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Abstract

We posit that visually descriptive language offers com-

puter vision researchers both information about the world,

and information about how people describe the world. The

potential benefit from this source is made more significant

due to the enormous amount of language data easily avail-

able today. We present a system to automatically gener-

ate natural language descriptions from images that exploits

both statistics gleaned from parsing large quantities of text

data and recognition algorithms from computer vision. The

system is very effective at producing relevant sentences for

images. It also generates descriptions that are notably more

true to the specific image content than previous work.

1. Introduction

People communicate using language, whether spoken,

written, or typed. A significant amount of this language

describes the world around us, especially the visual world

in an environment or depicted in images or video. Such vi-

sually descriptive language is potentially a rich source of

1) information about the world, especially the visual world,

and 2) training data for how people construct natural lan-

guage to describe imagery. This paper exploits both of these

lines of attack to build an effective system for automatically

generating natural language – sentences – from images.

It is subtle, but several factors distinguish the task of tak-

ing images as input and generating sentences from tasks

in many current computer vision efforts on object and

scene recognition. As examples, when forming descrip-

tive language, people go beyond specifying what objects

are present in an image – this is true even for very low

resolution images [23] and for very brief exposure to im-

ages [11]. In both these settings, and in language in gen-

eral, people include specific information describing not

only scenes, but specific objects, their relative locations,

and modifiers adding additional information about objects.

Figure 1. Our system automatically generates the following de-

scriptive text for this example image: “This picture shows one

person, one grass, one chair, and one potted plant. The person is

near the green grass, and in the chair. The green grass is by the

chair, and near the potted plant.”

Mining the absolutely enormous amounts of visually de-

scriptive text available in special library collections and on

the web in general, make it possible to discover statistical

models for what modifiers people use to describe objects,

and what prepositional phrases are used to describe rela-

tionships between objects. These can be used to select and

train computer vision algorithms to recognize constructs in

images. The output of the computer vision processing can

be “smoothed” using language statistics and then combined

with language models in a natural language generation pro-

cess.

Natural language generation constitutes one of the fun-

damental research problems in natural language process-

ing (NLP) and is core to a wide range of NLP applica-

tions such as machine translation, summarization, dialogue

systems, and machine-assisted revision. Despite substan-

tial advancement within the last decade, natural language

generation still remains an open research problem. Most

previous work in NLP on automatically generating captions

or descriptions for images is based on retrieval and sum-

marization. For instance, [1] relies on GPS meta data to

access relevant text documents and [13] assume relevant
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Input	  Image	  

1)	  Object(s)/Stuff	   2)	  A8ributes	   3)	  Preposi>ons	  

brown	  0.32	  

striped	  0.09	  

furry	  .04	  

wooden	  .2	  

Feathered	  .04	  

	  	  	  	  	  	  	  	  ...	  

brown	  0.94	  

striped	  0.10	  

furry	  .06	  

wooden	  .8	  

Feathered	  .08	  

	  	  	  	  	  	  	  	  ...	  

brown	  0.01	  

striped	  0.16	  

furry	  .26	  

wooden	  .2	  

feathered	  .06	  

	  	  	  	  	  	  	  	  ...	  

near(a,b)	  1	  	  	  	  	  

near(b,a)	  1	  	  

against(a,b)	  .11	  

against(b,a)	  .04	  	  

beside(a,b)	  .24	  

beside(b,a)	  .17	  

	  	  	  	  	  	  	  	  ...	  

4)	  Constructed	  CRF	  

!"#$%

!"#&%

'()*$%

+,($%

!"#-%

+,(&%

+,(-%

'()*&%

'()*-%

5)	  Predicted	  Labeling	  

a)	  dog	  

b)	  person	  

c)	  sofa	  

6)	  Generated	  Sentences	  

near(a,c)	  	  1	  	  	  

near(c,a)	  	  1	  	  	  	  

against(a,c)	  .3	  

against(c,a)	  .05	  	  

beside(a,c)	  .5	  

beside(c,a)	  .45	  

	  	  	  	  	  	  ...	  

near(b,c)	  	  1	  	  	  	  

near(c,b)	  	  1	  	  	  	  

against(b,c)	  .67	  

against(c,b)	  .33	  	  

beside(b,c)	  .0	  

beside(c,b)	  .19	  

	  	  	  	  	  	  ...	  

<<null,person_b>,against,<brown,sofa_c>>	  	  

<<null,dog_a>,near,<null,person_b>>	  	  

<<null,dog_a>,beside,<brown,sofa_c>>	  	  

This	  is	  a	  photograph	  of	  one	  

person	  and	  one	  brown	  sofa	  

and	  one	  dog.	  The	  person	  is	  

against	  the	  brown	  sofa.	  And	  

the	  dog	  is	  near	  the	  person,	  

and	  beside	  the	  brown	  sofa.	  	  

