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Xenobiotic compounds are man-made compounds and widely used in dyes, drugs,

pesticides, herbicides, insecticides, explosives, and other industrial chemicals. These

compounds have been released into our soil and water due to anthropogenic activities

and improper waste disposal practices and cause serious damage to aquatic and

terrestrial ecosystems due to their toxic nature. The United States Environmental

Protection Agency (USEPA) has listed several toxic substances as priority pollutants.

Bacterial remediation is identified as an emerging technique to remove these substances

from the environment. Many bacterial genera are actively involved in the degradation

of toxic substances. Among the bacterial genera, the members of the genus Bacillus

have a great potential to degrade or transform various toxic substances. Many Bacilli

have been isolated and characterized by their ability to degrade or transform a wide

range of compounds including both naturally occurring substances and xenobiotic

compounds. This review describes the biodegradation potentials of Bacilli toward

various toxic substances, including 4-chloro-2-nitrophenol, insecticides, pesticides,

herbicides, explosives, drugs, polycyclic aromatic compounds, heavy metals, azo dyes,

and aromatic acids. Besides, the advanced technologies used for bioremediation

of environmental pollutants using Bacilli are also briefly described. This review will

increase our understanding of Bacilli-mediated degradation of xenobiotic compounds

and heavy metals.

Keywords: 4-Chloro-2-nitrophenol, naproxen, polycyclic aromatic hydrocarbons, cypermethrin, ibuprofen,
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INTRODUCTION

The genus Bacillus belongs to the family Bacillaceae that comprises of 293 species/subspecies
(Patel and Gupta, 2020). This genus is characterized by a group of rod-shaped, Gram-positive,
aerobic, or facultatively anaerobic, endospore-forming bacteria (Patel and Gupta, 2020). Members
of the genus Bacillus are ubiquitous; they have been isolated from a variety of sources including
soil, sewage sludge (Demharter and Hensel, 1989), ocean sediments (Ruger et al., 2000), saline
water (Smibert and Krieg, 1994). They have the exceptional ability to grow very rapidly in high
densities as well as to tolerate adverse environmental conditions. The genus Bacillus includes both
non-pathogenic (free-living) and pathogenic (parasitic) species. Few examples of non-pathogenic
species are Bacillus subtilis, B. licheniformis, B. amyloliquefaciens, and B. pumilus, which are closely
related to each other. The pathogenic strains include B. anthracis, which causes anthracis in human
beings and B. cereus that causes food poisoning (Claus and Berkeley, 1986).
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Bacilli constitute a versatile group of bacteria, which
have many applications in the field of health, environment,
and agriculture. They produce several secondary metabolites
including antibiotics and biosurfactants (Caulier et al., 2019).
Furthermore, they are potential sources of industrial enzymes
including lipases, proteases, alpha-amylase, and the BamH1
restriction enzyme (Latorre et al., 2016). Few species of Bacillus
including B. thuringiensis, and some strains of B. sphaericus
have insecticidal properties (Palma et al., 2014). Using the
genetic engineering approach, the genes encoding insecticidal
proteins in B. thuringiensis have been incorporated into corn and
cotton plants to generate insect-resistance genetically modified
crops (Jouzani et al., 2017). Some Bacillus species are ideal
candidates for biological control due to their antagonistic
activities against fungal and some bacterial pathogens (Wulff
et al., 2002).

Bacilli are considered as potential bioremediator agents,
which are capable of degrading several toxic substances (Arora
et al., 2016; Singh and Singh, 2016; Xiao et al., 2017). Earlier
studies have also been reported degradation of various xenobiotic
compounds and heavy metals by the members of genus Bacillus
(Birolli et al., 2016; Upadhyay et al., 2017; Arora et al.,
2018; Díez-Méndez et al., 2019). Wang et al. (2019) reported
the efficient biodegradation of petroleum hydrocarbons by B.
subtilis BL-27. Viesser et al. (2020) isolated new petroleum-
degrading strains of B. thuringiensis and B. subtilis from the
rhizosphere of Panicum aquaticum. Both of these strains were
able to utilize petroleum hydrocarbons as their sole source
of carbon and energy. Bonifer et al. (2019) reported that B.
pumilus B12 degrades poly-lactic acid that is the second most
common biodegradable polymer found in commercial plastics.
The transformation of 4-chloro-2-nitrophenol was extensively
studied in many Bacilli (Arora et al., 2018). The ability of
Bacilli to degrade polycyclic aromatic compounds, drugs, dyes,
explosives have also been reported in the literature (Singh
and Singh, 2016; Górny et al., 2019). These data indicated
that Bacilli play a significant role in the biodegradation of
toxic substances.

So far, several reviews have been published dealing with
the biotechnological application of Bacilli (Bunk et al., 2010;
Kumar et al., 2013; Jouzani et al., 2017; Sansinenea, 2019).
Kumar et al. (2013) reviewed the significance of Bacilli
for the production of biofuels, polyhydroxyalkanoates, and
bioactive molecules. Sansinenea and Ortiz (2011) described
the importance of secondary metabolites produced by Bacilli.
Bunk et al. (2010) summarized the industrial applications
of Bacillus megateriunm and other Bacilli. Sansinenea (2019)
discussed the plant growth-promoting activities of Bacilli.
Even though Bacill iare highly involved in biodegradation
of various natural and xenobiotic compounds, a review
on the biodegradation potential of Bacilli is rare. In the
last decade, several researchers have been investigated the
degradation abilities of Bacilli toward many toxic compounds.
This review aims to summarize the role of Bacilli in the
biodegradation process of various xenobiotic compounds and
heavy metals.

ROLE OF BACILLUS SPECIES IN
BIODEGRADATION

Table 1 summarizes the role of various Bacilli in biodegradation
of dyes, pesticides, herbicides, chlorophenols, nitrophenols,
chloronitrophenols, heavy metals, drugs, explosives, crude oil
waste, plastics, alkaline lignin, and other natural compounds.
One of the following processes may involve in the degradation of
toxic compounds by Bacilli: (i) Complete mineralization of toxic
compounds, (ii) Co-metabolism of xenobiotics compounds. The
mineralization involves complete utilization of toxic compounds
by a Bacillus strain which utilized them as its sole source of
carbon energy and converts them into CO2 and water (Arora
et al., 2018). In the co-metabolism, Bacilli transform chemical
compounds into other compounds which generally less toxic
than parent compounds. Co-metabolism-based bioremediation
is a non-growth linked biological process in which bacteria
convert environmental pollutants to other substances in the
presence of carbon source or growth substrate (Hazen, 2010).
In this process, bacteria do not depend on the pollutants for
growth and use non-specific enzymes to degrade environmental
pollutants that do not support their growth (Hazen, 2010).
In this section, the biodegradation potential of Bacilli
toward a variety of xenobiotic compounds and heavy metals
is discussed.

Bacilli-Mediated Degradation of
4-Chloro-2-Nitrophenol
4-Chloro-2-nitrophenol is a chloro derivative of nitrophenol
that is widely used for the synthesis of dyes, pesticides, drugs,
and chemicals (Arora et al., 2018). Due to its wide range of
applications, this compound has been detected in a variety of
sources including industrial effluents. It is highly toxic to living
beings and may cause methemoglobinemia in human beings. So
far, several physicochemical and biological methods have been
used for the 4-chloro-2-nitrophenol degradation (Bruhn et al.,
1988; Beunink and Rehm, 1990; Saritha et al., 2007; Gharbani
et al., 2010; Hashemi et al., 2017; Arora et al., 2018). In this sub-
section, the role of Bacillus species in the 4-chloro-2-nitrophenol
degradation is summarized.

Many Bacilli have been characterized for their ability to
decolorize the yellow color of 4-chloro-2-nitrophenol in the
presence of additional carbon source (Arora et al., 2018). A
marine bacterium, Bacillus sp. MW-1 (Arora and Jain, 2012),
and a soil bacterium, Bacillus subtilis RKJ 700 (Arora, 2012)
decolorized and transformed 4-chloro-4-nitrophenol into 5-
chloro-2-methylbenzoxazole via detoxification mechanism. In
this mechanism, 4-chloro-2-nitrophenol initially reduced to 4-
chloro-2-aminophenol, which is further acetylated to 4-chloro-
2-acetaminophenol. The next step involves the conversion of
4-chloro-2-acetaminophenol to 5-chloro-2-methylbenzoxazole
(Figure 1). Recently, ten bacterial strains belonging to Bacillus
isolated from a wastewater sample showed decolorization of
4-chloro-2-nitrophenol in the presence of glucose. One of
a bacterium, identified as Bacillus aryabhattai strain PC-7
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TABLE 1 | A list of members of the genus Bacillus, which have biodegradation potential.

S. No. Bacteria strain Compounds Remarks References

A. Decolorization and transformation of Dyes

1. Bacillus

aryabhattai LN01

Toluidine Blue Decolorized Toluidine Blue in Lacaase-like and azoreductase-like

reactions

Díez-Méndez et al.,

2019

2 Bacillus

aryabhattai LN08

Toluidine Blue,

Remazol, and Brilliant Blue

Decolorized Toluidine Blue in Lacaase-like reaction and Remazol

Brilliant Blue in Peroxidase-like reaction

Díez-Méndez et al.,

2019

3. Bacillus

aryabhattai LN09

Congo Red,

Toluidine Blue,

and Remazol Brilliant Blue

Decolorized Congo Red in Laccase-like reaction; Toluidine Blue in

Azoreductase-like reaction and Remazol Brilliant Blue in Peroxidase like

reaction

Díez-Méndez et al.,

2019

4. Bacillus

aryabhattai LN10

Toluidine Blue Decolorized Toluidine Blue in Laccase-like and Azoreductase-like

reactions

Díez-Méndez et al.,

2019

5. Bacillus

aryabhattai LN15

Congo Red, and

Toluidine Blue

Decolorized Congo Red and Toluidine Blue in Laccase-like and

Azoreductase-like reactions

Díez-Méndez et al.,

2019

6. Bacillus

aryabhattai LN16

Congo Red Decolorized Congo Red by Peroxidase-like reaction Díez-Méndez et al.,

2019

7. Bacillus

megaterium LN30

Congo Red Decolorized Congo red by Azoreductase-like reaction Díez-Méndez et al.,

2019

8. Bacillus

aryabhattai LN37

Congo Red,

Toluidine Blue,

and Remazol Brilliant Blue

Decolorized Congo red in Laccase like reaction; Remazol Brilliant Blue

in Azoreductase-like reaction and Toluidine Blue in Laccase-like and

Azoreducatase like reactions

Díez-Méndez et al.,

2019

9. Bacillus

aryabhattai LN39

Remazol Brilliant Blue, and

Toluidine Blue

Decolorized Remazol Brilliant Blue and Toluidine Blue in

Azoreductase-like reaction.

