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Wave Propa~ations in Non-Uniform Media 
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The reductive perturbation methods for the wave propagation in, weakly inhomo

geneous media and also spatially homogeneous but weakly unstable media are developed 

in virtue of appropriate strained variables for the waves and the media. For each case, 

low dispersive long wave and modulated amplitude of the self-interacting nearly monochro

mati<f wave can be described by relatively simple scalar equations, many of which have 

one linear extra term with a variable coefficient in comparison with the equation for the 

constant media. Modulation of nearly monochromatic wave which has a complex frequen

cy with a small imaginary part, is also considered in an unsteady medium and a similar 

governing equation is obtained. These theories are applied, directly or in extended forms, 

to the illustrative examples from fluid mechanics, plasma physics and astrophysics. 

§ 1. Introduction and strained variables 

During the past decade or so, various aspects of weakly nonlinear waves 

in homogeneous 111edium have been investigated by singular perturbation 

methods. Especially, remarkable properties of the nonlinear wave, i.e., 

soliton,I> infinitely many conserved quantities,2> amplitude dispersion3) and so 

on, have been revealed out. When the medium is not uniform, as in the most 

real physical systems, interaction of the wave with the non-uniformity becomes 

very important. In respect to the interaction of the nonlinear wave with the 

non-uniformity, one has reached the important concept of nonlinear stability 

criterion, which, some cases, yields the inverse of the prediction of the linear 

theory.4) 

In this paper, the theory presented in part I, i.e., reductive perturbation 

method, is extended to the wave propagation in weakly non-uniform media. 

Here, the nm;nenculture "non-uniform" is used to mean "spatially inhomo

geneous and time independent" or "spatially homogeneous and varying in 

time." Typical examples of the interaction of the nonlinear wave with the 

non-uniformity are the steepening of the sound wave propagating upward in 

the atmosphere, decay of the water solitary wave in the interaction with the 

bottom irregularities, growing or damping of the wave in a homogeneously 
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Wave Propagations -in Non- Unzform Med-ia 53 

~xpanding or contracting or also in the homogeneous radiative or reacting gas 

and so on. Interaction of the heighly dispersive wave, such as electron plasma 

wave, with the non-uniformity is also important. 

Before going to the detailed discussions of each problem, let us classify 

several cases, for which the strained variables have different forms. 5) This 

classification is useful for the understanding of the physical meaning of the 

strained variables and also for the later descriptions. Since the strained vari

ables can describe the asymptotic properties of the nonlinear,wave, they have 

a close relation to the coupling of the nonlinearity and the diss1pative or 

dispersive effect of the wave. Let us consider, as an example, the equation6> 

- -+A ----t~ 2: n H~---+K~--- U=O 
au au s p ( a a ) 
ot ox (3=! a=l ot ox 

(1·1) 

with p 22, where U is a column vector with n unknown components Ub u2, · · ·, 

un; A, H ~ and K ~ are n X n matrices, the elements of which are functions 

of Ui; x and t are the space and time coordinates respectively. Dispersion 

relation for long wave is obtained by linearizing Eq. (1·1) about a constant 

state Uo and using a successive approximation. Thus, simple calculation 

gives the phase velocity 

(1·2) 

where w and k are the frequency and the wave number; Ao is an eigenvalue of 

Ao=A( Uo) and c1's (£=1, 2, ... )are constants given in terms of the right and 

left eigenvectors r, I of A o for Ao. In fact, cr takes the forin 

(1· 3) 

in which KCa and HCa are the respective values of K~ and H~ at Uo. 
On the other hand, the typical nonlinear character of Eq. (1·1) may be seen 

most easily by neglecting the last term. Expanding U about Uo in powers 

of small but finite parameter e, i.e., U= Uo+cU1+c2U2+···, and substituting 

it into Eq. (1·1) with the last term neglected, one has the characteristic curve 

in the form 

(1·4) 

wheret\1is proportional to l(PA)o·U1r; f7A·UI=l:f=1(oAfout)u=uo·uu. Com

parison of the two velocities (1·2) and (1·4) shows that the interaction time of 

the dispersion and nonlinearity, which usualy act in the directions opposite 

to each other, becomes the longest if the equality 

(1·5) 
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54 N. ASANO 

holds along the characteristics, where a=1/(p-l) and the conditions CI=-\=0 
and ..\1 =-\=0 are assumed. Since the relation (1·5) implies that sa X (wave length) 
""'="Order of unity in the wave frame, the strained variable 

0 ·6) 

becomes an independent variable of the coefficients m the expansion of U. 
Another variable may be chosen as 

(1·7 a, b) 

by which the characteristics (1-4) is transferred to A1 =dg/d7J or ..\1 =dgjdT 
respectively in the first order of c. When the unperturbed state is non-uniform, 
Ao depends on x or t and should be presented in the integrated form in Eq.(l·6) 
in x or t depending on the nature of the non-uniformity. 

So far, we have considered the case q=-\=0 and ..\1=-\=0. If c1=0, c2~0 
and ..\1 ~0, the coupling of the nonlinearity and the dispersive effect is made via 
the order relation k2(P-l>""'="c: and leads to the variable (1·6) with a= 1/2(p-l). 
In this way, discussions similar to the above hold also for other values of ci and 
At and can be summarized as in Table I. 

Table I. Strained variables. 

---:~~·~:""i~~:~·!_ (a) inhomogeneous (b) unsteady 

Ct*O, AI* 0, 
'=Ea (/·4~ -t) '=Ea (x.- j Aodt) 

I 1 
a=--

7'= ea+lt p-1 ?]=Ea+lx 

Cl=O, C2*0 

II At*O same as I (a) same as I (b) 
1 

a 
2(p-1) 

"-~-~-·~~ -~·~-----~ 

Ct*O, A1=0 

s=Ea (j ~: -t) '=Ea (x- j Aodt) 
III "2*0 

//• 
2 

?]=ea+2x T=ea+2t p ·1 

IV otherwise otherwise otherwise 

-----~~ 

Since the envelope of nearly monochromatic wave is considered as a long 
wave, strained variables for the envelope wave can also be obtained in a similar 
way. 7) As easily verified, the phase velocity of the envelope comprising two 
plane waves with the characteristics (k, w) and (k', w') Is 

(1·8) 
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Wave Propagat-ions in Non~ Unzform Media 55 

where Ao is the group velocity of the carrier wave, and the wave number of the 

envelope K( =k' -k) is assumed to be small. For the wave number such as 

()2wfok2~Q, the phase velocity (1·8) yields the variables corresponding to 

Case I with a=1 and, as verified later, Ao given by 

_} __ =l_~+~r; for (a), 
Ao ow owor; 

(1·9 a) 

Ao= aw __ +_ a 2
~-T for (b). 

ak aka,. 
(1·9 b) 

Here and in ~his paper, the non~uniformity of the unperturbed state is assumed 

to be described by one of the variables (1·7) for Cases I and II. In the 

reductive perturbation method for the constant unperturbed state, the param~ 

eter e can be chosen freely but, for the non~uniform case, should be determined 

by the assumption, i.e., by the order of the non-uniformity. It may be worth

while to note that various extensions and modifications are possible for the 

model equations and hence the strained variables, as some of those will be 

presented in the examples at the end of each chapter. 

