
B2Sim: A Fast Micro-Architecture Simulator Based on
Basic Block Characterization

Wonbok Lee
Department of Electrical Engineering

University of Southern California
Los Angeles CA 90089

(213) 821-4206
wonbokle@usc.edu

Kimish Patel
Department of Electrical Engineering

University of Southern California
Los Angeles CA 90089

(213) 821-4206
kimishpa@usc.edu

Massoud Pedram
Department of Electrical Engineering

University of Southern California
Los Angeles CA 90089

(213)-740-4458
pedram@usc.edu

ABSTRACT
State-of-the-art architectural simulators support cycle accurate
pipeline execution of application programs. However, it takes
days and weeks to complete the simulation of even a moderate-
size program. During the execution of a program, program
behavior does not change randomly but changes over time in a
predictable/periodic manner. This behavior provides the
opportunity to limit the use of a pipeline simulator. More
precisely, this paper presents a hybrid simulation engine, named
B2Sim for (cycle-characterized) Basic Block based Simulator,
where a fast cache simulator e.g., sim-cache and a slow pipeline
simulator e.g., sim-outorder are employed together. B2Sim
reduces the runtime of architectural simulation engines by making
use of the instruction behavior within executed basic blocks. We
have integrated B2Sim into SimpleScalar and have achieved on
average a factor of 3.3 times speedup on the SPEC2000
benchmark and Media-bench programs compared to conventional
pipeline simulator while maintaining the accuracy of the
simulation results with less than 1% CPI error on average.
Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement techniques,
Modeling techniques B.8.2 [Performance and Reliability]:
Performance Analysis and Design Aids
General Terms
Measurement, Performance, Design
Keywords
Micro-architecture simulation, Program behavior, Basic block

1. INTRODUCTION
Every program shows behavior changes during its execution time.
In general, program behaviors are represented in terms of cycle
per instructions (CPI), I/D-cache miss count, number of branches,
power, etc. Over an execution of the program, this behavior
changes appear irregular but they often possess certain repetitive
patterns. For example, general MPEG player programs repeatedly
read, decode, and dither the image in each frame of a video
stream. In code level, this phenomenon is highly expected since
same piece of source code, i.e. functions, libraries, system calls,
are being executed again and again in a recurring manner.

There are a number of architectural simulators that emulate the
real program’s behaviors and basically they have been developed in
two directions: the first direction is to provide simple simulators that
can trade-off the amount of information they generate versus the
amount of time they spend for the simulation. In this case, the
architectural simulator provides ‘just enough’ information about the
micro-architecture that developers need but takes short simulation
times. The second direction is to provide all the detailed pipeline
simulation information that micro-architecture developer needs by
sacrificing the simulation speed. Both directions are important in the
sense that they capture either a specific or a general system’s
behavior, respectively.

Especially for the detailed pipeline simulators, their simulation
time becomes order of five to six times slower compared to the
program’s actual execution time in a real system [1]. For this reason,
micro-architecture researchers have tried either to develop a faster
simulator or to find methods to obtain the simulation results from
the existing simulators in a short time.

Program phase detection [2][3][4] has proven to be an effective
method of rapidly obtaining the simulation results (albeit with some
accuracy losses.) By nature, however, this phase detection approach
has three obstacles to overcome: difficulty of picking the correct
granularity for phase detection, “hasty” phase determination during
the program initialization, and need for correctly and uniquely
determining the program phase. The first problem is under what
interval the phase is to be detected. Depending on this granularity,
simulation results can be interpreted in a different way. The second
problem hinders us from detecting the correct phase since it
generates misleading information when we profile/detect phases in
an early stage of a program execution. During the initial execution
time in most of the programs, the behavior changes in a quite
irregular/unexpected manner with mostly no cyclic/repeated
behavior observed. The third problem is the most costly one since
we need to run pipeline simulation from a program start to the end
in order to both check the phase similarity of each interval and
determine the uniqueness of each phase.