Díez-Méndez et al.,

2019

10. Bacillus

aryabhattai LN41

Remazol Brilliant Blue and

Toluidine Blue

Decolorized Remazol Brilliant Blue and Toluidine Blue in Azoreductase

like reduction

Díez-Méndez et al.,

2019

11. Bacillus

aryabhattai LN49

Remazol Brilliant Decolorized Remazol Brilliant Blue in Laccase-like reaction Díez-Méndez et al.,

2019

12. Bacillus

aryabhattai LN61

Toluidine Blue Decolorized Toluidine Blue in Azoreductase-like reaction Díez-Méndez et al.,

2019

13. Bacillus

aryabhattai LN84

Congo Red,

and Remazol Brilliant Blue

Decolorized Congo Red in Laccase-like reaction and Remazol Brilliant

Blue in Azoreductase and Laccase-like reactions

Díez-Méndez et al.,

2019

14. Bacillus

aryabhattai LN87

Toluidine Blue Decolorized Toluidine Blue in Azoreductase and Laccase-like reactions Díez-Méndez et al.,

2019

15. Bacillus

aryabhattai LN88

Toluidine Blue and Remazol

Brilliant Blue

Decolorized Toluidine Blue in Peroxidase-like and Azoreducase-like

reactions and Remazol Brilliant Blue in Azoreucatase-like reactions

Díez-Méndez et al.,

2019

16. Bacillus

aryabhattai LN90

Congo Red,

Toluidine Blue,

and Remazol Brilliant Blue

Decolorized Congo red in Laccase-like reaction; Toluidine Blue in

Laccase-like and Azoredutase-like reactions and Remazol Brilliant Blue

in Azoreductase-like reaction.

Díez-Méndez et al.,

2019

17. Bacillus sp. VUS Brown 3REL Transformed into 6,8-dichloro-quinazoline-4-ol and cyclopentanone. Dawkar et al., 2008

18. Bacillus sp. OY1-2 Red B dye Rapid biodegradation of Red B dye was observed in anoxic conditions

as compared to aerobic conditions.

Li et al., 2004

19. Bacillus firmus Reactive Blue 160 Decolorized dye (500 mg/l) and detoxify it. Barathi et al., 2020

20. Bacillus

megaterium

KY848339.1

Acid red 337 dye Degraded it via small aliphatic compounds and CO2 Ewida et al., 2019

21. Bacillus sp. BDN2 Reactive Blue 160 Degraded 65% dye Balapurea et al., 2014

22. Bacillus sp. BDN7 Reactive Blue 160 Degraded 80% within 12 h Balapurea et al., 2014

23. Bacillus sp. BDN8 Reactive Blue 160 Degraded 75% within 18 h Balapurea et al., 2014

24. Bacillus

megaterium NCIM

2054

Disperse Red 73 dye 61% dye decolorization within 48 h Kadam et al., 2014

25. Bacillus cereus

HJ-1

Reactive Black B Decolorized dye and detoxify it. Liao et al., 2013

26. Bacillus sp. YZU1 Reactive Black 5 95% dye decolorization was observed in 120 h Wang et al., 2013

27. Bacillus sp. AK1 Metanil Yellow Degraded 200 mg/l dye within 27 h Anjaneya et al., 2011

28. Bacillus odyssey

SUK3

Reactive blue 59 Decolorized dye (50 mg/l) completely within 60 h Patil et al., 2008

(Continued)
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TABLE 1 | Continued

S. No. Bacteria strain Compounds Remarks References

29. Bacillus cereus

DC11q

Malachite green Degraded to 4,4′-bis(dimethylamino)benzophenone and

benzophenone

Deng et al., 2008

30. Bacillus

cereusDC11q

Acid Blue 25 95–98% dye (100µM) decolorization within 6 h under anaerobic

conditions

Deng et al., 2008

31. Bacillus cereus

DC11q

Basic Blue X-GRRL Degraded via reduction of azo bonds. Deng et al., 2008

32. Bacillus fusiformis

KMK5

Disperse Blue 79, and Acid

Orange 10

Complete mineralization of dyes at the concentration of 1.5 g/L was

observed within 48 h

Kolekar et al., 2008

33. Bacillus subtilis

IFO 13719

Crystal Violet Decolorized via 4,4’-bis(dimethylamino)benzophenone Yatome et al., 1991

34. Bacillus

megaterium

Azo dye Decolorized 98% dye Shah et al., 2013

35. Bacillus cereus Azo dye Decolorized 95% dye Shah et al., 2013

36. Bacillus

pseudomycoides

Acid Black 24 96% of dye decolorization was achieved within 24 h. Kumar et al., 2019

37. Bacillus subtilis Disperse yellow 211 80% dye (100 mg/) decolorization observed under optimum conditions. Sharma et al., 2009

38. Bacillus subtilis Crystal violet Decolorized dye (100 mg/l) effectively at pH 8 and temperature 35◦ C Kochher and Kumar,

2011

39. Bacillus cohnii

MTCC 3616

Direct Red-22 95% dye decolorization (5,000mg l−1) was observed at 37◦ C and pH

9 in 4 h

Prasad and Rao, 2013

40. Bacillus firmus CI Direct Red 80 Decolorized 50 mg/L of dye under anoxic conditions within 12 h Ogugbue et al., 2012

41. Bacillus

licheniformis

Reactive Red 2 Transformed it into 2,

4-dichloro-6-[(1H-indazol-5-ylimino)-methyl]-phenol, benzene

sulfonamide, 1H indole and urea as final metabolites

Sudha and

Balagurunathan, 2013

42. Bacillus

megaterium

Remazol Blue Decolorized up to 5 mg/ml Joshi et al., 2013

43. Bacillus subtilis RED M5B Decolorization by the activity of peroxidase Gunasekar et al., 2013

44. Bacillus sp. VUS Orange T4LL transforms it into 4-methyl-2-o-tolylazo-benzene-1,3-diamine and

[3-(phenyl-hydrazono)-cyclohexa-1,4-dienyl]-methanol

Dawkar et al., 2010

45. Bacillus flexus Remazol Black Decolorized 100% of dye within 24 h Saini et al., 2018

46. Bacillus flexus Direct Blue Decolorized 100% of dye within 24 h Saini et al., 2018

47. Bacillus flexus Acid Orange Decolorized 100% of dye within 24 h Saini et al., 2018

B. Biodegradation of Pesticides, Herbicides, and Insecticides

48. Bacillus subtilis

strain 1D

Cypermethrin Completely metabolized via cyclododecylamine, phenol,

3-(2,2-dichloroethenyl 2,2-dimethyl cyclopropane

carboxylate,1-decanol, chloroacetic acid, acetic acid, cyclopentan

palmitoleic acid, and decanoic acid

Gangola et al., 2018

49. Bacillus sp. strain

SG2

Cypermethrin Metabolized via Phenoxybenzaldehyde,2,2,3,3

tetramethylcyclopropanecarboxylic acid 4-propylbenzoate,

4-propylbenzaldehyde, phenol M-tert-butyl, and 1-dodecanol,

Pankaj et al., 2016

50. Bacillus subtilis

BSF01

Cypermethrin Metabolized via Phenoxybenzaldehyde, 2,2,3,3

tetramethylcyclopropanecarboxylic acid

Xiao et al., 2015

51. Bacillus sp. AKD1 Cypermethrin Transformed Cypermethrin in presence of heavy metals Tiwary and Dubey,

2016

52. Bacillus sp.

ISTDS2

Cypermethrin Metabolized Cypermethrin in soil microcosm via formation of

cyclopropane, carboxylic acid, hydroxyacetonitrile, and benzene

ethanamine

Sundaram et al., 2013

53. Bacillus

licheniformis B-1

Cypermethrin Degraded via 3-phenoxybenzoic acid Lai et al., 2012

54. Bacillus

thuringiensis

ZS-19

Cyhalothrin Degraded via α-hydroxy-3-phenoxy-benzeneacetonitrile,

3-phenoxyphenyl acetonitrile,

N-(2-isoproxy-phenyl)-4-phenoxy-benzamide,

3-phenoxybenzaldehyde, 3-phenoxybenzoate, and phenol

Chen et al., 2015

55. Bacillus cereus PU Malathion Degraded via malathion monocarboxylic and dicarboxylic acid Singh et al., 2012

(Continued)
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TABLE 1 | Continued

S. No. Bacteria strain Compounds Remarks References

56. Bacillus

thuringiensis

MOS-5

Malathion Degraded via malathion monocarboxylic and dicarboxylic acid Zeinat et al., 2008

57. Bacillus

megaterium MCM

B-423

Monocrotophos Degraded into carbon dioxide, ammonia, and phosphates Bhadbhade et al., 2002

58. Bacillus sp. N1 Metribuzin Used as a nitrogen source. Zhang et al., 2014

59. Bacillus

alkalinitrilicus

Imidacloprid Degraded via 6-chloronictinic acid nitrosamine Sharma et al., 2014

60. Bacillus subtilis

Y242

Chlorpyrifos 96% degraded within 48 h El-Helow et al., 2013

61. Bacillus pumilus

NY97-I

Carbendazim 87.76% degradation Zhang et al., 2009

62. Bacillus cereus

WD-2

Prochloraz-manganese 90.7% degradation at pH 8. Jiang et al., 2019

63. Bacillus sp. DG-02 Fenpropathrin Transformed into 3,4-dihydroxybenzoic acid, 3,4-dimethoxyphenol,

and phenol

Chen et al., 2014

64. Bacillus

aryabhattai strain

VITNNDJ5

Monocrotophos Degraded via three routes. Dash and Osborne,

2020

65. Bacillus firmus Fipronil Degraded via fipronil sulfide, fipronil sulfone and fipronil amide. Mandal et al., 2013

66. Bacillus sp. TAP-1 Triazophos Co-metabolized via hydrolyzing insecticide triazophos Tang and You, 2012

67. Bacillus pumilus

W1

Organophosphates Hydrolysis of organophosphates by enzyme encoding by opdA Ali et al., 2012

68. Bacillus subtilis

DR-39

Profenofos 4-Bromo-2-chlorophenol was identified as a metabolite Salunkhe et al., 2013

69. Bacillus subtilis

CS-126,

Profenofos 4-Bromo-2-chlorophenol was identified as a metabolite Salunkhe et al., 2013

70. Bacillus subtilis

TL-171

Profenofos 4-Bromo-2-chlorophenol was identified as a metabolite Salunkhe et al., 2013

71. Bacillus subtilis

TS-204

Profenofos 4-Bromo-2-chlorophenol was identified as a metabolite Salunkhe et al., 2013

72. Bacillus sp. strain

C5

Methyl Parathion Hydrolyzedmethyl parathion to 4-nitrophenol and other metabolites Hao et al., 2014

73. Bacillus pumilus

C2A1

Chlorpyrifos Degraded via 3,5,6-trichloro-2-pyridinol Anwar et al., 2009

74. Bacillus subtilis

MTCC 8561

Endosulfan and Endosulfan

sulfate

Used as sulfur source and transformed to endosulfan diol and

endosulfan lactone

Kumar et al., 2014

75. Bacillus subtilis

HB-6

Atrazine Mineralized via hydroxyatrazine, cyanuric acid, and urea Wang et al., 2014

76. Bacillus badius

ABP6

Atrazine Optimum conditions of the atrazine degradation were determined Khatoon and Rai, 2020

77. Bacillus

megaterium strain

Q3

Quinclorac Transformed to 3, 7-dichloro-8-methyl-quinoline,

3-chlorin-8-quinoline-carboxylic and 8-quinoline-carboxylic

Liu et al., 2014

78. Bacillus

licheniformis

CY-012

Fenvalerate Co-metabolized via α-isopropyl-4-chlorobenzene acetic acid,

4-chlorobenzene acetic acid, 3-phenoxybenzyl alcohol, phenol, and

benzoic acid.

