B_{0}-VPG Representation of AT-free Outerplanar Graphs

Sparsh Jain (D) *1, Sreejith K. Pallathumadam (D) (a) 2 , and
Deepak Rajendraprasad (D)
${ }^{1}$ College of Computing, Georgia Institute of Technology, Atlanta, Georgia, USA, sparsh.jain@gatech.edu ${ }^{2}$ Indian Institute of Technology Palakkad, Palakkad, India, 111704002@smail.iitpkd.ac.in, deepak@iitpkd.ac.in

March 7, 2023

Abstract

A k-bend path is a non-self-intersecting polyline in the plane made of at most $k+1$ axis-parallel line segments. $B_{k}-V P G$ is the class of graphs which can be represented as intersection graphs of k-bend paths in the same plane. In this paper, we show that all AT-free outerplanar graphs are $B_{0}-V P G$, i.e., intersection graphs of horizontal and vertical line segments in the plane. Our proofs are constructive and give a polynomial time $\mathrm{B}_{0}-\mathrm{VPG}$ drawing algorithm for the class.

Following a long line of improvements, Gonçalves, Isenmann, and Pennarun [SODA 2018] showed that all planar graphs are $B_{1}-V P G$. Since there are planar graphs which are not $B_{0}-V P G$, characterizing $\mathrm{B}_{0}-$ VPG graphs among planar graphs becomes interesting. Chaplick et al. [WG 2012] had shown that it is NP-complete to recognize B_{k}-VPG graphs within $\mathrm{B}_{k+1}-$ VPG. Hence recognizing B_{0}-VPG graphs within $B_{1}-V P G$ is NP-complete in general, but the question is open when restricted to planar graphs. There are outerplanar graphs and AT-free planar graphs which are not $\mathrm{B}_{0}-\mathrm{VPG}$. This piqued our interest in AT-free outerplanar graphs. 1

Keywords: Outerplanar graphs. AT-free . B_{0}-VPG. Connectivity augmentation. Outerpath . Linear outerplanar graph . Graph drawing.

1 Introduction

A k-bend path is a simple path in a two-dimensional grid with at most k bends. Geometrically, they are non-self-intersecting polylines in the plane made of at most $k+1$ axis-parallel (horizontal or vertical) line segments. Vertex intersection graphs of Paths on a Grid (VPG) (resp., $B_{k}-V P G$) is the class of graphs which can be represented as intersection graphs of (resp., k-bend) paths in a two-dimensional grid. The bend number of a graph G in VPG is the minimum k for which G is in B_{k}-VPG. One motivation to study B_{k}-VPG graphs comes from VLSI circuit design where the paths correspond to wires in the circuit. A natural concern in VLSI design is to reduce the number of bends in each path (wire) in the representation. A second motivation is that certain algorithmic tasks become easier when restricted to $\mathrm{B}_{1}-\mathrm{VPG}$ or $\mathrm{B}_{0}-\mathrm{VPG}$ graphs (cf. [26]).

Planar graphs have received the maximum attention from the perspective of B_{k}-VPG representations, some of which we describe in Section 1.3. Following up on a series of results and conjectures by various authors, Gonçalves, Isenmann, and Pennarun in 2018 showed that all planar graphs are B_{1}-VPG [20]. This is tight since many simple planar graphs like 4 -wheel, 3 -sun, triangular prism, to

[^0]name a few, are not B_{0}-VPG. This makes the question of characterizing B_{0}-VPG planar graphs very appealing. Characterizing B_{0}-VPG outerplanar graphs will be a good step in this direction since some of the structures that forbid a planar graph from being B_{0}-VPG are also present among outerplanar graphs. Outerplanar graphs were known to be $\mathrm{B}_{1}-\mathrm{VPG}[8$ before the same was shown for planar graphs. Chaplick et al. [10] had shown that it is NP-complete to decide whether a given graph G is in B_{k}-VPG even when G is guaranteed to be in $\mathrm{B}_{k+1}-\mathrm{VPG}$. Hence recognizing $\mathrm{B}_{0}-\mathrm{VPG}$ graphs with in $\mathrm{B}_{1}-\mathrm{VPG}$ is NP-complete in general, but the question is open when restricted to planar graphs or outerplanar graphs.

This article is an outcome of our effort to characterize $\mathrm{B}_{0}-\mathrm{VPG}$ outerplanar graphs. One can see from the geometry that the closed neighborhood of every vertex in a B_{0}-VPG graph is an interval graph [18. We strengthen this necessary condition (Proposition 19) by identifying adjacent vertices which are forced to be represented by collinear segments in any B_{0}-VPG drawing. But this is still not sufficient to characterize $\mathrm{B}_{0}-\mathrm{VPG}$ outerplanar graphs (Figure 6 6). However, we were able to show that, if the outerplanar graph itself is AT-free, then it is $\mathrm{B}_{0}-$ VPG (Theorem (18). We cannot extend this result to AT-free planar graphs since we have examples of AT-free planar graphs, like 4 -wheel and triangular prism, which are not $\mathrm{B}_{0}-\mathrm{VPG}$.

While it is relatively easier to find a $\mathrm{B}_{0}-\mathrm{VPG}$ drawing for biconnected AT-free outerplanar graphs, handling cutvertices turned out to be more challenging. Rather than trying to join $\mathrm{B}_{0}-\mathrm{VPG}$ drawings of individual blocks, we found it easier to embed the given graph as an induced subgraph of a biconnected outerpath.

Definition 1 (Outerpath). An outerpath is an outerplanar graph which admits a planar embedding whose weak dual is a path.

Note that outerpaths need not be biconnected. All the five graphs in Figure 3(a) are outerpaths. Our proof has essentially two parts with biconnected outerpaths forming the bridge between the two. The first part is a structural result which shows that any AT-free outerplanar graph can be realized as an induced subgraph of a biconnected outerpath. The second part is a $\mathrm{B}_{0}-\mathrm{VPG}$ drawing procedure for biconnected outerpaths. Both the parts have a potential to be generalized. Since $\mathrm{B}_{0}{ }^{-}$ VPG is easily seen to be hereditary class, the result naturally extends to all induced subgraphs of biconnected outerpaths. This prompted us to name this class (Definition (2) and study it on its own merit.

Definition 2 (Linear Outerplanar Graph). An outerplanar graph is linear if it is isomorphic to a subgraph of a biconnected outerpath.