Figure 2. System flow for an example image: 1) object and stuff detectors find candidate objects, 2) each candidate region is processed by

a set of attribute classifiers, 3) each pair of candidate regions is processed by prepositional relationship functions, 4) A CRF is constructed

that incorporates the unary image potentials computed by 1-3, and higher order text based potentials computed from large document

corpora, 5) A labeling of the graph is predicted, 6) Sentences are generated based on the labeling.

documents are provided. The process of generation then

becomes one of combining or summarizing relevant docu-

ments, in some cases driven by keywords estimated from

the image content [13]. From the computer vision perspec-

tive these techniques might be analogous to first recognizing

the scene shown in an image, and then retrieving a sentence

based on the scene type. It is very unlikely that a retrieved

sentence would be as descriptive of a particular image as the

generated sentence in Fig. 1.

This paper pushes to make a tight connection between

the particular image content and the sentence generation

process. This is accomplished by detecting objects, mod-

ifiers (adjectives), and spatial relationships (prepositions),

in an image, smoothing these detections with respect to a

statistical prior obtained from descriptive text, and then us-

ing the smoothed results as constraints for sentence gen-

eration. Sentence generation is performed either using a

n-gram language model [3, 22] or a simple template based

approach [27, 4]. Overall, our approach can handle the po-

tentially huge number of scenes that can be constructed by

composing even a relatively small number of instances of

several classes of objects in a variety of spatial relation-

ships. Even for quite small numbers for each factor, the

total number of such layouts is not possible to sample com-

pletely, and any set of images would have some particular

bias. In order to avoid evaluating such a bias, we purpose-

fully avoid whole image features or scene/context recogni-

tion in our evaluation – although noting explicitly that it

would be straightforward to include a scene node and ap-

propriate potential functions in the model presented.

2. Related Work

Early work on connecting words and pictures for the pur-

pose of automatic annotation and auto illustration focused

on associating individual words with image regions [2, 8].

In continuations of that work, and other work on image

parsing and object detection, the spatial relationships be-

tween labeled parts – either detections or regions – of im-

ages was used to improve labeling accuracy, but the spa-

tial relationships themselves were not considered outputs in

their own right [24, 7, 16, 21, 15]. Estimates of spatial re-

lationships between objects form an important part of the

output of the computer vision aspect of our approach and

are used to drive sentence generation.

There is a great deal of ongoing research on estimating

attributes for use in computer vision [18, 9, 19, 14] that

maps well to our process of estimating modifiers for objects

in images. We use low level features from Farhadi et al. [9]

for modifier estimation. Our work combines priors for vi-

sually descriptive language with estimates of the modifiers

based on image regions around object detections.

There is some recent work very close in spirit to our own.

Yao et al. [26] look at the problem of generating text with a

comprehensive system built on various hierarchical knowl-

edge ontologies and using a human in the loop for hierar-

chical image parsing (except in specialized circumstances).

In contrast, our work automatically mines knowledge about

textual representation, and parses images fully automati-

cally – without a human operator – and with a much sim-

pler approach overall. Despite the simplicity of our frame-

work it is still a step toward more complex description gen-

eration compared to Farhadi et al.’s (also fully automatic)

method based on parsing images into a meaning representa-

tion “triple” describing 1 object, 1 action, and 1 scene [10].

In their work, they use a single triple estimated for an im-

age to retrieve sentences from a collection written to de-

scribe similar images. In contrast our work detects multiple
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Prep1	  
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Stuff1	  
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Obj2	  
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Stuff1	  

A,r2	  

A,r3	  
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Prep3	   Z3	  

Z2	  

Z1	  

Figure 3. CRF for an example image with 2 object detections and

1 stuff detection. Left shows original CRF with trinary potentials.

Right shows CRF reduced to pairwise potentials by introducing z

variables with domains covering all possible triples of the original

3-clique.

objects, modifiers, and their spatial relationships, and gen-

erates sentences to fit these constituent parts, as opposed to

retrieving sentences whole.

3. Method Overview

An overview of our system is presented in figure 2. For

an input image: 1) Detectors are used to detect things (e.g.

bird, bus, car, person, etc.) and stuff (e.g. grass, trees, wa-

ter, road, etc.). We will refer to these as objects, and stuff,

or collectively as objects. 2) each candidate object (ei-

ther thing or stuff) region is processed by a set of attribute

classifiers, 3) each pair of candidate regions is processed

by prepositional relationship functions, 4) A CRF is con-

structed that incorporates the unary image potentials com-

puted by 1-3, with higher order text based potentials com-

puted from large text corpora, 5) A labeling of the graph

is predicted, and 6) Sentences are generated based on the

labeling.

