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ABSTRACT 
State-of-the-art architectural simulators support cycle accurate 
pipeline execution of application programs. However, it takes 
days and weeks to complete the simulation of even a moderate-
size program. During the execution of a program, program 
behavior does not change randomly but changes over time in a 
predictable/periodic manner. This behavior provides the 
opportunity to limit the use of a pipeline simulator. More 
precisely, this paper presents a hybrid simulation engine, named 
B2Sim for (cycle-characterized) Basic Block based Simulator, 
where a fast cache simulator e.g., sim-cache and a slow pipeline 
simulator e.g., sim-outorder are employed together. B2Sim 
reduces the runtime of architectural simulation engines by making 
use of the instruction behavior within executed basic blocks. We 
have integrated B2Sim into SimpleScalar and have achieved on 
average a factor of 3.3 times speedup on the SPEC2000 
benchmark and Media-bench programs compared to conventional 
pipeline simulator while maintaining the accuracy of the 
simulation results with less than 1% CPI error on average.    
Categories and Subject Descriptors 
C.4 [Performance of Systems]: Measurement techniques, 
Modeling techniques B.8.2 [Performance and Reliability]: 
Performance Analysis and Design Aids  
General Terms  
Measurement, Performance, Design 
Keywords 
Micro-architecture simulation, Program behavior, Basic block 

1. INTRODUCTION 
Every program shows behavior changes during its execution time. 
In general, program behaviors are represented in terms of cycle 
per instructions (CPI), I/D-cache miss count, number of branches, 
power, etc. Over an execution of the program, this behavior 
changes appear irregular but they often possess certain repetitive 
patterns. For example, general MPEG player programs repeatedly 
read, decode, and dither the image in each frame of a video 
stream. In code level, this phenomenon is highly expected since 
same piece of source code, i.e. functions, libraries, system calls, 
are being executed again and again in a recurring manner. 

There are a number of architectural simulators that emulate the 
real program’s behaviors and basically they have been developed in 
two directions: the first direction is to provide simple simulators that 
can trade-off the amount of information they generate versus the 
amount of time they spend for the simulation. In this case, the 
architectural simulator provides ‘just enough’ information about the 
micro-architecture that developers need but takes short simulation 
times. The second direction is to provide all the detailed pipeline 
simulation information that micro-architecture developer needs by 
sacrificing the simulation speed. Both directions are important in the 
sense that they capture either a specific or a general system’s 
behavior, respectively. 

Especially for the detailed pipeline simulators, their simulation 
time becomes order of five to six times slower compared to the 
program’s actual execution time in a real system [1]. For this reason, 
micro-architecture researchers have tried either to develop a faster 
simulator or to find methods to obtain the simulation results from 
the existing simulators in a short time.  

Program phase detection [2][3][4] has proven to be an effective 
method of rapidly obtaining the simulation results (albeit with some 
accuracy losses.) By nature, however, this phase detection approach 
has three obstacles to overcome: difficulty of picking the correct 
granularity for phase detection, “hasty” phase determination during 
the program initialization, and need for correctly and uniquely 
determining the program phase. The first problem is under what 
interval the phase is to be detected. Depending on this granularity, 
simulation results can be interpreted in a different way. The second 
problem hinders us from detecting the correct phase since it 
generates misleading information when we profile/detect phases in 
an early stage of a program execution. During the initial execution 
time in most of the programs, the behavior changes in a quite 
irregular/unexpected manner with mostly no cyclic/repeated 
behavior observed. The third problem is the most costly one since 
we need to run pipeline simulation from a program start to the end 
in order to both check the phase similarity of each interval and 
determine the uniqueness of each phase. 

In this paper, we propose a novel hybrid micro-architecture 
simulator that analyzes the code behavior in a fine granularity, 
extracts some architectural metrics, and calculates the overall 
distribution of CPI in a program based on a memory access 
behavior in a basic block, which leads to a dramatic reduction of 
simulation time and ultimately solve the above three obstacles. 

