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Abstract: Advancing age can be associated with an increase in cognitive dysfunction, a spectrum of 

disability that ranges in severity from mild cognitive impairment to dementia. Folate and the other 

B-vitamins involved in one-carbon metabolism are associated with cognition in ageing but the 

evidence is not entirely clear. The hypothesis addressed in this study was that lower dietary intake 

or biomarker status of folate and/or the metabolically related B-vitamins would be associated with 

a greater than expected rate of cognitive decline over a 4-year follow-up period in healthy older 

adults. Participants (aged 60–88 years; n = 155) who had been previously screened for cognitive 

function were reassessed four years after initial investigation using the Mini-Mental State 

Examination (MMSE). At the 4-year follow-up assessment when participants were aged 73.4 ± 7.1 

years, mean cognitive MMSE scores had declined from 29.1 ± 1.3 at baseline to 27.5 ± 2.4 (p < 0.001), 

but some 27% of participants showed a greater than expected rate of cognitive decline (i.e., decrease 

in MMSE > 0.56 points per year). Lower vitamin B6 status, as measured using pyridoxal-5-

phosphate (PLP; <43 nmol/L) was associated with a 3.5 times higher risk of accelerated cognitive 

decline, after adjustment for age and baseline MMSE score (OR, 3.48; 95% CI, 1.58 to 7.63; p < 0.05). 

Correspondingly, lower dietary intake (0.9–1.4 mg/day) of vitamin B6 was also associated with a 

greater rate of cognitive decline (OR, 4.22; 95% CI, 1.28–13.90; p < 0.05). No significant relationships 

of dietary intake or biomarker status with cognitive decline were observed for the other B-vitamins. 

In conclusion, lower dietary and biomarker status of vitamin B6 at baseline predicted a greater than 

expected rate of cognitive decline over a 4-year period in healthy older adults. Vitamin B6 may be 

an important protective factor in helping maintain cognitive health in ageing. 

Keywords: one-carbon metabolism; B-vitamin biomarkers; dietary intakes; vitamin B6; pyridoxal-

5-phosphate (PLP); cognition; ageing 

 

1. Introduction 

Advancing age can be associated with an increase in cognitive dysfunction, a spectrum of 

disability that ranges in severity from normal age-related changes through mild cognitive 

impairment (MCI) to dementia; with the latter defined as a progressive decline in memory, thinking, 

language and judgment that is sufficient to impair activities of daily living [1]. An estimated 50% of 

those diagnosed with MCI will go onto develop dementia within 5 years of diagnosis [2]. Globally, it 

is estimated that 48 million people are currently suffering from dementia and the figures are 
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predicted to triple by 2050 [3]. Dementia is a leading cause of disability, dependency and decreased 

quality of life among older people [3] and presents many social, economic and health care challenges 

that will continue to increase with an ageing population. Therefore, the identification of strategies to 

prevent or delay the onset of dementia has become a major global public health priority. 

A number of nutritional and lifestyle factors have emerged as potential modifiable risk factors 

for cognitive decline in ageing [4]. In particular, there is considerable epidemiological evidence to 

suggest that sub-optimal status of folate, the related B-vitamins, and/or elevated concentrations of 

the metabolite homocysteine, contribute to cognitive dysfunction [5–10] and to a greater rate of 

cognitive decline in ageing [11–14]. Elevated plasma homocysteine and lower folate have been most 

consistently associated with cognitive dysfunction in ageing [6,8]. There is also evidence to support 

a role for vitamin B12 [15,16] and to a lesser extent vitamin B6, although the latter has been far less 

extensively investigated [9,17]. There is also some evidence in the form of randomised controlled 

trials to show beneficial effects of B-vitamin supplementation on cognition in ageing [18–20]. A 

number of other trials have failed to detect significant benefits [21–23] with recent meta-analyses 

concluding that there was no beneficial effect of B-vitamin supplementation on cognition [24,25]. 

