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Abstract—Automatic detection of a baby cry in audio sig-
nals is an essential step in applications such as remote baby
monitoring. It is also important for researchers, who study
the relation between baby cry patterns and various health
or developmental parameters. In this paper, we propose two
machine-learning algorithms for automatic detection of baby
cry in audio recordings. The first algorithm is a low-complexity
logistic regression classifier, used as a reference. To train this
classifier, we extract features such as Mel-frequency cepstrum
coefficients, pitch and formants from the recordings. The second
algorithm uses a dedicated convolutional neural network (CNN),
operating on log Mel-filter bank representation of the recordings.
Performance evaluation of the algorithms is carried out using an
annotated database containing recordings of babies (0-6 months
old) in domestic environments. In addition to baby cry, these
recordings contain various types of domestic sounds, such as
parents talking and door opening. The CNN classifier is shown
to yield considerably better results compared to the logistic
regression classifier, demonstrating the power of deep learning
when applied to audio processing.

I. INTRODUCTION

Automatic detection and classification of acoustic events in
audio signals is a challenging research area in auditory ma-
chine perception [1], related to computational auditory scene
analysis [2]. Due to the vast amount of acoustic data collected
and accumulated in recent years, manual annotation of the data
is impractical. This raises the need for developing reliable and
efficient algorithms for automatic detection and classification
of acoustic events. Such algorithms are a pre-requisite for
automatic recognition and labeling of audio content.

In this study, we focus on the detection and classification of
baby cry sounds in various domestic environments. Crying is
one of the major means of infants to communicate distress
and attachment needs (such as being hungry or cold) to
their caregivers [3]. One common application of automatic
cry detection is a baby remote monitor, where parents are
alerted if their baby is crying. Another important application is
enablement of non-intrusive psychological research of infants
and their caregivers in the earliest days of life. The bond
between caregiver and infant is formed through physiological
co-regulation processes that take place throughout the day [4].
Thus, monitoring often needs to be conducted over many hours
or days to collect meaningful data. The sheer volume of data

and the difficulty to decide a priori which variables to target
make precise measurements and classification of acoustic
events necessary to understand the co-regulation patterns.

A baby cry is elicited from rhythmical transitions between
inhalation and exhalation, due to a vibration of the vocal cords
that produces periodic air pulses. The period of these pulses is
called the fundamental frequency (pitch), and its typical values
in healthy babies are 250− 600 Hz. The cry signal is shaped
by the vocal tract, leading to resonant frequencies termed as
formants. The first two formants occur typically around 1100
Hz and 3300 Hz, respectively [3]. The detection of cry signals
is usually carried out by extracting distinguishing features
from segments of the audio signal. Apart from pitch and
formants, these include temporal and spectral features such as
short-time energy, Mel-frequency cepstrum (MFC) coefficients
and others [5]–[7].

In this work, we implement two methods for the detection
of cry signals in audio recordings: a low-complexity classi-
fier based on logistic regression and a convolutional neural
network (CNN) classifier, and compare their performance.

II. METHODS

A. Database

The database for this study contains recordings of several
tens of hours of audio recordings made by parents of babies
in the Netherlands. The babies were in their first 6 months of
life, and were recorded 24/7 in a domestic environment. The
recordings contain various types of sounds, such as crying,
parents talking, door opening etc. The database was collected
as a part of a pilot study aimed at investigating ”attachment
formation” (forming the bond between caregiver and child)
[8]. Three hours of the recordings were fully annotated, down
to the millisecond level, with about 50 different event types.
The sampling frequency of the recordings is Fs = 44100 Hz.

B. Preprocessing and feature extraction

The audio recordings are divided into consecutive overlap-
ping segments of 4096 samples (about 93ms) with an overlap
of 50%. These segments are further divided into frames of
16ms with a step size of 8ms. A pitch detector [9] is applied to
each frame, using peaks in the cepstral domain for rough pitch
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Fig. 1: An example of a baby cry signal. Top: the signal
waveform. Bottom: the signal spectrogram, demonstrating the
harmonic structure of the cry signal.

value estimation, and cross-correlation in the time-domain for
refinement of the initial pitch value. Possible pitch period
durations are restricted to the range of 1.6 − 3.3ms due to
the expected baby cry pitch period.

The following features are computed for each audio seg-
ment. The reader is referred to [7] and [10] for details.