Figure 1: A Linear Outerplanar Graph
We give a complete characterization of this class in Theorem 7 Though the characterization seems technical, it is very easy to visualize and gives a poly-time recognition algorithm. As a pleasant surprise, we also discover that every graph in this class can be realized both as an induced subgraph as well as a spanning subgraph of (different) biconnected outerpaths. Figure 1 shows an example of a linear outerplanar graph.

The second part of our proof, the drawing procedure for biconnected outerpaths, can also be extended to a larger class of graphs than biconnected outerpaths, but this we set aside for a future work.

1.1 Organization

After recalling some standard graph theoretic terminology in Section 1.2 and a brief literature review in Section 1.3, we layout our proofs in three sections. Section 2 has the B_{0}-VPG drawing procedure for biconnected outerpaths. Section 3 contains the characterization of linear outerplanar graphs. In Section [4, we prove that all AT-free outerplanar graphs are linear thereby completing the proof of the titular result. We conclude with Section [5, where we describe some necessary conditions for the existence of a $B_{0}-V P G$ representation. This may help in characterizing $B_{0}-V P G$ outerplanar graphs.

1.2 Terminology

The closed neighborhood $N[v]$ of a vertex v in a graph G is the set containing v and and its neighbors in G. A set of three independent vertices is called an asteroidal triple (AT) when there exists a path among each pair of them containing no vertex from the closed neighborhood of the third vertex. An $A T$-free graph is a graph which does not have an AT.

A plane graph is an embedding of a planar graph in the plane with no crossing edges. Let G be a plane graph. The dual of G is a graph that has a vertex for each face of G and an edge between two of its vertices when the corresponding faces of G share an edge. The weak dual of G is obtained from its dual by removing the vertex corresponding to the outer face. An edge of G incident to the outer face of G is called a boundary edge and its endpoints are called boundary neighbors of each other. The remaining edges of G are called internal edges. A leaf face is a face with at most one internal edge. A planar graph is outerplanar if it has a plane embedding in which all the vertices are incident on the outer face. Outerplanar graphs will always be drawn in such a way that the outer face contains all the vertices, and the terminology of faces, duals, weak duals, boundary edges and internal edges will be used assuming such a plane drawing. Let G be an outerplanar graph. The weak dual of G is a forest [16] and we denote it by \mathcal{T}_{G}. Further, we call \mathcal{T}_{G} a linear forest if each component in \mathcal{T}_{G} is a path.

Let G be a graph. A k^{+}-vertex in G is a vertex having at least k neighbors in G. A leaf edge is an edge having one endpoint of degree one. A subgraph H of G is spanning if $V(H)=V(G)$, and induced if $E(H)=\{x y \mid x, y \in V(H), x y \in E(G)\}$. A graph induced by a subset S of the vertices of G is denoted by $G[S]$. A subset of vertices in a graph is called a separator if its removal increases the number of components of the graph. A vertex x is a cutvertex if $\{x\}$ is a separator. A graph is k-connected if it does not have a separator of size smaller than k. A graph is said to be connected (resp. biconnected) if it is 1 -connected (resp. 2-connected). A block of a graph is a maximal biconnected subgraph of the graph. A trivial block is a block containing at most two vertices.

A graph G is H-free if G does not contain an induced subgraph isomorphic to H. A graph G is said to be H-minor-free if it does not contain a minor isomorphic to H. We use C_{k} to denote the simple cycle on k vertices. A cycle on k vertices x_{0}, \ldots, x_{k-1} where each x_{i} is adjacent to x_{i+1} (addition is modulo k) can also be denoted as $x_{0}, \ldots, x_{k-1}, x_{0}$. A C_{4} together with an additional vertex v adjacent to all the vertices of C_{4} is called a 4 -wheel. A triangular prism is the complement of C_{6}. An interval graph is an intersection graph of a set of intervals on \mathbb{R}.

1.3 Literature

The class B_{k}-VPG was introduced by Asinowski et al. in 2012 [3]. Nevertheless, these graphs were previously studied in various forms. One of them is grid intersection graphs (GIG) which are equivalent to bipartite $B_{0}-$ VPG graphs. The recognition problem for string graphs and hence VPG graphs is NP-complete [24, 28]. The recognition problem for $\mathrm{B}_{0}-\mathrm{VPG}$ graphs is NP-complete [25]. $\mathrm{B}_{0}-\mathrm{VPG}$ characterizations are known for block graphs [2], split graphs, chordal bull-free graphs, chordal clawfree graphs [18] and cocomparability graphs [27].

Segment intersection graphs are intersection graphs of line segments in the plane. Chalopin and Gonçalves in 2009 showed that every planar graph is a segment intersection graph [9, confirming a conjecture of Scheinerman from 1984 [29]. One way to refine the class of segment intersection graphs is to restrict the number of directions permitted for the segments. If the number of directions is limited to two, we rediscover B_{0}-VPG. k-DIR graphs are intersection graphs of line segments that can lie in at most k directions in the plane. It is known that bipartite planar graphs are 2-DIR [21, 13, 14]

Figure 2: A biconnected outerpath G and a $\mathrm{B}_{0}-\mathrm{VPG}$ representation of it. The collinear overlapping line segments are drawn a little apart for clarity. The point segments (for eg. vertices 1 and 25) are drawn as black squares.
and triangle-free planar graphs are 3-DIR [7]. West conjectured that any planar graph is 4-DIR 30] which was recently refuted by Gonçalves in 2020 [19]. Before the celebrated result by Gonçalves et al. that planar graphs are $\mathrm{B}_{1}-\mathrm{VPG}$ [20, we had a chronology of results on B_{k}-VPG representation of planar graphs. Since 2-DIR graphs are equivalent to $\mathrm{B}_{0}-\mathrm{VPG}$, bipartite planar graphs $\mathrm{B}_{0}-\mathrm{VPG}$. In [3], Asinowski et al. showed that planar graphs are B_{3}-VPG and conjectured that it is tight. Disproving this conjecture, Chaplick and Ueckerdt proved that planar graphs have a B_{2}-VPG representation [11]. This adds to the appeal for characterizing $\mathrm{B}_{0}-$ VPG planar graphs.