However, a number of these trials may have been too short in duration, included healthy individuals 

or patients with severe dementia or were conducted n individuals with optimal B-vitamin status and 

so unlikely to benefit from vitamin supplementation [26]. The strongest evidence to date of a causal 

relationship between B-vitamins and cognition comes from the Homocysteine and B-vitamin in 

Cognitive Impairment (VITACOG) study. This study showed that combined B-vitamin 

supplementation for two years had beneficial effects on cognitive performance in participants with 

MCI and elevated plasma homocysteine concentrations [20]. More importantly, it also demonstrated 

that B-vitamin supplementation reduced the rate of brain atrophy by 30% as measured using MRI; 

[27]. A subsequent report from the VITACOG investigators reported that the atrophy occurred in 

grey matter areas of the brain which are particularly vulnerable to Alzheimer’s disease [28]. 

The intervention doses administered in VITACOG were well in excess of recommended dietary 

intakes and therefore whilst the VITACOG papers provide powerful evidence of a role for folate, 

vitamin B12, and/or vitamin B6 in cognition, the relevance of these results to nutrition, and thus 

prevention of cognitive dysfunction in ageing is unclear. Furthermore, epidemiological research 

generally in this area has predominantly focused on plasma homocysteine, folate and vitamin B12; 

most studies have overlooked vitamin B6 and all have ignored the role of vitamin B2. Consequently, 

the influence of all the relevant B-vitamins involved in one-carbon metabolism on cognition is not 

fully understood. Therefore, the aim of this study was to investigate whether lower dietary intake or 

biomarker status of B-vitamins (folate, vitamin B12, vitamin B6 or riboflavin) at baseline was 

associated with a greater rate of cognitive decline over a 4-year follow-up period in healthy older 

adults. 

2. Materials and Methods 

2.1. Participant Recruitment and Study Design 

Potential participants were identified from our records of a previous cross sectional study 

funded by the UK Food Standards Agency investigating B-vitamin dietary intakes and biomarker 

status in the healthy younger and older adults in Northern Ireland as previously described [29]. 

Healthy participants (n = 662; aged ≥18 years) were recruited to the original study and as part of the 

protocol, those aged ≥60 years completed a cognitive function test (Folstein’s Mini Mental State 

Examination MMSE; [30], the purpose of the original assessment was to ensure that the ability of 

participants to accurately recall food intake was not compromised. The current study involved the 

re-examination (4 years after initial screening) of those aged ≥60 years (n = 255). The exclusion criteria 

for the original study were: those with vitamin B12 deficiency (serum vitamin B12 < 111 pmol/L); self-

reported history of cardiovascular, gastrointestinal, hepatic, renal, or haematological disease; use of 

medications that interfere with B-vitamin metabolism; taking supplements containing B-vitamins; 

having visited a country with a mandatory fortification policy for a period ≥2 weeks in the previous 
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6 months; plasma creatinine concentrations >130 µmol/L (generally indicative of renal impairment); 

and a score of <25 on the MMSE (indicative of cognitive impairment). Ethical approval was granted 

by the University of Ulster Research Ethics Committee (UUREC; Ref UUREC/07/005) and all 

participants provided written informed consent. 

2.2. Cognitive Assessment 

Cognitive function was assessed at baseline and at follow-up (between 3.5 to 4 years from initial 

screening for each participant) using the MMSE [30], one of the most widely used cognitive screening 

tools in a clinical setting. It is a global test of cognitive function and assesses the domains of 

orientation, registration, attention and concentration, recall and language. Overall the maximum 

score achievable is 30, with a score <25 indicating a possibility of cognitive impairment and a score 

<20 dementia [30]. 

2.3. Dietary and Lifestyle Assessment 

Dietary intake was assessed using a 4-day food diary (for 4 consecutive days, including Saturday 

and Sunday, to account for the known variation in day-to-day intake) in combination with a food 

frequency questionnaire. This combined dietary method as described previously has been validated 

at this centre for the assessment of the four relevant B-vitamins against each of their blood biomarkers 

