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ABSTRACT

The tremendous progress of autoencoders and generative adversarial networks
(GANs) has led to their application to multiple critical tasks, such as fraud de-
tection and sanitized data generation. This increasing adoption has fostered the
study of security and privacy risks stemming from these models. However, previ-
ous works have mainly focused on membership inference attacks. In this work, we
explore one of the most severe attacks against machine learning models, namely
the backdoor attack, against both autoencoders and GANs. The backdoor attack
is a training time attack where the adversary implements a hidden backdoor in
the target model that can only be activated by a secret trigger. State-of-the-art
backdoor attacks focus on classification-based tasks. We extend the applicability
of backdoor attacks to autoencoders and GAN-based models. More concretely,
we propose the first backdoor attack against autoencoders and GANs where the
adversary can control what the decoded or generated images are when the back-
door is activated. Our results show that the adversary can build a backdoored
autoencoder that returns a target output for all backdoored inputs, while behav-
ing perfectly normal on clean inputs. Similarly, for the GANs, our experiments
show that the adversary can generate data from a different distribution when the
backdoor is activated, while maintaining the same utility when the backdoor is
not.

1 INTRODUCTION

Machine learning (ML) is progressing rapidly, with models such as autoencoders and generative ad-
versarial networks (GANs) attracting a large amount of attention. This tremendous progress has led
to the adaptation of both autoencoders and GANs in multiple industrial applications. For instance,
autoencoders are currently being used as anomaly and fraud detection (Schreyer et al., 2017). Fur-
thermore, GANs are used to generate sanitized datasets (Acs et al., 2017; Jordon et al., 2019; Xie
et al., 2018), and realistic – fake – images that humans cannot differentiate from real ones (Goodfel-
low et al., 2014; Vinyals et al., 2015).

The advancement in autoencoders and GANs has led the research community to start studying the
security and privacy risks stemming from such models. However, current works have mainly focused
on membership inference attacks against generative models (Hayes et al., 2019; Chen et al., 2020a).
In this work, we study one of the most severe machine learning attacks, namely the backdoor attack,
against autoencoders and GANs.

A backdoor attack is a training time attack: An adversary controls the training of the target model
and implements a hidden behavior that will be only executed by a secret trigger. State-of-the-art
backdoor attacks focus on image classification models (Gu et al., 2017; Liu et al., 2019; Salem et al.,
2020b), NLP-based models, e.g., sentiment analysis, and neural machine translation (Chen et al.,
2020b). In this work, we extend the applicability of the backdoor attacks to include autoencoders
and GANs. Backdooring autoencoders and GANs can result in severe damages, such as bypassing
anomaly and fraud detection systems or enabling the backdoored GANs to generate data from a
different distribution when triggered. The latter could be used to generate unfair data when triggered,
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thereby violating fairness. Moreover, in the case of sanitized data generation, it can enable the
adversary to control the generated data.

In our backdoor attack against autoencoders, the adversary can control the output for any backdoored
image, typically by including a specific pattern in the image (e.g., a white square). For instance,
she can set the output to be a fixed image, or can make it more complex by setting the output to the
inverse of the image. Our experiments show that our backdoored autoencoders have a good backdoor
performance, i.e., the autoencoders output the reverse of all backdoored inputs, while maintaining
the utility on clean data. More concretely, for the CelebA dataset, our attack is able to achieve
0.0036 mean squared error (MSE) for the backdoored inputs (the MSE, in this case, is calculated
between the output of the model and the inverse of the input), while reaching 0.0031 MSE on clean
images, which is only 0.00042 higher than the MSE of a clean model.

Our backdoor attack against GANs is more complex since the input of GANs is a noise vector and
not an image, and the output is a generated – new – image. We consider placing the triggers in
the input noise vector. By controlling these triggers and the training of the GANs, the adversary
can customize her attack to either have a constant output image or to generate fake images from a
different distribution. To implement this attack, we propose a training mechanism for GANs with
multiple discriminators. Our experiments show that our backdoored GANs can achieve 4.4, 8.7, and
5.5 Frechet Inception Distance (FID), which is 0.8% worse, 1.25% and 2.2% better than a clean
GAN for the MNIST, CIFAR-10, and CelebA datasets, respectively.