Outerpaths have many geometric representations like balanced circle-contact representations [1, geometric simultaneous embeddings with a matching [6], and partial geometric simultaneous embeddings with another outerpath (15). All these representations will extend to linear outerplanar graphs because of Theorem 7 and Remark 2. Babu et al. provides an algorithm to augment outerplanar graphs of pathwidth p to biconnected outerplanar supergraphs of pathwidth $\mathcal{O}(p)$ [4]. Connectivity augmentation of outerplanar graphs using minimum number of additional edges is studied in [17, 23]. Barát et al. have characterized the graphs with pathwidth at most two [5] and our class is a strict subclass of that.

$2 \quad \mathrm{~B}_{0}$-VPG Representation of Biconnected Outerpaths

It's drawing time! In this section, we show that every biconnected outerpath is $\mathrm{B}_{0}-\mathrm{VPG}$ (Theorem 3). The proof of Theorem 3 is constructive and it draws a $\mathrm{B}_{0}-\mathrm{VPG}$ representation for any biconnected outerpath (cf. Figure 2 for example). Since B_{0}-VPG is easily seen to be a hereditary graph class (closed under induced subgraphs), and since every linear outerplanar graph can be represented as an induced subgraph of a biconnected outerpath (Theorem[7), it follows that all linear outerplanar graphs are B_{0}-VPG. Furthermore, since we show in Section 4 that all AT-free outerplanar graphs are linear (Lemma 17), the main result of this article follows.

Theorem 3. Every biconnected outerpath is $B_{0}-V P G$.
Proof. Let G be a biconnected outerpath with n faces labeled F_{1}, \ldots, F_{n} such that the weak dual of G is the path F_{1}, \ldots, F_{n}. For each $i \in[n-1]$, the edge shared by F_{i} and F_{i+1} is denoted by e_{i}. For notational convenience, we set e_{n} to be any boundary edge of F_{n}. For each $i \in[n]$, let G_{i} denote the induced subgraph of G restricted to the faces F_{1}, \ldots, F_{i}.

In a B_{0}-VPG drawing D_{i} of G_{i}, we call a non-point horizontal (resp., vertical) line segment l in D_{i} extendable from a point $p \in l$ if at least one of the two infinite horizontal (resp., vertical) open rays starting at p (but not containing p) does not intersect any other line segment of D_{i}. A point segment l is said to be extendable from its location p if it is extendable from p both as a horizontal
and a vertical line segment. An edge $x y$ in G_{i} is said to be extendable in D_{i} if the line segments l_{x} and l_{y} representing the vertices x and y are extendable from a common point $p \in l_{x} \cap l_{y}$ either in the same direction or in orthogonal directions. Finally a B_{0}-VPG drawing D_{i} is said to be extendable if e_{i} is extendable and whenever F_{i} is a triangle, the vertex of F_{i} not incident to e_{i-1} is represented by a point segment.

If $F_{1} \cong C_{3}$, then representing all the three vertices as point segments at the same point gives an extendable $\mathrm{B}_{0}-\mathrm{VPG}$ drawing D_{1} of G_{1}. If the length of F_{1} is 4 or more, then we can represent F_{1} as the intersection graph of line segments laid out on the boundary of an axis-parallel rectangle with the endpoints of e_{1} being orthogonal (and hence sharing only a corner of the rectangle). This is an extendable B_{0}-VPG drawing D_{1} of G_{1}. Let $D_{i}, i<n$, be an extendable B_{0}-VPG drawing of G_{i}. From D_{i}, we construct an extendable $\mathrm{B}_{0}-\mathrm{VPG}$ drawing D_{i+1} of G_{i+1} as follows.

Case 1 (length of F_{i+1} is 4 or more). Let $F_{i+1}=v_{0}, \ldots, v_{k}, v_{0}$, with $e_{i}=v_{k} v_{0}$ and $e_{i+1}=v_{j} v_{j+1}$, $j<k$. Since D_{i} is extendable, the edge $v_{k} v_{0}$ is extendable in D_{i}. Extend the line segments l_{k} and l_{0} (representing v_{k} and v_{0} respectively) in orthogonal directions to two points q_{k} and q_{0} outside of the bounding box of D_{i}. Let q be the intersection point of the perpendiculars to l_{k} and l_{0} at q_{k} and q_{0} respectively. Represent the path $v_{1}, \ldots v_{k-1}$ on the two line segments from q_{0} to q and q to q_{k} such that v_{1} is represented by a segment containing q_{0}, v_{k-1} by a segment containing q_{k} and v_{j}, v_{j+1} by orthogonal line segments sharing a point. The point shared by these two segments will be q_{0} when $j=0, q_{k}$ when $j=k-1$ and q in all other cases. This gives the drawing D_{i+1}. It is clear that the new line segments added in this stage do not intersect any other line segments in D_{i} except l_{0} and l_{k}. It is easy to verify that the edge $e_{i+1}=v_{j} v_{j+1}$ is extendable. Hence D_{i+1} is extendable.

Case $2\left(F_{i+1} \cong C_{3}\right)$. Let $F_{i+1}=a, b, c, a$, with $e_{i}=c a$ and $e_{i+1}=a b$. Since D_{i} is extendable, the edge $c a$ is extendable in D_{i} from a point p. If the line segments l_{c} and l_{a} are extendable in the same direction, then extend them to a point q outside the bounding box of D_{i} and represent b by a point segment l_{b} at q to obtain D_{i+1}. It is easy to check that the line segment l_{a}, the point segment l_{b}, and also the edge $a b$ are extendable from q in D_{i+1}. Since $a b$ is extendable and b is represented by a point segment, D_{i+1} is extendable. If l_{c} and l_{a} are extendable only in orthogonal directions, then neither of them is a point segment. Hence $F_{i} \neq C_{3}$ and hence the vertices c and a have no common neighbor in G_{i}. So the point p is not contained in any line segment of D_{i} other than l_{c} and l_{a}. Represent b by a point segment l_{b} at p to get D_{i+1}. In both the subcases, it is clear that the new line segments added in this stage do not intersect any other line segments in D_{i} except l_{c} and l_{a}. It is easy to check that the line segment l_{a}, the point segment l_{b}, and also the edge $a b$ are extendable from p in D_{i+1}. Since $a b$ is extendable and b is represented by a point segment, D_{i+1} is extendable.