[29]. The food frequency questionnaire requested participants to state the frequency of consumption 

for food groups or specific branded products fortified with B-vitamins (e.g., ready-to-eat breakfast 

cereals, bars, breads and margarines). Participants provided details on brand names of the products 

consumed so that the fortification profile of any new foods could be established. By combining the 2 

dietary collection methods, we were able to estimate dietary intakes of the relevant B-vitamins from 

both natural food sources and from fortified foods. Each participant received oral and written 

instructions on how to complete the food diary and food-frequency questionnaire. Any queries or 

discrepancies between the 2 dietary records were discussed with the participant and were clarified 

within 1 week of collection to enhance the accuracy of information on usual food intakes. Food 

portion sizes were estimated by the participant by using household measures and were later 

quantified by using published food portion size data [31]. The food-composition database WEIGHED 

INTAKE SOFTWARE PACKAGE (WISP, version 3; Tinuviel Software, Anglesey, UK) was used to 

calculate mean daily energy and B vitamin intakes. This database has been customised at our centre 

to enable natural food folate to be distinguished from folic acid added to foods by manufacturers, 

and this allows the estimation of dietary folate equivalents (DFE; [29]). 

A health and lifestyle questionnaire was used to obtain information on medical history including 

depression, smoking, use of alcohol and medication, and educational attainment. Height (m) and 

weight (kg) were measured at baseline and body mass index (kg/m2) was calculated. 

2.4. Laboratory Analysis 

All participants provided a fasting 30 mL blood sample at baseline Sample preparation and 

fractionation were performed within 4 h of blood collection, and blood aliquots were stored at −80 °C 

until batch analysis. Plasma homocysteine was measured by fluorescence polarization immunoassay 

using the Abbot Imx analyser [32]. Red blood cell folate was measured by microbiological assay using 

Lactobacillus casei [33]. Vitamin B12 status was determined using a number of biomarkers; the direct 

measures were serum total vitamin B12 by microbiological assay using Lactobacillus leichmanni [34] 

and serum holoTC (the metabolically active fraction of vitamin B12) by microparticle enzyme 

immunoassay (AxSym Active-B12; Axis-Shield, City, Germany); the functional biomarker serum 

methylmalonic acid (MMA) by gas chromatography mass spectrometry using methylchloroformate 

derivatization at University of Bergen, Norway. Plasma vitamin B6 (PLP) was measured by reversed 

phase, high performance liquid chromatography with fluorescence detection [35]. Riboflavin status 

was assessed using the erythrocyte glutathione reductase activation (EGRAC) where the ratio of FAD 

stimulated to unstimulated enzyme activity is calculated; higher EGRAC values indicate lower 
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riboflavin status, and sub-optimal riboflavin status is generally recognised as a coefficient ≥1.3 [36]. 

The methylenetetrahydrofolate reductase (MTHFR) 677C→T polymorphism was identified by 

polymerase chain reaction amplification followed by HinF1 restriction digestion [37]. Plasma 

creatinine was measured using a standard spectrophotometric assay with use of a chemistry analyzer 

(Hitachi; Roche Diagnostics Corporation, Indianapolis, IN, USA). Additionally, pepsinogen I and 

pepsinogen II were measured as markers of gastric atrophy by enzyme-linked immunosorbent assay 

(Biohit, Helsinki, Finland); a ratio of pepsinogen I:II < 3 is indicative of atrophic gastritis. All samples 

were analysed blind and duplicated. Quality controls were provided by repeated analysis of pooled 

samples. 

2.5. Statistical Analysis 

All statistical analysis was performed using SPSS software (version 22; SPSS UK Ltd., Chersey, 

UK). Prior to analysis, tests for normality were conducted and data were log transformed where 

appropriate. Differences at baseline and follow-up were assessed using a paired t-test for continuous 

data and chi-squared test for categorical data. Correlations between dietary intakes and 

corresponding blood biomarkers were calculated using Pearson’s correlation coefficient (r). Annual 

cognitive decline was calculated (baseline MMSE—follow-up MMSE)/(duration of follow-up) on an 

individual basis for each participant, accelerated cognitive decline was defined as a decrease in 

MMSE > 0.56 points per year [38]. Binary logistic regression analysis was used to assess health and 

lifestyle predictors of cognitive decline. The impact of B-vitamin dietary intake and blood biomarker 

status as predictors of cognitive decline was assessed using binary logistic regression after controlling 

for significant predictors of cognitive decline (age and baseline MMSE). 