2. PRIOR WORK 
Due to innate slow nature of the pipeline micro-architecture 
simulators, lots of research effort has been concentrated in making 
these simulators faster. Previous acceleration approaches in micro-
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architecture simulation can be divided mainly in two categories: 
sampling/phase based approaches and instruction set compiled 
simulation based approaches. Sampling/phase based approaches are 
based on selecting intervals that are representatives of the program 
behavior, executing detailed pipeline simulation only for those 
intervals, resulting in high speedup. On the other hand, instruction 
set compiled simulation based approaches translates the executable 
binary from target machine’s instructions to the host machine’s 
instruction either by static or dynamic compilation and achieve high 
speedup.  

Many of the recently published papers in this domain are based 
on sampling/phase based approaches. In [2][3][4], Sherwood et al, 
suggest the use of repetitious manner of a program as ‘phases’ with 
the SPEC95 benchmark. Basically, they found two folds in a 
program behavior: 1) it converges to a steady state 2) it has a cyclic 
behavior. Based on those observations, they proposed a phase 
detection technique to find all the distinct phases of a program, and 
use it to reduce simulation time by running the pipeline simulation 
only once for each of those distinct phases which are representatives 
of the whole program behavior. Later, Hamerly et al. utilize this 
phase idea and made a simulator called SimPoint [5], which 
performs off-line phase classification. In [1], Roland et al. propose a 
sampling based micro-architecture simulation framework to enable 
fast and accurate performance measurements. They accelerate 
simulation by selecting minimal subset of instruction stream from a 
total instruction stream and developed a simulator called SMARTS. 
In [6], Dhodapkar et al. detect a program phase with the instruction 
working set. They also make a comparative study in three phase 
detection techniques: instruction working set based, phase based, 
and conditional branch counts based. Their experimental results 
show that phase based technique achieve better performance than 
the other techniques.  

The other category of simulation speed acceleration techniques 
include the use of compiled instruction set simulators [7][8][9]. 
Compiled instruction set simulators are fast since they remove the 
expensive decoding stage of the interpretive simulators like, 
Simplescalar [11] at the expense of flexibility and accuracy. In [7], 
authors try to combine the benefits of the traditional interpretive 
simulator, namely the flexibility, with the speed of compiled 
instruction set simulator by re-decoding the instructions dynamically 
in case of previously decoded instructions have changed. In [8], 
authors propose an idea of not interpreting the instruction but 
translating it to the host machine’s only if it is more profitable (in 
terms of time), and make use of ‘Just in Time’ compiler to do 
dynamic translation of multiple basic blocks in order to exploit 
instruction level parallelism (ILP) offered by the host processor.  

In [10], the authors accelerate the simulation for the instruction 
cache. They build an abstract model of each piece of program code, 
use an approximate model of the instruction cache, and propose a 
conflict-based simulation time reduction technique for instruction 
cache under a multi-tasking paradigm. This approach is applicable 
solely to instruction cache simulator.  

Existing ‘simulation time reduction’ approaches for 
architectural simulation are mainly based on either phase 
identification or statistical sampling. Especially for the former 
approaches, they need functional simulation level pre-processing to 
profile phase information, determine the phase similarities, and fulfill 
the pipeline simulation for the distinct phases that they found ahead. 

The contribution and the distinction of the paper are 5 folds. 
 Efficiency: B2Sim uses pipeline simulator minimally i.e., 

every basic block will be executed in pipeline simulator 
once and redundant execution is avoided. 

 Accuracy: B2Sim is deterministic and fully 
acknowledges the unpredictable program behaviors 
during the initial program execution time and accurately 
computes CPI. 

 No need for static profiling: B2Sim does not have to 
identify the region of unique behaviors (phases) with a 
run of functional simulation. Neither any clustering 
method nor any profiling is necessary for the phase 
similarity check. [5] 

 No need for fast-forwarding or warming: B2Sim does 
away with multiple fast-forwarding/warming steps, 
which have been inevitable in previous simulation 
acceleration techniques. [1] 

 Granularity: B2Sim has high accuracy and detects 
phases in a flexible fine-granularity manner because the 
granularity of B2Sim is that of a basic block.  