2 RELATED WORK

In this section, we present a brief overview of the related work. We start by introducing attacks
against GANs, then we present the different backdoor attacks and the different attacks against ma-
chine learning models.

Attacks Against GANs: LOGAN presents a membership inference attack against GANs (Hayes
et al., 2019). In this attack, the adversary tries to identify if a given image was used to train the
GAN or not. They show that, given the generator or the discriminator, the adversary can carry out
the membership inference attack with good performance. Later, GAN-Leaks presents a taxonomy
of membership inference attacks on generative models (Chen et al., 2020a). Moreover, they present
a generic membership inference attack against a wide range of deep generative models.

Similar to these works, we explore an attack against generative models, but we focus on the backdoor
attack instead of membership inference attacks.

Backdoor Attacks: Multiple works have studied the backdoor attack in the image classification
settings. For instance, Badnets presents the first backdoor attack against multiple image classifica-
tion models (Gu et al., 2017). They show the applicability of the backdoor attacks. Later, Liu et al.
simplify the assumptions of Badnets and present the Trojan attack that does not require access to
the training dataset (Liu et al., 2019). Another work that presents different backdoor attacks against
image classification models is (Salem et al., 2020b). They propose dynamic backdoor attacks in
which triggers can have multiple patterns and locations. Recently, BadNL has proposed a backdoor
attack against sentiment analysis and neural machine translations models (Chen et al., 2020b).

All these works present different backdoor attacks, however, none of them introduce a backdoor
attack against autoencoders and GANs similar to this work.

Other Attacks Against Machine Learning: In addition to the presented attacks, there exist a
wide range of different attacks against machine learning models. These attacks can be divided into
training and testing time attacks. Training time attacks are executed by the adversary while training
the model like the backdoor attack, and the poisoning attack (Schuster et al., 2020; Biggio et al.,
2012; Jagielski et al., 2018; Shafahi et al., 2018; Suciu et al., 2018) where the adversary poisons
the training set of the target model to sabotage its accuracy. Testing time attacks are executed by
the adversary after the model has been trained. For instance, with adversarial examples (Carlini &
Wagner, 2017; Athalye et al., 2018; Goodfellow et al., 2015; Jia & Gong, 2019; Kurakin et al., 2016)
the adversary manipulates the input to get it misclassified, or in dataset reconstruction attacks (Salem
et al., 2020a) the adversary reconstructs the data samples used to update the model.
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3 BACKDOORING AUTOENCODERS

3.1 THREAT MODEL

The goal of this attack is to train a backdoored autoencoder such that on the input of a clean image, it
perfectly reconstructs it; And on the input of a backdoored image, it reconstructs a target image. The
target image is set by the adversary, e.g., it can be a fixed image or the inverse of the input image.
To this end, following previous works on backdoor attacks (Gu et al., 2017; Salem et al., 2020b),
we assume the adversary has control over the training of the target model. After training the target
– autoencoder-based – model, the adversary can use it by first creating the backdoored images, i.e.,
adding the trigger to the images. Then, she queries the target model with the backdoored images.
The target model will then output the target image. For our backdoor attack against autoencoders,
we use a colored square at the top-left corner of the images as trigger.

3.2 METHODOLOGY

Before introducing our backdoor attack against autoencoders, we first recap what autoencoders are.
Autoencoders consist of two models, the encoder and the decoder. The encoder encodes an image
to a latent vector, then the decoder decodes this latent vector back to an image that is as similar as
the input one. More formally, let E denotes the encoder, E−1 the decoder, and x the image, the
autoencoder is defined as follows:

E−1(E(x)) = x
′

where the decoded image x
′ should look similar to the input image x.

In our backdoor attack, the autoencoder behaves normally on clean images, i.e., the encoded and
decoded images should be the same. However, it maliciously decodes a target output xt, on the
input of backdoored images xbd, i.e., E−1(E(xbd)) = xt. Our attack is flexible when determining
the target output xt. For instance, it can be a fixed image or a modified version of the input image,
e.g., the inverse of the input image as shown in Figure 2.