3. Results 

Of the 662 healthy volunteers, 255 ≥60 years were identified as potential participants and of these 

155 were available to participate in the follow-up assessment (Figure 1). Only those that participated 

at both timepoints are presented in this paper; those lost to follow-up were older and had significantly 

lower vitamin B12 status (Appendix A). 

The characteristics of participants at initial screening are shown in Table 1. Participants had a 

mean age of 70 years, were predominantly female, well-educated and had a low rate of depression. 

The majority of participants were regular consumers of foods fortified with B-vitamins (75%). Dietary 

intakes compared favourably with current UK dietary recommendations [39] as reflected in good 

overall B-vitamin biomarker status. As a result of the exclusion criteria, no participant was deficient 

in vitamin B12, however some 3% were identified as deficient in folate and 11% deficient in vitamin 

B6. Gastric function was assessed by using pepsinogen I:II ratio, 12% had evidence of atrophic 

gastritis (pepsinogen I:II ratio < 3; data not shown).
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Figure 1. Study Design and flow of participants through the study. Abbreviations: FSA: Food Standards Agency; FFQ: Food Frequency Questionnaire; MMSE: Mini 

Mental State Examination; 1 Failed to meet inclusion criteria at follow-up assessment n = 26; declined to participate n = 43; deceased n = 4; non contactable n = 21; 

participation in other research n = 6.

General Health & Lifestyle 

Assessment 
Cognitive Function Test 

(MMSE) 

 

Lost to follow-up 1  

(n = 100) 

 4-year Follow-up Assessment  

(n = 155) 

Dietary Assessment  

(4-day food diary & FFQ) 

General Health &Lifestyle 

Assessment 

Cognitive Function Test 

(MMSE) 

FSA B-vitamin Dietary Intake and Status Study 

(Aged 18–92 years; n = 662) 

 

Initial Assessment: Healthy Older Adults 

(Aged 60–92 years; n = 255) 

Laboratory Analysis  

(B-vitamin Biomarkers) 

Commented [SF6]: FFQ? 

Commented [HC7R6]: FFQ added to abbreviations 



Nutrients 2017, 9, x  6 of 14 

 

Table 1. General characteristics of healthy older adults at initial investigation (n = 155). 

 Participants Reference Range 

Age (years) 69.5 (7.3)  

Male n (%) 60 (39)  

BMI (kg/m2) 27.5 (4.2) 20–25 

Smokers n (%) 6 (4)  

3rd Level Education n (%) 48 (31)  

Depression n (%) * 11 (7)  

Cognitive Function (MMSE) 29.1 (1.3) ≤25 

B-Vitamin Dietary Intakes †   

Energy (MJ/day) 7.621 (1.789) 9.71 (M); 7.96 (F) 

Total Folate (µg/day) 303 (141) 200 

Vitamin B12 (µg/day) 4.0 (2.4) 1.5 

Vitamin B6 (mg/day) 2.3 (0.7) 1.4 (M); 1.2 (F) 

Riboflavin (mg/day) 1.6 (0.4) 1.3 (M); 1.1 (F) 

Fortified Food Consumer n (%) ‡ 116 (75)  

B-Vitamin Biomarker Status §   

Red Blood Cell Folate (nmol/L) 954 (410) 340–2270 

Vitamin B12   

Serum total B12 (pmol/L) 282 (106) 111–740 

Serum HoloTC (pmol/L) 50.8 (24.3) 40–200 

Serum MMA (µmol/L) 0.24 (0.19 ≤0.36 

Vitamin B6 (Plasma PLP; nmol/L) 58.4 (25.8) 20–121 

Riboflavin (EGRAC) 1.33 (0.14) ≤1.3 

Plasma total homocysteine (µmol/L) 12.0 (3.7) <10 

Data presented as mean (SD) unless otherwise indicated. * History of depression was self-reported.  
† Reference ranges for dietary intakes based on reference nutrient intake values (RNIs) for 50+ years 

except for energy where the estimated energy requirements (EARs) for 65–74 years were used [39]. 
‡ Consumers of fortified foods were defined as those who consumed foods fortified with B-vitamins 

at least once per week. § Reference ranges based on analytical laboratory where assay was performed. 