In §2, wave propagations in weakly inhomogeneous media are studied. 

For considerably wide, complex physical systems, we obtain relatively simple 

scalar equation which have one extra term with a variable coefficient, in com

parison with the equations for the constant media. Propagation in the media 

varying slowly in time, which includes unstable case, are considered in §3. 

Equations similar with those in §2 are obtained both for long waves an<:i 

modulated waves. Finally, modulations of the self-interacting nearly mono

chromatic wave with a complex frequency of a small imaginary part, are 

investigated for an unsteady medium in §4. For many cases, the amplitude 

equation of the modulation can be red,uced to the nonlinear Schrodinger type 

equation in an external potential. Each chapter has one or several illustrative 

examples of the applications from fluid mechanics, plasma physics or astro

physics. Some of the applications are presented in extended or modified forms 

of the general theory, including the multi-dimensional extensions of the wave 

propagations in §§2 and 4 and the propagation in an inhomogeneous, unsteady 

medium in §3. 

§ 2. Propagation in weakly inhomogeneous media 

2.1 Long waves5> 

Inhomogeneous physical systems are usually described by the set of the 

equations which do not have constant state solution. Hence, as a model 

equation, we consider 
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56 N. AsANO 

-+A----+E ll Hf-1---+K~- U+B--=0 
au au s p ( Q a a ) dS 
at ax ~ a a at a ax . dx ' (2·1) 

where B is an n X n matrix whose components are functions of U and S; S is a 
vector valued function of x only and other symbols have the same meanings 
with those in Eq.(1·1) but depend also on S. As will be shown in §2.3, 
equations qf the flow throw a duct of varying cross section, shallow water 
motion on the variable depth bottom and so on have the.form given by Eq.(2·1). 
We consider, at first, Case I (a) defined in § l. The unperturbed state is 
denoted by the index zero and, from Eq. (2·1), determined by 

Ao dUo +Bo-4_§_=0 
dr; dr; ' (2·2) 

where S is assumed to be a function of the slow variable· TJ and the order of 
,sP(a+l) is neglected. Our aim is to study the wave propagation in the 
inhomogeneous medium determined by Eq. (2·2}. 

Let us expand U about Uo in powers of a as 

then, A, B, H~ and K~ can be expanded as 

A=Ao+eA1+···, 

B=Bo+eB1+···, 

and likewise for H~ and K~, where A1, B1 and so on are given in terms of 
U1; 

n 
Al = Ul'(r:' A)o=(r:' A)o· ul = L: (aA;aui)U=UoUu, etc. 

i=l 

Substituting these expansions and appropriate strained variables given in the 
table in· §1, one has for the order of e, 

(-I+ 1o Ao) a~~ =0, (2·3) 

and for the order of a2, 

(
-I+_l_Ao)-au2 +Ao au! +-1-Al au! +AI dU9_ 

Ao ag ar; Ao ag d r; 
8 

P ( ~ 1 ~ ) aP U 1 dS _ 
+1Q -Hoa+A

0
Koa agp +B1dr;-O. (2·4) 

General solution of Eq. (2·3) is given in terms of the right eigenvector r of A o 
for Ao as 

U1 =r(r;)cp(g, r;)+ V(r;), (2·5) 
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Wave Propagations z'n Non-Uniform Medz'a 57 

where ep is a scalar function of g and YJ, while V is an arbitrary vector valued 

function of YJ only. Multiplying Eq.(2·4) by a left eigenvector l of Ao for A.o 

and substituting Eq.(2·5) into the resulting equation, we have the equation 

that determines ep, 

aep +C + ') aep +fl CJPep -t + , 0 a;; aep a -ar agp -rep r = ' 

where the coefficients are given by 

and 

a 
lr·(f' A)or 

A_2lr 
0 

,_ lV·(J7 A)or 
a - - ---- A.~lr -----·- ' 

_t:E~D~C-HCa+KCaiA.o)r 
fl- A.olr ' 

. _ A.ol(drjdr;)+lr·[(J7 A)o(d Uo/dr;)+(J7.B)o(dS/dr;)] 
7 A.ob ' 

' r 
A.ol(dV/dr;)+lV·[(J7 A)o(d Uo/dr;)+(J7 B)o(dS/dr;)] 

A.olr 

(2·6) 

(2· 7 a) 

(2· 7 b) 

(2· 7 c) 

(2·7 d) 

(2· 7 e) 

The vector V in the coefficients is determined if a boundary condition of U 1 

and ep is given, say, at e=ec. Thus, the components UH can satisfy each 

boundary condition as shown in the example in '§3.3. It is to be noted that a 

little more simple forms of Eq. (2·6) are obtained by the transformation 

cp=efrar;ep+ J r')rar;dr;, 

'=e-J a'dr;+ J dr;[ae-frar;; r'efrar;dr;], 

8=r;, 

to lead 

or, by the further transformation 

to lead 

,P= ~ e-frae <f>, 

a= j fld8, 
} 

(2·8 a) 

(2·9 a) 

(2·8 b) 
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58 N. ASANO 

(2·9 b) 

The illustrative applications of the theory are presented in §2.3. 

Next, let us consider Case II (a), which is specified by the condition 

c1 =0. In this case, the interaction of the nonlinearity of the order of e and the 

dispersive effect of the order k2(P-1) plays the dominant role. Since the expan

sion of U in powers of e corresponds to the expansion in powers of k2<P-1> and 

excludes the contributions from the orders of kP-1, k3(P-1>, ... ) we must expand 

U 'in powers of ell2, 

(2·10) 

where the term of the order of e112 is dropped out because it turns out to be 

identically zero. Furthermore, the unperturbed state is subject to the con

dition c1 =0, i.e., 

l~ Q(-nC.+ ;
0 

KC.)r=O, (2·11) 

which is a direct consequence of Eq. (1·3). Substitution of Eq. (2·10) and 

corresponding expansions of A, B, H~ and K~ into Eq. (2·1) yields the set of 

equations 

(2·12) 

(2·13) 

(2·14) 

for the order of ea, ea+112, ea+1 respectively and 

(2·15) 

for the order of ea+312. From Eq. (2·13), we obtain U1 in terms of the right 

eigenvector r of Ao for Ao, a scalar function <p(g, 'YJ) and a vector V('YJ) as 

U1 =r(r;)<p(g, r;)+ V(r;). (2·16) 