The remainder of the paper is organized as follows: In section 
3, we specify the motivational observations of this paper. Section 4 
covers the theoretical backgrounds and section 5 will show the 
simulator framework. In section 6, we show the simulation 
environment and section 7 shows the experimental results. Lastly, 
section 8 is the conclusions. 

Table 1. Micro-Architecture Parameters 

3. MOTIVATIONAL OBSERVATTIONS 
Once compiled, the structure of a program remains the same and 
the static scheduling of instructions made by the compiler does 
not change at run time. The same is true for input/output data 
dependencies that exist between different instructions. The on-
chip behavior of a block of code is thus defined by the data 
dependencies that exist between different instructions of the 
block. Hence, every time a block of code, for example, a basic 
block, is executed, the number of on-chip cycles it takes remains 
the same. However, the same cannot be said about the number of 
CPU cycles due to off-chip accesses caused in the basic block. 

During a program’s execution, many blocks of the code are 
visited multiple times. As shown in Figure 1, for example, block 
#k is visited twice in the execution timeline. In both block 
invocations, the structure of the code and existing data 
dependencies among the instructions in the block do not change. 

Main Memory Latency 32 cycles 

L1 I/D Cache 32KB 32-way 32Byte block 
1 cycle hit latency 

I/D-TLB 4-way 1024 entries  
32 cycles miss latency 

Branch Predictor Bimodal 128 Table 

Functional Units 1 INT ALU, 1 INT MULT/DIV 
1 FP ALU, 1 FP MULT/DIV 

RUU/LSQ size 8/8 
Instruction Fetch Queue 8 

In order Issue True 
Wrong Path Execution True 

200



Hence, the on-chip behavior of this block remains the same. 
However, this does not guarantee that the number of cycles taken 
by this block, at times T1 and T2 are the same. This is due to the 
memory related instructions, i.e., loads and stores, inside the 
block whose behavior changes over the execution and the off-chip 
behavior depends on cache and/or TLB configuration and status. 
As a result, the total cycle count taken by the block may vary. 
This is the core observation of this paper. We separate out the on-
chip and off-chip behaviors of a block and utilize the consistency 
of on-chip behavior of a block over the execution. 

 
Figure 1. Motivational Observations 

Table 2 shows the on-chip CPI variance of some of the most 
frequently visited basic blocks for a number of benchmark 
programs. (The benchmark programs will be explained in section 
4). We choose two frequently visited basic blocks in each 
programs, calculate their average on-chip CPI, and further 
calculate the variance of on-chip CPI for the first 100 invocations 
of each of these basic blocks. As shown, the CPI variances are 
quite small, i.e. on-chip CPI within each basic block remains 
nearly constant over visit times. Actually, on-chip CPI variance 
can be zero, but very small error in CPI variance comes from the 
‘first visit phenomenon’ explained in section 4.2. Moreover, if we 
calculate the variance for even larger visit count of each basic 
block, then the on-chip CPI variance would go to zero. 

Table 2. On-chip CPI Variation of Some Frequently Visited 
Basic Blocks for its First 100 Visits 

Program BB Size 
(inst #) 

Number 
of visit 

Avg. on-
chip CPI 

On-chip CPI 
variance in first

100 visits 
21 41.9M 1.333 2.0e-4 

gzip-g 
45 12.0M 1.356 5.3E-6 
12 77.1M 1.667 0 

gcc-e 
37 27.2M 1.215 2.9e-5 
44 35.5M 1.408 2.3e-4 

bzip-p 
69 20.8M 1.231 1.9e-5 
16 93.2M 1.624 3.9e-5 

mcf 
137 16.5M 1.400 6.4e-5 
20 44.6M 1.596 7.9e-4 

vortex 
38 26.3M 1.581 1.3e-3 
34 21.6M 1.384 2.3e-4 

djpeg 
181   2.7M 1.143 1.5e-5 
37 21.6M 1.403 2.6e-4 

cjpeg 
154   3.5M 1.117 0 

4. THEORETICAL BACKGROUND 
During a program execution, program behavior (which we call a 
phase) may vary over time. Generally, these behavior changes are 