Abbreviations: BMI, body mass index; MMSE, mini mental state examination; HoloTC, 

Holotranscobalamin—functional indicator of metabolically active fraction of vitamin B12; MMA, 

methymalonic acid—an indicator of vitamin B12 status, a higher MMA status indicates a lower 

vitamin B12 status; PLP, Pyridoxal-5-phosphate—a measure of vitamin B6 status; EGRAC, 

Erythrocyte glutathione reductase activation coefficient—a functional indicator of riboflavin status, a 

higher ratio indicates a lower riboflavin status 

The relationship between dietary intakes and corresponding blood biomarker concentrations 

were examined for each B-vitamin of interest (Figure 2). Dietary intakes for total folate, vitamin B6 

and riboflavin were each significantly correlated with the corresponding blood biomarker 

concentration. Of note, vitamin B12 intake was significantly correlated with serum holoTC but not 

serum total vitamin B12, the more typically measured biomarker (r = 0.134, p = 0.104; data not shown). 
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Figure 2. Relationship between dietary intake and biomarker status of B-vitamins at baseline (n = 148). Correlations were calculated using Pearson’s correlation 

coefficients (r). p < 0.05 was considered significant. HoloTC, holo-transcobalamin; PLP, Pyridoxal-5-phosphate—a measure of vitamin B6 status; EGRAC: erythrocyte 

glutathione reductase activation coefficient, a functional indicator of riboflavin status.  
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The change in cognitive function score, as measured using MMSE is shown in Table 2. Over the 

4-year follow-up period, a significant decline in the mean MMSE by almost 2 points was observed; 

the scores for each component of the MMSE (i.e., orientation, attention, recall, total verbal and 

language) also declined significantly, with the exception of registration. Whilst all participants had a 

MMSE score within the normal range at baseline (i.e., according to the inclusion criteria), 12% had a 

score indicative of mild cognitive impairment (MMSE range 18–24) at the time of follow-up. Overall, 

the average decrease in MMSE score per year was 0.42 ± 0.56; but some participants 42 (27%) had a 

greater than expected rate of cognitive decline (i.e., decrease in MMSE score > 0.56 points per year; [38]. 

Table 2. Cognitive Characteristics of healthy older adults at initial examination and after 4-year 

follow-up (n = 155). 

Any Heading? 
Initial 

Assessment 

Follow-Up 

Assessment 
p-Value 

Age 69.5 (7.2) 73.4 (7.1) <0.001 

Cognitive Function Score    

MMSE Total Score 29.1 (1.3) 27.5 (2.4) <0.001 

Orientation 9.9 (0.3) 9.8 (0.7) 0.014 

Registration 3.0 (0.1) 3.0 (0.1) 0.565 

Attention 4.7 (0.7) 4.4 (1.1) 0.004 

Recall 2.7 (0.6) 1.8 (1.0) <0.001 

Total Verbal 20.3 (1.1) 19.0 (2.0) <0.001 

Language 8.8 (0.5) 8.5 (0.8) <0.001 

Impaired Cognition n (%) * 0 (0) 19 (12)  

Data presented as mean (standard deviation) unless otherwise indicated. * Impaired cognition 

defined as an MMSE score <25 [30]. Differences between the two timepoints were assessed using a 

paired t-test. p ≤ 0.05 considered statistically significant. Abbreviations: MMSE, Mini mental state 

examination. 

The influence of several lifestyle factors, B-vitamin dietary intake and B-vitamin biomarker 

status, as determinants of rate of cognitive decline are shown in Table 3. Of the general health and 

lifestyle factors examined only age and baseline MMSE score were predictive of cognitive decline. In 

addition, after adjustment for age and baseline MMSE score, no associations were observed between 

disease history (CVD, diabetes and gastrointestinal; data not shown) or medication use with the 

exception of use of analgesic medication (p = 0.035; data not shown). Vitamin B6 was found to be the 

only B-vitamin that was predictive of cognitive decline. After adjustment for age and baseline MMSE 

score, individuals with lower vitamin B6 biomarker status (PLP range ≤ 43.3 nmol/L; p = 0.002) or 

lower dietary B6 intakes (0.9–1.4 mg/day; p = 0.018) were at a 3.5–4 fold greater risk of cognitive 

decline. None of the other B vitamins or plasma homocysteine concentrations were associated with 

the risk of cognitive decline in this cohort. 