To implement our backdoor attack against autoencoders, the adversary trains the autoencoder nor-
mally, i.e., encode and decode the image while applying the loss function L to penalize the difference
between the original (x) and decoded (x′) images, i.e., (L(x, x′)), with the following exception. For
a subset of the batches, instead of training the model with clean images, the adversary does the
following:

1. First, she backdoors the input images, i.e., adds the trigger to them.

2. Second, instead of applying the loss function on the original and decoded images, she
applies it on the target image xt and the decoded image x

′, i.e., L(xt, x
′).

Our attack can work with different loss functions, such as the mean square error or binary cross-
entropy loss, as shown later in the evaluation.

3.3 EVALUATION

We now evaluate our backdoor attack against autoencoders. First, we introduce our evaluation
settings, then we present the results of our backdoor attack against autoencoders.

3.3.1 EVALUATION SETTINGS

We use three benchmark vision datasets, namely, MNIST (MNI), CIFAR-10 (CIF) and CelebA (Liu
et al., 2015). We use the default image size for MNIST and CIFAR-10, and scale CelebA to 128×128
to speed up the training. We set the trigger sizes to 5×5, 7×7, and 20×20 for the MNIST, CIFAR-
10, and CelebA datasets, respectively. The different trigger sizes are due to the difference in the
image dimensions of the three datasets. For the autoencoder structure, we follow the state-of-the-
art structure presented in (Theis et al., 2017) and adapt it to the different dimensions of the three
datasets. Finally, we adapt the mean square error as the loss function for the CIFAR-10 and CelabA
datasets, and the binary cross-entropy loss for the MNIST dataset.
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Figure 1: Evaluation of our backdoor attack on the autoencoders for all three datasets. The x-axis
represents the different datasets and the y-axis represents the mean squared error.

3.3.2 EVALUATION METRICS

For our evaluation metrics, we borrow the model utility from previous work (Salem et al., 2020b)
but with a different way of calculating the models’ performance, since it was initially proposed for
classification-based models. We also propose the backdoor error for measuring the performance of
the backdoor attack. We define and calculate both of these metrics as follows.

Model utility: measures how close the backdoored model is to a clean model. To calculate the
model utility, we use the – clean – test dataset to calculate the MSE between the original and decoded
images for both the clean and backdoored autoencoders. The closer the two MSE scores, the better
the model utility.

Backdoor error: measures the error in reconstruction between the decoded and target images. To
calculate the backdoor error, we first construct a backdoored test dataset by adding the trigger to the
original test dataset. Then, we query the backdoored model with the backdoored test dataset, and
measure the MSE between the decoded images and the target ones. The lower the backdoor error,
the better the backdoor attack.

3.3.3 RESULTS

We now present the results for our backdoor attack against autoencoders. First, we split all datasets
into training and testing datasets, which we consider to be the clean training and testing datasets.
Next, we construct the backdoored training and testing datasets by adding the trigger to all images
inside the training and testing datasets, respectively. We use both training datasets, i.e., the clean
and backdoored ones, to train the backdoored autoencoders as mentioned in Section 3.2. Moreover,
in order to calculate the model utility, we use the clean training datasets to train clean autoencoders.

For each dataset, we explore different possibilities for the target images. First, we set a fixed image
as the target for all backdoored inputs. Second, we consider the inverse of the backdoored image as
the target. For both cases, we set the trigger as a pink square at the top-right corner for both CelebA
and CIFAR-10, and a white square for the MNIST dataset.

We first quantitatively evaluate the performance of our backdoor attack in Figure 1. We use the
clean testing dataset to plot the MSE of the clean model (Clean Model), the backdoored models
with a fixed image as the target (Sing Clean), and the inverse of the image as the target (Inv Clean).
Moreover, we use the backdoored test dataset to plot the backdoor error when a fixed image (Sing
BD Error), and the inverse of the input image (Inv BD Error) are used as the target images.