represented by micro-architecture metrics such as the I/D-cache 
miss count, on/off-chip stall counts, cycle per instruction (CPI), 
etc. In this paper, we verify the validity of B2Sim with CPI errors. 
Table 1 shows the micro-architecture parameters that we used for 
our simulation. Most of the parameter settings are obtained from 
[12], except the ‘in order issue’ parameter. 
4.1 Basic Block Classification  
The basic block (BB) is defined as a set of instructions which has 
a single entry point and a single exit point, between which there 
is no incoming/outgoing control-related instructions. At the 
source code level, a BB contains instructions starting from a 
branch’s target instruction up to the next branch instruction in a 
sequential code flow. A BB is a suitable entity to capture the 
program phase within which the source code flow is always the 
same on every visit, consequently, there is a high chance to 
repeat its architectural behavior inside.  

Conceptually speaking, a BB can be classified into two groups: 
static/spatial basic blocks (SBB) and temporal basic blocks (TBB). 
SBB is a unit within which the overall CPI remains relatively 
constant. It has either no memory-related instructions or has 
memory-related instructions but no cache miss occurs in every visit. 
On the contrary, TBB is a unit within which the overall CPI varies 
by a large amount on every visit to the BB due to the memory-
related instructions and its dependences on the cache/TLB status. 
For either type of the BB, we can decompose the overall CPI in 
two components: on-chip CPI and off-chip CPI. On-chip CPI 
comes from instructions which cause on-chip latencies due to 
register-register transfers, arithmetic-logic operations, data and 
control hazards, pipeline stalls, branch miss prediction, etc. Off-
chip CPI comes from instructions which cause off-chip latencies 
due to main memory accesses such as I/D-cache miss, I/D-TLB 
miss, etc. The next two subsections present the details about how 
the on-chip and off-chip cycles of a BB are characterized and 
computed, respectively. 

4.2 On-chip CPI Characterization 
To determine the number of on-chip cycles a BB takes, a BB must 
be executed in a pipeline simulator e.g., sim-outorder. This on-chip 
cycle characterization is performed when the BB is 
visited/executed for the first time. Since the total number of cycles 
taken by the BB is comprised of on-chip and off-chip cycles, and 
the off-chip cycles are those cycles during which the whole 
pipeline is stalled i.e., the processor is waiting for the memory 
operation to finish, the on-chip cycle for a BB is obtained by 
subtracting the cycles for which the whole pipeline is stalled from 
the total number of cycles taken by the BB. 

However, it does not imply that the on-chip cycles for a BB 
can be characterized during any of its invocations by running it in a 
pipeline simulator. Consider a BB that is visited for the first time 
and has some instruction cache misses (since the instruction cache 
is initially cold, the chances for such occurrences are high). We 
may not correctly calculate the on-chip CPI for this BB on its first 
visit since the instruction cache miss on the following instruction 
may hide the data dependencies that exist between the missed 
instruction and the previous instructions on which it is dependent. 
We call this as a ‘first visit phenomenon’ and this phenomenon 
prevails in the early time of a program execution. 

Figure 2 shows an example to illustrate this situation. In the 
center of the figure, a BB being executed is shown. Assume that all 
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instructions in the BB take a single cycle and the 5th instruction 
(sub r2, r3, r1) is dependent on the 4th one. If there is no instruction 
cache miss, then the 5th instruction will have to wait for the 4th one 
to finish. Now consider that the 5th instruction misses in the cache 
(shown on the left side of Figure 2). In this case, the fetch is 
delayed by the memory latency and this buys enough time for the 
4th instruction to finish. When the 5th instruction is on the execution 
stage, the data it needs is ready. Hence, we may obtain two 
different ‘on-chip’ cycle counts for the same BB under these two 
cases.  