The rest of the paper describes the Conditional Random

Field used to predict a labeling for an input image (Sec. 4),

then the image based potentials (Sec. 5.1), and higher or-

der text based potentials (Sec. 5.2). Sentence generation is

covered in (Sec. 6) and evaluation in (Sec. 7).

4. CRF Labeling

We use a conditional random field (CRF) to predict the

best labeling for an image (e.g. fig 3). Nodes of the CRF

correspond to several kinds of image content: a) Objects -

things or stuff, b) attributes which modify the appearance

of an object, and c) prepositions which refer to spatial rela-

tionships between pairs of objects.

For a query image, we run a large set of (thing) object de-

tectors across the image and collect the set of high scoring

detections. We merge detections that are highly overlapping

(greater than 0.3 intersection/union) into groups and create

an object node for each group. In this way we avoid pre-

dicting two different object labels for the same region of

an image which can occur when two different object detec-

tors fire on the same object. We also run our stuff detectors

across the image and create nodes for stuff categories with

high scoring detections. Note that this means that the num-

ber of nodes in a graph constructed for an image depends on

the number of object and stuff detections that fired in that

image (something we have to correct for during parameter

learning). For each object and stuff node we classify the ap-

pearance using a set of trained attribute classifiers and create

a modifier node. Finally, we create a preposition node for

each pair of object and stuff detections. This node predicts

the probability of a set of prepositional relationships based

on the spatial relationship between two object regions.

The domain (of possible labels) for each node is node

dependent. For an object (or stuff) node the domain cor-

responds to the set of object (or stuff) detectors that fired

at that region in the image. For the attribute nodes the do-

main corresponds to a set of appearance attributes that can

modify the visual characteristics of an object (e.g. green or

furry). For the preposition nodes the domain corresponds

to a set of prepositional relations (e.g. on, under, near) that

can occur between two objects.

We will minimize an energy function over labelings, L,

of an image, I ,

E(L; I, T ) = −
∑

i∈objs

Fi −
2

N − 1

∑

ij∈objPairs

Gij , (1)

where T is a text prior, and N is the number of objects

so 2/(N − 1) normalizes – for variable number of node

graphs – the contribution from object pair terms so that they

contribute equally with the single object terms to the energy

function. Here:

Fi = α0β0ψ(obji; objDet) + α0β1ψ(attri; attrCl) (2)

+α1γ0ψ(attri, obji; textPr) (3)

Gij = α0β2ψ(prepij ; prepFuns) (4)

+α1γ1ψ(obji, prepij , objj ; textPr) (5)

The three unary potential functions are computed from im-

age based models and refer to: the detector scores for ob-

ject(s) proposed by our trained object and stuff detectors

(ψ(obji; objDets)), the attribute classification scores for

an object (or stuff) region as predicted by our trained at-

tribute classifiers (ψ(attri; attrCl)), and the prepositional

relationship score computed between pairs of detection re-

gions (ψ(prepij ; prepFuns)). Descriptions of the particu-

lar detectors, classifiers and functions used are provided in

Sec. 5.1.

The pairwise (ψ(modi, obji; textPr)) and trinary

(ψ(obji, prepij , objj ; textPr)) potential functions model

the pairwise scores between object and attribute node labels,

and the trinary scores for an object-preposition-object triple

labeling respectively. These higher order potentials could

be learned from a large pool of labeled image data. How-

ever, for a reasonable number of objects, and prepositions
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the amount of labeled image data that would be required

is daunting. Instead we learn these from large text collec-

tions. By observing in text how people describe objects,

attributes and prepositions between objects we can model

the relationships between node labels. Descriptions of the

text based potentials are provided in Sec. 5.2.