Tang et al., 2018

79. Bacillus sp. 4T Esfenvalerate Transformed to (i) 3-2-(4-chlorophenyl)-3-methylbutyric acid), (ii)

phenoxybenzoic acid, (iii) 2-(3-hydroxyphenyl)acetic acid

Birolli et al., 2016

80. Bacillus sp. 2B Esfenvalerate Transformed to (i) 3-2-(4-chlorophenyl)-3-methylbutyric acid), (ii)

phenoxybenzoic acid, hydroxy phenoxybenzoic acid and

3-hydroxybenzoic acid(iii) 2-(3-hydroxyphenyl)acetic acid

Birolli et al., 2016

81. Bacillus sp.

P5CBNB

Esfenvalerate Transformed to (i) 3-2-(4-chlorophenyl)-3-methylbutyric acid), (ii)

phenoxybenzoic acid, hydroxy phenoxybenzoic acid

Birolli et al., 2016

82. Bacillus sp.

CBMAI 1833

Esfenvalerate Transformed to (i) 3-2-(4-chlorophenyl)-3-methylbutyric acid), (ii)

phenoxybenzoic acid, hydroxy phenoxybenzoic acid (iii)

2-(3-hydroxyphenyl)acetic acid

Birolli et al., 2016

(Continued)
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TABLE 1 | Continued

S. No. Bacteria strain Compounds Remarks References

83. Bacillus sp. DG-2 3-phenoxybenzoic acid Degraded via 3-(2-methoxyphenoxy) benzoic acid, protocatechuate,

phenol, and 3,4-dihydroxy phenol.

Chen et al., 2012a

C. Biodegradation and Biotransformation of Chlorophenol, Nitrophenol, and Chloronitrophenol

84. Bacillus

licheniformis strain

SL10

2,4-Dichlorophenol Degradation occurred via meta cleavage pathway of catechol or

chlorocatechol

Chris Felshia et al.,

2020

85. Bacillus sp. MW-1 4-chloro-2-nitrophenol Transformed to 5-chloro-2-methyl benzoxazole Arora and Jain, 2012

86. Bacillus subtilis

RKJ 700

4-chloro-2-nitrophenol Transformed to 5-chloro-2-methyl benzoxazole Arora, 2012

87. Bacillus cereus

PC-1

4-chloro-2-nitrophenol Decolorized up to concentration of 1.0mM Arora et al., 2016

88. Bacillus

toyonensis PC-2

4-chloro-2-nitrophenol Decolorized up to a concentration of 0.9mM Arora et al., 2016

89. Bacillus

thuringiensis PC-3

4-chloro-2-nitrophenol Decolorized up to a concentration of 1.0mM Arora et al., 2016

90. Bacillus firmus

PC-4

4-chloro-2-nitrophenol Decolorized up to a concentration of 0.8mM Arora et al., 2016

91. Bacillus koreensis

PC-5

4-chloro-2-nitrophenol Decolorized up to concentration of 0.6mM Arora et al., 2016

92. Bacillus

megaterium PC-6

4-chloro-2-nitrophenol Decolorized up to a concentration of 1.5mM Arora et al., 2016

93. Bacillus

aryabhattai PC-7

4-chloro-2-nitrophenol Decolorized up to concentration of 2.0mM Arora et al., 2016

94. Bacillus aerophilus

PC-8

4-chloro-2-nitrophenol Decolorized up to concentration of 0.6mM Arora et al., 2016

95. Bacillus siamensis

PC-9

4-chloro-2-nitrophenol Decolorized up to concentration of 0.8mM Arora et al., 2016

96. Bacillus

amyloliquefaciens

PC-10

4-chloro-2-nitrophenol Decolorized up to concentration of 0.9mM Arora et al., 2016

97. Bacillus subtilis

MF447840

4-chlorophenol Degraded 4-chlorophenol up to of 1,000 mg/L Sandhibigraha et al.,

2020

98. Bacillus cereus PU Trinitrophenol Used trinitrophenol as nitrogen source and degraded via

Hydride-Meisenheimer complex.

Singh et al., 2011

D. Biodegradation of Polyaromatic hydrocarbons

99. Bacillus subtilis

3KP

Naphthalene and Phenanthrene Metabolized via hydroxy-2-naphthoic acid, salicylic acid, and

pyrocatechol

Ni’matuzahroh et al.,

2017

100. Bacillus fusiformis Naphthalene Degraded via o-phthalic acid and benzoic acid, Lin et al., 2010

101. Bacillus cereus

RKS4

Naphthalene Catechol and 2-naphthol were identified as major metabolites of

naphthalene degradation.

Sonwani et al., 2019

102. Bacillus sp.

SBER3

Anthracene and Naphthalene Degraded 83.4% of anthracene and 75.1% of and naphthalene in 6

days.

Bisht et al., 2014

103. Bacillus subtilis

DM-04

Pyrene Used it as its carbon source and energy Das and Mukherjee,

2007

104. Bacillus subtilis

BM-1

Fluorene Degrade 86% of 50 mg/L fluorine with 21 days Salam and Obayori,

2014

105. Bacillus

amyloliquefaciens

BR1

Fluorene Degrade 82% of 50 mg/L fluorine with 21 days Salam and Obayori,

2014

106. Bacillus subtilis

BTM4i

Benza-pyrene Utilized as a sole source of carbon and energy and degradation ability

was chromosomally coded.

Lily et al., 2010

107. Bacillus pumilus

(MTCC 1002)

Pyrene Co-metabolize 64% of 50µg/ml pyrene via 9-methoxyphenanthrene

and phthalate

Khanna et al., 2011

E. Biotransformation and detoxification of heavy metals

108. Bacillus sp. strain

FM1

Chromium Completely reduced 100 mg/L Cr(VI) within 48 h Masood and Malik,

2011

(Continued)
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TABLE 1 | Continued

S. No. Bacteria strain Compounds Remarks References

109. Bacillus sp. strain

KSUCr9a

Chromium rapidly reduce up to 100µM of Chromium within 24 h Ibrahim et al., 2012

110. Bacillus

sphaericus AND

303

Chromium 300µM Cr(VI) reduction by cell extracts (4.56mg protein/mL) of strain

AND303

Pal et al., 2005

111. Bacillus sp. FY1 Chromium Reduced 78–85% of Cr(VI) (100–200 mg/l) within 24 h Xiao et al., 2017

112. Bacillus sp.

MNU16

Chromium Reduced 75% of Cr(VI) of 50 mg/L within 72 h. Upadhyay et al., 2017

113. Bacillus

amyloliquefaciens

CSB 9

Chromium Reduced Cr(VI) to Cr (III) that was immobilized to the bacterial cell

surface and subsequent intercellular accumulation of Cr (III) along with

the formation of coagulated cell precipitate

Das et al., 2014

114. Bacillus cereus

S612

Chromium Reduced chromate under aerobic conditions Wang et al., 2015

115. Bacillus cereus Chromium Reduced Cr(VI) to Cr (III). Cr(III) precipitates were accumulated on

bacterial surfaces

Chen et al., 2012c

116. Bacillus sp. ES 29 Chromium A copper (Cu2+) stimulated soluble Cr(VI)-reducing enzyme reduced

Cr(VI) to Cr (III)

Camargo et al., 2003

117. Bacillus sp.

MH778713

Chromium Accumulated up to 100mg Cr(VI)/g of cells and tolerate up to 15,000

mg/L Cr (VI)

Ramírez et al., 2019

118. Bacillus cereus

TN10

Chromium Detected chromate transporters in the genome Hossain et al., 2020

119. Bacillus cereus

12-2

Lead Transformed Pb(II) into nanosized rod-shaped Ca2.5Pb7.5(OH)2(PO4)6

crystal

Chen et al., 2016

120. Bacillus sp. KK-1 Lead Converted Pb(NO3)2 into lead sulfide (PbS) and lead silicon oxide

(PbSiO3)

Govarthanan et al.,

2013

121. Bacillus cereus

BPS-9

Lead Bioaccumulation of lead by biosorption Sharma and Shukla,

2021

122. Bacillus

megaterium

Selenium Reduced Se(IV) to red element Se (III) Mishra et al., 2011

123. Bacillus subtilis Selenium Proposed physiological mechanisms regulating the selenite reduction Garbisu et al., 1995

124. Bacillus

selenatarsenatis

SF-1

Selenium Reduced selenate to selenite through anaerobic respiration, and

subsequently into elemental selenium

Kuroda et al., 2015

125. Bacillus

selenitireducens

MLS10

Selenium Enzyme respiratory selenite [Se(IV)] reductase (Srr) was characterized. Wells et al., 2019

126. Bacillus cereus

CM100B

Selenium Produced selenium nanoparticles by transformation of toxic selenite

(SeO32-) anions into red elemental selenium (Se0) under aerobic

conditions

Dhanjal and Cameotra,

2010

127. Bacillus mycoides

strain SeITE01

Selenium Reduced selenite (SeO32-) anions into red elemental selenium (Se0)

with the formation of selenium nanoparticles.

Lampis et al., 2014

128. Bacillus

thuringiensis

Uranium Transformation from U(VI) into nano-uramphite Pan et al., 2015

129. Bacillus

licheniformis

SPB-2

Copper Reduced [Co(III)–EDTA]– to [Co(II)–EDTA]2– which was further

absorbed by strain SPG-2

Paraneeiswaran et al.,

2015

130. Bacillus firmus

strain TE7

Chromium and Arsenic Reduced Cr(VI) to Cr (III) and oxidized As(III) to As(V) Bachate et al., 2013

131. Bacillus sp. strain

Arzi

Mb Reduced molybdate to molybdenum blue Othman et al., 2013

132. Bacillus

thuringiensis

OSM29

Ni and Cu Biosorption capacity of the strain OSM29 for the metallic ions was

highest for Ni (94%) which was followed by Cu (91.8%).