Table 3. Lifestyle factors, B-vitamin dietary intake and B-vitamin biomarker status as predictors of 

cognitive decline in older adults. 

Any Heading? Range Odds Ratio  95% CI  p-Value  

Age  1.11 (1.05–1.16) <0.001 

Female Gender  0.69 (0.34–1.41) 0.310 

BMI  1.04 (0.95–1.13) 0.410 

Smoking  2.82 (0.55–14.56) 0.216 

MTHFR TT genotype  1.82 (0.56–5.93) 0.318 

Secondary level education  1.37 (0.62–3.03) 0.434 

Depression  0.40 (0.08–2.18) 0.293 

B-Vitamin Biomarker Status     

Low folate status (RCF) * (191–719 nmol/L) 1.81 (0.83–3.91) 0.134 

Low vitamin B12 (serum total B12) * (118–231 pmol/L) 1.14 (0.52–2.49) 0.750 
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Low vitamin B6 (PLP) * (15.4–42.9 nmol/L) 3.49 (1.60–7.62) 0.002 

Low riboflavin status (EGRAC) † ≥1.3 1.01 (0.48–2.15) 0.972 

High homocysteine (12.6–25.4 µmol/L) 1.50 (0.58–3.85) 0.402 

B-Vitamin Dietary Intake ‡     

Low Folate intake (124–166 µg/day) 2.55 (0.78–8.41) 0.123 

Low vitamin B12 intake (1.2–1.8 µg/day) 1.04 (0.29–3.78) 0.949 

Low vitamin B6 intake (0.9–1.4 mg/day) 4.08 (1.24–13.50) 0.021 

Low riboflavin intake 0.6–1.0 mg/day) 0.41 (0.13–1.32) 0.136 

Logistic regression was performed to determine predictors of cognitive decline (defined as a decrease 

in MMSE ≥ 0.56 points/year). The reference category for the lifestyle variables were as follows; sex, 

male gender; education, 3rd level; depression, no history; MTHFR 677 genotype, MTHFR 677 CC and 

CT genotype combined. * ‘Low’ B-vitamin status (with the exception of riboflavin) was defined as the 

bottom tertile of biomarkers; the reference category was the top two tertiles. † Low riboflavin was 

defined by established cut-off values for EGRAC (low ≥1.3), the reference category was EGRAC < 1.3. 
‡ Low dietary intakes were identified by the bottom 10% of intake for each nutrient, the reference 

category was the remaining intake. Abbreviations: BMI, body mass index; MTHFR, 

methylenetetrahydrofolate; RCF, red cell folate; PLP, Pyridoxal-5-phosphate; EGRAC, Erythrocyte 

glutathione reductase activation coefficient. 

4. Discussion 

This study in healthy older adults, initially with normal cognitive performance, indicates that 

vitamin B6 is an important predictor of cognitive decline in ageing. Lower dietary intake and 

biomarker status of vitamin B6 were associated with a greater rate of cognitive decline over a 

subsequent 4 year follow-up period. No significant association of dietary intake or biomarker status 

with cognitive decline were observed for the other B-vitamins (folate, vitamin B12 and riboflavin). To 

our knowledge, this is the first longitudinal study to consider the impact of both dietary intake and 

biomarker status of all four relevant B-vitamins involved in one-carbon metabolism on cognitive 

health in ageing. 