In this paper, we propose a novel hybrid micro-architecture
simulator that analyzes the code behavior in a fine granularity,
extracts some architectural metrics, and calculates the overall
distribution of CPI in a program based on a memory access
behavior in a basic block, which leads to a dramatic reduction of
simulation time and ultimately solve the above three obstacles.

2. PRIOR WORK
Due to innate slow nature of the pipeline micro-architecture
simulators, lots of research effort has been concentrated in making
these simulators faster. Previous acceleration approaches in micro-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CODES+ISSS'06, October 22-25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-370-0/06/0010...$5.00.

199

architecture simulation can be divided mainly in two categories:
sampling/phase based approaches and instruction set compiled
simulation based approaches. Sampling/phase based approaches are
based on selecting intervals that are representatives of the program
behavior, executing detailed pipeline simulation only for those
intervals, resulting in high speedup. On the other hand, instruction
set compiled simulation based approaches translates the executable
binary from target machine’s instructions to the host machine’s
instruction either by static or dynamic compilation and achieve high
speedup.

Many of the recently published papers in this domain are based
on sampling/phase based approaches. In [2][3][4], Sherwood et al,
suggest the use of repetitious manner of a program as ‘phases’ with
the SPEC95 benchmark. Basically, they found two folds in a
program behavior: 1) it converges to a steady state 2) it has a cyclic
behavior. Based on those observations, they proposed a phase
detection technique to find all the distinct phases of a program, and
use it to reduce simulation time by running the pipeline simulation
only once for each of those distinct phases which are representatives
of the whole program behavior. Later, Hamerly et al. utilize this
phase idea and made a simulator called SimPoint [5], which
performs off-line phase classification. In [1], Roland et al. propose a
sampling based micro-architecture simulation framework to enable
fast and accurate performance measurements. They accelerate
simulation by selecting minimal subset of instruction stream from a
total instruction stream and developed a simulator called SMARTS.
In [6], Dhodapkar et al. detect a program phase with the instruction
working set. They also make a comparative study in three phase
detection techniques: instruction working set based, phase based,
and conditional branch counts based. Their experimental results
show that phase based technique achieve better performance than
the other techniques.

The other category of simulation speed acceleration techniques
include the use of compiled instruction set simulators [7][8][9].
Compiled instruction set simulators are fast since they remove the
expensive decoding stage of the interpretive simulators like,
Simplescalar [11] at the expense of flexibility and accuracy. In [7],
authors try to combine the benefits of the traditional interpretive
simulator, namely the flexibility, with the speed of compiled
instruction set simulator by re-decoding the instructions dynamically
in case of previously decoded instructions have changed. In [8],
authors propose an idea of not interpreting the instruction but
translating it to the host machine’s only if it is more profitable (in
terms of time), and make use of ‘Just in Time’ compiler to do
dynamic translation of multiple basic blocks in order to exploit
instruction level parallelism (ILP) offered by the host processor.

In [10], the authors accelerate the simulation for the instruction
cache. They build an abstract model of each piece of program code,
use an approximate model of the instruction cache, and propose a
conflict-based simulation time reduction technique for instruction
cache under a multi-tasking paradigm. This approach is applicable
solely to instruction cache simulator.

Existing ‘simulation time reduction’ approaches for
architectural simulation are mainly based on either phase
identification or statistical sampling. Especially for the former
approaches, they need functional simulation level pre-processing to
profile phase information, determine the phase similarities, and fulfill
the pipeline simulation for the distinct phases that they found ahead.

The contribution and the distinction of the paper are 5 folds.
 Efficiency: B2Sim uses pipeline simulator minimally i.e.,

every basic block will be executed in pipeline simulator
once and redundant execution is avoided.

 Accuracy: B2Sim is deterministic and fully
acknowledges the unpredictable program behaviors
during the initial program execution time and accurately
computes CPI.