In virtue of Eq. (2·11), the solution of Eq. (2·14) becomes 

_ . (JP-1(/J 

U2=r(r;)tf;(g, r;)+R agp-1 , (2·17) 
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Wave Propagations in, Non- Uniform Media 59 

where $ is an arbitrary scalar function of g and TJ and R is the column vector 

satisfying the equation 

(-I+ A~ Ao)R=-f D( -HC.+ ;
0 
KC} (2·18) 

Then, multiplying Eq.(2·15) by the left eigenvector l of Ao for Ao and substitut

ing Eqs. (2·16) and (2·1~) result in the equation for tp 

where the coefficients are given by 

_ lr·(T' A)or 
a A5lr ' 

, lV·(T' A)or 
a ,.\~lr 

(j ~~~ n ~( -HCa+KCa!Ao)R_ 

A0lr ' 

r 

I 

r 

Aol(dr/dTJ)+lr·[(T' A)o(dUo/dTJ)+(P B)o(dS/dTJ)] 
Aolr -

A.ol(dV/dTJ)+lV·[(T' A)o(dUo/dTJ)+(P B)o(dSfdTJ)] 

A.olr 

(2·19) 

(2·20 a) 

(2·20 b) 

(2·20 c) 

(2·20 d) 

(2·20 e) 

It is to be noted that the systems belonging to Case I I are always dispersive 

irrespective of p being odd or even and the transformations (2·8) reduce Eq. 

(2·19) into 

(2·21a) 

or 

(2·21 b) 

An example of Case II (a) is the oblique hydromagnetic wave in a cold 

collision-free plasma which will be discussed in Part I I I. 

So far, we have considered only the cases that ,.\1~0, i.e., Cases I and II. 

The formulation for Case I II is quite similar to that for Case II and we 

do not discuss it in detail here. The final equation which one obtains is a 

modified nonlinear equation in the sense that the nonlinear term of Eq. (2·6) is 

replaced by atp2otpfog, The example of Case III is the Alfven wave in a 

cold collision-less plasma, which gives modified Korteweg-de Vries (K-d-V) 

equation in the sense above. 
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60 N. ASANO 

2.2 Modulated waves 

Modulation of the· quasi-monochromatic wave due to the self-interaction 

in constant unperturbed state are known for various examples. If the un

perturbed state has inhomogeneity, the characteristic scale of which is larger 

than the wave length of the quasi plane wave by a degree, the reductive 

perturbation method can apply to include its effects. In such a system, quasi 

monochromatic wave is modulated by the inhomogeneity as well as the self

interaction. In this section, we con.sider the modulation of the quasi mono

chromatic wave with a constant frequency w and slowly varying wave number 

k, which depends on the slow variable and, via dispersion relation, on w. Here, 

we limit ourselves only to the case o2wjok2~0, i.e., Case I (a) with a=1, the 

appropriate str~ined variables and .\o for which, are given in the table and 

by Eq. (1·9 a) in §1, respectively. 

The model equation for the present formulation is 

(2·22) 

where U ·is a column vector with n components, u1, u2, ... , un; A an n X n 

matrix, and B a column vector (b1., b2.~ · • • .~ bn), the elements of whi<;:h are 

functions of u~. The unperturbed state Uo is assumed to depend on 'Y'J and to 

sati~fy the equation B<O>-:=B( Uo)=O. As easily verified, the dispersion relation 

of the quasi plane wave 

~exp { ±z'[ k( r; )x-wt]} 

becomes 

(2·23) 

where I is the unit matrix, SB<O> is an n X n matrix with (z'., j) components 

(obtfouJ)u=u<o>, and k'=o('Y'Jk)fo'Y'J. · It is to be noted that the dispersion relation 

(2·23) is a differentia] equation for k and, if Eq. (2·23) is algebraically solved 

for k'(w, 'Y'J), k is given by the equation 

1 
[7]ckc+ J.TJ k'(w, r;)dr;], 

1J T}c 

(2·24) 

where kc i.s the wave number at 1J='Y'Jc· 
Expanding U in powers of the parameter e and of the harmonics 

exp[z'l(kx-wt)] around the state U<O>('Y'J), i.e., 

00 00 

U= lj(0)(7J)+ :E :E ea Uia)(g, 7}) exp [z'l(kx-wt)], 
a=ll=-oo 

where the reality condition of U is u~a)= uc_rz)*, and substituting it into Eq. 

(2·22), one has for the first order of e and lth harmonics, 
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Wave Propaga#ons in Non-Untform Media 61 

(2·25) 

where the matrix Wz is given by 

Wz= -z'lwl +ilk' A <o> +SB(O>. 

Let us restrict ourselves to the modulation of the fundamental mode with 

1 for lj(l). Then, the dispersion relation of the carrier wave is given by 

detW ±1=0 or Eq. (2·23) and we may assume that detWz~O for 111~1, which 

gives the solution of Eq. (2·25) as 

Uj_1)=R(r;)l{J(g, r;), 

U~ 1 )=0 for 111~1, 

(2·26 a) 

(2·26 b) 

where R is a right eigenvector of Wz and lp is a scalar function to be determined 

later. The second order, lth equation takes the form 

(2·27) 

where Szo is Kronecker's delta, P' A (O). lj(l) and PSB<O>. lj(l) are the matrices 

defined by J7A<0>·U<1> ~f= 1 (oAjou~)u=u<o,u~
1 ) and J7SB<O>·U<l>=~f= 1 (oSB/ 

oui)u=u(O)u~ 1 ). In virtue of Eqs. (2·26), the component of Eq. (2·27) for 1=1 

becomes 

which can be solved for Uj_2) in terms of an arbitrary scalar function~ as 

(2·28 a) 

In the derivation of Eq. (2·28a), we have used two identities -I+A<O>f'Ao= 

-i(oW1/ow) and (oW1/ow)R=- W1(oRjow). For l=O and !=2, Eq. (2·27) 

yields 

and 

U (2)-R(2)m2 
2 - 2 r' 

where the vectors Rb2), R~ 2 ) and V are given by 

(2·28 b) 

(2·28 c) 
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62 N. ASANO 

and 

V=- W()lA(O) d~~o~-. 