Oves et al., 2013

F. Degradation of Natural Compounds

133. Bacillus macerans

JJ-lb

Protocatechuate Completely mineralized Crawford et al., 1979

134. Bacillus sp. 3-Hydroxybenzoate Completely mineralized via protocatechuate Mashetty et al., 1996

(Continued)
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TABLE 1 | Continued

S. No. Bacteria strain Compounds Remarks References

135. Bacillus brevis

PHB-2

4-Hydroxybenzoate Completely mineralized via protocatechuate Crawford, 1976

136. Bacillus circulans

strain 3

4-Hydroxybenzoate Completely mineralized via protocatechuate Crawford, 1976

137. Bacillus

laterosporusPHB-

7a

4-Hydroxybenzoate Completely mineralized via gentisate Crawford, 1976

138. Bacillus sp. B-1 Cinnamic acid Degraded via benzoic acid Peng et al., 2003

139. Bacillus sp. B-1 4-Coumaric acid Degraded via 4-hydroxybenzoic acid Peng et al., 2003

140 Bacillus sp. B-1 Ferculic acid Metabolized via 4-hydroxy-3-methoxyphenyl-beta-hydroxypropionic

acid, vanillin, and vanillic

Peng et al., 2003

141. Bacillus pumilus

W1

Cholesterol degradation Cholesterol as only carbon and energy Wali et al., 2019

142. Bacillus

ligniniphilus L1

Alkaline lignin Degraded via three different pathway including gentisate pathway,

benzoic acid pathway, and the β-ketoadipate pathway

Zhu et al., 2017

G. Degradation of Explosives

143. Bacillus sp. J8A2 Pentaerythritol tetranitrate Utilized it as a nitrogen source Yerson and Christian,

2013

144. Bacillus sp. SF Trinitrotoluene Transformed to hydroxylaminodinitrotoluene,

4-amino-2,6-dinitrotoluene; 2-amino-4,6-dinitrotoluene, different azoxy

compounds, 2,6-diaminonitrotoluene and 2,4-diaminonitrotoluene.

Nyanhongo et al., 2008

145. Bacillus cereus Trinitrotoluene Transformed into 2,4-dinitrotoluene and 4-aminodinitrotoluene

derivates,

Mercimek et al., 2013

146. Bacillus sp.

ATCC51912

Propylene glycol dinitrate Sequentially denitrated to propylene glycol mononitrate and propylene

glycol

Sun et al., 1996

147. Bacillus sp.

ATCC51912

Glycerol trinitrates Sequential denitration of glycerol trinitrates to glycerol via glycerol

dinitrate isomers and glycerol mononitrate isomers

Meng et al., 1995

H. Degradation of Drugs

148. Bacillus

thuringiensis B1

Naproxen Degraded via salicylic acid and catechol Górny et al., 2019

149. Bacillus

thuringiensis B1

Ibuprofen Degraded it via hydroxyibuprofen Marchlewicz et al.,

2017

150. Bacillus drentensis

S1

Acetaminophen Degraded via 2-isopropyl-5-methylcyclohexanone and phenothiazine Chopra and Kumar,

2020

I. Degradation of other Xenobiotic compounds

151. Bacillus

salamalaya 139SI

Crude oil waste Degraded 88% of the total petroleum hydrocarbons within 42 days in

mineral media containing 1% of crude oil waste.

Ismail and Dadrasnia,

2015

152. Bacillus sp.

BCBT21

Plastic bags Produced extracellular hydrolase enzymes including lipase,

carboxymethyl cellulase, xylanase, chitinase, and protease

Dang et al., 2018

153. Bacillus

pumilusB12

Poly-lactic acid Degraded plylacitc acid film within 48-h by the release of L-lactate

monomers

Bonifer et al., 2019

154. Bacillus sp. strain

4

Pyridine Used it sole C, N and energy source Watson and Cain, 1975

decolorized 4-chloro-2-nitrophenol up to a concentration of
2.0mM and transformed it into 5-chloro-2-methylbenzoxazole
(Arora et al., 2016).

Besides Bacillus spp., several other bacteria are also capable
of transforming 4-chloro-2-nitrophenol to 5-chloro-2-
methylbenzoxazole. These bacteria belong to the genera
Pseudomonas, Leuconostoc, and Paenibacillus (Arora et al., 2016).
The memberes of genus Bacillus were unable to completely
mineralize 4-chloro-2-nitrophenol, but they transformed
4-chloro-2-nitrophenol via a detoxification mechanism.
The complete degradation of 4-chloro-2-nitrophenol

was studied using an Exiguobacterium sp. PMA (Arora
et al., 2012), a co-culture of Enterobacter cloacae and an
Alcaligenes sp. TK-2 (Beunink and Rehm, 1990), and the
genetically engineered bacterium, Pseudomonas sp. N31
(Bruhn et al., 1988).

Bacilli-Mediated Degradation of Polycyclic
Aromatic Hydrocarbons
Polycyclic aromatic hydrocarbons (PAHs) are those aromatic
compounds which contain two or more fused aromatic
rings in linear, angular, or cluster arrangements (Masih and

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 8 October 2020 | Volume 8 | Article 570307

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Arora Bacilli-Mediated Degradation

FIGURE 1 | Biotransformation pathway of 4-chloro-2-nitrophenol in Bacillus

spp. (Arora, 2012).

Taneja, 2006). Examples are naphthalene, anthracene, fluorene,
phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene
(Abdel-Shafy and Mansour, 2016). PAHs are toxic to the
living world and some of them are considered as possible
carcinogens. Therefore, the USEPA has listed 16 PAHS in
its priority list of pollutants (Zelinkova and Wenzl, 2015).
Major sources of PAHs pollution include fuel combustion,

automobiles, spillage of petroleum products, waste incinerators,
and industrial effluents (Abdel-Shafy and Mansour, 2016). In
this section, the Bacilli-mediated degradation of a few PAHs
is summarized.

Naphthalene is the simplest example of polycyclic aromatic
compounds. An early study on naphthalene degradation by
B. cereus ATCC14579 showed the complete transformation of
naphthalene to 1-naphthol (Cerniglia et al., 1984). A possible
degradation pathway of naphthalene was studied in B. fusiformis
BFN that was isolated from oil refining wastewater sludge
(Lin et al., 2010). The naphthalene degradation was initiated
with 1, 2-dioxygenation, resulting in the formation of cis-
1,2-dihydroxy-1,2-dihydronaphthalene that dehydrogenated
to 1,2-dihydroxynaphthalene. The ortho-ring cleavage of
1,2-dihydroxynaphthalene produced o-phthalic acid via the
formation of trans-2-carboxybenzalpyruvic acid and 2-formyl
benzoic acid (Figure 2). The phthalic acid decarboxylated to
benzoic acid that further metabolized carbon dioxide and
water. Ni’matuzahroh et al. (2017) studied the degradation of
naphthalene and phenanthrene by B. subtilis 3KP that degraded
them via the formation of 1-hydroxy-2-naphthoic acid, salicylic
acid, and pyrocatechol. Sonwani et al. (2019) reported that
B. cereus RKS4 degraded naphthalene via the formation of
2-naphthol and catechol. Annweiler et al. (2000) studied the
degradation of naphthalene in B. thermoleovorans Hamburg
2 under thermophilic conditions (60◦ C). B. thermoleovorans
Hamburg 2 utilized naphthalene as the sole source of carbon and
energy and degraded it via formation of 1-naphthol, 2-naphthol,
2,3-dihydroxynaphthalene, 2-carboxycinnamic acid, phthalic
acid, and benzoic acid, coumarin, 3-(2-Hydroxyphenyl)-
propanoic acid, 2,3-dihydrocoumarin, 2-hydroxybenzoic acid
(salicylic acid) and 2-carboxycinnamic acid.

Anthracene is an integral part of many carcinogenic PAHs;
therefore it has been detected easily in several contaminated sites
of PAHs. Many Bacilli have been identified and characterized
for degradation of anthracene. Examples are Bacillus sp. SBER3
(Bisht et al., 2014), B. cereus JMG-01 (Das et al., 2017), B.
licheniformis MTCC 5514 (Swaathy et al., 2014), B. cereus S13
(Bibi et al., 2018), and B. badius D1 (Sarwade and Gawai,
2014). Das et al. (2017) studied the degradation pathway of
anthracene for B. cereus JMG-01 that degraded 98% of 500
ppm anthracene. The anthracene degradation was initiated with
the formation of naphthalene and naphthalene-2-methyl. In
the next step, a dioxygenase enzyme catalyzed oxidation of
naphthalene-2-methyl to benzene acetic acid. Further, benzene
acetic acid underwent ring cleavage to produce phthalic acid
and benzaldehyde. Benzaldehyde converted to catechol that
degraded via either ortho or meta ring cleavage. Swaathy et al.
(2014) reported the existence of two degradation pathways
in biosurfactant mediated biodegradation of anthracene by B.
licheniformis (MTCC 5514). One pathway proceeded with the
formation of naphthalene, naphthalene 2-methyl, phthalic acid,
and benzene acetic acid. Another pathway was initiated with
dioxygenation of anthracene to produce di-hydroxy anthracene,
which, further transformed to anthraquinone by a dioxygenase
enzyme (Figure 3). Anthraquinone was further degraded with
the formation of phthalic acid, benzaldehyde or benzoic acid,
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FIGURE 2 | A degradation pathway of naphthalene in Bacillus fusiformis strain BFN (Lin et al., 2010).

and catechol. Metabolites of both of the pathways (9, 10-
dihydroxyanthracene, anthraquinone, benzene acetic acid, and
catechol) were also reported in the anthracene degradation
pathway of B. cereus S13 that utilized it as the sole source
of carbon and energy (Bibi et al., 2018). Another pathway of
anthracene was studied in an alkaliphilic bacterium B. badius
D1 that was able to degrade anthracene at a concentration of 50
mg/100ml at pH 9.0 (Sarwade and Gawai, 2014). In this pathway,
anthracene was initially oxidized to 1, 2-dihydoxyanthracene
that further oxidized (3Z)-4-[3-hydroxy (2-naphthyil)-2-oxobut-
3-enoic acid with subsequent conversion to 2-hydroxynaphthoic
acid, Further oxidation resulted in the formation of phthalic acid
that was degraded via formation of simple aliphatic compounds.

Bacilli-Mediated Degradation of Pyrethroid
Insecticides
Pyrethroid insecticides are synthetic pyrethroids which are
analogs to natural pyrethrins extracted from Chrysanthemum
cinerariaefolium (Cycoń and Piotrowska-Seget, 2016).
Representative compounds of these pesticides are cyhalothrin,
fenpropathrin, deltamethrin, cypermethrin, cyfluthrin, and
bifenthrin (Zhan et al., 2020). They are used to control a broad
spectrum of pests in households and agriculture fields. Due
to their wide range of applications in agriculture fields, they
have been spread into soil and water and create environmental
problems because of their toxic nature (Zhan et al., 2020).

Many Bacilli have been isolated and characterized for the
degradation of several pyrethroids (Chen et al., 2012b; Cycoń
and Piotrowska-Seget, 2016; Bhatt et al., 2020). In this section,
Bacilli-mediated degradation of various pyrethroids is discussed.