Repeating the above construction $n-1$ times gives a $\mathrm{B}_{0}-\mathrm{VPG}$ drawing D_{n} of $G_{n}=G$.
$\mathrm{B}_{0}-\mathrm{VPG}$ is easily seen to be a hereditary graph class (that is, closed under induced subgraphs). Thus it follows from Theorem 3 that every induced subgraph of a biconnected outerpath is B_{0}-VPG. By the end of the next section, we extend this to every subgraph (not necessarily induced).

3 Characterization of Linear Outerplanar Graphs

In a preliminary version of the is article [22], we showed that every AT-free outerplanar graph can be identified as an induced subgraph of a biconnected outerpath. After that work, triggered by a question from Mathew C. Francis, we realized that the induced subgraphs of biconnected outerpaths can be more exotic than AT-free outerplanar graphs, and that this class deserves to be studied on its own. Our definition of linear outerplanar graphs in [22] was a technical choice made for the proof. That definition was more restrictive than the one here (Definition (2).

While the class of linear outerplanar graphs will inherit the rich collection of drawings and geometric representations available for biconnected outerpaths, the structure of a linear outerplanar graph is harder to describe than that of a biconnected outerpath. This section aims to do that. We first build the necessary terminology for stating and proving the characterization theorem (Theorem 7).

Figure 3: Examples of outerplanar graphs which are (a) not block-safe (b) not cut-safe. In (b), \mathcal{C}_{v} has four big components.

Let v be a cutvertex in a graph G. For every component of C of $G \backslash v$, the subgraph of G induced on $V(C) \cup\{v\}$ is called a component incident to v. The set of components incident to v is denoted by \mathcal{C}_{v}. A component C incident to v is said to be incident to a block B if v is in B and C does not contain B.

Definition 4. Let v be a cutvertex in an outerplanar graph G and $C \in \mathcal{C}_{v}$. We call C small for v if $C \backslash v$ is a path and big for v otherwise. Further, when C is small for v, we call it a tail at v if C (including v) is a path.

Definition 5 (Cut-safety). A cutvertex v in an outerplanar graph G is said to be safe if \mathcal{C}_{v} contains at most two big components. The graph G is said to be cut-safe if every cutvertex in G is safe.

A set of at most two boundary edges of a block B in an outerplanar graph is called antipodal either when B is a single face or when the edges belong to different leaf faces of B.

Definition 6 (Block-safety). A nontrivial block B in an outerplanar graph is called safe if there exist two antipodal edges $a_{0} b_{0}$ and $a_{1} b_{1}$ in B and the set of components incident to B can be partitioned into \mathcal{C}_{0} and \mathcal{C}_{1} such that

1. every component in $\mathcal{C}_{i}(i \in\{0,1\})$ is incident to either a_{i} or b_{i}, and
2. at most one component in $\mathcal{C}_{i}(i \in\{0,1\})$ is incident to a_{i} and it (if present) is a tail.

An outerplanar graph G is said to be block-safe if every nontrivial block in G is safe. The edges $a_{0} b_{0}$ and $a_{1} b_{1}$ are called terminal edges of B in G. A terminal edge is denoted as an ordered pair (x, y) where $x=a_{i}$ and $y=b_{i}$. The components in \mathcal{C}_{i} are said to be associated to the terminal edge $\left(a_{i}, b_{i}\right)$.

Theorem 7 (Characterization). An outerplanar graph G is linear if and only if G is cut-safe, blocksafe and the weak dual of G is a linear forest. Moreover, if G is linear, then it can be realized both as an induced subgraph and as a spanning subgraph of (different) biconnected outerpaths.

Remark 1. Note that the class of linear outerplanar graphs and outerpaths are incomparable. There are outerpaths which are not linear (cf. Figure 3(a)) and linear outerplanar graphs which are not outerpaths (cf. Figure 4 (a)).

3.1 Proof of Theorem 7 (Necessity)

We first prove that if an outerplanar graph G is linear, then G is cut-safe, block-safe and \mathcal{T}_{G} is a linear forest. Our strategy is to look at the edges of G which are forced to be internal edges in any biconnected outerplanar supergraph of G and then use the fact that the internal edges in a biconnected outerpath have a natural linear order. It is easy to see that every internal edge of G, at least one edge in each face of G (unless G itself is a cycle), and all but at most two edges incident to any vertex of G will all be internal edges in any biconnected outerplanar supergraph of G. We can say a bit more about edges incident to a cutvertex in a nontrivial block (Lemma (9) using the simple observation below. The extension of this simple observation to biconnected outerpaths (Observation 10) is a key to rest of this section.

Observation 8. If $u v$ is an internal edge in a biconnected outerplanar graph G, then $G \backslash\{u, v\}$ has exactly two components. Moreover, both these components contain exactly one boundary neighbor each of u and v.

Lemma 9. If an outerplanar graph G is an induced subgraph of a biconnected outerplanar graph G^{\prime} then for any cutvertex v in a nontrivial block B of G, one of the two boundary edges incident to v in B is an internal edge in G^{\prime}.

Proof. Let $u v$ and $v w$ be the two boundary edges of B incident to v and let x be a neighbor of v outside B in G. If both $u v$ and $v w$ are boundary edges in G^{\prime}, then $v x$ is an internal edge in G^{\prime}. But u and w are in the same component of $G \backslash\{v, x\}$ and hence of its supergraph $G^{\prime} \backslash\{v, x\}$. This contradicts Observation 8 ,

For any three subsets X, Y, Z of the vertices of a graph, X separates Y and Z if every path between Y and Z contains a vertex from X.

Observation 10. Let $u_{0} v_{0}, u_{1} v_{1}, u_{2} v_{2}$ be three distinct (but not necessarily disjoint) internal edges of a biconnected outerpath G. Then the endpoints of one of them, say $\left\{u_{i}, v_{i}\right\}$, separate $\left\{u_{j}, v_{j}\right\}$ from $\left\{u_{k}, v_{k}\right\}$ in G, where $\{i, j, k\}=\{0,1,2\}$.