 No need for static profiling: B2Sim does not have to
identify the region of unique behaviors (phases) with a
run of functional simulation. Neither any clustering
method nor any profiling is necessary for the phase
similarity check. [5]

 No need for fast-forwarding or warming: B2Sim does
away with multiple fast-forwarding/warming steps,
which have been inevitable in previous simulation
acceleration techniques. [1]

 Granularity: B2Sim has high accuracy and detects
phases in a flexible fine-granularity manner because the
granularity of B2Sim is that of a basic block.

The remainder of the paper is organized as follows: In section
3, we specify the motivational observations of this paper. Section 4
covers the theoretical backgrounds and section 5 will show the
simulator framework. In section 6, we show the simulation
environment and section 7 shows the experimental results. Lastly,
section 8 is the conclusions.

Table 1. Micro-Architecture Parameters

3. MOTIVATIONAL OBSERVATTIONS
Once compiled, the structure of a program remains the same and
the static scheduling of instructions made by the compiler does
not change at run time. The same is true for input/output data
dependencies that exist between different instructions. The on-
chip behavior of a block of code is thus defined by the data
dependencies that exist between different instructions of the
block. Hence, every time a block of code, for example, a basic
block, is executed, the number of on-chip cycles it takes remains
the same. However, the same cannot be said about the number of
CPU cycles due to off-chip accesses caused in the basic block.

During a program’s execution, many blocks of the code are
visited multiple times. As shown in Figure 1, for example, block
#k is visited twice in the execution timeline. In both block
invocations, the structure of the code and existing data
dependencies among the instructions in the block do not change.

Main Memory Latency 32 cycles

L1 I/D Cache 32KB 32-way 32Byte block
1 cycle hit latency

I/D-TLB 4-way 1024 entries
32 cycles miss latency

Branch Predictor Bimodal 128 Table

Functional Units 1 INT ALU, 1 INT MULT/DIV
1 FP ALU, 1 FP MULT/DIV

RUU/LSQ size 8/8
Instruction Fetch Queue 8

In order Issue True
Wrong Path Execution True

200

Hence, the on-chip behavior of this block remains the same.
However, this does not guarantee that the number of cycles taken
by this block, at times T1 and T2 are the same. This is due to the
memory related instructions, i.e., loads and stores, inside the
block whose behavior changes over the execution and the off-chip
behavior depends on cache and/or TLB configuration and status.
As a result, the total cycle count taken by the block may vary.
This is the core observation of this paper. We separate out the on-
chip and off-chip behaviors of a block and utilize the consistency
of on-chip behavior of a block over the execution.

Figure 1. Motivational Observations

Table 2 shows the on-chip CPI variance of some of the most
frequently visited basic blocks for a number of benchmark
programs. (The benchmark programs will be explained in section
4). We choose two frequently visited basic blocks in each
programs, calculate their average on-chip CPI, and further
calculate the variance of on-chip CPI for the first 100 invocations
of each of these basic blocks. As shown, the CPI variances are
quite small, i.e. on-chip CPI within each basic block remains
nearly constant over visit times. Actually, on-chip CPI variance
can be zero, but very small error in CPI variance comes from the
‘first visit phenomenon’ explained in section 4.2. Moreover, if we
calculate the variance for even larger visit count of each basic
block, then the on-chip CPI variance would go to zero.

Table 2. On-chip CPI Variation of Some Frequently Visited
Basic Blocks for its First 100 Visits

Program BB Size
(inst #)