The degradation of cypermethrin is well-studied in some
Bacilli including Bacillus sp. SG2 (Pankaj et al., 2016), B. subtilis
BSF01 (Xiao et al., 2015), B. subtilis strain 1D (Gangola et al.,
2018), Bacillus sp. AKD1 (Tiwary and Dubey, 2016), Bacillus
sp. ISTDS2 (Sundaram et al., 2013) and B. licheniformis B-1
(Lai et al., 2012). The initial steps of degradation pathways of
cypermethrin are common in Bacillus sp. SG2 and B. subtilis
BSF01 (Xiao et al., 2015; Pankaj et al., 2016). Cypermethrin
was initially transformed into two metabolites: α-hydroxy-3-
phenoxy-benzene acetonitrile and 3-(2,2-dichloroethenyl)-2,2-
dimethyl cyclopropanecarboxylate). The unstable compound,
α-hydroxy-3-phenoxy-benzene acetonitrile was spontaneously
transformed into 3-phenoxybenzaldehyde (Figure 4). Further
degradation of 3-phenoxybenzaldehyde proceeded via a different
route in Bacillus sp. SG2 and B. subtilis BSF01. In B.
subtilis BSF01, the degradation of 3-phenoxybenzaldehyde
proceeded via the formation of 3-phenoxybenzoic acid and 3,
5-dimethoxyphenol (Xiao et al., 2015). However, in Bacillus
sp. SG2, 3-phenoxybenzaldehyde was further converted to
4-propylbenzaldehyde and then to 4-hydroxybenzoate that
was transformed to phenyl ester of o-phenoxy benzoic acid
(Pankaj et al., 2016). The phenyl ester of o-phenoxy benzoic
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FIGURE 3 | Degradation pathways of anthracene by Bacillus licheniformis MTCC 5514 (Swaathy et al., 2014).

acid was degraded via the formation of phenol-M-tert-butyl,
phenol, and aliphatic hydrocarbons or short-chain compounds.
Another pathway of degradation of cypermethrin was studied

in B. subtilis strain 1D (Gangola et al., 2018). In this
pathway, cypermethrin was initially transformed into 3-(2,
2-dichloro ethenyl)-2,2-dimethyl-cyclopropanecarboxylate and
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cyclododecylamine due to hydrolysis of the ester linkage
(Figure 5). The unstable compound, cyclododecylamine oxidized
to phenol which reacted with water to form cyclopentane that
transformed into aliphatic compounds like acetic acid and
decanoic acid. Another metabolite, 3-(2, 2-dichloro ethenyl)-
2,2-dimethyl-cyclopropanecarboxylate was hydrolyzed to form
chloroacetic acid (Gangola et al., 2018).

The degradation pathway of cyhalothrin
[(RS)-α-Cyano-3-phenoxybenzyl-(Z)-(1RS,3RS)-(2-chloro-3,3,
3-trifluoro propenyl)-2,2-dimethylcyclopropanecarboxylate)]
was studied in B. thuringiensis ZS-19 that initiated
degradation of cyhalothrin by cleavage of the carboxyl ester
linkage through hydrolysis to form α-hydroxy-3-phenoxy-
benzeneacetonitrile and (1RS,3RS)-trans-2,2-dimethyl-(2-
methyl-1-propenyl)cyclopropane-1-carboxylic acid (Chen
et al., 2015). The α-hydroxy-3-phenoxy-benzeneacetonitrile
was converted to 3-phenoxybenzote acid via 3-phenoxyphenyl
acetonitrile, N-(2-isoproxy-phenyl)-4-phenoxy-benzamide, and
3-phenoxybenzaldehyde (Figure 6). Further degradation of
3-phenoxybenzoate was proceeded through cleavage of diaryl
bond to produce and phenol that was degraded via aromatic ring
cleavage (Chen et al., 2015).

The degradation pathway of fenpropathrin(α-cyano-3-
phenoxybenzyl 2,2,3,3-tetramethylcyclopropanecarboxylate)
was studied in Bacillus sp. DG-02, isolated from a
soil sample collected from the aerobic pyrethroid-
manufacturing wastewater treatment system of China
(Chen et al., 2014). Initially, fenpropathrin was converted
to α-hydroxy-3-phenoxybenzeneacetonitrile and 2, 2, 3,
3-tetramethylcyclopropanecarboxylic acid phenyl ester
due to cleavage of the carboxyl ester linkage (Figure 7).
In the next step, unstable compound α-hydroxy-3-
phenoxybenzeneacetonitrile was spontaneously transformed into
3-phenoxybenzaldehyde, which oxidized to 3-phenoxybenzoate.
Subsequent degradation of 3-phenoxybenzoate produced 3,
4-dihydroxybenzoic acid, 3, 4-dimethoxyphenol, and phenol
(Chen et al., 2014).

Bacilli-Mediated Degradation of
Organophosphorus Pesticides
Organophosphorus pesticides are a large group of chemicals that
widely used for protecting crops, livestock from various pests
(Sidhu G. K. et al., 2019). Commonly used organophosphates
are malathion, parathion, methyl parathion, chlorpyrifos,
diazinon, fenitrothion, dichlorvos, ethion, and monocrotophos
(Sidhu G. K. et al., 2019). These compounds act as an
inhibitor of an acetylcholinesterase enzyme that hydrolyzes
the neurotransmitter acetylcholine found in both the peripheral
and central nervous systems (Robb and Baker, 2020). This
inhibition mechanism involves the phosphorylation of the serine
hydroxyl group present on the active site of acetylcholinesterase
(Robb and Baker, 2020). In this section, the role of Bacilli for the
degradation of organophosphorus pesticides is discussed.

Many reports have been published dealing with the
potential applications of Bacilli to degrade organophosphorus
pesticides. Bhadbhade et al. (2002) reported mineralization of

monocrotophos to carbon dioxide, ammonia, and phosphates
by B. megaterium MCM B-423, isolated from soil exposed to
monocrotophos. The enzymes, phosphatase, and esterase were
involved in the monocrotophos degradation pathway, which
proceeds via acetic acid, methylamine, and one unidentified
metabolite. Dash and Osborne (2020) studied degradation
pathways of monocrotophos by B. aryabhattai strain VITNNDJ5
in artificially contaminated soil and reported that B. aryabhattai
may be degraded monocrotophos via three routes; one route
proceeds with the hydrolysis of monocrotophos into dimethyl
phosphate that was degraded further into phosphoric acid
and acetic acid esters by hydrolase and monooxygenase
enzymes. The second degradation pathway was initiated with
the demethylation of monocrotophos to N-(hydroxymethyl)
acetamide that was further degraded into acetamide. Acetamide
converted into acetic that entered the TCA cycle. In the
third route, monocrotophos, monocrotophos converted
into orthophosphoric acid and acetic acid via formation of
phosphonoacetate intermediate.

Another Bacillus sp. TAP-1 that was isolated from sewage
sludge of a wastewater treating system of organophosphorus
pesticide was capable of hydrolyzing high concentrations of
triazophos (50–400 mg/l) (Tang and You, 2012). Salunkhe et al.
(2013) reported the biodegradation of an organophosphorus
insecticide, profenofos by four B. subtilis strains, namely, DR-
39, CS-126, TL-171, and TS-204, isolated from grapevines or
grape rhizosphere and 4-bromo-2-chlorophenol was identified
as a metabolite. A marine Bacillus sp. strain C5 isolated
from the China Bohai Sea produced an extracellular esterase
that hydrolyzed methyl parathion to 4-nitrophenol and other
metabolites (Hao et al., 2014). Anwar et al. (2009) reported that
B. pumilus C2A1 isolated from a soil sample collected from
the cotton field, degraded chlorpyrifos, and its first hydrolysis
metabolite 3,5,6-trichloro-2-pyridinol. Strain C2A1 degraded
maximum amounts of chlorpyrifos at alkaline pH (8.5) and
high inoculums bacterial density. Pailan et al. (2015) isolated
organophosphates-degrading bacterium, B. aryabhattai strain
SanPS1 from a soil sample of an agricultural field located at
Narigram in Burdwan district of West Bengal, India. Strain
SanPS1 degraded parathion via the formation of 4-nitrophenol
and 4-nitrocatechol.

Bacilli-Mediated Degradation of
Organochlorine Pesticides
Organochlorine pesticides are a group of chlorinated
compounds, which include DDT, methoxychlor, endosulfan,
dieldrin, chlordane, toxaphene, mirex, kepone, lindane, and
benzene hexachloride (Jayaraj et al., 2016). These compounds
are widely distributed to the environment due to applications.
In this section, Bacilli-mediated degradation of organochlorine
pesticides is discussed.

B. subtilis MTCC 8561 utilized endosulfan and endosulfan
sulfate as its sulfur sources and degraded both of them via the
formation of endosulfan diol and endosulfan lactone (Kumar
et al., 2014). Awasthi et al. (2003) also reported the degradation
of alpha and beta isomers of endosulfan via the formation of
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FIGURE 4 | Degradation pathways of cypermethrin in Bacillus sp. SG2 and Bacillus subtilis BSF01 (Xiao et al., 2015; Pankaj et al., 2016).

endosulfan diol and endosulfan lactone using the co-culture of
Bacillus sp. MTCC 4444 and Bacillus sp. MTCC 4445. Seralathan
et al. (2014) postulated the role of cytochrome P450 BM3 of
B. megaterium in biotransformation of endosulfan through in

silico prediction approach. Kumar and Philip (2006) reported that
the anaerobic degradation of endosulfan, endosulfan ether, and
endosulfan lactone using mixed bacterial culture containing two
strains of B. circulans and one strain of Staphylococcus sp. All
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FIGURE 5 | Degradation pathways of cypermethrin in Bacillus subtilis strain 1D (adapted from Gangola et al., 2018).

three strains metabolized endosulfan via hydrolysis pathway with
the formation of carbenium ions and/or ethylcarboxylates, which
further converted into simple hydrocarbons (Kumar and Philip,
2006).

Bacilli-Mediated Degradation of Herbicides
Herbicides are chemical substances that are generally used to
control the growth of unwanted plants (Herrera-Herrera et al.,
2016). These are known as weed killers and divided into two
categories: contact herbicides and systematic herbicides. Contact
herbicides are localized in action and affect only the part of the
plant that they touch (Herrera-Herrera et al., 2016). Examples
are diclofop, dinoseb, diquat, and paraquat (Herrera-Herrera
et al., 2016). Systemic herbicides may be translocated to other
parts of the plants. Examples are atrazine, quinclorac, glyphosate
2,4-dichlorophenoxyacetic acid (2,4-D), and simazine (Herrera-
Herrera et al., 2016). In this section, the role of Bacilli for the
degradation of herbicides is discussed.

Bacillus subtilis HB-6 isolated from industrial wastewater
utilized atrazine as its sole nitrogen source for growth and
mineralized it via formation of hydroxyatrazine, cyanuric acid,
and urea (Wang et al., 2014). The atrazine-degrading genes,
trzN, atzB, and atzC which encode the enzymes to converting
atrazine to cyanuric acid were detected in strain HB-6 (Wang
et al., 2014). Liu et al. (2014) studied the degradation of
a highly selective auxin herbicide, quinclorac (3,7-dichloro-8-
quinoline-carboxylic) by B. megateriumQ3 isolated from the root
of tobacco grown in quinclorac contaminated soil. Strain Q3

transformed quinclorac to 3, 7-dichloro-8-methyl-quinoline, 3-
chlorin-8-quinoline-carboxylic and 8-quinoline-carboxylic (Liu
et al., 2014).