4.1. Converting to Pairwise potentials

Since preposition nodes describe the relationship be-

tween a preposition label and two object labels, they are

most naturally modeled through trinary potential functions:

ψ(obji, prepij , objj ; textPr) (6)

However, most CRF inference code accepts only unary

and pairwise potentials. Therefore we convert this trinary

potential into a set of unary and pairwise potentials through

the introduction of an additional z node for each 3-clique

of obj-prep-obj nodes (see fig 3). Each z node connecting

two object nodes has domain O1×P×O2 where O1 is the

domain of object node1, P is our set of prepositional rela-

tions, and O2 is the domain of object node2. In this way

the trinary potential is converted to a unary potential on z,

ψ(zij ; textPr), along with 3 pairwise potentials, one for

each of object node1, preposition node, and object node2

that enforce that the labels selected for each node are the

same as the label selected for Z:

ψ(zij , obji) =

{

0 if Zij(1) = Oi

−inf o.w.
(7)

ψ(zij , prepij) =

{

0 if Zij(2) = Pij

−inf o.w.
(8)

ψ(zij , objj) =

{

0 if Zij(3) = Oj

−inf o.w.
(9)

4.2. CRF Learning

We take a factored learning approach to estimate the pa-

rameters of our CRF from 100 hand-labeled images. In our

energy function (Eqns (1)-(5)), the α parameters represent

the trade-off between image and text based potentials. The

β parameters represent the weighting between image based

potentials. And, the γ parameters represent the weighting

between text based potentials. In the first stage of learn-

ing we estimate the image parameters β while ignoring the

text based terms (by setting α1 to 0). To learn image po-

tential weights we fix β0 to 1 and use grid search to find

optimal values for β1 and β2. Next we fix the β parameters

to their estimated value and learn the remaining parameters

– the trade-off between image and text based potentials (α
parameters) and the weights for the text based potentials (γ
parameters). Here we set α0 and γ0 to 1 and use grid search

over values of α1 and γ1 to find appropriate values.

It is important to carefully score output labelings fairly

for graphs with variable numbers of nodes (dependent on

the number of object detections for an image). We use a

scoring function that is graph size independent:

objt−f

N
+

(mod, obj)t−f

N
+

2

N − 1

(obj, prep, obj)t−f

N

measuring the score of a predicted labeling as: a) the num-

ber of true obj labels minus the number of false obj labels

normalized by the number of objects, plus b) the number of

true mod-obj label pairs minus the number of false mod-obj

pairs, plus c) the number of true obj-prep-obj triples mi-

nus the number of false obj-prep-obj triples normalized by

the number of nodes and the number of pairs of objects (N

choose 2).

4.3. CRF Inference

To predict the best labeling for an input image graph

(both at test time or during parameter training) we utilize the

sequential tree re-weighted message passing (TRW-S) algo-

rithm introduced by Kolmogorov [17] which improves upon

the original TRW algorithm from Wainwright et al [25].

These algorithms are inspired by the problem of maximiz-

ing a lower bound on the energy. TRW-S modifies the TRW

algorithm so that the value of the bound is guaranteed not

to decrease. For our image graphs, the CRF constructed is

relatively small (on the order of 10s of nodes). Thus, the

inference process is quite fast, taking on average less than a

second to run per image.

5. Potential Functions

In this section, we present our image based and descrip-

tive language based potential functions. At a high level the

image potentials come from hand designed detection strate-

gies optimized on external training sets . In contrast the text

potentials are based on text statistics collected automatically

from various corpora.

5.1. Image Based Potentials

ψ(obji; objDet) - Object and Stuff Potential

Object Detectors: We use an object detection system

based on Felzenszwalb et al.’s mixtures of multi-scale de-

formable part models [12] to detect “thing objects”. We use

the provided detectors for the 20 PASCAL 2010 object cate-

gories and train 4 additional non-PASCAL object categories

for flower, laptop, tiger, and window. For the non-PASCAL

categories, we train new object detectors using images and

bounding box data from Imagenet [6]. The output score of

the detectors are used as potentials.

Stuff Detectors: Classifiers are trained to detect regions

corresponding to non-part based object categories. We train

linear SVMs on the low level region features of [9] to rec-

ognize: sky, road, building, tree, water, and grass stuff cat-

egories. SVM outputs are mapped to probabilities. Train-

ing images and bounding box regions are taken from Ima-

geNet. At test time, classifiers are evaluated on a coarsely
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This	  is	  a	  photograph	  of	  one	  sky,	  

one	  road	  and	  one	  bus.	  The	  blue	  

sky	  is	  above	  the	  gray	  road.	  The	  

gray	  road	  is	  near	  the	  shiny	  bus.	  

The	  shiny	  bus	  is	  near	  the	  blue	  sky.	  	  

There	  are	  two	  aeroplanes.	  The	  first	  shiny	  

aeroplane	  is	  near	  the	  second	  shiny	  aeroplane.	  	  

There	  are	  one	  cow	  and	  one	  sky.	  

The	  golden	  cow	  is	  by	  the	  blue	  sky.	  	  