Number
of visit

Avg. on-
chip CPI

On-chip CPI
variance in first

100 visits
21 41.9M 1.333 2.0e-4

gzip-g
45 12.0M 1.356 5.3E-6
12 77.1M 1.667 0

gcc-e
37 27.2M 1.215 2.9e-5
44 35.5M 1.408 2.3e-4

bzip-p
69 20.8M 1.231 1.9e-5
16 93.2M 1.624 3.9e-5

mcf
137 16.5M 1.400 6.4e-5
20 44.6M 1.596 7.9e-4

vortex
38 26.3M 1.581 1.3e-3
34 21.6M 1.384 2.3e-4

djpeg
181 2.7M 1.143 1.5e-5
37 21.6M 1.403 2.6e-4

cjpeg
154 3.5M 1.117 0

4. THEORETICAL BACKGROUND
During a program execution, program behavior (which we call a
phase) may vary over time. Generally, these behavior changes are

represented by micro-architecture metrics such as the I/D-cache
miss count, on/off-chip stall counts, cycle per instruction (CPI),
etc. In this paper, we verify the validity of B2Sim with CPI errors.
Table 1 shows the micro-architecture parameters that we used for
our simulation. Most of the parameter settings are obtained from
[12], except the ‘in order issue’ parameter.
4.1 Basic Block Classification
The basic block (BB) is defined as a set of instructions which has
a single entry point and a single exit point, between which there
is no incoming/outgoing control-related instructions. At the
source code level, a BB contains instructions starting from a
branch’s target instruction up to the next branch instruction in a
sequential code flow. A BB is a suitable entity to capture the
program phase within which the source code flow is always the
same on every visit, consequently, there is a high chance to
repeat its architectural behavior inside.

Conceptually speaking, a BB can be classified into two groups:
static/spatial basic blocks (SBB) and temporal basic blocks (TBB).
SBB is a unit within which the overall CPI remains relatively
constant. It has either no memory-related instructions or has
memory-related instructions but no cache miss occurs in every visit.
On the contrary, TBB is a unit within which the overall CPI varies
by a large amount on every visit to the BB due to the memory-
related instructions and its dependences on the cache/TLB status.
For either type of the BB, we can decompose the overall CPI in
two components: on-chip CPI and off-chip CPI. On-chip CPI
comes from instructions which cause on-chip latencies due to
register-register transfers, arithmetic-logic operations, data and
control hazards, pipeline stalls, branch miss prediction, etc. Off-
chip CPI comes from instructions which cause off-chip latencies
due to main memory accesses such as I/D-cache miss, I/D-TLB
miss, etc. The next two subsections present the details about how
the on-chip and off-chip cycles of a BB are characterized and
computed, respectively.

4.2 On-chip CPI Characterization
To determine the number of on-chip cycles a BB takes, a BB must
be executed in a pipeline simulator e.g., sim-outorder. This on-chip
cycle characterization is performed when the BB is
visited/executed for the first time. Since the total number of cycles
taken by the BB is comprised of on-chip and off-chip cycles, and
the off-chip cycles are those cycles during which the whole
pipeline is stalled i.e., the processor is waiting for the memory
operation to finish, the on-chip cycle for a BB is obtained by
subtracting the cycles for which the whole pipeline is stalled from
the total number of cycles taken by the BB.

However, it does not imply that the on-chip cycles for a BB
can be characterized during any of its invocations by running it in a
pipeline simulator. Consider a BB that is visited for the first time
and has some instruction cache misses (since the instruction cache
is initially cold, the chances for such occurrences are high). We
may not correctly calculate the on-chip CPI for this BB on its first
visit since the instruction cache miss on the following instruction
may hide the data dependencies that exist between the missed
instruction and the previous instructions on which it is dependent.
We call this as a ‘first visit phenomenon’ and this phenomenon
prevails in the early time of a program execution.

Figure 2 shows an example to illustrate this situation. In the
center of the figure, a BB being executed is shown. Assume that all

201

instructions in the BB take a single cycle and the 5th instruction
(sub r2, r3, r1) is dependent on the 4th one. If there is no instruction
cache miss, then the 5th instruction will have to wait for the 4th one
to finish. Now consider that the 5th instruction misses in the cache
(shown on the left side of Figure 2). In this case, the fetch is
delayed by the memory latency and this buys enough time for the
4th instruction to finish. When the 5th instruction is on the execution
stage, the data it needs is ready. Hence, we may obtain two
different ‘on-chip’ cycle counts for the same BB under these two
cases.

