TonB-dependent outer-
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membrane transporter, OMthi, is encoded near pnuT, and both OMthi and PnuT are involved

in thiamine transport (Fig 1B) [3]. Given the wide range of strategies that bacteria encode for

synthesis and transport of thiamine and the recent discovery of OMthi as a novel outer-mem-

brane transporter of thiamine in a gut commensal, it is clear there is still much to learn about

acquisition of this essential nutrient by microbes in the gut environment.

Gut microbes also exhibit varied strategies for synthesis and acquisition of cobamides.

Among the cobamides, cobalamin (vitamin B12) is the best-known example. Cobamide-depen-

dent enzymes can be involved in methionine synthesis, nucleotide metabolism, carbon and

nitrogen metabolism, and a variety of other cell processes [10–12]. Despite these widespread

functions, certain bacteria appear to lack a cobamide requirement entirely. If bacteria require

cobamide, they can meet this need either through de novo synthesis, scavenging of cobamide

precursors, or transport from the environment [11].

For those bacteria in the gut that are capable of de novo cobamide synthesis, the process is

long and energetically costly, requiring approximately 30 enzymatic steps (reviewed in detail

in [10]). Some bacteria cannot synthesize these molecules de novo but can salvage inter-

mediates at different stages and complete synthesis. Additionally, bacteria can use alternative

lower ligands in the synthesis or remodeling steps, producing the extended family of coba-

mides [11, 13].

Fig 1. Representative B vitamins and their bacterial transporters. A and B. Thiamine structure and an example of a
thiamine transport system, OMthi and PnuT, from Bacteroides thetaiotaomicron [3]. C and D. Cyanocobalamin and
an example of a cobamide transport system, BtuBFCD, from E. coli [10]. IM, inner membrane; OM, outer membrane.

https://doi.org/10.1371/journal.ppat.1008208.g001
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Given the complexity of cobamide synthesis, it is perhaps unsurprising that many microbes

encode machinery to acquire this molecule from their environment, either instead of or in

addition to encoding the synthesis pathway. Over half of gut microbes are predicted to encode

cobamide transporters, and vitamin B12 transport is an important fitness determinant for B.

thetaiotaomicron in the gut environment [14, 15]. Much of what is known about vitamin B12
transport comes from studies of E. coli, in which an outer-membrane β-barrel protein, BtuB,
brings vitamin B12 across the outer membrane [10]. Vitamin B12 then binds to the periplasmic

protein BtuF, after which B12 crosses the inner membrane via the ABC-type transporter

BtuCD (Fig 1D) [10].

While homologs of the Btu system are found across many gut bacteria, it seems unlikely

that all gut bacteria use this system as observed in E. coli. For example, many gram-positive

species in the gut encode btuFCD homologs without btuB, suggesting that at least some of

these species use variations of the known vitamin B12 acquisition machinery [14, 16]. The

gram-positive microbe Lactobacillus delbrueckii encodes an ECF-type transporter instead of

an ABC-type transporter for cobamide transport [17]. Gram-negative bacteria also have vari-

ability in their transport machinery. In the soil microbe Thiobacillus denitrificans, the BtuM

transporter not only brings cobamides across the inner membrane but can also decyanate vita-

min B12 prior to transport [18]. Notably, B. thetaiotaomicron encodes three paralogs of btuB

and two of btuFCD rather than the single set of btuBFCD genes observed in E. coli; other gut

Bacteroidetes may encode between one and four btuB genes [14]. However, approximately

one-quarter of the gut bacteria with a predicted cobamide requirement have no identified syn-

thesis or transport machinery, indicating that we still have much to learn about how gut bacte-

ria make and acquire cobamides [14].