Whilst the influence of vitamin B6 on cognition has not been as fully investigated as folate and 

vitamin B12 a number of studies have reported observations consistent with the current study. Our 

results showed that participants with lower status of vitamin B6 (PLP; the measure of active vitamin 

B6) at baseline were 3.5 times more likely to have a greater rate of cognitive decline over a 4 year 

follow-up period. Furthermore, the association between vitamin B6 and cognitive decline was not 

confined to those with clinical deficiency, lower status included individuals in both the deficient (PLP 

< 30 nmol/L) and sufficient range (PLP 30–43 nmol/L) which would suggest that optimal vitamin B6 

may be important for cognitive health in ageing. Consistent with the biomarker data, those with 

lower dietary intakes of vitamin B6 at baseline were 4 times more likely to have a greater rate of 

cognitive decline over the 4 year time period. Our results are in good agreement with findings from 

other studies, low vitamin B6 status (PLP < 46 nmol/L) and corresponding dietary intakes were 

previously associated with cognitive decline over a 3 year period in the Veteran Affairs Normative 

Ageing Study [40]. There is also evidence from several cross sectional studies to support an 

association between low vitamin B6 and cognitive dysfunction [9,17,41,42] and Alzheimer’s disease 

[43,44]. Furthermore, vitamin B6 status was associated with cognitive performance in high 

functioning older adults at baseline, though not with cognitive decline over the 7 years follow-up 

period in the MacArthur study of Successful Ageing [8]. Certain other studies have failed to detect 

any significant association between vitamin B6 and cognitive function, however, these studies have 

relied on dietary intake measures alone with no corresponding measurement of blood biomarker 

status [45–47]. Few RCTs have investigated the independent effect of vitamin B6 on cognitive 

function and only one very early study reported beneficial effects of vitamin B6 supplementation on 

memory [19]. Subsequent RCTs have investigated the effect of vitamin B6 in combination with folate 

and vitamin B12, with some studies reporting beneficial effects on cognitive function however the 

independent effect of vitamin B6 cannot be determined [18,20]. 
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Whilst elevated plasma homocysteine, low folate and, to a lesser extent, vitamin B12 status have 

been frequently associated with cognitive decline [11–15,48] there was no evidence of a significant 

associations for these biomarkers in the current study. A number of other studies have reported 

similar findings [49–52]. The findings in the current study may be explained to some degree by the 

fact that vitamin B6 seemed to be the limiting nutrient within the cohort. There was a greater 

incidence of deficiency of vitamin B6 (11% clinical deficiency) compared with folate (3%) or vitamin 

B12 (0%). Also, the lack of a significant association between cognitive decline and plasma 

homocysteine concentration is almost certainly is a reflection of the low prevalence of folate 

deficiency. Furthermore, the concept that the association between B-vitamin status and cognition is 

determined by the limiting nutrient within that population group is further supported by evidence 

from published RCTs. One trial of healthy older adults in New Zealand reported no benefit of 

combined B-vitamin supplementation on cognitive function [21], whereas another similar study from 

the Netherlands showed that supplementation with folic acid significantly improved cognitive 

performance [18]. A notable difference between these two studies was that baseline folate status 

tended to be far lower in the Dutch trial, suggesting that the cognitive benefit related to the correction 

of sub-optimal B-vitamin status whereas additional B-vitamins to an already optimal population may 

have no beneficial effect. 

The mechanism linking vitamin B6 with cognitive health in this and other studies in ageing is 

not clear however, it is biologically plausible given the widespread functions of vitamin B6 within 

the brain and nervous system [53,54]. Vitamin B6 has a crucial role in the synthesis of a variety of 

neurotransmitters including dopamine and serotonin [55] and can act as a potent antioxidant [56,57]. 

In addition, higher vitamin B6 intakes have been associated with greater grey matter volume [58] and 

combined B-vitamin supplementation (including vitamin B6) has been shown to slow brain atrophy, 

an important feature cognitive dysfunction [27]. 

The current study has a number of strengths and limitations that merit comment. To our 

knowledge, this is the first longitudinal study to investigate the association between cognitive decline 

and all relevant B-vitamins along with their corresponding dietary intakes. The MMSE is the most 

widely used screening tools for cognitive dysfunction and although it has been criticised for lacking 

sensitivity, few previous studies have used it to measure cognitive change in a healthy older 

population. However, a meta-analysis reported a mean decline in MMSE of between 0.16 and 0.56 

points per year in cognitively healthy people which compares favourably to the overall rate of decline 

observed in this study (mean 0.39 points per year) [38]. In addition, the rate of decline observed in 

this study was identical to that observed in the Rotterdam Study of community dwelling older adults 

free from cognitive impairment [59]. While the use of the MMSE may be perceived as a limiting factor 

in the current study, it could be argued that its use would only attenuate the associations observed 

and that the use of more sensitive tools would have, if anything, detected more subtle differences 

thus strengthening the results. Another well-recognised limitation of longitudinal studies of this kind 

is that individuals with the greatest decline in cognitive function are more likely to be lost to follow-

up [60]. Indeed, in this study the non-participants were more likely to be older but any non-response 

bias would ultimately underestimate the associations between baseline B-vitamin status and 

cognitive decline and this could not have influenced the current findings. 