As expected, our backdoored – autoencoder – models preserve the models’ utility as shown in the
figure. For instance, for the most complex case, i.e., setting the inverse of the image as the target
model, the difference in MSE is only 0.000495, 0.000872, and 0.000423 for the MNIST, CIFAR-10,
and CelebA datasets, respectively. Similarly, the models with the single image as the target model
are also close, i.e., the MSE only increases by 0.000691, 0.000566, and 0.000769 for the three
datasets, respectively.

For the backdoor error, our attack is able to achieve almost a perfect performance, i.e., 0 MSE, for
the single image as the target. And good performance for the inverse as the target, i.e., 0.002736,
0.010677, and 0.003605 for the MNIST, CIFAR-10, and CelebA datasets, respectively.
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(a) Original Input (b) Decoded Output

(c) Backdoored Input (d) Single Image (e) Inverse Image

Figure 2: Input and output of backdoored CelebA autoencoder.

Next, we evaluate the results of our backdoor attack qualitatively in Figure 2. We show four ran-
domly sampled images from the MNIST, CIFAR-10, and CelebA test datasets before (Figure 2a)
and after being reconstructed (Figure 2b) by a backdoored autoencoder. Furthermore, we show their
backdoored version (Figure 2c) and the output of the backdoored models when setting a fixed image
as the target (Figure 2d), and the inverse as the target (Figure 2e). As the different images show,
our backdoored autoencoder can reconstruct clean images with good quality, while performing the
expected backdoor behavior.

Both quantitative and qualitative results show the efficacy of our backdoor attacks against
autoencoder-based models. Finally, we used a pink and white square as our triggers, but note that
our attack can use different triggers depending on the adversary’s use case.

4 BACKDOORING GENERATIVE ADVERSARIAL NETWORKS

In this section, we present our backdoor attack against generative adversarial networks (GANs).
First, we introduce our threat model, then present our methodology. Finally, we evaluate our back-
door attack against GANs.

4.1 THREAT MODEL

The goal of this attack is to train a backdoored GAN such that, on the input of clean noise vectors,
it generates data from the original distribution, and that, on the input of backdoored noise vectors, it
generates data from a target distribution. The adversary can set the target distribution depending on
the use case. To this end, we use a similar threat model as the one previously presented in Section 3.1,
with the following differences. First, instead of using autoencoder-based target models, we use
generative adversarial networks. Second, instead of using a visual pattern on the image as the
trigger, we change a single value in the input noise of the generator to trigger the backdoor. Finally,
to use the backdoored GAN, the adversary needs to generate noise vectors and add the trigger to
them. Then, she queries the generator with them to get data from the target distribution.

4.2 METHODOLOGY

Before presenting our GANs backdooring methodology, we first recap the training of benign GANs.
Abstractly, GANs consists of a generator G and a discriminator D. On the input of a noise vector z ∼
N (0, 1), the generator outputs an image, i.e., (G : z 7→ x̂). This image is input to the discriminator
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Figure 3: An overview of the training of backdoored GANs.

which predicts if it is real or fake. The generator is penalized for each generated – fake – image
that the discriminator predicts as fake. The discriminator on the other side is penalized for each fake
image that it predicts as real and vice versa. More formally, the discriminator tries to maximize:

LD = E[log(D(x))] + E[log(1−D(x̂))], (1)

while the generator tries to maximize:

LG = E[log(D(x̂))], (2)

where x denotes a real image and x̂ a fake one.

Our backdoor attack aims at training a backdoored generator that, when given a noise vector z ∼
N (0, 1), generates an image from the original distribution, and, when given a backdoored noise
vector zbd, generates an image from the target distribution. To achieve this, we use two different
discriminators that use the same loss function (Equation 1). Figure 3 shows an overview of the
training of the backdoored generator. The two discriminators D and Dbd discriminate between fake
and real images. However, the first (D) is trained with images from the original distribution and the
second (Dbd) from the target distribution. When calculating the generator loss (Equation 2), we use
both discriminators D and Dbd. More formally, the backdoored generator tries to maximize:

LG =
1

2
· E[log(D(x̂))] +

1

2
· E[log(Dbd(x̂bd))], (3)

where x̂ is the output of the generator when queried with clean noise vector (z), and x̂bd is the output
when queried with backdoored noise vector (zbd).