This	  is	  a	  picture	  of	  one	  sky,	  one	  road	  

and	  one	  sheep.	  The	  gray	  sky	  is	  over	  

the	  gray	  road.	  The	  gray	  sheep	  is	  by	  

the	  gray	  road.	  	  

Here	  we	  see	  two	  persons,	  one	  sky	  and	  

one	  aeroplane.	  The	  first	  black	  person	  is	  

by	  the	  blue	  sky.	  The	  blue	  sky	  is	  near	  

the	  shiny	  aeroplane.	  The	  second	  black	  

person	  is	  by	  the	  blue	  sky.	  The	  shiny	  

aeroplane	  is	  by	  the	  first	  black	  person,	  

and	  by	  the	  second	  black	  person.	  	  

There	  are	  one	  dining	  table,	  one	  chair	  and	  two	  

windows.	  The	  wooden	  dining	  table	  is	  by	  the	  

wooden	  chair,	  and	  against	  the	  first	  window,	  and	  

against	  the	  second	  white	  window.	  The	  wooden	  

chair	  is	  by	  the	  first	  window,	  and	  by	  the	  second	  

white	  window.	  The	  first	  window	  is	  by	  the	  second	  

white	  window.	  	  

This	  is	  a	  photograph	  of	  two	  buses.	  

The	  first	  rectangular	  bus	  is	  near	  the	  

second	  rectangular	  bus.	  	  

Here	  we	  see	  one	  person	  and	  

one	  train.	  The	  black	  person	  is	  

by	  the	  train.	  	  

This	  is	  a	  picture	  of	  two	  dogs.	  The	  first	  

dog	  is	  near	  the	  second	  furry	  dog.	  	  

Here	  we	  see	  one	  road,	  one	  

sky	  and	  one	  bicycle.	  The	  

road	  is	  near	  the	  blue	  sky,	  and	  

near	  the	  colorful	  bicycle.	  The	  

colorful	  bicycle	  is	  within	  the	  

blue	  sky.	  	  

Figure 4. Results of sentence generation using our method with template based sentence generation. These are “good” results as judged by

human annotators.

sampled grid of overlapping square regions covering the im-

ages. Pixels in any region with a classification probability

above a fixed threshold are treated as detections, and the

max probability for a region is used as the potential value.

ψ(attri; attrCl) - Attribute Potential

Attribute Classifiers: We train visual attribute classi-

fiers that are relevant for our object (and stuff) categories.

Therefore, we mine our large text corpus of Flickr descrip-

tions (described in Sec. 5.2) to find attribute terms com-

monly used with each object (and stuff) category removing

obviously non-visual terms. The resulting list consists of 21

visual attribute terms describing color (e.g. blue, gray), tex-

ture (e.g. striped, furry), material (e.g. wooden, feathered),

general appearance (e.g. rusty, dirty, shiny), and shape

(e.g. rectangular) characteristics. Training images for the

attribute classifiers come from Flickr, Google, the attribute

dataset provided by Farhadi et al [9], and ImageNet [6]. An

RBF kernel SVM is used to learn a classifier for each visual

attribute term (up to 150 positive peer class with all other

training examples as negatives). The outputs of the classi-

fiers are used as potential values.

ψ(prepij; prepFuns) - Preposition Potential

Preposition Functions: We design simple prepositional

functions that evaluate the spatial relationships between

pairs of regions in an image and provide a score for each

of 16 preposition terms (e.g. above, under, against, be-

neath, in, on etc). For example, the score for above(a, b)
is computed as the percentage of regiona that lies in the

image rectangle above the bounding box around regionb.

The potential for near(a, b) is computed as the minimum

distance between regiona and regionb divided by the diag-

onal size of a bounding box around regiona. Similar func-

tions are used for the other preposition terms. We include

synonymous prepositions to encourage variation in sentence

generation but sets of synonymous prepositions share the

same potential. Note for each preposition we compute both

prep(a,b) and prep(b,a) as either labeling order can be pre-

dicted in the output result.

5.2. Text Based Potentials

We use two potential functions calculated from large

text corpora. The first is a pairwise potential on attribute-

object label pairs ψ(attri, obji; textPr) and the second

is a trinary potential on object-preposition-object triples

ψ(obji, prepij , objj ; textPr). These potentials are the

probability of various attributes for each object (given the

object) and the probabilities of particular prepositional re-

lationships between object pairs (given the pair of objects).

The conditional probabilities are computed from counts of

word co-occurrence as described below.