1) 38 Mel-Frequency Cepstrum coefficients (MFCC).
2) Short-time energy (STE).
3) Zero-crossing rate (ZCR).
4) Pitch median value within a segment.
5) Run-length of pitch, defined as the number of consec-

utive voiced frames within a segment where pitch was
detected.

6) Harmonicity factor (HF).
7) Harmonic-to-average power ratio (HAPR).
8) First formant, based on the line-spectral pair represen-

tation.
9) Band energy ratio, defined as the ratio (in dB) between

the spectral energy in the frequency bands [0, 3.5]kHz
and [3.5, 22.5]kHz.

10) Spectral rolloff point: the frequency below which 75%
of the spectral energy is concentrated.

Figure 2 shows an example of the distribution of the 5th
MFC coefficient among baby cry sections (red) vs. all other
sound events (blue) in the training set (about 320 seconds).
The discriminating potential of this feature is evident, although
there is a wide overlapping area.

Fig. 2: A histogram of the 5th MFC coefficient. Red: cry
events, blue: other events.

III. LOGISTIC REGRESSION

The logistic regression classifier [11] is a simple supervised
algorithm, with the advantage of low computational complex-
ity. The logistic regression is a non-linear hypothesis function
of the form:

hθ(x) =
1

1 + exp (−θTx)
, (1)

where x is a d-dimensional feature vector and θ is a weight
vector. In our case, hθ(x) ∈ (0, 1) predicts the likelihood of
a segment to be a cry sound (values close to 1), or a different
sound (values close to 0). The decision is made by comparing
hθ(x) ∈ (0, 1) to a threshold value, to obtain a final binary
classification y ∈ {0, 1}, where 1 denotes a cry event. In the
training phase of the classifier, a gradient descent algorithm is
used to find θ that minimizes the cost function

E(θ) =− 1
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)
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given a dataset of n labeled samples
{
x(j), y(j)

}n
j=1

, where λ
is a regularization parameter. The θ-minimizer found by the
gradient descent algorithm is then assigned to (1) to classify
new unlabeled samples.

A. Detection procedure

A schematic block diagram of the logistic-regression-based
algorithm is depicted in Figure 3. The input data is divided
into consecutive segments of 4096 samples. For each segment
a 50-dimensional feature vector is computed. The trained
regularized logistic regression is then applied on each fea-
ture vector, and the hypothesis function hθ(x) is obtained,
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Fig. 3: A schematic block diagram of the logistic regression
algorithm

representing an estimation of the posterior probability p(y|x),
where y ∈ {0, 1} is the sound event to be classified as cry or
non-cry and x is the feature vector. Using a threshold value
Th1, an initial decision value for each segment is set according
to the following rule:

d(n) =

{
1, if hθ(x) > Th1

0, otherwise.
(3)

The duration of a single segment is about 93ms, while most
cry events are at least several hundred of milliseconds long.
In order to avoid erroneous detections of sections that are
too short to be a likely cry event, a smoothing operation
is applied to the sequence of initial decisions as follows: a
sliding window of length L is applied on the initial sequence
of decisions and the smoothed decision ds(n) for the central
segment is updated according to the following rule:

ds(n) =

1, if
M∑

k=−M

d(n− k) > Th2

0, otherwise.
(4)

where L is odd, M = (L − 1)/2 and Th2 ∈ [1, L] is a
predefined threshold value.

IV. CONVOLUTIONAL NEURAL NETWORKS

Convolutional neural networks (CNN) [11] have wide ap-
plications in the fields of computer vision, natural language
processing and many others, especially where huge amounts of
data have to be processed and classified. Like ordinary neural
networks, they consist of several layers connected by neurons
that have learnable weights. Each CNN layer is composed

Fig. 4: An LMFB representation of a cry frame. Note that
the non-uniform gaps in the frequency axis are due to the
logarithmic Mel scale

of several filters, applied to outputs provided by the previous
layer using the convolution operation. CNNs learn the filters
during the training process, which can be thought of a way to
generate important features out of the data. Thus, in contrast
to traditional classification algorithms, the lack of dependence
on prior knowledge is a major advantage of CNNs.

To work with a CNN classifier, the audio signal is divided
into consecutive segments of 4096 samples. Each segment is
further divided into frames of 512 samples, with a step size of
128 samples. As the contribution of high frequency bands to
the detection of cry signals is limited, a low-pass filter at 11025
Hz is applied. A log Mel-filter bank (LMFB) representation
is then produced for each frame, using 40 filters distributed
according to the Mel scale in the frequency range [0, 11025]
Hz. Given segments of 4096 samples and a step size of 128
samples, this leads to a 40×29 ”image” representation of each
segment. An example is shown in Figure 4.