Lemma 11. If an outerplanar graph G is linear, then \mathcal{T}_{G} is a linear forest.
Proof. Let G be a subgraph of a biconnected outerpath G^{\prime}. If \mathcal{T}_{G} is not a linear forest, then G has a face f with at least three internal edges. These remain internal edges in G^{\prime} that violate the separation property in Observation 10 ,

Lemma 12. If an outerplanar graph G is linear, then G is cut-safe.
Proof. Let G be a subgraph of a biconnected outerpath G^{\prime}. Suppose G has a cutvertex v such that \mathcal{C}_{v} contains three big components C_{0}, C_{1}, C_{2}. For each $i \in\{0,1,2\}$, since $C_{i} \backslash v$ is not a path, it either contains a face or a 3^{+}-vertex. In either case, $C_{i} \backslash v$ will contribute an internal edge e_{i} to G^{\prime}. But e_{0}, e_{1}, e_{2} violate Observation 10,

Lemma 13. If an outerplanar graph G is linear, then G is block-safe.
Proof. Let G^{\prime} be an edge-minimal biconnected outerpath which is a supergraph of G. If G itself is a biconnected outerpath, we are done. Otherwise, picture any nontrivial block B of G in G^{\prime}. Let E^{\prime} be the set of boundary edges of B which become internal edges in G^{\prime}. Since $\mathcal{T}_{G^{\prime}}$ is a path, it is easy to see that E^{\prime} is antipodal. By Lemma 0 , every cutvertex of B in G is an endpoint of an edge in E^{\prime}. Let E^{\prime} be $\left\{e_{0}\right\}$ if it is singleton, and $\left\{e_{0}, e_{1}\right\}$ otherwise. The proof will be complete if we can partition the set of components \mathcal{C}_{B} incident to B into $\mathcal{C}_{i}, i \in\{0,1\}$ and label the endpoints of e_{i} as a_{i} and b_{i} respecting the last condition in Definition 6 ,

By Observation 8, we get exactly two components in $G^{\prime} \backslash V\left(e_{i}\right)$. Let G_{i} be the subgraph of G^{\prime} induced by e_{i} and the component of $G^{\prime} \backslash V\left(e_{i}\right)$ that does not contain any vertex of B. Let \mathcal{C}_{i} denote the components in \mathcal{C}_{B} that are captured by G_{i} in G^{\prime}. Consider the leaf face f_{i} of G_{i} containing the edge e_{i}. Since f_{i} is not part of B, at least one edge e_{i}^{\prime} of f_{i} is missing from G. By edge-minimality
of G, this is a boundary edge of G^{\prime} and hence G_{i}. Let P_{i} denote the (possibly trivial) path in $f_{i} \backslash e_{i}^{\prime}$ between e_{i} and e_{i}^{\prime} that does not contain an internal edge (if any) of G_{i}. We label the endpoint of e_{i} which meets P_{i} as a_{i} and the other as b_{i}. If P_{i} is trivial then there is no component in \mathcal{C}_{i} incident to a_{i}. If P_{i} is not trivial, at most one component in \mathcal{C}_{i}, and that too a tail which is a subpath of P_{i}, is incident to a_{i}. It is easy to see that this labeling satisfies Definition 6.

(a)

(b)

(c)

Figure 4: (a) A block-safe and cut-safe outerplanar graph G such that \mathcal{T}_{G} is a linear forest. Terminal edges are shown oriented and cutvertices for Action $\mathbb{1}$ are highlighted. (b) Intermediate graph G_{3}. Faces created by the two cases of Action \square are marked 1 a and 1 b respectively. (c) Final biconnected outerpath G^{\prime}. Faces created by Action 2 are marked 2 a if both the components merged are small and 2 b otherwise. Since all the connectors are two-length paths, G is an induced subgraph of G^{\prime}.

3.2 Proof of Theorem 7 (Sufficiency)

Now we prove the other direction of Theorem 7 Let G be a cut-safe and block-safe outerplanar graph such that \mathcal{T}_{G} is a linear forest. We will construct a biconnected outerpath G^{\prime} which contains G as a subgraph. A connector between two nonadjacent boundary vertices u and v of a plane graph H is either an edge $u v$ or a two-length path (u, w, v) such that $w \notin V(H)$ drawn through the outer face. Hence the resultant graph is planar. In the following construction, if every connector used is an edge (resp. two-length path), then G is contained as a spanning (resp. induced) subgraph of G^{\prime}. The construction of G^{\prime} is done in two phases. Each phase consists of repeated applications of a single action.

Definition 14. For a cutvertex v, a small component $C \in \mathcal{C}_{v}$ is called a maximal small component if C is not a subgraph of a small component incident to another cutvertex.

Action 1 (Tuck the tails). Let v be a cutvertex in G and $C \in C_{v}$ be a maximal small component associated to a terminal edge $\left(a_{i}, b_{i}\right)$ of a nontrivial block B. (a) If $v=a_{i}$ (in which case C is a tail at a_{i}), add a connector from the leaf of C to b_{i}. This merges the block B and the component C into a new block B^{\prime}. Designate the remaining terminal edge of B and the last edge $\left(v^{\prime}, b_{i}\right)$ of the connector as the two terminal edges of B^{\prime}. (b) If $v=b_{i}$, add a connector between v and each endvertex of the path $C \backslash v$ which is not already adjacent to v to form a block B^{\prime} containing C (but not B). If both the endvertices of $C \backslash v$ were adjacent to v, then $B^{\prime}=C$. Designate (u, v) and (w, v) as the terminal
edges of B^{\prime}, where $u v$ and $v w$ are the boundary edges of B^{\prime} incident to v. If B^{\prime} is a single edge uv, designate (u, v) as both the first and second terminal edge of B^{\prime}.

Let us call the resulting graph G_{2}. In Case (a), the weak dual $\mathcal{T}_{B^{\prime}}$ of B^{\prime} is a path formed by extending \mathcal{T}_{B} with a leaf edge corresponding to the dual of $a_{i} b_{i}$. The new terminal edge in B^{\prime} is in the new leaf face and hence the two terminal edges of B^{\prime} are antipodal. Every component incident to B in G (except C) is incident to B^{\prime} in G_{2}. Each such component associated to a terminal edge of B can be associated to the corresponding terminal edge of B^{\prime}. In Case (b), the structure of B^{\prime} is simple since every internal edge of B^{\prime} is incident to v. It is easily verified that $\mathcal{T}_{B^{\prime}}$ is a path and B^{\prime} is safe with the given terminals. Next we argue that G_{2} is cut-safe. In Case (a), the only change to \mathcal{C}_{v} in G_{2} is that C and the component C_{B} containing B merges into a single component $C_{B^{\prime}}$. But if C_{B} is small for v in G, then $C_{B^{\prime}}$ remains small for v in G_{2} and hence v remains safe in G_{2}. In Case (b), since $B^{\prime} \backslash v$ is a path, B^{\prime} is a small component for v and v is safe in G_{2}. Let $u \neq v$ be a cutvertex in G_{2} and let C_{u} be a small component incident to u. Since C is a maximal small component, C_{u} does not contain C and hence C_{u} remains unaffected (and hence small) in G_{2}. So u remains safe in G_{2}.