Parsing Potentials: To generate counts for the attribute-

object potential ψp(attri, obji; textPr) we collect a large

set of Flickr image descriptions (similar to but less regu-

lated than captions). For each object (or stuff) category

we collect up to the min of 50000 or all image descrip-

tions by querying the Flickr API1 with each object cat-

egory term. Each sentence from this descriptions set is

parsed by the Stanford dependency parser [5] to generate

the parse tree and dependency list for the sentence. We

then collect statistics about the occurence of each attribute

and object pair using the adjectival modifier dependency

amod(attribute, object). Counts for synonyms of object

and attribute terms are merged together.

For generating the object-preposition-object potential

1http://www.flickr.com/services/api/
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Templated	  Genera-on:	  This	  is	  a	  photograph	  of	  one	  furry	  sheep.	  

Simple	  Decoding:	  the	  furry	  sheep	  it.	  
Templated	  Genera-on:	  Here	  we	  see	  three	  persons,	  one	  

sky,	  one	  grass	  and	  one	  train.	  The	  first	  colorful	  person	  is	  

underneath	  the	  clear	  sky,	  and	  beside	  the	  second	  colorful	  

person,	  and	  within	  the	  shiny	  train.	  The	  second	  colorful	  

person	  is	  underneath	  the	  clear	  sky,	  and	  by	  the	  shiny	  

train.	  The	  green	  grass	  is	  near	  the	  clear	  sky.	  The	  third	  

black	  person	  is	  underneath	  the	  clear	  sky,	  and	  by	  the	  

green	  grass,	  and	  within	  the	  shiny	  train.	  The	  shiny	  train	  is	  

by	  the	  clear	  sky,	  and	  beside	  the	  green	  grass.	  	  

Simple	  Decoding:	  the	  colorful	  person	  is	  underneath	  the	  

clear	  sky.	  the	  colorful	  person	  who	  beside	  the	  colorful	  

person.	  the	  colorful	  person	  is	  underneath	  the	  clear	  sky.	  

the	  green	  grass	  and	  near	  the	  clear	  sky.	  the	  colorful	  

person	  is	  within	  the	  shiny	  train.	  the	  black	  person	  is	  

underneath	  the	  clear	  sky.	  the	  black	  person	  and	  by	  the	  

green	  grass.	  the	  shiny	  train	  and	  by	  the	  clear	  sky.	  the	  

colorful	  person	  and	  by	  the	  shiny	  train.	  the	  shiny	  train	  

and	  beside	  the	  green	  grass.	  the	  black	  person	  is	  within	  

the	  shiny	  train.	  	  
Templated	  Genera-on:	  Here	  we	  see	  two	  cows	  and	  one	  tree.	  The	  

first	  cow	  is	  by	  the	  tree.	  The	  second	  cow	  is	  by	  the	  tree.	  	  

Simple	  Decoding:	  the	  cow	  and	  by	  the	  tree.	  the	  cow	  and	  by	  the	  tree.	  

Figure 5. Comparison of our two generation methods.

ψp(obji, prepij , obji; textPr) we collect ∼1.4 million

Flickr image descriptions by querying for pairs of object

terms. Sentences containing at least 2 object (or stuff)

categories and a prepositional ( ∼140k) are parsed using

the Stanford dependency parser. We then collect statis-

tics for the occurence of each prepositional dependency be-

tween object categories. For a prepositional dependency oc-

curence, object1 is automatically picked as either the sub-

ject or object part of the prepositional dependency based on

the voice (active or passive) of the sentence, while object2

is selected as the other. Counts include synonyms.

Google Potentials: Though we parse thousands of

descriptions, the counts for some objects can be too

sparse. Therefore, we also collect additional Google

Search based potentials: ψg(attri, obji; textPr) and

ψg(obji, prepij , objj ; textPr). These potentials are com-

puted from the number of search results approximated by

Google for an exact string match query on each of our

attribute-object pairs (e.g. “brown dog”) and preposition-

object-preposition triples (e.g. “dog on grass”).

Smoothed Potentials: Our final potentials are computed

as a smoothed combination of the parsing based potentials

with the Google potentials: αψp + (1 − α)ψg .

6. Generation

The output of our CRF is a predicted labeling of the im-

age. This labeling encodes three kinds of information: ob-

jects present in the image (nouns), visual attributes of those

objects (modifiers), and spatial relationships between ob-

jects (prepositions). Therefore, it is natural to extract this

meaning into a triple (or set of triples), e.g.:

<< white, cloud >, in,< blue, sky >>
Based on this triple, we want to generate a complete sen-

tence such as “There is a white cloud in the blue sky”.

We restrictions generation so that: the set of words in the

meaning representation is fixed and generation must make

use of all given content words; and, generation may insert

only gluing words (i.e., function words such as “there”, “is”,

“the”, etc). These restrictions could be lifted in future work.