5. Conclusions 

In conclusion, vitamin B6 may be an important (often overlooked) protective factor in helping 

maintain cognitive health in ageing, especially in a folate and vitamin B12 replete population. Lower 

vitamin B6 status (as assessed by both dietary intake and biomarker status) at baseline predicted a 

greater than expected rate of cognitive decline over a 4-year period in healthy free living older adults. 

These findings are important because optimising vitamin B6 status in older people, through the use 

of fortified foods or supplements, may have a positive impact on cognition in ageing. Further research 

in this area in the form of well-designed randomised controlled trials targeted at populations with 

sub-optimal status are required in order to confirm a cause and effect relationship between B-vitamin 

status and cognitive health in ageing. 
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Abbreviations 

MMSE Mini mental state examination 

HoloTC Holotranscobalamin—functional indicator of metabolically active fraction of vitamin B12 

MMA methymalonic acid—an indicator of vitamin B12 status, a higher MMA status indicates a 

lower vitamin B12 status 

PLP Pyridoxal-5-phosphate—a measure of vitamin B6 status 

EGRAC Erythrocyte glutathione reductase activation coefficient—a functional indicator of 

riboflavin status, a higher ratio indicates a lower riboflavin status 

Appendix A 

Table A1. A comparison of baseline characteristics between participants and non-participants (i.e., 

those lost to follow-up). 

 Participants (n = 155) Non-Participants (n = 100) p-Value 

General Characteristics    

Age (years) 69.5 (7.3) 72.2 (8.1) 0.007 

Male n (%) 60 (39) 34 (34) 0.530 

BMI (kg/m2) 27.5 (4.2) 27.3 (3.5) 0.981 

Smokers n (%) 6 (4) 5 (5)  

Cognitive Function Score    

MMSE Total Score 29.1 (1.3) 28.7 (1.4) 0.093 

Orientation 9.9 (0.3) 9.8 (0.5) 0.140 

Registration 3.0 (0.1) 3.0 (0.1) 0.273 

Attention 4.7 (0.7) 4.6 (0.9) 0.243 

Recall 2.7 (0.6) 2.6 (0.6) 0.825 

Total Verbal 20.0 (1.1) 20.0 (1.2) 0.263 

Language 8.8 (0.5) 8.6 (0.6) 0.094 

B-vitamin Biomarker Status    

Red blood cell folate (nmol/L) 954 (410) 851 (359) 0.080 

Vitamin B12    

Serum total vitamin B12 (pmol/L) 282 (106) 257 (127) 0.013 

Serum HoloTC (pmol/L) 50.8 (24.3) 47.1 (28.8) 0.381 

Serum MMA (µmol/L) 0.24 (0.19) 0.36 (0.56) 0.035 

Vitamin B6 (Plasma PLP; nmol/L) 58.4 (25.8) 54.3 (22.9) 0.314 

Riboflavin (EGRAC) 1.33 (0.14) 1.34 (0.15) 0.387 

Plasma total homocysteine (µmol/L) 12.0 (3.7) 13.1 (4.4) 0.117 

Gastric Function    

Pepsinogen I (µg/L) 126.8 (70.8) 135.3 (78.2) 0.515 

Pepsinogen Ratio2 8.4 (6.7) 8.0 (6.6) 0.713 

Values represented as mean (SD). Differences in baseline characteristics between those that 

participated in the 4-year follow-up and those that did not participate in the follow-up were compared 

using one-way ANCOVA with adjustment for age for continuous variables (on log transformed data 

were appropriate). Differences in categorical variables were assessed using Chi-squared analysis. p < 

0.05 was significant. 
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