It is easy to see that the components U}2> with lll~3 are identically vanishing. 
In Eq.e2·28b), we assumed, of course, that detWo4=0. However, for systems 
with detWo=O, one could obtain Ub2> in the form e2·28b) from Eq. e2·27) and 
the third order equation e2·29) for l=O and so on. Finally, the third 
order equation is 

1 au<~> [ 
+y :E erA <o>. U}lJ,1,)-----sf-+ik' :E l'r A <o>·e U}l}_z, U}~)+ U}~z' U~~>) 

0 l' 0~ l' 

+ 
2

1 
:E :E err A<0

): u~l}__z'-l" UtV) u~~;]+ :E eraB<0>· u~~z,) u~~> 
l' l" l' 

+ l "" "" e"'"'~BCO) . ij<D ij<l>) ij<l> -0 -6 ~ ~ y y 0 
• l-l'-l" l' l"- ' e2·29) 

l' l" 

where the matrices rr A (0): U<I> lj(l) and rr8B<O>: lj(l) U<1> are defined by 

:Ef=1 :Ej= 1 eo 2 AfouiOUj)u=u<o>u~ 1 >u) 1 > and so on. Multiplying Eq. e2·29) for-l=l, 
by the left eigenvector L of Wz and substituting Eqs. e2·26) and e2·28) into the 
equation obtained, we have the equation for <p. 

where 

and 

e2· 30) 

p=iL {ik'[ e2r A <o>·R*)R~ 2 >+(r A (O).Rb2))R-er A <O>·R~ 2 ))R* 

+err A <o> : RR*)R- ~err A <O>: RR)R* ]+er8B<O>·R)Rb2
> 

+eraB<O>·R*)R~ 2 )+ ~ err8B<O~: RR)R*l/ LA<O>R 

"=i4 A(O) ~~ +(P' A<O)·R) d~~O) +ik(P' A<O). V)R+(P'8B<O).R) V ]/ LA<O)R. 

The coefficients of Eq.e2·30) are, in general, the complex valued functions of 
'YJ· However, it is to be noted that if p, is real, the coefficients of the second 
and the third terms of Eq.e2·30) may be put to constants, by the transformation 
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Wave Propagations in Non-Unzform Media 63 

) (2· 31) 

which reduces Eq. (2·30) into 

acp a2cf> ( d 1 a2k' jaw2 j112 ) 
i~aa + ag2-±lcf>J2cf>+z' ~d~~ln~---~p-~~-~ +Ki cf>=O, (2·32) 

where the signs ± of the term lcf>l2cf> correspond to P-(a2w'jak 2 )~0 respectively, 

and suffixes to K denote the real or the imaginary part. One may call Eq.(2·32) 

as the nonlinear Schrodinger type equation in an external potential. In the 

next section, Eq. (2·32) for the electron plasma wave will be given. 

2.3 Examples 

The theories presented in the preceding sections are applied to (1) shallow 

water wave, and, with some extensions to (2) acoustic wave under a weak 

external force and energy supply, (3) two dimensional propagation of drift wave 

and (4) modulation of the electron plasma wave in an inhomogeneous medium. 

The details of the calculations are not shown since many of them have been 

given in the references cited. 

(1) Shallow water wave5) 

For long waves on a beach, PeregrineS) obtained the equations 

au 1 a 
-a{+(u·P')u+P' h=2 H atP'[P'·(Hu)] 

1 
H 2 a P'(P'u), 

~; +P'[(H+h)u]=O, 

where u is the horizontal velocity averaged over the vertical direction, H the 

depth of the unperturbed water layer and h the wave amplitude. If only the 

motion along an x axis are considered, these equations are easily reduced to the 

form (2·1) for the column vector U=(h, u) and S=H. For the constant state 

Uo=O and the right eigenvector r=(H, H112), we obtain the Kortweg-de 

Vries equation of the variable coefficients 

where cf>=H514cp and Vis neglected in Eq. (2·5) or, further, 

for I/J=H-914cf>f4=cp/4H and a= J H112d7]/6. From these equations, one can see 
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64 N. ASANO 

the decay of a solitary wave and so on. 

(2) Acoustic wave under a weak external force and small energy supply9) 

As easily seen, the theory of the long wave presented in §2.1 can be ex

tended to include a small additive vector e;a+lF(U,S) to Eq.(2·l). As an ex

ample, let us consider the flow of an inviscid fluid in a duct of varying cross 

section under an external force r::f and an energy source r::q. Note that for 

inviscid fluid we may put a=O. The equations to be studied are 

t +ui~-+p-~~ +up fx lns=O, 

au +u au__+_~}/L=r::f, 
at ax p ax 

at+u-~~--~{~-+u ~~) 

where s is the cross section of the duct and the internal energy E is given by 

E pf(F-l)p with r, the adiabatic constant. If s has the form socxn one 

can always put dlnsfdx=r::dlnafdYJ where aoc'Y}n or, otherwise, we assume that 

s is a function of 'YJ· Equation (2·9a) for U=(p, u, E) and R=(po, ..\o-uo, 

(F-l)Eo) with Ao=uo±ao (a~=FPo/po) has the coefficients a=[(F+l)/2] 

X (..\o-uo)/..\~, f3=0 and y given by 

r=![FA.o-(F-l)uo]l_~eQ_+(F 2 -F+2) duo+(}r..\o-uo)-~-!!E_Q 
po dr; dr; 2 Eo dr; 

1\ l ds r \ \( ) [FI\o+(F-l)(F-2)uo]--------(l\o-uo) R·P j o 
s dr; a~ 

where we put V to be zero and used the notations (R·T' f)o and (R·T' q)o defined 

in §2.1. Formally, at least, Eq. (2·9a) with f3=0 can be solved analytically. 

(3) Two-dimensional propagation of drift wavelO) 

So far, only one dimensional wave motions are discussed. However, as 

presented in Part I, §7, the reductive perturbation method applies to the multi

dimensional, inhomogeneous system, if the suitable ordering /and strained 

variables are chosen. In this example, drift waves in a fluid model is con

sidered. Plasma of cold ions and hot electrons with a Boltzman distribution 

is put in the strong magnetic field applied in the z-direction. If the density 

gradient exists in x-direction, drift wave propagates in they- z plane. Neglect

ing the magnetic field and temporal induction due to the electron drift, one 

may use, as the basic equations of the ion fluid 
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Wave Propagations in Non-Uniform Media 

V·P' V =wet[ Vx ez] __ e_P'cf>, 
mi 

65 

where ez is the unit vector in z-direction. In equilibrium, the ions are at rest 

and electrons drift in they-direction with a velocity Vo=-(cT6 feB)(dno/dx)/no. 