6.1. Decoding using Language Models

A N -gram language model is a conditional probability

distribution P (xi|xi−N+1, ..., xi−1) of N -word sequences

(xi−N+1, ..., xi), such that the prediction of the next word

depends only on the previous N -1 words. That is, with

N -1’th order Markov assumption, P (xi|x1, ..., xi−1) =
P (xi|xi−N+1, ..., xi−1). Language models are shown to be

simple but effective for improving machine translation and

automatic grammar corrections.

In this work, we make use of language models to pre-

dict gluing words (i.e. function words) that put together

words in the meaning representation. As a simple exam-

ple, suppose we want to determine whether to insert a func-

tion word x between a pair of words α and β in the mean-

ing representation. Then, we need to compare the length-

normalized probability p̂(αxβ) with p̂(αβ), where p̂ takes

the n’th root of the probability p for n-word sequences, and

p(αxβ) = p(α)p(x|α)p(β|x) using bigram (2-gram) lan-

guage models. If considering more than two function words

between α and β, dynamic programming can be used to find

the optimal sequence of function words efficiently. Because

the ordering of words in each triple of the meaning repre-

sentation coincides with the typical ordering of words in

English, we retain the original ordering for simplicity. Note

that this approach composes a separate sentence for each

triple, independently from all other triples.

6.2. Templates with Linguistic Constraints

Decoding based on language models is a statistically

principled approach, however, two main limitations are: (1)

it is difficult to enforce grammatically correct sentences us-

ing language models alone (2) it is ignorant of discourse

structure (coherency among sentences), as each sentence

is generated independently. We address these limitations

by constructing templates with linguistically motivated con-

straints. This approach is based on the assumption that there

are a handful of salient syntactic patterns in descriptive lan-

guage that we can encode as templates.

7. Experimental Results & Conclusion

To construct the training corpus for language models,

we crawled Wikipedia pages that describe objects our sys-

tem can recognize. For evaluation, we use the UIUC PAS-

CAL sentence dataset2, which contains up to five human-

generated sentences that describe 1000 images. From this

set we evaluate results on 847 images3.

2http://vision.cs.uiuc.edu/pascal-sentences/
3153 were used to learn CRF and detection parameters.
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Here	  we	  see	  one	  po*edplant.	  	  

Missing	  detec+ons:	  

This	  is	  a	  picture	  of	  one	  dog.	  	  

This	  is	  a	  photograph	  of	  two	  sheeps	  and	  one	  

grass.	  The	  first	  black	  sheep	  is	  by	  the	  green	  

grass,	  and	  by	  the	  second	  black	  sheep.	  The	  

second	  black	  sheep	  is	  by	  the	  green	  grass.	  	  

Incorrect	  a1ributes:	  

This	  is	  a	  photograph	  of	  two	  horses	  and	  one	  

grass.	  The	  first	  feathered	  horse	  is	  within	  the	  

green	  grass,	  and	  by	  the	  second	  feathered	  

horse.	  The	  second	  feathered	  horse	  is	  within	  

the	  green	  grass.	  	  

There	  are	  two	  cows	  and	  one	  person.	  The	  

first	  brown	  cow	  is	  against	  the	  brown	  

person,	  and	  near	  the	  second	  cow.	  The	  

brown	  person	  is	  beside	  the	  second	  cow.	  	  

Coun+ng	  is	  hard!	  

This	  is	  a	  picture	  of	  four	  persons.	  The	  first	  

colorful	  person	  is	  by	  the	  second	  pink	  

person,	  and	  by	  the	  third	  colorful	  person.	  

The	  second	  pink	  person	  is	  by	  the	  third	  

colorful	  person,	  and	  by	  the	  fourth	  person.	  	  

Incorrect	  detec+ons:	  

There	  are	  one	  road	  and	  one	  cat.	  The	  

furry	  road	  is	  in	  the	  furry	  cat.	  	  

This	  is	  a	  picture	  of	  one	  tree,	  one	  

road	  and	  one	  person.	  The	  rusty	  tree	  

is	  under	  the	  red	  road.	  The	  colorful	  

person	  is	  near	  the	  rusty	  tree,	  and	  

under	  the	  red	  road.	  	  

Just	  all	  wrong!	  

There	  are	  one	  po*ed	  plant,	  one	  tree,	  

one	  dog	  and	  one	  road.	  The	  gray	  

po*ed	  plant	  is	  beneath	  the	  tree.	  The	  

tree	  is	  near	  the	  black	  dog.	  The	  road	  is	  

near	  the	  black	  dog.	  The	  black	  dog	  is	  

near	  the	  gray	  po*ed	  plant.	  	  