To avoid this misleading situation, we have executed a pipeline 
simulation for this type of BBs and give another chance to 
characterize. When there is no instruction cache miss on the 
following visit to BB (shown on the right side of Figure 2), we list 
this BB to the on-chip CPI information table. A threshold value of 
three for the number of times a BB is executed in the pipeline 
simulator is used before we decide to on-chip cycle of the BB to 
the table. If a BB cannot be characterized within 3 visits, the on-
chip cycle extracted in the last attempt is used. 

Once recorded on the table, the on-chip CPI information of 
each BB is never updated. Table 3 shows the information that is 
recorded for each of BBs in the on-chip CPI information table. The 
most important item is the number of cycles since the cache 
simulator does not know the on-chip latencies which can only be 
measured in the pipeline simulator. 

Table 3. Items in the “On-chip CPI Information Table” 

BB # No. of Visit No. of cycles On-chip CPI 

4.3 Off-Chip CPI Calculation 
To get the off-chip cycles of a BB takes, a cache simulator e.g., sim-
cache is used. Since the cache simulator can give the information of 
number of cache misses of a BB, this number can be simply used in 
conjunction with memory latency to derive the off-chip cycles taken 
by the BB. However, because the cache miss information can 
include the data cache miss, the information is not enough to 
generate the correct ‘off-chip’ cycles. This is due to the fact that not 
every data cache miss generates pipeline stall cycles equal to the 
memory latency specified for the architecture.  

In Figure 3, for example, the 3rd instruction (ld r1 0(r5)) loads 
the data in the register used by the 5th instruction (sub r2, r3, r1). 
Assume that the compiler has scheduled the 4th instruction (add r7, 
r8, r9) between two dependent instructions, 3rd and 5th. When this 
load instruction misses in the data cache, it does not stall the 
pipeline immediately since the following 4th instruction can still go 
on to finish, and only after that it stalls the pipeline since a 

dependent instruction is encountered. Due to this phenomenon, the 
actual pipeline stall cycle count in off-chip access is less than the 
actual memory latency.  

To circumvent this situation, we have used an approximation 
technique; During a BB characterization, if the current instruction is 
dependent on the previous load instruction and the dependencies are 
not satisfied yet then we will find the distance between these two 
instructions in terms of the number of instructions in between and 
use the distance as an approximate value of cycles that hide the 
actual memory latency. Hence the actual off-chip cycle counts are 
obtained by subtracting this distance from the memory latency. For 
example in Figure 3, this “latency-hiding” distance is 1 since there 
is only one instruction between two dependent instructions. 

For this situation, two factors should be considered: 1) The 
aforementioned calculation can only be done during the BB 
characterization step since the dependency check is made only in 
the pipeline simulator. 2) It may not always be possible to find this 
distance. If the load instruction does not result in a data cache miss 
during the characterization, then the dependency will be satisfied, 
therefore we will not be able to observe the dependency.  

Apart from this specific example, there can be multiple load 
instructions and multiple dependencies in a BB. When the same BB 
is executed in the cache simulator without knowing which load 
instructions end up with data cache misses, it is difficult to 
determine how many cycles the pipeline will be stalled due to the 
off-chip accesses. For this reason, we use the average distance to 
find the off-chip cycles when data cache miss occurs while the BB 
is being executed in the cache simulator. 
5. SIMULATOR FRAMEWORK 
In general, an application’s simulation time between the simple 
functional simulator (sim-fast) and the detailed pipeline simulator 
(sim-outorder) is one to two orders of magnitude different. [15]. 
This large performance difference results from two reasons: the 
amount of information that each simulators generates and the innate 
expensive nature of pipeline simulation. For the first reason, as an 
example, sim-fast generates number of instruction, sim-cache 
additionally generates number of cache access/hit/miss and number 
of TLB access/hit/miss, and sim-outorder generates all the 
necessary micro-architectural information by the simulation in the 
pipeline. For the second reason, executing all the way through the 
pipeline stages, i.e., fetch/dispatch/execute/write-back/commit, 
needs huge amount of time for calculations, status updates, 
dependency checks, branch prediction, speculative/wrong path 
execution, etc. 