Bacilli-Mediated Degradation of Drugs
Ibuprofen and naproxen are known as non-steroidal anti-
inflammatory drugs and widely used to control mild to
moderate pain, fever, inflammation, menstrual cramps, and
types of arthritis (Marchlewicz et al., 2017). Due to the high
consumption of these drugs, they have been detected in the
effluents of several biological wastewater treatment systems as
environmental pollutants (Marchlewicz et al., 2017). In this
section, the Bacillus-medited degradation of ibuprofen and
naproxen is discussed.

To date, only one species of Bacillus, i.e., B. thuringiensis B1
was able to degrade both Ibuprofen and naproxen (Marchlewicz
et al., 2017; Górny et al., 2019). The effective degradation of
both of these drugs occurred in the presence of glucose. B.
thuringiensis B1 was able to degrade ibuprofen and naproxen up
to concentrations of 25 mg/Land 12 mg/L, respectively.

The degradation pathways of ibuprofen and naproxen
were studied in B. thuringiensis B1. The first step of the
ibuprofen degradation is hydroxylation of ibuprofen into 2-
hydroxyibuprofen by aliphatic monooxygenase (Marchlewicz
et al., 2017). The second step was the conversion of 2-
hydroxyibuprofen to 2-(4-hydroxyphenyl-) propionic acid that
was further transformed into 1,4-hydroquinone by acyl-
CoA synthase/thiolase activity (Figure 8). In the next step,
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FIGURE 6 | Degradation pathway of cyhalothrin in Bacillus thuringiensis ZS-19 (adapted from Chen et al., 2015).

a hydroquinone monooxygenase catalyzed conversion of 1,4-
hydroquinone to 2-hydroxy-1,4-quinol which cleaved to 3-
hydroxy-cis, cis-muconic acid by hydroxyquinol 1,2-dioxygenase
(Marchlewicz et al., 2017).

The degradation of naproxen was initiated with the
transformation of naproxen into o-desmethylnaproxen by
the action of tetrahydrofolate dependent O-demethylase
(Górny et al., 2019). The next step involved the
formation of 2-formyl-5-hydroxyphenylacetic that was
converted to salicylic acid (Figure 9). Salicyclic acid
hydroxylated to catechol or gentisic acid or can be

cleaved to 2-oxo-3, 5-heptadienedioic acid (Górny et al.,
2019).

Bacilli-Mediated Transformation of Heavy
Metals
The bacterial remediation of heavy metals involves removals
of heavy metals from aqueous solution and soil through
biosorption, bioaccumulation, or biotransformation (Dixit et al.,
2015). Biosorption is one of the important mechanisms for
the removal of heavy metals, which involves the interaction of
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FIGURE 7 | Degradation pathway of fenpropathrin in Bacillus sp. DG-02 (Reprinted (adapted) from Chen et al., 2014). Copyright (2014) American Chemical Society.

FIGURE 8 | Degradation pathway of ibuprofen in Bacillus thuringiensis B1 (adapted from Marchlewicz et al., 2017).

heavy metals with the functional groups present on bacterial
surfaces (Igiri et al., 2018). Bioaccumulation is a metabolism-
driven process in which the heavy metal ions pass across the

cell membrane into the cytoplasm, accumulating inside the cells
(Diep et al., 2018). Biotransformation involves conversation of
one form of heavy metal to another form (Juwarkar and Yadav,
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FIGURE 9 | Degradation pathway of naproxen in Bacillus thuringiensis B1 (Górny et al., 2019).

2010). In this subsection, the role of Bacilli in the bioremediation
of various heavy metals is summarized.

Many Bacilli have been characterized for the bioreduction
of chromium from Cr(VI) to Cr(III). Examples are Bacillus
sp. strain FM1 (Masood and Malik, 2011), Bacillus sp. strain
KSUCr9a (Ibrahim et al., 2012), B. sphaericus AND 303 (Pal
et al., 2005), Bacillus sp. FY1 (Xiao et al., 2017), Bacillus sp.
MNU16 (Upadhyay et al., 2017), B. amyloliquefaciens (Das et al.,
2014), and B. cereus S612 (Wang et al., 2015). Several mechanisms
have been proposed for chromium reduction and removal.
Chen et al. (2012c) investigated the Cr(VI) uptake mechanism
in B. cereus that reduced Cr(VI) into Cr(III). The reduced
Cr(III) was coordinated with carboxyl and amido functional
groups of the bacterial cell and the Cr(III) precipitates were
accumulated on bacterial surfaces. Das et al. (2014) studied the
mechanism of Cr(VI) reduction in B. amyloliquefaciens strain
CSB 9 isolated from chromite mine soil of Sukinda, India. The
reduced product Cr (III) was removed via surface immobilization
and accumulated inside the bacterial cells. Bacillus sp. ES 29
produced copper (Cu2+) stimulated soluble Cr(VI)-reducing
enzyme that reduced Cr(VI) to Cr(III)(Camargo et al., 2003).

The lead transformation from toxic Pb(II) to non-toxic lead
compounds has been investigated in a few Bacillus strains.
Chen et al. (2016) studied the transformation of Pb(II) into

nanosized rod-shaped Ca2.5Pb7.5(OH)2(PO4)6 crystal in B.
cereus 12-2, isolated from lead-zinc mine tailings. Initially,
bacterial cells rapidly absorbed Pb(II) through the synergy of
electrostatic attraction, ionic exchange, and chelating activity
of functional groups present in bacterial cells. In the next
step, enzyme-mediated Pb(II) transformation to rod-shaped
crystalline minerals occurred inside the bacteria. Govarthanan
et al. (2013) isolated and characterized an autochthonous
bacterium, Bacillus sp. KK-1 for biomineralization of Pb in mine
tailings. Strain KK-1 can convert Pb(NO3)2 into lead sulfide
(PbS) and lead silicon oxide (PbSiO3). The ability of strain KK-
1 to remove Pb was investigated in mine tailings. Strain KK-1
significantly reduced the exchangeable fraction of Pb and induced
calcite in the precipitation of Pb ions.

The selenium reduction from Se(IV) to Se (III) is well-
studied in Bacillus strains. Mishra et al. (2011) reported the
reduction of Se(IV) to red-element Se (III) by two strains of
B. megaterium. Garbisu et al. (1995) studied the physiological
mechanisms regulating the selenite reduction in B. subtilis. They
concluded that the reduction mechanism involves an inducible
detoxification system, which deposited elemental selenium
between the cell wall and the plasma membrane. Another
mechanism was observed in a selenate reducing bacterium,
B. selenatarsenatis SF-1, isolated from selenium-contaminated
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sediment (Kashiwa et al., 2001). Strain SF-1 reduced selenate
to selenite and subsequently to non-toxic insoluble elemental
selenium using lactate as an electron donor and selenate as
an electron acceptor in an anaerobic condition. Elemental
selenium was deposited both inside and outside of the cells. B.
selenitireducens produced enzymes to reduce the oxidized forms
of arsenic and selenium to their less toxic reduced forms (Wells
et al., 2019). B. cereus CM100B and B. mycoidesstrain SeITE01
produced selenium nanoparticles (SNs) by transformation of
toxic selenite (SeO2−

3 ) anions into red elemental selenium (Se0)

under aerobic conditions. In this mechanism, initially, SeO2−
3

enzymatically reduced to selenium through redox reactions by
the bacterial enzymes (membrane reductase) and later, selenium
nanoparticles were generated due to the result of an Ostwald
ripening mechanism (Dhanjal and Cameotra, 2010; Lampis et al.,
2014).

The uranium transformation from U(VI) into nano-
uramphite was studied in two B. thuringiensis strains isolated
from uranium mine (Pan et al., 2015). The initial step involves
the adsorption of U(VI) on the bacterial surface through
coordinating with phosphate, -CH2, and amide groups. The next
step involves the formation and accumulation of needle-like
amorphous uranium compounds.

Paraneeiswaran et al. (2015) reported that B. licheniformis
SPB-2 reduced [Co(III)–EDTA]− to [Co(II)–EDTA]2− which
was further absorbed by strain SPG-2. B. firmus strain TE7,
isolated from tannery effluent reduced Cr(VI) to Cr (III) and
oxidized As(III) to As(V) (Bachate et al., 2013). Bacillus sp. strain
A.rzi isolated from ametal-contaminated soil reduced molybdate
to molybdenum blue (Othman et al., 2013). B. thuringiensis
OSM29 isolated from the rhizosphere of cauliflower grown in
soil irrigated consistently with industrial effluents was capable of
removing several heavy metals including cadmium, chromium,
copper, lead and nickel via biosorption (Oves et al., 2013). The
biosorption capacity of the strain OSM29 for the metallic ions
was highest for Ni (94%) which was followed by Cu (91.8%).

Bacilli-Mediated Transformation of Azo
Dyes
Azo dyes are a large group of synthetic aromatic compounds
which contain one or more azo groups (-N=N-) between organic
residues. Based on the number of azo linkages, azo dyes are
classified as monoazo, disazo, trisazo, and polyazo (Benkhaya
et al., 2020). Few examples of azo dyes are Metanil Yellow, Navy
Blue 2GL, Dye Orange T4LL, Reactive Red 2, Direct Red-22,
Turquoise Blue dye, and Acid Black 24. These are widely used in
the textile industry that is a major source of dye contamination.
During the dyeing process, the textile industry discharged ∼10%
of the dyes into the wastewater (Easton, 1995). Apart from the
textile industry, azo dyes are also used in food, paper printing,
color photography, leather, and cosmetic industries (Chang and
Lin, 2001). They are widely distributed in the environment due
to improper discharge of dye into wastewater. These dyes are
highly toxic to plants by inhibiting their photosynthesis. In the
environment, they may generate mutagenic and carcinogenic
amines due to microbial transformation (Chung and Cerniglia,

1992; Weisburger, 2002; Asad et al., 2007). Dye removal is an
essential step for the treatment of dye-containing wastewater
(Banat et al., 1996). Microbial dye degradation process has two
steps; First is dye decolorization in which azoreductase-mediated
cleavage of the azo bond (—N=N—) to give aromatic amines.
The second step involves the degradation of aromatic amines into
non-toxic compounds. In this sub-section, the role of Bacilli in
dye decolorization is summarized.