To avoid this misleading situation, we have executed a pipeline
simulation for this type of BBs and give another chance to
characterize. When there is no instruction cache miss on the
following visit to BB (shown on the right side of Figure 2), we list
this BB to the on-chip CPI information table. A threshold value of
three for the number of times a BB is executed in the pipeline
simulator is used before we decide to on-chip cycle of the BB to
the table. If a BB cannot be characterized within 3 visits, the on-
chip cycle extracted in the last attempt is used.

Once recorded on the table, the on-chip CPI information of
each BB is never updated. Table 3 shows the information that is
recorded for each of BBs in the on-chip CPI information table. The
most important item is the number of cycles since the cache
simulator does not know the on-chip latencies which can only be
measured in the pipeline simulator.

Table 3. Items in the “On-chip CPI Information Table”

BB # No. of Visit No. of cycles On-chip CPI

4.3 Off-Chip CPI Calculation
To get the off-chip cycles of a BB takes, a cache simulator e.g., sim-
cache is used. Since the cache simulator can give the information of
number of cache misses of a BB, this number can be simply used in
conjunction with memory latency to derive the off-chip cycles taken
by the BB. However, because the cache miss information can
include the data cache miss, the information is not enough to
generate the correct ‘off-chip’ cycles. This is due to the fact that not
every data cache miss generates pipeline stall cycles equal to the
memory latency specified for the architecture.

In Figure 3, for example, the 3rd instruction (ld r1 0(r5)) loads
the data in the register used by the 5th instruction (sub r2, r3, r1).
Assume that the compiler has scheduled the 4th instruction (add r7,
r8, r9) between two dependent instructions, 3rd and 5th. When this
load instruction misses in the data cache, it does not stall the
pipeline immediately since the following 4th instruction can still go
on to finish, and only after that it stalls the pipeline since a

dependent instruction is encountered. Due to this phenomenon, the
actual pipeline stall cycle count in off-chip access is less than the
actual memory latency.

To circumvent this situation, we have used an approximation
technique; During a BB characterization, if the current instruction is
dependent on the previous load instruction and the dependencies are
not satisfied yet then we will find the distance between these two
instructions in terms of the number of instructions in between and
use the distance as an approximate value of cycles that hide the
actual memory latency. Hence the actual off-chip cycle counts are
obtained by subtracting this distance from the memory latency. For
example in Figure 3, this “latency-hiding” distance is 1 since there
is only one instruction between two dependent instructions.

For this situation, two factors should be considered: 1) The
aforementioned calculation can only be done during the BB
characterization step since the dependency check is made only in
the pipeline simulator. 2) It may not always be possible to find this
distance. If the load instruction does not result in a data cache miss
during the characterization, then the dependency will be satisfied,
therefore we will not be able to observe the dependency.

Apart from this specific example, there can be multiple load
instructions and multiple dependencies in a BB. When the same BB
is executed in the cache simulator without knowing which load
instructions end up with data cache misses, it is difficult to
determine how many cycles the pipeline will be stalled due to the
off-chip accesses. For this reason, we use the average distance to
find the off-chip cycles when data cache miss occurs while the BB
is being executed in the cache simulator.
5. SIMULATOR FRAMEWORK
In general, an application’s simulation time between the simple
functional simulator (sim-fast) and the detailed pipeline simulator
(sim-outorder) is one to two orders of magnitude different. [15].
This large performance difference results from two reasons: the
amount of information that each simulators generates and the innate
expensive nature of pipeline simulation. For the first reason, as an
example, sim-fast generates number of instruction, sim-cache
additionally generates number of cache access/hit/miss and number
of TLB access/hit/miss, and sim-outorder generates all the
necessary micro-architectural information by the simulation in the
pipeline. For the second reason, executing all the way through the
pipeline stages, i.e., fetch/dispatch/execute/write-back/commit,
needs huge amount of time for calculations, status updates,
dependency checks, branch prediction, speculative/wrong path
execution, etc.