We perform Action 1 once for each maximal small component incident to a cutvertex in G to obtain a graph G_{3}. Note that for each cutvertex v in G_{3}, each small component in \mathcal{C}_{v} is a block. Also, each component incident to a nontrivial block B in G_{3} is incident at the second vertex of a terminal edge of B. For each trivial block $B=u v$ which is not a pendant edge of G_{3}, assign (u, v) to be the first and (v, u) to be the second terminal edge of B. Associate every component incident to B at u (resp. v) with terminal edge (v, u) (resp. (u, v)).

Action 2 (Bond with your sibling). Let v be a cutvertex in G_{3} and let C_{0} and C_{1} be two components from \mathcal{C}_{v}, chosen prioritizing small components over big ones. For $i \in\{0,1\}$, let B_{i} be the block in C_{i} which contains v, and $\left(u_{i}, v\right)$ be a terminal edge of B_{i}. Add a connector from u_{0} to u_{1}. This merges B_{0} and B_{1} into a new block B. The remaining terminal edges, one each from B_{0} and B_{1}, are designated as the terminal edges of B.

Let us call the resulting graph G_{4}. The weak dual \mathcal{T}_{B} of B is a path obtained by connecting two leaf vertices of $\mathcal{T}_{B_{0}}$ and $\mathcal{T}_{B_{1}}$ through the dual vertex corresponding to the new bounded face. The new terminal edges of B are antipodal in B. Every cutvertex other than v in $B_{i}(i \in\{0,1\})$ is contained in the second terminal edge of B_{i} which continues to be a terminal edge in B. If C_{i} is small for an $i \in\{0,1\}$, then $B_{i}=C_{i}$ and the second terminal edge of B_{i} has v as its second vertex. If both C_{0} and C_{1} are big for v, since v is safe in G_{3}, there are no other components in \mathcal{C}_{v}. Hence v is no longer a cutvertex in G_{4}. Hence all the cutvertices of B are contained in its terminal edges and B is safe. Now we argue that G_{4} is cut-safe. The difference from \mathcal{C}_{v} in G_{3} to \mathcal{C}_{v} in G_{4} is that C_{0} and C_{1} gets merged into a single component. If both C_{0} and C_{1} are small components, then one can easily check that the new component is B itself and it is small for v. Hence the number of big components in \mathcal{C}_{v} does not increase and hence v remains safe in G_{4} or ceases to be a cutvertex. Let $u \neq v$ be a cutvertex in G_{4} and let C_{u} be a small component incident to u. Since C_{u} is a block, it does not contain the cutvertex v and hence remains unaffected (and thus small) in G_{4}. So u remains safe in G_{4}.

We repeat Action 2 as long as there is a cutvertex. Let G^{\prime} denote the resulting biconnected graph. Since each action preserves cut-safety, block-safety and linearity of the weak dual, G^{\prime} is a biconnected outerpath. This completes the proof of Theorem 7 .

Remark 2. From the above construction, one can check that each connector added reduces the number of blocks at least by one. Hence the total number of new vertices added is less than the number of blocks in the original graph G.

Remark 3. Checking the cut-safety, block-safety and the linearity of weak dual of an outerplanar graph can be done in polynomial time. It can also be verified that the construction of G^{\prime} from G can be done in polynomial time.

By Theorem 7, any linear outerplanar graph can be realized as an induced subgraph of a biconnected outerpath. This together with Theorem 3 gives the following corollary.

Corollary 15. Every linear outerplanar graph is $B_{0}-V P G$.

4 Linearity of AT-free outerplanar graphs

By Corollary 15, in order to prove that AT-free outerplanar graphs are $\mathrm{B}_{0}-\mathrm{VPG}$, it is enough to show that they are linear. Lemma 17 in this section asserts the same. Note that one may suspect whether all AT-free outerplanar graphs can be realized as induced subgraphs of biconnected AT-free outerplanar graphs. But this is incorrect. For example, let G be a C_{5} together with a pendant vertex. While G is AT-free outerplanar, it is easy to see that any biconnected outerplanar graph G^{\prime}, containing G as an induced subgraph, is not AT-free.

The following observation is helpful in proving Lemma 17 .
Observation 16. Let B be a nontrivial block of an outerplanar graph G. Every leaf face f of B contains a vertex u of degree two in $G[B]$ which is not incident to any other bounded face of B.

Justification: A face has at least three vertices and at most two vertices of a leaf face can be shared by another face. Hence all the remaining vertices are of degree two in $G[B]$ and are not incident to any other bounded face of B.

Lemma 17. AT-free outerplanar graphs are linear.
Proof. Let G be an AT-free outerplanar graph. If \mathcal{T}_{G} is not a linear forest, then there exists three internal edges in one face f of G sharing with faces, say, f_{1}, f_{2}, f_{3}. One can verify that we can choose one vertex $v_{i}(1 \leq i \leq 3)$ each from $f_{i} \backslash f$ to form an AT.

If G is not cut-safe, then there exists a cutvertex v where \mathcal{C}_{v} has more than two big components, say, C_{1}, C_{2}, C_{3}. That is, $C_{i} \backslash\{v\}(1 \leq i \leq 3)$ is not a path and thus it has either a 3^{+}-vertex v_{i} or a face f_{i}. If all the neighbors of v_{i} are adjacent to v, then it is easy to see that C_{i} has $K_{2,3}$ as subgraph. Similarly if all the vertices of f_{i} are adjacent to v, then one can verify that C_{i} has K_{4} as minor. Outerplanar graphs do not contain $K_{2,3}$ or K_{4} as a minor 12. Thus in both cases, there exists a vertex $v_{i}^{\prime} \in C_{i} \backslash\{v\}$ nonadjacent to v in C_{i}. It is easy to see that $\left\{v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right\}$ forms an AT.