Many Bacillus strains have been characterized for
decolorization of wastewater containing various azo dyes.
Anjaneya et al. (2011) studied the decolorization of metanil
yellow using a sulfonated azo dye decolourizing bacterium,
Bacillus sp. AK1 that was isolated from dye contaminated soil
sample collected from Atul Dyeing Industry, Bellary, India.
Bacillus sp. AK1 decolorized metanil yellow (200mg L−1)
completely within 27h and transformed it into metanillic acid
and p-aminodiphenylamine by the action of the azoreductase
enzyme. Dawkar et al. (2009) studied the effects of inducers
on the decolorization of a textile azo dye, navy blue 2GL by
a Bacillus sp. VUS isolated from textile effluent contaminated
soil. Strain VUS decolorized azo dye navy blue 2GL within
48 h under the static anoxic condition in yeast extract medium,
whereas in the presence of CaCl2 it decolorized it only
within 18 h. They reported that CaCl2 induced the activities
of the enzymes involved in the decolorization of navy blue
2GL. 4-Amino-3-(2-bromo-4, 6-dinitro-phenylazo)-phenol
and acetic acid 2-(-acetoxy-ethylamino)-ethyl ester were
detected as the transformation products of dye decolorization.
Bacillus sp. VUS also decolorized dye orange T4LL in
static anoxic condition within 24 h and transformed it
into 4-methyl-2-o-tolylazo-benzene-1,3-diamine and [3-
(phenyl-hydrazono)-cyclohexa-1,4-dienyl]-methanol. Another
bacterium, B. licheniformis decoulorized Reactive Red 2 and
transformed it into 2, 4-dichloro-6-[(1H-indazol-5-ylimino)-
methyl]-phenol, benzene sulfonamide, 1H indole and urea
as final metabolites (Sudha and Balagurunathan, 2013). B.
firmus immobilized within tubular polymeric gel completely
decolorized 50mg/L of CI Direct Red 80 under anoxic conditions
within 12 h by transforming it into aromatic amine (Ogugbue
et al., 2012). These aromatic amines were further degraded
aerobically by the same strain within the subsequent 12 h.

Saleem et al. (2014) studied the effects of the various carbon
sources, pH, temperature, and nitrogen sources on decolorization
of pulp and paper industrial effluents by B. cereus. They observed
that the optimum temperature and pH for decolorization were
45◦ C and 6.5, respectively. Maximum decolorization was
observed when carbon and nitrogen sources were sucrose (0.5%)
and ammonium sulfate (1%), respectively. Sharma et al. (2009)
optimized process variables for decolorization of disperse yellow
211 by B. subtilis using Box–Behnken design and observed
that the optimum conditions for maximum decolorization were
100mg l−1 initial dye concentration, 7.0 pH and 32.5◦ C
temperature. A crystal violet decolourizing bacterium, B. subtilis
decolorized crystal violet (100 mg/L) effectively at pH 8 and
temperature 35◦ C when starch and peptone were used as carbon
and nitrogen sources, respectively (Kochher and Kumar, 2011).
Gunasekar et al. (2013) reported the decolorization of reactive

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 18 October 2020 | Volume 8 | Article 570307

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Arora Bacilli-Mediated Degradation

dye RED M5B by B. subtilis and observed that decolorization
was due to the action of enzyme peroxidase produced by
the organisms during its growth. Joshi et al. (2013) reported
the decolorization of turquoise blue dye (Remazol Blue BB)
by B. megaterium isolated from a sample collected from dye
industries. This organism can decolorize turquoise blue dye up
to a concentration of 5 mg/ml. Prasad and Rao (2014) reported
decolorization of Acid Black 24 by B. halodurans MTCC 865
which was able to decolorize Acid Black within 6 hat pH 9
and 37◦ C with 5% NaCl under static conditions. Prasad and
Rao (2013) reported aerobic decolorization of the textile azo dye
Direct Red-22 by an obligate alkaliphilic bacterium B. cohnii
MTCC 3616. This strain was able to decolorize Direct Red-22
(5,000mg l1) with 95% efficiency at 37◦ C and pH 9 in 4 h under
static conditions.

Bacilli-Mediated Degradation of Natural
Aromatic Acids
Aromatic acids are a class of chemical compounds in which
an organic acid attached to the aromatic ring. Examples are
phenolic acids (3-Hydroxybenzoic acid. 4-Hydroxybenzoic acid
and Salicylic acid) and Hydroxycinnamic acids (cinnamic, 4-
coumaric, and ferulic acids). In this subsection, the role of Bacilli
in biodegradation of various aromatic acids is summarized.
B. macerans JJ-lb degraded protocatechuate via ring cleavage
and subsequent enzymatic decarboxylation of the ring fission
product (Crawford et al., 1979). Initially, protocatechuate-
2,3-dioxygenase catalyzes the ring cleavage of protocatechuate
to 5-carboxy-2-hydroxymuconic semialdehyde that is further
decarboxylated to 2-hydroxymuconic semialdehyde. Mashetty
et al. (1996) reported the degradation of 3-hydroxybenzoate
by a Bacillus sp. that utilized it as the sole source of carbon
and energy. This strain metabolized 3-hydroxybenzoic acid
via protocatechuic acid that was further degraded via both
the ortho- and meta-cleavage pathway. The enzyme activities
for 3-hydroxybenzoate 4-hydroxylase, protocatechuate 3,4-
dioxygenase, and protocatechuate 4,5-dioxygenase were detected
in cell-free extracts. Crawford (1976) reported degradation
pathways of 4-hydroxybenzoate in B. brevis PHB-2, B. circulans
strain 3, and B. laterosporus PHB-7a. B. brevis PHB-2
and B. circulans strain 3 degraded 4-hydroxybenzoate via
protocatechuate that was further degraded through ortho
cleavage pathway ormeta cleavage pathway. B. laterosporus PHB-
7a converts 4-hydroxybenzoate to gentisate, which is further
degraded by the glutathione-independent gentisic acid pathway.
Peng et al. (2003) reported the degradation of cinnamic, 4-
coumaric, and ferulic acids by thermophilic Bacillus sp. B-1.
Strain B-1 degraded cinnamic acid via benzoic acid that was
further degraded via catechol and its ring cleavage. The 4-
coumaric acid degradation proceeded via 4-hydroxybenzoic acid
that was further degraded via gentisic acid and its ring cleavage.
The ferculic acid metabolized via 4-hydroxy-3-methoxyphenyl-
beta-hydroxypropionic acid, vanillin, and vanillic acid as the
intermediates. Bacillus sp. DG-2 degraded 3-phenoxybenzoic
acid via 3-(2-methoxyphenoxy) benzoic acid, protocatechuate,
phenol, and 3,4-dihydroxy phenol.

Bacilli-Mediated Degradation of Explosives
Bacilli play a critical role in the degradation of explosives such
as nitrate esters, 2,4,6-Trinitrotoluene (TNT), Trinitrophenol
(TNP). Denitration is the main step for the biodegradation of
nitrate esters. Meng et al. (1995) studied the biotransformation
of glycerol trinitrate by Bacillus sp. ATCC51912 that sequentially
denitrated glycerol trinitrate to glycerol via the formation of
glycerol dinitrate and glycerol mononitrate isomers. Similarly,
Bacillus sp. ATCC51912 denitrated propylene glycol dinitrate to
propylene glycol via propylene glycol mononitrate (Sun et al.,
1996). Yerson and Christian (2013) isolated pentaerythritol
tetranitrate (PETN)-degrading bacterium, Bacillus sp. J8A2
from mining environment. Strain J8A2 utilized PETN as
its nitrogen source. Bacterial degradation of PENT generally
initiated with sequential denitration of PENT to pentaerythritol
via the intermediary formation of tri-, di-, and mononitrate
pentaerythritol. AnNADPH-dependent PETN reductase enzyme
isolated from Bacillus sp. was capable of liberating nitrite from
nitrate esters with the oxidation of NADPH.

Bacillus sp. can use TNP as a sole nitrogen source under
aerobic conditions (Singh et al., 2011).TNPs has three electron-
withdrawing nitro groups that prevent an initial oxidative
attack on the aromatic ring. Therefore, the initial steps of
TNP degradation are reductive. Bacilli degraded TNP by via
hydrogenation to form a Meisenheimercomplex, hydride σ-
complex (Singh et al., 2011).

Degradation of 2,4,6-Trinitrotoluene (TNT) by Bacillus sp.
occurs also via the reductive route. B. cereus transformed TNT
to 2,4-dinitrotoluene and 4-aminodinitrotoluene derivates and
degraded 77% of 75mg L−1, TNT within 96 h (Mercimek et al.,
2013). Nyanhongo et al. (2008) reported that Bacillus sp. SF
transformed TNT via an initial reduction mechanism to produce
hydroxylaminodinitrotoluenes, 4-amino-2,6-dinitrotoluenes, 2-
amino-4,6-dinitrotoluenes, different azoxy compounds, 2,6-
diaminonitrotoluenes, and 2,4-diaminonitrotoluenes.

PILOT SCALE STUDIES USING BACILLI

For biodegradation purposes, a pilot study plays a vital role
before conducting the big scale degradation studies in fields.
Chopra and Kumar (2020) examined the degradation of
acetaminophen (N-acetyl-para-aminophenol) by B. drentensis
strain S1 within the the pilot-scale anaerobic batch reactor.
The ideal conditions include temperature 40◦ C, pH 7, 300
mg/L acetaminophen, and agitation speed 165 rpm (Chopra
and Kumar, 2020). 2-Isopropyl-5-methylcyclohexanone and
phenothiazine were identified metabolites of the acetaminophen
degradation. Sonwani et al. (2019) studied the degradation
of naphthalene in a pilot-scale integrated aerobic treatment
plant and catechol and 2-naphthol were detected as the major
intermediate metabolites. Fujita et al. (2002) studied the removal
of toxic soluble selenium (selenite/selenate) using Bacillus sp. SF-
1 in a continuous flow bioreactor under an anoxic condition.
The outcomes indicated that both selenite and selenate were
reduced to elemental selenium at long cell retention times.
Sundar et al. (2011) successfully demonstrated the removal of
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trivalent chromium using Bacillus biofilms through a continuous
flow reactor. Pan et al. (2014) used a mixture of planktonic cells
and biofilms of B. subtilis for successful removal of Cr(IV) from
Cr(IV)-containing wastewater in 10-L pilot-scale experiment.
Kim et al. (2014) treated 80 tons of groundwater containing heavy
metals using immobilized dead cells of B. drentensis in pilot-scale
study and results demonstrated over 93% removal of Cu, Cd, Zn,
and Fe. Narayanan et al. (2015) reported the production of laccase
from B. subtilis MTCC 2414 for the study of decolorization
of Yellow GR, Orange 3R, and T-Blue. They used guaiacol
as a substrate under Submerged Fermentation Conditions for
the production of laccase, which was immobilized with sodium
alginate. The immobilized laccase exhibited optimum activity
at pH 7 and temperature 35◦ C. Results of their studies
showed that immobilized laccases degraded Yellow GR (81.72%),
Orange 3R (77.2%), and T-Blue (78.55%) at higher efficiency
as compared to free laccase. Several researchers investigated
the pilot scale-production of commercial compounds using
various wastes as substrates (Mohapatra et al., 2017). Yezza
et al. (2004) studied the production of Bacillus thuringiensis-
based biopesticides in fermenters using wastewater sludge as raw
materials and results demonstrated high production of pesticides.
Mohapatra et al. (2017) studied bioconversion of fish solid
waste into polyhydroxybutyrate using the Bacillus subtilis-based
submerged fermentation process. Barros et al. (2008) reported
the production of biosurfactant by Bacillus subtilis on a pilot scale
using cassava wastewater as substrate.

ADVANCED TECHNOLOGIES FOR
BIOREMEDIATION OF XENOBIOTIC
COMPOUNDS AND HEAVY METALS USING
BACILLI

This section briefly describes various current technologies used
to enhance the bioremediation of xenobiotic compounds and
heavy metals.