The main difference between LMFB and MFCC is that the
discrete cosine transform (DCT) of the log-power spectrum is
skipped in LMFB representation. This is mainly due to the
tendency of the DCT to decorrelate the data, whereas spatial
correlation of the input is actually advantageous for a CNN.

The distinctive features of a signal within a frame are mostly
due to frequency changes. Thus, our CNN uses convolution
layers with ”tall” filters: 10×2, 6×2 and 3×2, to achieve high
frequency resolution compared to low temporal resolution.
Due to the Mel scale, each ”pixel” in the LMFB represents
a frequency range. To better capture the frequency behavior,
small stride values are used. Similarly, the max-pooling layers
consist of small blocks, to emphasize the content of correlated
frequency bands. The activation function for the CNN is the
standard rectifier, corresponding to rectified linear unit (ReLU)
layers. The entire CNN architecture is shown in Figure 5.
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Fig. 5: The CNN architecture.

To train the network, we employed a stochastic gradient
descent algorithm with momentum [12]. The gradient in each
iteration was evaluated using a mini-batch of 256 frames, over
50 training iterations. A visualization of the filters obtained for
the first convolution layer after the training phase is provided
in Figure 6. It is evident that at this initial layer the filters
capture mostly basic image features such as edges, which
correspond to fast transitions in LFMB values.

V. PERFORMANCE EVALUATION

Two important measures for the evaluation are the detection
rate and the false-positive rate. The detection rate (also known
as sensitivity or recall) is defined as the ratio between the
number of true-positive events, i.e. the number of cry events
correctly identified, and the total number of cry events in
the recording set (true positives and false negatives). The

Fig. 6: First convolutional layer filter weights (120 filters, each
of dimensions 10× 2).

false-positive (or false-alarm) rate is defined as the ratio be-
tween the number of false positives (non-cry events identified
erroneously as cry events) and the total number of non-
cry events in the recording set (including true negatives).
Thus, if TP, TN, FP and FN denote true positives, true
negatives, false positives and false negatives, respectively, then
the detection rate is TP/(TP+FN), and the false-positive rate
is FP/(FP + TN).

One of the goals of the current study is to construct a plat-
form for conducting psychological research on co-regulatory
patterns between a baby and its caregiver, with cry events
being a primary variable as a predictor of attachment. Thus,
the importance of obtaining a high detection rate is obvious.
However, a low false-positive rate is perhaps even more im-
portant, in order to avoid the contamination of data with non-
related events, which may prevent meaningful conclusions.

Therefore, in the analysis of the cry-detection performance
of the logistic regression and the CNN classifiers we focus on
the trade-off between the false-positive rate and the detection
rate. The performance evaluation was carried out using a
receiver operator characteristic (ROC) curve, as shown in
Figure 7. Both classifiers were trained using a similar training
set of 18000 frames (about 30 minutes), and the ROC curves
were obtained using a validation set of two hours. For false-
positive rates lower than 5%, the CNN classifier evidently
outperforms the logistic regression classifier.

The evaluation results for both classifiers are summarized in
Table I. For detection rates of 80%, 85% and 90%, the false-
positive rates of the CNN classifier are lower than the corre-
sponding rates of the logistic regression classifier. However,
the performance is similar and reversed for higher detection
rates. Keeping the false-positive rate at a fixed value of 1.0%,
a detection rate of 82.5% is yielded for the CNN classifier,
versus 81.0% and 65.0% for the logistic regression classifier,
with and without the smoothing procedure, respectively.
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Fig. 7: ROC curves for the logistic regression and the CNN
classifiers.

Classifier/Detection rate 80% 85% 90% 95%

Logistic Regression 0.9% 2.1% 4.3% 9.0%

CNN 0.7% 1.6% 4.2% 12.0%

TABLE I: A summary of the false-positive rates for a given
detection rate among the two classifiers.

VI. CONCLUSIONS

In this work, two machine-learning algorithms were pro-
posed for the detection of baby cry in audio recordings:
a logistic regression classifier and a more complex CNN
classifier. The results show a considerable advantage of the
CNN classifier compared to the logistic regression classifier.
As CNNs are naturally suited for large training datasets and
for multi-class classification, we plan to train a CNN classifier
to detect various types of domestic sounds in addition to cry
signals.
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