Figure 2. Example of On-chip CPI Characterization w/ and w/o an
Instruction Cache Miss in a Basic Block

E
xe

cu
tio

n

E
xe

cu
tio

n

Figure 3. Example of Off-chip CPI Calculation w/ and w/o a Data Cache

Miss in a Basic Block

202

We thus present a framework for hybrid simulation engine,
called B2Sim. Figure 4 depicts the flow diagram of B2Sim. In this
figure, each of the small shaded boxes (A, B, C and D) represents
a distinct BB within a program run and there are two types of
micro-architecture simulators: a pipeline simulator (sim-outorder),
and a simple cache simulator (sim-cache). When the simulation of
an application program starts on B2Sim, each BB runs under the
pipeline simulator. If the BB is encountered for the first time, on-
chip CPI characterization is performed as explained in section 4.2.
If the same BB is encountered again at a later time and its on-chip
CPI is characterized then simple cache simulator will be utilized.
B2Sim executes the application program and updates the total
simulation cycles based on the on-chip CPI from the table and
off-chip cycle calculation based on cache miss data for that BB.
Any time a new BB comes in, B2Sim switches to the pipeline
execution mode, calculates and inserts the on-chip CPI for the
new BB, if characterized. This simulator mode switching
continues until the end of the simulation.

Table 4. Benchmark Programs and Their Input Files

Program Reference input file
Actual

execution
time (sec)

Number of
instructions

(billion)
input.log 4 2.9 4.4

input.source 4 5.3 8.8
input.random 4 5.8 7.8
input.graphic 4 6.3 9.4

gzip

input.program 4 8.9 16.8
expr.i 11.9 15.1

integrate.i 14.2 16.5 gcc
166.i 62.3 57.0

input.graphic 4 15.7 24.5
input.program 4 12.4 20.1 bzip
input.source 4 10.1 16.7

mcf inp.in in train 55.8 20.1
vortex lendian.raw in train 16.6 13.0
djpeg custom.jpg 1.7 2.9
cjpeg custom.gif 3.23 5.3

Once a BB is characterized in terms of on-chip cycles it
takes, the subsequent visits to this BB are run under cache
simulator. However, during a subsequent visit to the BB, when we
finish executing it and hence we encounter a branch instruction at

the end of a BB we switch back to the pipeline simulator. This has
to be done for two reasons. 1) We need to do branch prediction
update since cache simulator does not support branch prediction
update and we need to update the Branch Target Buffer (BTB) for
consistent branch prediction 2) The pipeline simulator needs to do
wrong path/speculative execution in order to get the correct CPI,
because speculative execution is a part of the program behavior.

6. SIMULATION ENVIRONMENT
For the experiments of B2Sim, SPEC2000 benchmarks under
different input files [13] are used. Details about application
programs and the respective input files are reported on Table 4.
Moreover, two programs from Media-bench [14] are used to
complement the computationally intensive nature of SPEC2000
benchmarks. In each experiment, programs are executed from
start to end. (Herein, each set of benchmark program and its input
file will be specified in an abbreviated manner e.g., gzip with
input.log 4 is denoted by gzip-l.)

For the host, three linux machines are used. They are AMD
Athlon 2500+ with 1GB memory, Intel Pentium 4 2.5G with 1GB
memory, and Intel Pentium 4 1.8G with 2GB memory. Each
benchmark program is executed with one of the aforesaid host
machines and the measurements of a program behavior under
different input files are consistently done on the same host.