The strained variables for the wave are given in terms of c8=(Te/mt)l12, 

while the variable for the inhomogeneity is 

The vector U=(nJ Vy, Vz, 4>) is expanded in powers of e around U<O>=(no, 

O,O,O)as U=U<O>+tU<l>+t2lj(2) ... but Vxmustbeputto Vx=ell2(eV~ 1 )+ 

t2 V~ 2 )+ ···). Then, one has 

and 

2 
VCl)__ Cs 

x - nowei 

on(l) 

d'TJ ' 
V<l)_o 
y-' 

V
C2)_ C~ ( on(l) + Cs ()2n(l) ) 

y - noWei ag Wei O'TJd' • 

nU> 
no , 

cf><l)= Te n(l) 
eno 

The density n<l>==noft' is determined from the K-d-V equation m the two 

dimensional space; 

~~ +c·so~~+} J/, ~:~c+}c,n•(-a 11 ~k-+-J;a )so 
1 oft' 

K--=0, 
o"' 

where K= I dnofdg 1/no and D is the De bye length. At present, it is not 

possible to see general behavior of solution but special solution, including 

the solitary wave solution, can be obtained easily. 
i¥ 

(4) Modulation of the electron plasma wave 

As an example of the theory in §2.2, the interaction of the modulated 

electron plasma wave with the inhomogeneity is investigated. The hydro

dynamic equation are coupled with Poisson's equation and the first Maxwell 

equation 

on a 
-at+ ox (nu)=O, 
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66 N. AsANO 

where a is the electron sound velocity and no is the unperturbed density which 

depends on 'YJ=s2x. Because of detWo=O for the pres~nt case, Eq.(2·29) for 

l=O must be used to determine U&2). After some calculations for U=(n) u) E), 

one has the dispersion relation w2=w5+a2k2, where w5=41Tnoe2jm, the right 

eigenvector R=(L w/kn, 41Tiefk) and 

uc2) =- -~~-( ~ ) I{() 
0 nak' T . 

0 

here, the explicit form of v1 is not necessary to obtain the equation for lf'; 

. acp 1 a2k' a2cp 
z----------

a'YJ 2 aw2 ag2 

The dispersion relation is solved for k', as k' =(w2-w5)112ja but it is to be 

emphasized that the wave number of the carrier wave is not k' but k given by 

1 [ 1 JTJ( 41Te2 )112 J k=- 'Yjckc+- w2----- no(TJ) d'YJ . 
'Yjc a T)c m 

The transformation (2·31) brings the equation for lf' into that for r/>=[(ak')2(8w2 

+w5)112j3112now5]lf' with a= J(w~/k'3)d'YJ/2a4; 

§ 3. Propagation in the media slowly varying in time 

3.1 Long waves 

The method of the reduction for the wave propagation in unsteady medium 

is similar to that in inhomogeneous medium. The physical systems, the 

unperturbed state of which depend on the time, can often be represented by 

the equations of the form 

···----+A--+~ D H~'-~-+K~'- U+KB=O 
au au s p ( a a ) 
at ax I' a a at a ax ' 

(3·1) 
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Wave Propagations in Non- Unzform Media 67 

where K is a constant to be specified below, B is a vector valued function of U 
and other symbols have the same meaning with those in Eq.(1·1). Evidently, 
Eq. (3·1) has not constant unperturbed solution unless B vanishes. Let us 
consider only Case I and assume that the unperturbed state Uo depends only 
on the slow variable r defined in §l. In this case, K should be small such as 
K=sa+l, which then, specifies the value of s, and Uo by the equation 

dUo · 
--dr·~+Bo=O. (3·2) 

Expanding U around Uo in powers of s, i.e., lj_:_ Uo+sUt+s2U2+···, and 
substituting it and strained variables for Case I (b) into Eq. (3·1) yield the 
lowest order equation 

(3·3) 

in virtue of Eq. (3·2), and the second order equation 

au 2 au 1 a u1 s p t:l t:l ) aP u 1 
(Ao-Aol)-·-·ag -+--·d-:,.--+At·• ag-+ 1 D (Kf)a-AoHoa- agp +SBoUt=O, 

(3·4) 

where At and SB are the matrices given by At=(f7 A)o·Ut=~f=l(aAjout)u=Uo 
·u11 and SB= {SbiJ} {abifouJ}. The solution of Eq. (3·3) is 

(3·5) 

where r is a right eigenvector of A o for Ao, cp a scalar function and V is a 
vector determined by the boundary codition on Ut and cp at g=gc, say. Sub
stituting Eq.(3·5) into Eq.(3·4) and multiplying the left eigenvector l of Ao for 
Ao, we have an equation to determine cp, 

(3·6) 

where the coefficients are given by 

lr·(f7 A)or 
a-~-~-~ 

- lr ' (3 • 7 a) 

, !V·(f7 A)or 
a =-~-· --··--

lr ' (3· 7 b) 

(3· 7 c) 

_ l(dr/dr)+l~Br r- --·------- ·-·· 
lr (3· 7 d) 
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68 N. ASANO 

and 

(3 • 7 e) 

The transformation corresponding to Eq. (2·8a) takes the form 

,~.._ Jrar +J , Jrdrd 
<p-e cp r e 'T 1 

(3·8) 

and reduces Eq. (3·6) into the equation for cp 

(3·9) 

and the transformation (2·8b) brings Eq. (3·9) into Eq. (2·9b). As the direct 

applications of the present formulation for Eq. (3·1), we can treat the non

linear wave in the slowly reacting gas, if the spatial structure of the unperturbed 

state can be neglected. Wave propagations in a homogeneously expanding or 

contracting medium may also be analyzed, which is an important problem 

in sorr1e branches of gas dynamics and astrophysics. In §3.3, an example of 

the propagation in the time dependent medium is given for Eq. (2·1) with 

H~=K~=O, that is, the propagation in the inhomogeneous, unsteady medium 

is considered. In this example, an initial and boundary value problem is 

solved by means of V(T), for a flow in a duct. 

3.2 Modulated waves 

In this section, the modulation of nearly monochromatic wave with a 

constant wave number is discussed in the medium which varies slowly with 

time T=c.2t, i.e., Case I (b) witha=1 and Ao given by Eq. (1·9b). We treat the 

same equation with Eq. (2·22), that is, 

au au 
A -8x- +B=O, (3·10) 

where A is the n Xn matrix function of U and B is a column vector valued 

function of U. Since the frequency w of the quasi monochromatic wave 

depends on T, the dispersion relation corresponding to Eq. (2·23) becomes 

detl =fiw' I ±ikA <0>+8B<O> [=0, (3 ~ 11) 

where I is the unit matrix, 8B<O) {(abifauJ)u=u<o)} and suffix (0) denotes the 

unperturbed values. The frequency w' is defined by w' =a( TW )jaT, hence w is 

given by the algebraic solution w'(k} T) of Eq. (3·11), in the form 
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Wave Propagations z'n Non-Unzjorm Media 69 

w= 
1 

[rcwc+ j' w'(k, r)dr], 
7 c <c 

(3 ·12) 

in which we is a constant frequency at a given time rc. 