Figure 2. Example of On-chip CPI Characterization w/ and w/o an 
Instruction Cache Miss in a Basic Block 
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Figure 3. Example of Off-chip CPI Calculation w/ and w/o a Data Cache 

Miss in a Basic Block 
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We thus present a framework for hybrid simulation engine, 
called B2Sim. Figure 4 depicts the flow diagram of B2Sim. In this 
figure, each of the small shaded boxes (A, B, C and D) represents 
a distinct BB within a program run and there are two types of 
micro-architecture simulators: a pipeline simulator (sim-outorder), 
and a simple cache simulator (sim-cache). When the simulation of 
an application program starts on B2Sim, each BB runs under the 
pipeline simulator. If the BB is encountered for the first time, on-
chip CPI characterization is performed as explained in section 4.2. 
If the same BB is encountered again at a later time and its on-chip 
CPI is characterized then simple cache simulator will be utilized. 
B2Sim executes the application program and updates the total 
simulation cycles based on the on-chip CPI from the table and 
off-chip cycle calculation based on cache miss data for that BB. 
Any time a new BB comes in, B2Sim switches to the pipeline 
execution mode, calculates and inserts the on-chip CPI for the 
new BB, if characterized. This simulator mode switching 
continues until the end of the simulation. 

Table 4. Benchmark Programs and Their Input Files 

Program Reference input file 
Actual 

execution 
time (sec) 

Number of 
instructions 

(billion) 
input.log 4 2.9 4.4 

input.source 4 5.3 8.8 
input.random 4 5.8 7.8 
input.graphic 4 6.3 9.4 

gzip 

input.program 4 8.9 16.8 
expr.i 11.9 15.1 

integrate.i 14.2 16.5 gcc 
166.i 62.3 57.0 

input.graphic 4 15.7 24.5 
input.program 4 12.4 20.1 bzip 
input.source 4 10.1 16.7 

mcf inp.in in train 55.8 20.1 
vortex lendian.raw in train 16.6 13.0 
djpeg custom.jpg 1.7 2.9 
cjpeg custom.gif 3.23 5.3 

 

Once a BB is characterized in terms of on-chip cycles it 
takes, the subsequent visits to this BB are run under cache 
simulator. However, during a subsequent visit to the BB, when we 
finish executing it and hence we encounter a branch instruction at 

the end of a BB we switch back to the pipeline simulator. This has 
to be done for two reasons. 1) We need to do branch prediction 
update since cache simulator does not support branch prediction 
update and we need to update the Branch Target Buffer (BTB) for 
consistent branch prediction 2) The pipeline simulator needs to do 
wrong path/speculative execution in order to get the correct CPI, 
because speculative execution is a part of the program behavior. 

6. SIMULATION ENVIRONMENT 
For the experiments of B2Sim, SPEC2000 benchmarks under 
different input files [13] are used. Details about application 
programs and the respective input files are reported on Table 4. 
Moreover, two programs from Media-bench [14] are used to 
complement the computationally intensive nature of SPEC2000 
benchmarks. In each experiment, programs are executed from 
start to end. (Herein, each set of benchmark program and its input 
file will be specified in an abbreviated manner e.g., gzip with 
input.log 4 is denoted by gzip-l.) 

For the host, three linux machines are used. They are AMD 
Athlon 2500+ with 1GB memory, Intel Pentium 4 2.5G with 1GB 
memory, and Intel Pentium 4 1.8G with 2GB memory. Each 
benchmark program is executed with one of the aforesaid host 
machines and the measurements of a program behavior under 
different input files are consistently done on the same host. 