The presence of multiple copies of cobamide transport genes in B. thetaiotaomicron and other

gut bacteria presents the question of why these paralogs are advantageous to these microbes. One

explanation is that these proteins have distinct functions or respond to distinct signals. Since vita-

min B12 is a minority of the total cobamides present in the gut, variations of the transport machin-

ery might be involved in acquisition of different types of cobamides or precursors [13, 14]. In B.

thetaiotaomicron, the fitness of genetically engineered strains that encode only one of the three

btuB alleles is dependent on the specific combination of cobamide provided and btuB allele [14].

This suggests that different transporters may have distinct efficiencies for transport of different

cobamides and the ability to utilize different cobamides may provide a fitness advantage in the gut

environment [14]. While it is not yet clear how utilization of different cobamides impacts gut spe-

cies beyond B. thetaiotaomicron, many human gut Bacteroides encode multiple copies of coba-

mide transporters. The capacity to utilize different cobamides may thus influence many species, as

well as the interactions between these species within the gut [19].

B. thetaiotaomicron also encodes vitamin B12 acquisition machinery that is not present in E.

coli. A recent study characterized BtuG2, a surface-associated β-propeller that interacts with
BtuB to aid vitamin B12 transport [20]. This protein binds vitamin B12 with femtomolar affinity

and is capable of stripping vitamin B12 from the human B12–binding protein intrinsic factor in

vitro [20]. Because humans absorb vitamin B12 predominantly in the small intestine and B. the-

taiotaomicron and other gut commensals are found predominantly in the large intestine, vita-

min B12 piracy from intrinsic factor by microbes is unlikely to impact vitamin B12 availability

for the host in most cases. However, in some disease states such as small-intestinal bacterial

overgrowth, this may present a link between microbial and host vitamin acquisition [20].

Homologs of btuG are present in all sequenced gut Bacteroidetes, suggesting that BtuG is

important for cobamide acquisition among these bacteria [20].

In addition to thiamine and cobamide, gut bacteria may require other B vitamins, including

riboflavin, niacin, pantothenic acid, pyridoxine, biotin, and folate. Different species may
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encode different combinations of the pathways for biosynthesis of these vitamins [21]. Inter-

estingly, some pairs of gut taxa appear to have complementary biosynthetic pathways. For

example, many gut Bacteroidetes encode the biosynthesis for all B vitamins except cobamide,

whereas gut Firmicutes often encode just the pathway for cobamide [21]. Additionally, Akker-

mansia muciniphila and Eubacterium hallii engage in cross-feeding in the gut, in which A.

muciniphila produces 1,2-propanediol [22]. This supports the growth of E. hallii, which in

turn provides A.muciniphila with cobamide [22]. It is interesting to note that this particular

example of cross-feeding involves both cobamide and a nutrient source (1,2-propanediol) that

may require cobamide for utilization [10]. More broadly, the composition of the gut commu-

nity does not undergo dramatic changes even in the face of dietary excess or limitation of B

vitamins, suggesting that cross-feeding is an important source of these vitamins in the gut

microbiome [23]. Similar processes have also been experimentally demonstrated in systems

beyond the gut. For example, the aquatic algae Ostreococcus tauri acquires vitamin B12 from

the bacteria Dinoroseobacter shibae, which in turn acquires other B vitamins from O. tauri

[24]. Even more broadly, approximately half of microalgae require vitamin B12 acquisition

from their environment, likely from neighboring bacteria, suggesting that cobamide cross-

feeding is widespread [25].

Taken together, these studies highlight both the importance of vitamin acquisition for

microbes in the gut environment and the diversity of mechanisms that microbes use to acquire

these vitamins. These mechanisms can include de novo synthesis, salvage of intermediates,

and uptake of the vitamin from the environment. Different bacterial species may utilize differ-

ent machinery for synthesis or transport. It is clear that new microbial strategies are still being

uncovered, such as the OMthi transporter of thiamine and the BtuG protein involved in vita-

min B12 acquisition. While characterization of individual species provides a key starting point

for understanding these processes, further studies are needed to understand how vitamin

acquisition shapes competition and community structure in the context of an intact

microbiome.
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