Manipulation of the reduction of the amplitude equation goes in parallel 
to that for the inhomogeneous medium: Expanding U in powers of e and 
of the harmonics, exp[il(kx-wt)] around the state U<O>(r), i.e., 

00 

U= U<O>(r)+ L; L; Ea Uta)(g, r)exp[zl(kx-wt)], 
a=l l=-oo 

where the reality condition is Uta)= U~t, and substituting it into Eq. (3·10), 

one get the first, the second and the third order equations of lth component. 
They are, 

(3 ·13) 

il' kl7 A <0> • Uf~lz, UtP 

(3·14) 

and 

':I ijCl) '\ ijC2) co ':I ijCl) 

U (3) 
0 

l ( \ I A<O>) 0 
l (""A(O) ijCl)) 

0 
l' Wz z +------+ -1\o + ~--+ L: .r • l-l' or us l'=-= ag 

+ z'k[L: l'17 A co).( Uf~z, UiP+ Ut~l' Ut~)) 
l' 

+ l "' "'' l"""""A (0) . ijCl) ijCl) ijCl)J --- 4....1 4....1 r Y • l-l'-l" l' l" 
2 l' l" 

+"' """'B(O). ijCl) ijC2) +-_!_ "'"' """""'B(O) . ijClJ ijCl) ijCl) 
4....1 Y 

0 l-l' l' 6 4....1 4....1 Y r 0 
• l-l'-l" l' l" 

l' l' l" 

=0, (3·15) 

respectively, where 17 A (0). lj(l) L: f=,
1
(8A joui)u=u(O)u~ 1 ), 1717 A (O) : U<l> lj(2) 

L;f= 1 L:'f= 1 (82Ajout8uJ)U=u<inu~Du) 2 ) and so on, and the matrix Wz is defined by 

Wz= -z'lw' I +ilkA (0) +8B<O>. (3·16) 

If we restrict ourselves to the case that detW±1=0 and detWz~O for l/1~1, 
the solution of Eq. (3·13) becomes 

Ui1)=R(r)cp(g, r), 

U~ 1 )=0 for 1/1~1, 

where R is a right eigenvector of W1 and cp is a scalar· function. 

Eqs. (3·17), Eq. (3·14) for 1 takes the form 

(3·17 a) 

(3·17 b) 

By means of 
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70 N. ASANO 

the solution of which is yielded by the same way as in §2.2; 

- aR acp 
U C2)-R(-r)·'·(t. -r)-i---~-- -

1 - , 'f ~, ak ag , (3·18 a) 

where ~ is an arbitrary scalar function. Other components of U~ 2 ) are like

wise determined as in §2.2, to lead 

where 

and 

U c2)_Rc2)m2 
2 - 2 r' 

U~ 2 )=0 for 111:23, 

Rb2)=- W0l[ik(P' A <o>·R* R-c.c.)+ ~ (P'8B<O>·RR* +c.c.) l 
R~ 2 )=- w2

1[ikP' A<O>·RR+~~P'8B<O>·RR J 

1 
d lj(O) 

Wo --=----

(3·18 c) 

(3·18d) 

Finally, the equation for cp is obtained from Eq. (3·15) with 1, by sub-

stituting the above solutions and multiplying the left eigenvector L of W1. 

After some rearrangements, we have 

in which 

p=i[z'kL( 2P' A <O)·R* R~ 2 )+P' A <o>·Rb2) R-P' A <o>·R~ 2 ) R* 

+P'P' A <o>: RR* R--}P'P' A <o>: RRR*) 

(3 ·19) 

+ L(r~B<Ol · RRb2
' + 17SB<Ol · R* R~ 2 ' + -~ 1717~B<Ol :RRR*) ]/ LR 

and 

When p, is real, the transformation corresponding to Eq. (2·31) takes the form 
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-( 

1

, p. [·)112 -if.r,dt' 
cf>- 2 82w' fok2 e cp, 

1 ( 82w') a=2! ok2 d-r l (3·20) 

and the equation for cp becomes nonlinear Schrodinger type equation in an 

external potential, 

. acp 
zoa (3· 21) 

A slight modification and application of the general theory is given in the 

following section for the Jean's wave in a self gravitating gas in an expanding 

umverse. 

3.3 Examples 

As an example of the wave propagation in an unsteady medium, we 

consider, at first, the receding acoustic wave in a duct of varying cross section. 

In the flow of a fluid with the velocity u the sound waves are constituted of the 

advancing wave with the velocity u+a and the receding wave with the velocity 

u-a, where a is the sound velocity relative to the medium. If the flow velocity 

is near the sound velocity, i.e., u-a=O(e), and only one-dimensional motion 

along the axis of the duct is considered, the time variation of the medium seen 

by the receding wave is in phase with the given variation at a point on the axis, 

that is, the time variation of the flow can be described by Eq.(3·2) or by the 

term V(-r) in Eq.(3·5) for the case Bo==O. In this case, we use Eq.(2·1) with 

H~=K~=O to treat the inhomogeneity of the duct and express the small 

variation of the flow state, by V(-r). The second example is the modulation 

of the nearly monochromatic wave in a self gravitating gas with a homogeneous 

temperature in an expanding or contracting universe, the scale parameter 

a(t) of which is assumed to be a function of -r and may be determined by 

Friedman type equations. Since we consider only real w, the wave number k 

must be larger than the Jean's wave number k1 but the amplitude equation 

shows that some kinds of condensations are possible to exist. 

(1) Receding wave in non-stationary flow through a duct of varying cross 

section H) 

The motion of an ideal fluid in a duct of varying cross sections is governed 

by the set of equations 

-~+~~p)_+_!_ ds pu=O, 
ot ox s dx 

au +uil! __ +_!_ ap =0 
at ax P ax ' 
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dU 
rP-----

ax 

where y is the adiabatic constant. The variation -of s is assumed of the order of 

c:2, i.e., s=so+e2s1, then the flow quantities (p, u,p) can be expanded in 

powers of e, if the unperturbed coustant velocity uo is equal to ao=(rPo/po)112 . 

For the receding wave in inviscid fluid, the strained variables are given by those 

of Case I (b) with Ao=uo-ao=O and a=O. As the boundary conditions on U1 

and <p, we give the value of U1 at x=xc and put ao<p=u1 there. Then, in virtue 

of the vector,R=( -po, ao, -rPo), the components of V(r) in Eq.(3·5) becom.e 

V!(r)=po<p(xc, r)+p!(Xc, r), vz(r) and va(r)=rPo<p(xcJ r)+P!(Xc) r). Since, 

the flow variables can be expressed in terms of the Mach number M, it is 

convenient to give the final equation in terms of M1 where M = 1 +eM1 · · ·; 

Noting the equation Ml=(ul/ao)-(Pl/Po-pi/po)/2, we obtain 

F(r) 
r+1 ao dsl --·---- ----0 

4 so dx - ' 

where F(r) is a function of r only, given at x=xc 

F(r)= dM~:c, r2_ aoMl(xc, r) dM~~c, r)_ _ 1 :~ cl!.J~~) 

=_!_[ 1 dp!(Xc, r) r-3 _l_ du!(Xc, r) _ r-1 1 dpl(Xc, r) ]· 
2 po dr 2 ao dr 2r Po dr _ 

From the equation for M1, one can obtain, of course, Whitham's rule of the 

shock wave propagation in the steady flow and also shock trajectory, strength 

and so on, in the unsteady flow through the duct of varying cross section. 