Table 5. Simulation Time Comparisons 

Simulation Time (minutes) Program 
sim-cache sim-outorder B2Sim 

Speedup 

gzip-l 28 160 50 3.20 
gzip-s 55 334 107 3.12 
gzip-r 51 295 99 2.98 
gzip-g 60 365 119 3.06 
gzip-p 105 646 213 3.03 
gcc-e 62 417 132 3.16 
gcc-i 66 444 135 3.29 

gcc-166 233 1505 452 3.33 
bzip-g 129 696 191 3.64 
bzip-p 107 590 162 3.62 
bzip-s 90 489 135 3.54 
mcf 116 739 223 3.31 

vortex 60 404 117 3.45 
djpeg 17 94 26 3.61 
cjpeg 32 187 57 3.28 

7. EXPERIMENTAL RESULTS 
We measure the performance of B2Sim and compare the results in 
terms of the simulation time speedup and the average CPI error 
with respect to the pipeline simulator. [11]. Table 5 and Figure 5 
show the experimental results. 

In Table 5, we show the overall simulation time for seven 
benchmark programs under cache simulator, pipeline simulator, 
and B2Sim, respectively. The corresponding simulation time 
speedup between B2Sim and pipeline simulator is also shown. The 
simulation time of cache simulator is shown as a reference. Based 
on our experiments, the simulation time speedup of B2Sim over 
detailed pipeline simulator ranges from a factor 2.98 to 3.64 while 
the average simulation time speedup is a factor of 3.31.  

In Figure 5, we show the CPI error obtained in between 
B2Sim and the pipeline simulator. The CPI error ranges from 

 
Figure 4.  B2Sim Flow Diagram 
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0.05% to 1.25% while the average CPI error is just 0.57%. Note 
that the new simulator not only generates the CPI information but 
also generates other results including I/D-cache access/hit/misses, 
I/D TLB access/hit/misses, etc. As explained in section 4.2, BBs 
are characterized when there are no instruction cache misses, but 
there may be instruction cache misses on some consecutive visits 
to the same BB. Hence, the on-chip cycles accounted for this BB 
may or may not be larger than the actual on-chip cycles. This 
introduces some errors in CPI calculation. However, since 
instruction cache misses are quite low, the error introduced is very 
small. Note also that some CPI errors come from inter-basic block 
data dependency which is hard to characterize. 
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Figure 5. Overall Average CPI Error 
Figure 6 shows the relationship between the speedup that we 

achieved and the instruction per branch (IPB) which is extracted 
from the simulation output log file. The points in the dotted line 
denote the speedup factor whereas the points in the solid line 
denote the IPB. Basically two types of code structural factors 
affect the speedup of B2Sim: 1) size of the BBs that program visit 
2) occurrence frequency of BBs that the programs execute. Since 
the IPB has a combined nature of these two factors, the value 
changes of IPB closely correlated with the speedup that we 
achieved in B2Sim. The minor variation between the two plots 
comes from the non linear relationship between speedup and IPB.  
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Figure 6. Comparison Between the Speedup of B2Sim and the 

Instructions Per Branch (IPB) 
Clearly, the maximum speedup that B2Sim can achieve is the 

speed of cache simulator which is about 6X based on Table 5. 
However, since every BB is run at least once in a pipeline 
simulator for the on-chip CPI characterization and due to branch 
prediction, some difference exists between the sim-cache speedup 
and the actual speedup of B2Sim. 

8. CONCLUSIONS 
In this paper, we proposed a novel simulator called B2Sim, which 
dramatically reduces the simulation time of a program within a 
micro-architecture simulator using the ideas of: 1) Separating the 

on-chip and off-chip cycles within a basic block. 2) Making use 
of pipeline simulator for the on-chip CPI characterization in each 
basic block and saving the on-chip CPI value in a lookup table to 
avoid the redundant use of pipeline simulator for the same basic 
block. 3) Making use of a fast cache simulator for the off-chip 
CPI calculation of all the basic blocks. 

Our experimental results show that we speedup simulation 
time by 3.31 on average compared to the detailed pipeline 
simulator with an average CPI error of less than 1%. Compared to 
previous popular approaches [1][5], speedup that B2Sim has 
achieved is not an order of magnitude reduction, however, it is 
highly accurate, deterministic, and has finer level of granularity. 
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