It remains to check whether G is block-safe. Consider any nontrivial block B of G. Since \mathcal{T}_{G} is a linear forest, B either has exactly two leaf faces f_{1}, f_{2} or B itself is a face f_{1}. In the former case, Observation 16 guarantees that $G[B]$ has two vertices u_{1} and u_{2} of degree two in f_{1} and f_{2} respectively. For any cutvertex v in B, we denote an arbitrary neighbor of v outside B as v^{\prime}. If there exists three cutvertices in B, say, v_{1}, v_{2}, v_{3}, then by using the path along the outer cycle (through the boundary) of B, one can verify that $\left\{v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right\}$ is an AT. Thus there can be at most two cutvertices in B. If B itself is a face f_{1}, we can choose arbitrary boundary edges $a_{0} b_{0}$ and $a_{1} b_{1}$ of B such that b_{0} and b_{1} are the only cutvertices of B. These two edges are antipodal in B, and thus B satisfies the conditions of the terminal edges as per Definition 6] thereby showing that B is safe. Hence we assume in the rest of the proof that B contains more than one face. If one of the cutvertices, say v, is neither incident to f_{1} nor f_{2}, then the vertices u_{1} and u_{2}, together with v^{\prime} form an AT. Hence the cutvertices incident to B, if any, must lie in the leaf faces of B. Moreover, we intend to associate each cutvertex v to a different leaf face of B containing v. If this is not possible, that is, both the cutvertices, say v_{1}, v_{2} are not incident to one of the leaf faces, say f_{2}, then $\left\{v_{1}^{\prime}, v_{2}^{\prime}, u_{2}\right\}$ forms an AT. Thus we conclude that there exist at most two cutvertices incident to B, and they can be associated to different leaf faces of B containing them. We can choose arbitrary boundary edges $a_{0} b_{0}$ and $a_{1} b_{1}$ of B, one from each leaf face such that b_{0} and b_{1} are the only cutvertices of B. Clearly those edges are antipodal and their endpoints meet the conditions of the terminal edges as per Definition 6. Thus B is safe.

Lemma 17 together with Corollary 15 establish the main result.
Theorem 18. Every AT-free outerplanar graph is $B_{0}-V P G$.

5 Concluding Remarks

We have showed that all linear outerplanar graphs are B_{0}-VPG. However, it is easy to see that linearity is not necessary for $\mathrm{B}_{0}-\mathrm{VPG}$ outerplanar graphs. For example, planar bipartite graphs, and hence
outerplanar bipartite graphs are $\mathrm{B}_{0}-\mathrm{VPG}$ [21]. But outerplanar bipartite graphs can be far from being linear, in the sense that their weak duals can be trees with arbitrarily large degrees for internal nodes.

One can see from a B_{0}-VPG drawing that the closed neighborhood of every vertex is an interval graph [18]. Next, we strengthen this necessary condition by identifying adjacent vertices which are forced to be represented by collinear segments in any B_{0}-VPG drawing. An induced C_{4} has essentially a unique $\mathrm{B}_{0}-\mathrm{VPG}$ representation [3]. A C_{4} together with exactly one chord is called a diamond, and the chord is called the diamond diagonal. A diamond diagonal can only be drawn as the intersection of collinear line segments in every $\mathrm{B}_{0}-V P G$ representation [18]. In any $\mathrm{B}_{0}-V P G$ representation of an odd-cycle, an odd number of edges has to be represented as the intersection of collinear line segments. It is also easy to verify that in a given B_{0}-VPG representation D of G, the binary relation collinearity on the set of line segments of D is an equivalence relation. We combine these observations to obtain the following.
Proposition 19. If a graph G is $B_{0}-V P G$, then there exists a subgraph H of G containing all diamond diagonals of G such that,
(a) for every component C of H, the subgraph of G induced by the closed neighborhood $N[C]$ of C is an interval graph, and
(b) the minor of G obtained by contracting every component of H in G is a bipartite $B_{0}-V P G$ graph.

Proof. Since G is $\mathrm{B}_{0}-\mathrm{VPG}$, there exists a $\mathrm{B}_{0}-\mathrm{VPG}$ representation D of G. Let H be the spanning subgraph of G in which two vertices are adjacent if and only if the corresponding line segments in D are intersecting and collinear. Since any diamond diagonal of G is represented by the intersection of collinear line segments in D, their endpoints are adjacent in H too. Thus for proving (a), it remains to show that the closed neighborhood of any component of H is an interval graph. Let C be a component of H and let D_{C} be the drawing induced by the segments of D that represent the vertices in $N[C]$. In D_{C}, if we restrict the segments that represent the vertices in $N[C] \backslash C$ to point intervals at their intersection point with a vertex in C, we obtain an interval representation for the subgraph of G induced on $N[C]$. To obtain the minor G_{H} of G in (b), we contract every edge of H. Each component C of H, therefore becomes a branch set of G_{H}, and can be represented as a line segment obtained as the union of all the segments representing vertices in C. This gives a $\mathrm{B}_{0}-\mathrm{VPG}$ representation of G_{H}. It is easily verified that it is a bipartite graph since there are no collinear intersections.

Remark 4. Note that since G_{H} is bipartite, H contains an odd number of edges from each odd cycle of G.

Figure 5: A few outerplanar graphs which are not $\mathrm{B}_{0}-\mathrm{VPG}$. The blue edges represent forced collinear edges. The green edges in (d) and (e) represent the edges arbitrarily chosen in an odd cycle to become collinear in a $\mathrm{B}_{0}-\mathrm{VPG}$ drawing. The 4-cycles in (e) resemble petals and hence the name. The red double edges in (f) and (g) represent C_{4} edges where the C_{4} (petal) is not drawn to avoid cluttering.

Proposition 19 shows that the outerplanar graphs in Figure 5 are not $\mathrm{B}_{0}-V P G$. Nonetheless, the above proposition is not sufficient to characterize $\mathrm{B}_{0}-\mathrm{VPG}$ even among outerplanar graphs. Figure 6 is such an example.

Figure 6: An outerplanar graph which is not $\mathrm{B}_{0}-\mathrm{VPG}$. This shows that the conditions in Proposition 19 was not sufficient. The red double edges represent C_{4} edges where the C_{4} is not drawn to avoid cluttering. The blue edges are forced to be collinear. Hence the bridge has to be realized as an orthogonal intersection and this prevents a non-crossing drawing of the two 6-cycles.

Acknowledgments

We thank K. Murali Krishnan and Mathew C. Francis for fruitful discussions.