Table 5. Simulation Time Comparisons

Simulation Time (minutes) Program
sim-cache sim-outorder B2Sim

Speedup

gzip-l 28 160 50 3.20
gzip-s 55 334 107 3.12
gzip-r 51 295 99 2.98
gzip-g 60 365 119 3.06
gzip-p 105 646 213 3.03
gcc-e 62 417 132 3.16
gcc-i 66 444 135 3.29

gcc-166 233 1505 452 3.33
bzip-g 129 696 191 3.64
bzip-p 107 590 162 3.62
bzip-s 90 489 135 3.54
mcf 116 739 223 3.31

vortex 60 404 117 3.45
djpeg 17 94 26 3.61
cjpeg 32 187 57 3.28

7. EXPERIMENTAL RESULTS
We measure the performance of B2Sim and compare the results in
terms of the simulation time speedup and the average CPI error
with respect to the pipeline simulator. [11]. Table 5 and Figure 5
show the experimental results.

In Table 5, we show the overall simulation time for seven
benchmark programs under cache simulator, pipeline simulator,
and B2Sim, respectively. The corresponding simulation time
speedup between B2Sim and pipeline simulator is also shown. The
simulation time of cache simulator is shown as a reference. Based
on our experiments, the simulation time speedup of B2Sim over
detailed pipeline simulator ranges from a factor 2.98 to 3.64 while
the average simulation time speedup is a factor of 3.31.

In Figure 5, we show the CPI error obtained in between
B2Sim and the pipeline simulator. The CPI error ranges from

Figure 4. B2Sim Flow Diagram

203

0.05% to 1.25% while the average CPI error is just 0.57%. Note
that the new simulator not only generates the CPI information but
also generates other results including I/D-cache access/hit/misses,
I/D TLB access/hit/misses, etc. As explained in section 4.2, BBs
are characterized when there are no instruction cache misses, but
there may be instruction cache misses on some consecutive visits
to the same BB. Hence, the on-chip cycles accounted for this BB
may or may not be larger than the actual on-chip cycles. This
introduces some errors in CPI calculation. However, since
instruction cache misses are quite low, the error introduced is very
small. Note also that some CPI errors come from inter-basic block
data dependency which is hard to characterize.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

gz
ip

-l

gz
ip

-s

gz
ip

-r

gz
ip

-g

gz
ip

-p

gc
c-

e

gc
c-

i

gc
c-

16
6

bz
ip

-g

bz
ip

-p

bz
ip

-s

m
cf

vo
rte

x

dj
pe

g

cj
pe

g

C
PI

 e
rro

r(
%

)

Figure 5. Overall Average CPI Error
Figure 6 shows the relationship between the speedup that we

achieved and the instruction per branch (IPB) which is extracted
from the simulation output log file. The points in the dotted line
denote the speedup factor whereas the points in the solid line
denote the IPB. Basically two types of code structural factors
affect the speedup of B2Sim: 1) size of the BBs that program visit
2) occurrence frequency of BBs that the programs execute. Since
the IPB has a combined nature of these two factors, the value
changes of IPB closely correlated with the speedup that we
achieved in B2Sim. The minor variation between the two plots
comes from the non linear relationship between speedup and IPB.

2

2.5

3

3.5

4

4.5

5

gz
ip

-l

gz
ip

-s

gz
ip

-r

gz
ip

-g

gz
ip

-p

gc
c-

e

gc
c-

i

gc
c-

16
6

bz
ip

-g

bz
ip

-p

bz
ip

-s

m
cf

vo
rt

ex

dj
pe

g

cj
pe

g

S
pe

ed
up

1
3
5
7
9
11
13
15
17

In
st

ru
ct

io
n

Pe
r B

ra
nc

h
(IP

B
)

Speedup Instruction per Branch

Figure 6. Comparison Between the Speedup of B2Sim and the

Instructions Per Branch (IPB)
Clearly, the maximum speedup that B2Sim can achieve is the

speed of cache simulator which is about 6X based on Table 5.
However, since every BB is run at least once in a pipeline
simulator for the on-chip CPI characterization and due to branch
prediction, some difference exists between the sim-cache speedup
and the actual speedup of B2Sim.