(2) Self gravitating waves in an expanding or contracting universe 

In this sub-section, the wave which is stable in the linear theory is studied 

in an expanding or contracting universe. The inviscid hydrodynamic 

equations for the matter-dominant self-gravitating medium which is globally 

homogeneous and isotropic, are, in the coordinate system comoving with the 

mean motion, 12) 

~ap +-~~e~+3Rp=O 
dt dX ' 

dU +u dU + (_£)21_ dp. _ _!_ f+2Hu=0, 
dt ax a p ()x a2 

rx +47TGa2(p-p<0>)=0, 

where H=(dafdt)fa the Hubble constant, -/ the gravitational force, c the 

sound velocity, a the scale parameter of the expansion determined by the 
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Wave Propagations in Non-Unzform MedZ:a 73 

Friedman type equation and p(O) the unperturbed density; these are the func

tions of t. If the period of the carrier fundamental wave is much smaller than 

the lifetime of the universe, the unperturbed universe may be assumed to evolve 

with .,. and hence the Hubble constant can be put to H=e2fl where H= 

(dajd.,.)ja. Then, introducing the variable a=ln p and the column vector 

U=(a, u,j) the basic equations can be written in the matrix form 

where 

(
1 0 0) 
0 1 0 ' 

0 0 0 

0 

B=( 4mG(e" f:(Ol)a2) 

and Cis the column vector H(3, 2u, 0). The manipulation in §3.2 is available 

also for the present system, if the terms C<O>ozo a~d sccQ) Ui0) are added to the 

left-hand side of Eqs. (3·14) and (3·15) respectively. For the unperturbed 

state U<O>=(a<O>, 0, 0) the dispersion relation of the fundamental mode takes 

the form 

where w~=47TGp<O> and the right eigenvector R=(k, w', Z:(awo)2) is used. Since 

det Wo vanishes also for the present example, Ub2) is determined from the 

equation for Ub8) or the first equation of the basic equations for a=?. and 

l · 0. The amplitude equation thus obtained is 

where o2w' jok2 lS given from the dispersion relation by 

_§_2w~ __ (£_)2(~) _l_ 
ok2 - a w' w' ' 

p,=k2(8w'4+ 7w5w'2+5w6)/6w5w', and K=i[dlnw'112jdT+H]=(i/2)dln(w' a2)jdT. 

The unperturbed density is governed by the equation da<O> jd-r= -3H, which is 

integrated to lead pC0
)a

3=constant. The transformation (3·20) takes the forms 

' 
4> = !!_ ~(2 pw ') 112so 

C WQ ' 

for the present case and reduces the amplitude equation into the nonlinear 

Schrodinger type equation for cf>, 
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in Which 8 is a real function of T given by 

8 =---.
1-{_!{__ In[(_£_)

2
( w~)· __ l,J-l(£)2

( w? )J-,- _!{__In (w' a2)j. 2 da a w p.w 2 a w w da 

For a steady universe, 8 vanishes identically, so, the equation of cp reduces to 
the K-d-V equation in an asymptotic sense13) and hence has the solitary wave 
solution. In the unsteady universe, the sign of 8 may affect the stability of 
the solitons. 

§ 4. Modulation of weakly unstable quasi monochromatic wave 

4.1 Modulated waves wz'th complex frequency7> 

In the dissipative or unsteady media, linear dispersion relation has us,ually 
complex roots, so, the theory of the amplitude modulation presented so far can
not be applied directly to such system. In this section, the perturbation method 
is ~xtended to a system of the equations which, when linearized, has a monochro
matic· wave solution with complex frequency w of a small imaginary part Wi. 

Since the complex frequency is often connected with the dissipative or 
unsteady medium, the unperturbed state is assumed unsteady and the strained 
variables for Case· I (b) with a=l are used, while the model equation is 

au au a2u 
--at+A ax -+B+C ax2 =0, (4·1) 

where A=A(U,11), B=B(U,11) and C(U,11) are the nXn matrix functions 
of U and a parameter 11 characterizing the imaginary part of the frequency. 
Let us assume that Wt is of the order of .s2, then one may put 11=e2.ii where .ii 
is of the order of unity and expand w~ in powers of 11 as w~=wi(k) U(O), 

s2(aw1,ja11)v=o.ii+ O(s4). Reductive perturbation method for the case w~= O(.s) 
seems· difficult to obtain self-consistent. solution. The expansions of A ,B 
and C must be carried out with respect to U and 11; 

A =A<m+sP' A<0). u<1)+s2(v A<0)· u<2>+ ~ rv A<0): u<l) u< 1 )+A~ 0 ))+ ... , 

B=s8B<0) U<1)+s2 ( 8BCO) U< 2 )+-~--V8B<O), u<l) U< 1 )+B~ 0 )) 

+e3( 8B<0> u<3)+Ji'8BC0)~ U(l) u<2) 

+ ~ rr8B<o) : u<l) u<l) u<l) +8B~o) u<l)) + ... , 
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and the expansion of C similar to A, here ·notations 17 A<O), u<D= :E~= 1 (oA/ 
OUi)U=U(O), IJ=oU~l)' AtO)=(oAjol.I)U=U(O),v=oD, oB<0)= {ob~~} = {(obijau,)u=U' 0>,v=o} 

and so on are employed. The harmonics for the expansi'on of u<a> are defined 

in terms of the real part w of w; u<a)= :Ei=-= u~a) exp [z"l(kx-wt)]. Substi

tuting these expansions and the strained variables into Eq. (4·1) and equating 

each power of s of the lth harmonics to zero, we have 

Wz U~ 1 )=0, (4·2) 

W
1 

Ui2)+( -A
0
I+A<0)+2z'lkC<0)) i U~l) + :E(it' kl7 A<O). U~1.J. 1 , 

ag z' 

+ ~~oB<m.'u~lJ.z,-l' 2 k 2 17 ceo). Uf!:?z,) UtV +( BL0) + d ';_,co)) ow=O, 

(4·3) 

au<2) 

Wz Ut3)+( -A0I+A<0)+2z'lkC<0))-a[-+ f,-(17 A<0)+2z'l'kf7C<0)) 

X U i_Ut~) +·,.k["" l'"A<O).(U<l) uc2)+ u<2) u<l)) 
Z-Z' 0g " ), y l-l' l' Z-Z' l' 

+ l_"" ""t"""A<0) · u<l) u<l) u<1)]+"" "~B<o). u<1) u<2) 

2 ~ ~ y y • Z-Z'-l" l' l" ~ y 0 Z-l' l' 
l' l" l' 