References

[1] Alam, M., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Pupyrev, S., et al.: Balanced circle packings for planar graphs. In: International Symposium on Graph Drawing. pp. 125-136. Springer (2014)
[2] Alcón, L., Bonomo, F., Mazzoleni, M.P.: Vertex intersection graphs of paths on a grid: characterization within block graphs. Graphs and Combinatorics 33(4), 653-664 (2017)
[3] Asinowski, A., Cohen, E., Golumbic, M.C., Limouzy, V., Lipshteyn, M., Stern, M.: Vertex intersection graphs of paths on a grid. J. Graph Algorithms Appl. 16(2), 129-150 (2012)
[4] Babu, J., Basavaraju, M., Chandran, L.S., Rajendraprasad, D.: 2-Connecting outerplanar graphs without blowing up the pathwidth. Theoretical Computer Science 554, 119-134 (2014)
[5] Barát, J., Hajnal, P., Lin, Y., Yang, A.: On the structure of graphs with path-width at most two. Studia Scientiarum Mathematicarum Hungarica 49(2), 211-222 (2012)
[6] Cabello, S., van Kreveld, M.J., Liotta, G., Meijer, H., Speckmann, B., Verbeek, K.: Geometric simultaneous embeddings of a graph and a matching. J. Graph Algorithms Appl. 15(1), 79-96 (2011)
[7] de Castro, N., Cobos, F.J., Dana, J.C., Márquez, A., Noy, M.: Triangle-free Planar Graphs and Segment Intersection Graphs. J. Graph Algorithms Appl. 6(1), 7-26 (2002)
[8] Catanzaro, D., Chaplick, S., Felsner, S., Halldórsson, B.V., Halldórsson, M.M., Hixon, T., Stacho, J.: Max point-tolerance graphs. Discrete Applied Mathematics 216, 84-97 (2017)
[9] Chalopin, J., Gonçalves, D.: Every planar graph is the intersection graph of segments in the plane. In: Proceedings of the forty-first annual ACM symposium on Theory of computing. pp. 631-638 (2009)
[10] Chaplick, S., Jelínek, V., Kratochvíl, J., Vyskočil, T.: Bend-bounded path intersection graphs: Sausages, noodles, and waffles on a grill. In: International Workshop on Graph-Theoretic Concepts in Computer Science, 274-285. Springer (2012)
[11] Chaplick, S., Ueckerdt, T.: Planar graphs as VPG-graphs. In: International Symposium on Graph Drawing, 174-186. Springer (2012)
[12] Chartrand, G., Harary, F.: Planar permutation graphs. In: Annales de l'IHP Probabilités et statistiques. vol. 3, pp. 433-438 (1967)
[13] Czyzowicz, J., Kranakis, E., Urrutia, J.: A simple proof of the representation of bipartite planar graphs as the contact graphs of orthogonal straight line segments. Information Processing Letters 66(3), 125-126 (1998)
[14] De Fraysseix, H., Ossona de Mendez, P., Pach, J.: Representation of planar graphs by segments. Intuitive Geometry 63, 109-117 (1991)
[15] Evans, W., Kusters, V., Saumell, M., Speckmann, B.: Column planarity and partial simultaneous geometric embedding. In: International Symposium on Graph Drawing. pp. 259-271. Springer (2014)
[16] Fleischner, H.J., Geller, D.P., Harary, F.: Outerplanar graphs and weak duals. The Journal of the Indian Mathematical Society 38(1-4), 215-219 (1974)
[17] García, A., Hurtado, F., Noy, M., Tejel, J.: Augmenting the Connectivity of Outerplanar Graphs. Algorithmica 56(2), 160-179 (2010)
[18] Golumbic, M.C., Ries, B.: On the intersection graphs of orthogonal line segments in the plane: characterizations of some subclasses of chordal graphs. Graphs and Combinatorics 29(3), 499-517 (2013)
[19] Gonçalves, D.: Not all planar graphs are in PURE-4-DIR. Journal of Graph Algorithms and Applications 24(3), 293-301 (2020)
[20] Gonçalves, D., Isenmann, L., Pennarun, C.: Planar graphs as L-intersection or L-contact graphs. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms. pp. 172-184. SIAM (2018)
[21] Hartman, I.B.A., Newman, I., Ziv, R.: On grid intersection graphs. Discrete Mathematics 87(1), 41-52 (1991)
[22] Jain, S., Pallathumadam, S.K., Rajendraprasad, D.: B ${ }_{0}$-VPG Representation of AT-free Outerplanar Graphs. In: Conference on Algorithms and Discrete Applied Mathematics. pp. 103-114. Springer (2022)
[23] Kant, G.: Augmenting Outerplanar Graphs. Journal of Algorithms 21(1), 1-25 (1996)
[24] Kratochvíl, J.: String graphs. II. Recognizing string graphs is NP-hard. Journal of Combinatorial Theory, Series B 52(1), 67-78 (1991)
[25] Kratochvíl, J., Matoušek, J.: Intersection graphs of segments. Journal of Combinatorial Theory, Series B 62(2), 289-315 (1994)
[26] Mehrabi, S.: Approximation Algorithms for Independence and Domination on $\mathrm{B}_{1}-\mathrm{VPG}$ and $\mathrm{B}_{1^{-}}$ EPG Graphs. arXiv preprint arXiv:1702.05633 (2017)
[27] Pallathumadam, S.K., Rajendraprasad, D.: Characterization of $\mathrm{B}_{0}-$ VPG Cocomparability Graphs and a 2D Visualization of their Posets. Order pp. 1-20 (2022)
[28] Schaefer, M., Sedgwick, E., Štefankovič, D.: Recognizing string graphs in NP. Journal of Computer and System Sciences 67(2), 365-380 (2003)
[29] Scheinerman, E.R.: Intersection classes and multiple intersection parameters of graphs. Princeton University (1984)
[30] West, D.: Open problems. SIAM J. Discrete Math. Newslett. 2, 10-12 (1991)

[^0]: *A part of this work was done while at Indian Institute of Technology Palakkad.
 ${ }^{1}$ A preliminary version of this work was presented at the $8^{t h}$ International Conference on Algorithms and Discrete Applied Mathematics (CALDAM) 2022 [22]. In this extended version we show that a proper superclass of AT-free outerplanar graphs, which we name as linear outerplanar graphs, are $\mathrm{B}_{0}-\mathrm{VPG}$. We believe that his new class is interesting in its own right.