8. CONCLUSIONS
In this paper, we proposed a novel simulator called B2Sim, which
dramatically reduces the simulation time of a program within a
micro-architecture simulator using the ideas of: 1) Separating the

on-chip and off-chip cycles within a basic block. 2) Making use
of pipeline simulator for the on-chip CPI characterization in each
basic block and saving the on-chip CPI value in a lookup table to
avoid the redundant use of pipeline simulator for the same basic
block. 3) Making use of a fast cache simulator for the off-chip
CPI calculation of all the basic blocks.

Our experimental results show that we speedup simulation
time by 3.31 on average compared to the detailed pipeline
simulator with an average CPI error of less than 1%. Compared to
previous popular approaches [1][5], speedup that B2Sim has
achieved is not an order of magnitude reduction, however, it is
highly accurate, deterministic, and has finer level of granularity.

REFERENCES
[1] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, J. C. Hoe,

“SMARTS: Accelerating Micro-architecture Simulation via
Rigorous Statistical Sampling,” In Proceedings of Int’l
Symposium on Computer Architecture (ISCA), Jun. 2003.

[2] Tim. Sherwood, B. Calder, “Time Varying Behavior of
Programs,” UCSD Technical Reports, Aug. 1999.

[3] Tim. Sherwood, E. Perelman, B. Calder, “Basic Block
Distribution Analysis to Find Periodic Behaviors and
Simulation Points in Applications,” In Proceedings of Int’l
Conference on Parallel Micro-architectures and
Compilation Techniques (PACT), Sep. 2001.

[4] Tim. Sherwood, Suleyman Sair, B. Calder., “Phase Tracking
and Prediction,” In Proceedings of Int’l Symposium on
Computer Architecture (ISCA), Jun. 2003.

[5] G. Hamerly, E. Perelman, J. Lau, B. Calder, “Simpoint 3.0:
Faster and More Flexible Program Analysis,” Journal of
Instruction Level Parallelism 7 (JILP), 2005.

[6] A. S. Dhodapkar, J. E. Smith, “Comparing Program Phase
Detection Techniques,” In Proceedings of Int’l Symposium
on Micro-architecture (MICRO), Dec. 2003.

[7] M. Reshadi, P. Mishra, Nikil Dutt, “Instruction Set Compiled
Simulation: A Technique for Fast and Flexible Instruction
Set Simulation,” In Proceeding of Design Automation
Conference (DAC), Jun. 2003.

[8] W. Mong, J. Zhu, “DynamoSim: A Trace-based
Dynamically Compiled Instruction Set Simulator,” In
Proceedings of Int’l Conference on Computer Aided Design
(ICCAD), Oct. 2004.

[9] A. Nohl, G. Braun, O. Schliebusch, R. Leupers, H. Meyer, A.
Hoffman, “A Universal Technique for Fast and Flexible
Instruction-Set Architecture Simulation,” In Proceedings of
Design Automation Conference (DAC), June, 2002.

[10] M. Lajolo, L. Lavagno, A. S. Vincentelli, “Fast Instruction
Cache Simulation Strategies in a Hardware/Software Co-
design Environment,” In Proceedings of Asia and South
Pacific Design Automation Conference (ASP-DAC), 1999.

[11] SimpleScalar LLC: http://www.simplescalar.com/
[12] T. Meyerowitz, A. S. Vincentelli, "Modeling Micro-

architectural Performance using Metropolis: Memory System
Modeling," SRC Report, Feb. 2003.

[13] Standard Performance Evaluation Corporation (SPEC)
http://www.spec.org

[14] C. Lee, M. Potkonjak, W. H. Mangione-Smith,
“MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communications Systems,” In Proceedings
of Int’l Symposium on Micro-architecture (MICRO), 1997.

[15] Simple tutorial version 4 at: http://www.simplescalar.com/

204