+ l "" ~ ""~Bco) · u<1) u<1) u<l>- k2["" t'"c<oJ.C u<1) u<2) 
6 ~ ~ Y Y 0 • Z-l'-l" l' l" ~ y Z-l' l' 

l' l" l' 

where the matrix Wz is defined by 

Wz= -z'lw' I +ilkA (O) +oB<O> -l2k2C<O>, (4·5) 

and w'=o(Tw)joT. Let us consider the modulation of the fundamental mode 

with 1 and assume that detW±1=0, and detWz~O for 1/1~1, then, Eq. (4·2) 

is solved for U<I> as, 

UiD=R(T)cp(g, r;), 

U~ 1 )=0 for l/1~1, 

(4·6 a) 

(4·6b) 

where R is a right eigenvector of W1 and cp is a scalar function. In virtue of 

these solutions and an identity -Aol-+A<0>+2z'kC<O>=-i(oW1jok), the com

ponent with 1=1 of Eq. (4·3) yields· 

w (u<2)+z' aR acp~)-o 
1 1 ak ag - ' 
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76 N. ASANO 

the solution Ui2) of which is, in terms of an arbitrary function ¢:(g, T), 

Further, the component with l=O of Eq. (4·3) becomes 

W 0 U~ 2 )+ik(Ji' A<O). U~lj_ Ui1)-c.c.)+ ~-(oB<m. U~lj_ Ui1)+c.c.) 

-k 2 (J7c<m.u~{UiD+c.c.)+B~ 0 )+ d~ 7 <
0

) =0, 

and gives U~ 2 ) in the form 

where R~ 2 ) and V are vectors satisfying 

and 

W0Rb2)+ik(J7 A<0)·R* R-c.c.)+-}(oBCO).R* R+c.c.) 

-k2(J7C<O>·R* R+c.c.)=O 

du (O) 

w. V+ BC0)+• 0 
O . IJ dT ' 

(4•7 a) 

(4· 7 b) 

respectively. Other components of lj(2) are likewise obtained from Eqs.(4·3) 

and (4·6); 

with 

U C2) _ RC2)m2 
2 - 2 r' (4·7c) 

(4·7d) 

Finally, Eq.(4·4) for 1 gives the equation of cp as the condition for the ex

istence of the solution lj(3): Multiplying the left eigenvector L of W1 and 

substituting the above solutions into Eq. (4·4) with 1=1, we get, after some 

rearrangement, 

. acp . 1 o2w' a2cp 
z 01' +2 ok2 ag2 +,ulcpl2cp+Kcp=O; 

here ,u==z'(,ua+ Pb+ ,ttc)/ LR; 

,tta=z'kLl 2(17 AC 0 )·R*)R~ 2 )-(Ji' A< 0 )·R~ 2 ))R*+(I7 AC0).R~ 2 ))R 
L 

(4·8) 
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+(1717 A<0
): RR*)R- ~ (1717 A~ 0 ): RR)R*], 

"b- Lrli7SBCO>.RR<2) 17SB<m.R* R<2)+1_1717SB<0) · RR* R] 
{""- 0 2 2 . ' 

pc= k2 L[ 4(17 cco)·R*)R~ 2 )+(17C< 0 J·R~ 2 ))R+(I7 ccm.Rb2))R 

+(1717C<0J:RR*)R+ ~ (f717c<m: RR)R*] 

and 

K=z'L[ikA~P) R+8B~ 0 ) R-k2C~ 0 ) R 

+ik(fl A<O). V)R+(I7SB<0)·R) V -k2(17C<O). V)R ]/ LR. 

By means of the transformation (3·20), we again have a nonlinear Schrodinger 

type equation in an external potential. In the next section, the convective 

wave, that is, the wave in a fluid heated from below is considered. Since the 

motion of the fluid is essentially tw? dimensional, the theory in this section 

must be extended to the multi-spatial dimensions. In m-dimensional space, 

the vectors k) X) Ao and e have m components and the matrices A and care 

replaced by the vector valued matrix At and the tensor valued matrix Cti 

respectively, where suffices i and j run from 1 to m. 

4.2 Example: Thermal convec,tz"ve mode7> 

In the Boussinesq approximation, the motion of an incompressible, 

viscous fluid heated fron1 below is governed by the set of equations 

-~-+( V·l7) V +-~17 P+agT -7Tf72 V=O, at . po 

aaj+C V·fl)T +dw-Kf72T=O, 

17· V=O, 

where V=(u, v, w) is the velocity, p the pressure, po the constant density, a 

the thermal expansion coefficient, g=(O, 0, -fl) the gravitational acceleration 

in the negative .z-direction, T the deviation of the temperature from the linear 

profile and, 7T and K are respectively the viscosity and diffusivity constants. The 

constant dis defined by d= To(dlnTofdinpo-17 a)dlnpofdz, which is a measure 

of the excess of the temperature gradient over the adiabatic one 17 a=:.

(alnsjalnp)of(alnsjainT)o. In the present calculation, we assume that dis 

positive hence the convective mode is stable in th~ linear theory. The pressure 

is eliminated by the equation of incompressibility f7 · V =0. In fact, the 
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78 N. ASANO 

dispersion relation for w and k takes the form, if one put P' P=pofiP' T, 

and the corresponding right eigenvector Roc(fJkx, f3ky, f3kz+z"at}, w+z'1Tk2) for 

U=(u,v,w,T), are substituted in the equation P'· V=O to give fJ=-z"at}kzfk2, 

where k2=k1 +k~ and k1_ =k~+k~. When 1T and K are of the order of s2, one 

can put 7r=S21T
1 

and K=s2K' which yields the real and the imaginary part 

of was 

respectively, if the terms of O(s4) are neglected. Because of the equation 

detWo=O, the components of UiJ2) cannot completely be determined from the 

equation of O(s2) but they are completely obtained if Eq.(4·4) for l=O is sup

plemented. The amplitude equation thus obtained for R=(kxkz, kykz, -kl, 

z"(d/atJ)112kk.J..) takes the form 

, dcp 1 'd2w 'd2cp (kk .J..) 3 i I I 

z a, + 2 ~ i,J akiak1 a~iagj- (adtJ)l721 cp 1
2
cp+ 2 (7r +K )k

2
cp=O, 

where 'd2wj'dki'dkt=dAi/'dkt can be presented by a 2 X 2 tensor 

dA.J.. =-3( da)l!2 k~k.J.. dAz __ ( da)li2_~.J.. (2k2-k2) 
'dk .J.. a II k5 ' 'dkz - .a II k5 z .J.. ' 

dA.J.. =}Az_=(adtj)112}!__~--(2k1_-k~). 
dkz 'dk.J.. k5 

As easily verified, the tensor 'd2wj'dki'dkt is negative definite and hence has the 

same sign with the coefficient of the nonlinear term. Thus, the finite ampli

tude plane wave solution is unstable and decays into solitons. 

In concluding this paper, we may emphasize the importance of the ex

tensive studies of the equations like Eqs.(2·9b) and (2·32) because there are a 

lot of problems which can be treated by the reductive perturbation method for 

non-uniform m~dia and provide fruitful knowledge on the nature and 

applications. 
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