The loss for each discriminator is calculated as introduced in Equation 1 with the following condi-
tions:

1. First, when using D, we input – clean – noise vectors (z) to the generator and use real
images from the original distribution to calculate the discriminator D’s loss.

2. Second, when using Dbd, we input backdoored noise vectors (zbd) to the generator and use
real images from the target distribution to calculate the discriminator Dbd’s loss.

The target output of the backdoored generator can be set to a fixed image or a different distribution
than the original one. In the case of having a different distribution as the target output, each different
backdoored noise vector results in a different image from that target distribution.

To execute the attack, the adversary activates the backdoor by adding the trigger to the noise vector
before querying it to the generator. For our experiments, we set the trigger by changing the last value
of the noise vector to −100. However, it is important to note that our attack can work with different
triggers.

4.3 EVALUATION

We now evaluate our backdoor attack against generative adversarial networks. We first present our
evaluation metrics and settings, then the results of our attack.
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Figure 4: Evaluation of our backdoor attack on GANs for all three datasets. Figure 4a compares
the performance of the backdoored GANs with clean ones when generating the original distribution.
Figure 4b shows the backdoor error performance, we compare it with the performance of clean
GANs that generates the target distribution. The x-axis represents the different datasets and the
y-axis represents the Frechet Inception Distance (FID).

4.3.1 EVALUATION METRICS

We use the two metrics introduced in Section 3.3.1, i.e., model utility and backdoor error. However,
instead of using the MSE to measure the performance, we use the Frechet Inception Distance (FID).

4.3.2 EVALUATION SETTINGS

We use the three datasets introduced in Section 3.3.1, namely, MNIST, CIFAR-10, and CelebA. For
the GAN structure and loss function, we use the ones introduced in (Zhao et al., 2020) and adapt the
structure according to the dimensions of the different datasets. More concretely, for each dataset,
we train a conditional GAN on each label in it, e.g., the GAN for the MNIST dataset is conditioned
on all classes 0-9. Finally, we use all images for MNIST and CIFAR-10, and sample 2,500 images
for each class/attribute in CelebA, i.e., we use 100,000 images for training the CelebA GANs.

4.3.3 RESULTS

We now evaluate the performance of our backdoor attack against GANs. To recap, for the backdoor
attack against GANs, the trigger is not added to the image, but to the noise vector, as mentioned
in Section 4.2. Hence, we do not construct a backdoored training and testing datasets.

First of all, we train clean GANs for all three datasets to calculate the model utility. Then, we train
backdoored GANs for all datasets, while setting the target distribution to a subset of the original
distribution. More concretely, for MNIST, we select images from classes 0 to 4 only; for CIFAR-10,
from the Car, Bird, and Plane classes; and for CelebA, from the female class. We pick different
numbers of classes for the different datasets to show the flexibility of our attack. Then, we train the
backdoored GANs as introduced in Section 4.2.

First, we evaluate the backdoored GANs performance quantitatively (Figure 4). We compare the
model utility for all datasets in Figure 4a by plotting the Frechet Inception Distance (FID) for both
the clean and backdoored models when generating images from the original distribution. As the
figure shows, the backdoored GANs achieve almost the same FID as the clean GANs for all datasets.
For instance, the FID dropped by about 0.8% for the MNIST dataset, and it slightly improved by
1.25%, and 2.1% for the CIFAR-10, and CelebA datasets, respectively. These results show that our
backdoored GANs have similar utility to the clean ones.

Figure 4b plots the backdoor error of the backdoored GANs and compares it with the performance
of clean GANs. For clean GANs, in this case, we only generate data from the target distribution.
Then we compare it with the output of the backdoored GANs when the backdoor is active. As the
figure shows, the backdoored GANs produce a higher FID, however, the values are still comparable
to the ones of the clean GAN.