This	  is	  a	  photograph	  of	  one	  person	  and	  one	  

sky.	  The	  white	  person	  is	  by	  the	  blue	  sky.	  	  

Figure 6. Results of sentence generation using our method with template based sentence generation. These are “bad” results as judged by

human annotators.

Method w/o w/ synonym

Human 0.50 0.51

Language model-based generation 0.25 0.30

Template-based generation 0.15 0.18

Meaning representation (triples) 0.20 0.30

Table 1. Automatic Evaluation: BLEU score measured at 1

Automatic Evaluation: BLEU [20] is a widely used metric

for automatic evaluation of machine translation that mea-

sures the n-gram precision of machine generated sentences

with respect to human generated sentences. Because our

task can be viewed as machine translation from images

to text, BLEU may seem like a reasonable choice at first

glance. Upon a close look however, one can see that there

is inherently larger variability in generating sentences from

images than translating a sentence from one language to an-

other. For instance, from the image shown in Figure 1, our

system correctly recognizes objects such as “chair”, “green

grass”, “potted plant”, none of which is mentioned in the

human generated description available in the UIUC PAS-

CAL sentence dataset. As a result, BLEU will inevitably

penalize many correctly generated sentences. Nevertheless,

we report BLEU score as a standard evaluation method, and

quantify its shortcomings for future research.

The first column in Table 1 shows BLEU score when

measured with exact match for each word, and the second

shows BLEU when we give full credits for synonyms. For

context, we also compute the BLEU score between human-

generated sentences; we average the BLEU score between

each human-generated sentence to the set of others over all

images. Finally, we compute BLEU score of the CRF out-

puts with respect to the human-generated sentences.

Human Evaluation: Evaluation by BLEU score facilitates

efficient comparisons among different approaches, but does

Method Score

Quality of image parsing 2.85

Language model-based generation 2.77

Template-based generation 3.49

Table 2. Human Evaluation: possible scores are 4 (perfect without error),

3 (good with some errors), 2 (many errors), 1 (failure)

Method k=1 k=2 k=3 k=4+

Quality of image parsing 2.90 2.78 2.82 3.33

Language model-based 2.27 3.00 2.76 2.95

Template-based generation 3.83 3.50 3.43 3.61

Table 3. Human Evaluation: k refers to the number of objects detected

by CRF. Possible scores are 4 (perfect without error), 3 (good with some

errors), 2 (many errors), 1 (failure)

not measure vision output quality directly, and is oblivious

to correctness of grammar or discourse quality (coherency

across sentences). To directly quantify these aspects, we

perform human judgment on the entire test set. The results

are shown in Table 2 and 3, where the image parsing score

evaluates how well we describe image content (the triples

output by the CRF), and the other two scores evaluate the

overall sentence quality. Overall our template generation

method demonstrates a very high average human evaluation

score of 3.49 (max 4) for the quality of generated sentences.

We also do well at predicting image content (ave 2.85).

Note that human judgment of the generation quality

does not correlate with BLEU score. Per BLEU, it looks

as though language-model generation performs better than

template-based one, but human judgment reveals the op-

posite is true. The Pearson’s correlation coefficient be-

tween BLEU and human evaluationare is -0.17 and 0.05 for

language model and template-based methods respectively.

We also measure human annotation agreement on 160 in-

stances. The scores given by two evaluators were identical

on 61% of the instances, and close (difference ≤ 1) on 92%.
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7.1. Qualitative Results

The majority of our generated sentences look quite good.

Example results on PASCAL images rated as “good” are

shown in fig 4. In fact most of our results look quite good.

Even “bad” results almost always look reasonable and are

relevant to the image content (fig 6). Only for a small minor-

ity of the images are the generated descriptions completely

unrelated to the image content (fig 6, 2 right most images).

In cases where the generated sentence is not quite perfect

this is usually due to one of three problems: a failed object

detection that misses an object, a detection that proposes the

wrong object category, or an incorrect attribute prediction.

However, because of our use of powerful vision systems

(state of the art detectors and attribute methodologies) the

results produced are often astonishingly good.

7.2. Conclusion

We have demonstrated a surprisingly effective, fully au-

tomatic, system that generates natural language descriptions

for images. The system works well and can produce results

much more specific to the image content than previous au-

tomated methods. Human evaluation validates the quality

of the generated sentences. One key to the success of our

system was automatically mining and parsing large text col-

lections to obtain statistical models for visually descriptive

language. The other is taking advantage of state of the art

vision systems and combining all of these in a CRF to pro-

duce input for language generation methods.
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