Second, we evaluate our backdoored GANs qualitatively. We use the CelebA dataset to generate im-
ages for the clean GAN when generating from the original distribution (Figure 5a), and backdoored
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(a) Clean GAN (b) Backdoored GAN (Original) (c) Backdoored GAN (Target)

Figure 5: Visualization of a clean GAN (Figure 5a) and a backdoored GANs on clean input (Fig-
ure 5b) and backdoored input (Figure 5c), using the CelebA dataset.

GAN when generating from the original (Figure 5b) and the target distributions (Figure 5c). As the
figure shows, the backdoored GANs are able to generate images form both the target and original
distribution that have the same visual quality as those generated by the clean GANs.

Both Figure 4 and Figure 5 show the efficacy of our backdoor attack against GANs. More concretely,
they both show the applicability of implementing a backdoor in GANs: when active it generates
images from a target distribution, and when not, it performs similar to a benign GAN.

Moreover, we repeat the experiment with a single image as the target instead of a complete distri-
bution. As Figure 4a shows, the backdoored GANs with a single image as the target (Single) have
similar utility to the clean GANs. Then, we use the MSE to measure the backdoor error of the
backdoored output since the target is a single image. The MSE between the target image and the
generated images is approximately 0; we visualize the results in the appendix in Figure 6, Figure 7,
and Figure 8 for MNIST, CIFAR-10, and CelebA datasets, respectively.

Finally, we try setting the target to a more distant distribution. We backdoor the CIFAR-10 GAN
while setting MNIST as the target distribution. The backdoored GAN has a 8.7 FID on the clean
inputs, which is only 1.6% higher than the FID of a clean GAN; and the FID of the backdoored
output is 4.6, which is about 3.4% worse than the one of a clean GAN. We visualize the results in
the appendix in Figure 9. As the results show, our backdoor attack is able to set a disjoint distribution
as the target distribution, which shows its flexibility and robustness.

5 CONCLUSION

Autoencoders and generative adversarial networks (GANs) are gaining momentum and are currently
being adopted in multiple critical applications. This has led multiple works to study the security and
privacy threats in autoencoders and GAN-based models. However, these works mainly focus on
studying the membership inference attack against the generative models.

In this work, we expand the research on the autoencoders and GAN-based models to include one of
the most severe attacks against machine learning models, namely the backdoor attacks. We present
the first backdoor attacks against autoencoders and GANs. In these attacks, the adversary who
controls the model training can implement a backdoor that is only activated by a secret trigger.

Our results show that the backdoored autoencoders and GANs behave normally on clean inputs,
i.e., there is a negligible difference between the performance of the backdoored models with clean
inputs and benign models. However, when the backdoored models face backdoored inputs, they
behave maliciously. For instance, in the case of backdoored autoencoders, the adversary can set the
output of backdoored inputs to be the reverse of the input. Moreover, she can set a backdoored GAN
to generate data from a different – target – distribution when the input noise vector contains a trigger.
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A APPENDIX

(a) Clean output (b) Target set as Distribution (c) Distribution set as Single

Figure 6: Visualization of the output of the backdoored MNIST GAN. Figure 6a shows the clean
output, Figure 6b shows the backdoored output when a distribution is set as the target, and Figure 6c
shows the backdoored output when a single image is used as the target.

(a) Clean output (b) Target set as Distribution (c) Target set as Single

Figure 7: Visualization of the output of the backdoored CIFAR-10 GAN. Figure 7a shows the clean
output, Figure 7b shows the backdoored output when a distribution is set as the target, and Figure 7c
shows the backdoored output when a single image is used as the target.

(a) Clean output (b) Target set as Distribution (c) Target set as Single

Figure 8: Visualization of the output of the backdoored CelebA GAN. Figure 8a shows the clean
output, Figure 8b shows the backdoored output when a distribution is set as the target, and Figure 8c
shows the backdoored output when a single image is used as the target.
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(a) Backdoored GAN (Original) (b) Backdoored GAN (Target)

Figure 9: Visualization of the backdoored CIFAR with MNIST set as target. Figure 9a shows the
clean output and Figure 9b shows the target output, i.e., the output when the input is backdoored.
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