Metagenomics
Several xenobiotic-degrading enzymes stay undiscovered in
light of the fact that a greater part of bacteria (99%) remain
uncluturable in laboratory (Arora et al., 2010). In such a case,
metagenomics plays a vital role to investigate novel microbial
enzymes from whole network of microbial community.
The metagenomic approach includes (i) the isolation and
purification of DNA from a sample, (ii) cloning of DNA into
appropriate vectors, (iii) the transformation of host cells with
construct and (iv) functional and sequence based screening
of constructed clones (Arora et al., 2010). The sequence-
based approaches depend on already known sequences of
the target gene and utilize bioinformatics tools. However, the
function-based approaches do not include the involvement of
metagenomic derived sequences and, in this way, may prompt
to the invention of novel genes with desired functions. Several
enzymes involved in biodegradation of various xenobiotic
compounds have been identified by metagenomic studies of
several environmental samples. Sidhu C. et al. (2019) identified

novel 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC-SD3) and
catechol 2,3-dioxygenase (C23O-RW1) from the metagenomic
DNA isolated from sludge and river water samples. These
enzymes were clones, expressed and purified to monitor their
abilities to degrade various aromatic compounds. BphC-SD3
specifically oxidized 2,3-dihydroxybiphenyl, catechol, and
3-methylcatechol, whereas C23O-RW1 oxidized catechol,
4-chlorocatechol, 2,3-dihydroxybiphenyl and 3-methylcatechol.
Suenaga et al. (2007) studied extradiol dioxygenases diversity
in activated sludge used to treat coke plant wastewater by
a metagenomic approach and identified 38 new extradiol
dioxygenases that formed a new subfamily of extradiol
dioxygenases. Singh et al. (2010) identified two flavin
monooxygenases from an effluent treatment plant sludge
metagenomic library which were involved in the oxidation
of indole to a mixture of indigo and indirubin pigments.
Nagayama et al. (2015) identified a multicomponent hydroxylase
involved in the phenol degradation from a metagenomic library
derived from soil sample artificially contaminated with aromatic
compounds. Choi et al. (2018) identified and characterized
the first metagenome-derived toxoflavin-degrading enzyme
that was involved in biodegradation of toxoflavin and its
derivatives including methyltoxoflavin, fervenulin, and
reumycin. Ye et al. (2010) identified a muti-copper oxidase
with laccase activity from activity-based functional screening of
a metagenomic library from mangrove soil. The characteristic
feature of this laccase was its strong alkaline activity and its
high solubility.

Rational Designing
This protein engineering approach requires the knowledge of
protein structure, function and mechanism to improve enzyme
properties. Several xenobiotic-degrading enzymes of Bacilli
have been improved using rational designing approach. Best
studied example is laccase enzyme that catalyzes the oxidation
of a variety of xenobiotic compounds, including diphenols,
polyphenols, diamines, aromatic amines, and synthetic dyes.
Mollania et al. (2011) used rational design approach to increase
the thermal stability of laccase enzyme of Bacillus sp. HR03. They
substituted Glu188 residue with 2 positive (Lys and Arg) and
one hydrophobic (Ala) residues to obtain mutants. All variants
exhibited strong thermal stability and thermal activation as
compared to the wild-type. The 3-fold higher thermal activation
and higher T50 (5◦ C) as compared to native enzyme was
observed in the case of the Glu188Lys variant (Mollania et al.,
2011). Rasekh et al. (2014) increased the tolerance of this
laccase toward organic solvents by substitution of the Glu188
residue with non-polar (Ala, Ile, Leu, and Val) and positively
charged (Lys and Arg) residues. All variants showed higher
C50 values (organic solvent concentration at which 50% of
enzyme activity remains) as compared to the wild type. Non-
polar amino acid substitutions created more efficient mutants as
they exhibited significantly increased C50 value and decreased
thermo inactivation rate in the presence of organic solvents
(Rasekh et al., 2014).

Another example of rational design to improve the enzyme
activity is cytochrome P450 monooxygenase from Bacillus
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megaterium 3 (P450 BM3). Carmichael and Wong (2001)
reported double mutation in P450 BM3 at R47L and Y51F
to enhance its oxidation activity toward phenanthrene and
fluoranthene. The mutants showed 40-folds and 10-folds
oxidation activity toward phenanthrene and fluoranthene. Li
et al. (2001) reported oxidation of polycyclic hydrocarbons
such as naphthalene, fluorene, acenaphthene, acenaphthylene,
and 9-methylanthracene by triple mutant of P450 BM3 at
A74G/F87V/L188Q sites.

Directed Evolution
Directed evolution is an approach of protein engineering to
improve the efficiency of proteins without a prior knowledge
of amino acid sequences. It is based on the Darwinian
principle of evolution and involves (i) the use of rapid
molecular manipulations to mutate the target gene and
(ii) the subsequent selection of the improved variants by
screening (Arora et al., 2010). Using directed evolution,
many xenobiotic-degrading genes have been improved for
their properties. Best studied example is cytochrome P450
monooxygenase from Bacillus megaterium 3 (P450 BM3) that
involves in oxidation of various aromatic compounds. Sideri
et al. (2013) used directed evolution to generate mutants of
P450 BM3 to hydoxylate chrysene and pyrene. Two rounds
of random mutagenesis by error–prone PCR were used to
generate mutants. Three mutants exhibited hydroxylation of
chrysene and pyrene. These mutants hydroxylated chrysene in
different positions and hydroxylate pyrene to 1-hydroxypyrene.
Santos et al. (2019) reported that directed evolution of
P450 BM3 to improve the hydroxylation activity toward
six o-heterocycles; benzo-1,4-dioxane, phthalan, isochroman,
2,3-dihydrobenzofuran, benzofuran, and dibenzofuran. They
screened in-house libraries of P450 BM3 to generate P450 BM3
CM1 (R255P/P329H) that was further underwent error–prone
PCR, generating P450 BM3GS2 (R255S/P329H/F331L). Another
error-prone PCR of P450 BM3 GS-2 generated P450 BM3 GS3
(I122V/R255S/P329H/F331L). In next step, P450 BM3 WT was
subjected to single site saturation mutagenesis (SSM) in the
four identified positions and double SSM at positions I122 and
R255, which provided the most active variants, P450 BM3 R255G
and R255L.

Recombinant DNA Technology or Genetic
Engineering
Genetic engineering or recombinant DNA technology includes
multiple techniques used to cut up and join together DNA
from various biological sources, and to introduce the
resulting hybrid DNA into an organism so as to create new
combinations of heritable genetic material (Rosenberg, 2017).
Genetic engineering is a promising technique to enhance
the potentials of microorganisms for the bioremediation of
environmental pollutants (Ezezika and Singer, 2010). Genetically
engineered bacteria are considered as potential candidates
for bioremediation applications in soil, groundwater, and
activated sludge (Sayler and Ripp, 2000). A list of few genetically

engineered bacteria with their bioremediation applications is
presented in Table 2.

Even though several genetically engineered Bacilli have been
constructed for various industrial applications (Wang et al.,
2006; Drejer et al., 2020), the bioremediation applications of
genetically engineered Bacilli is very limited. Huang et al. (2015)
constructed a genetically engineered B. subtilis 168 expressing
the arsenite S-adenosylmethionine methyltransferase gene of
thermophilic algae for bioremediation of arsenic. This genetically
engineered bacterium was able to convert the inorganic As into
dimethylarsenate and trimethylarsine oxide via methylation, and
also able to volatilize substantial amounts of dimethylarsine and
trimethylarsine (Huang et al., 2015). The rate of As methylation
and volatilization increased with temperature from 37 to 50◦

C. However, wild type B. subtilis 168 lacks the properties of
methylation and volatilization.

Genome-Editing Technologies
Genome-editing technologies are currently using to manipulate
DNA by the engineered nucleases or molecular scissors, which
have a wide range of applications in research fields of plants,
animals, and microorganisms (Jaiswal et al., 2019). The process
of genome editing is generally performed by genome editing tools
and involves following steps (i) double standard break in targeted
gene sequence (ii) repaired by homologous recombination using
self-designed guide sequence complementary to targeted gene
sequence (iii) error-prone non-homologous end joining (Jaiswal
et al., 2019). The aim of using gene-editing tools is to develop
a microbe with great potentials. Jaiswal et al. (2019) describe the
role of the gene-editing tools such as Transcription-activators like
effector nucleases (TALEN), clustered regularly interspaced short
palindromic repeats (CRISPR-Cas), and zinc finger nucleases
(ZFNs) to design bacteria with improved metabolic capabilities
for enhancing the bioremediation of environmental pollutants.

Genomics
Genomic studies are a powerful tool for the study of
microorganisms capable of degrading environmental pollutants
(Rodríguez et al., 2020). Next-Generation sequencing technology
has been widely used for the whole-genome sequences of
various organisms. The whole genomes of several xenobiotic-
degrading Bacilli have been sequenced using Next-Generation
sequencing technology, and several genes and proteins involved
in biodegradation have been identified through gene predictions
and annotation of the Bacilli genomes. Hossain et al. (2020)
identified chromate transporters in the genome of a chromium-
reducing bacterium, B. cereus TN10 isolated from tannery
effluent. Chromate transporters are involved in chromium
resistance and play a role in the efflux of cytoplasmic chromate.
He et al. (2010) identified a putative chromate transport
operon, two chromate transporters, azoreductase gene, and four
nitroreductase genes in Bacillus cereus SJ1 whichmay be involved
chromate resistance and chromate reduction. The genome
of B. cereus S612 contains genes encoding multidrug efflux
pumps and reductases that are potentially related to chromium
resistance and reduction (Wang et al., 2015). Genome analysis
of zearalenone-degrading Bacillus velezensis ANSB01E revealed
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TABLE 2 | A list of few genetically engineered bacteria invloved in bioremediation.

Genetically engineered bacteria Compound/heavy metal Properties/application References

Bacillus subtilis 168 Arsenic Expressed the arsenite

S-adenosylmethionine

methyltransferase gene from

thermophilic algae,

Cyanidioschyzon merolae. This

bacterium involved in arsenic

methylation and volatilization

Huang et al., 2015

Rhodopseudomonas palustris Mercury Expressed mercury transport

system and metallothionein for

Hg2+ uptake

Deng and Jia, 2011

Escherichia coli Nickel Expressed nickel-affinity

transmembrane protiens and

metallothionein for Ni2+

bioaccumulation

Deng et al., 2013

Pseudomonas putida MC4-5222 1,2,3-Trichloropropane (TCP) Expressed the haloalkane

dehalogenase (DhaA31). More

than 95% degradation of TCP

was observed

Samin et al., 2014

Pseudomonas fluorescens Hexahydro-1,3,5-trinitro-1,3,5-

triazine

(RDX)

Expressed the RDX-metabolizing

enzyme XplA to degrade RDX in

the rhizosphere

Lorenz et al., 2013

Pseudomonas putida KTUe Organophosphates, pyrethroids,

and carbamates

A scarless genome editing

strategy was used to insert four

pesticide degrading genes, vgb,

and gfp. This bacterium

completely degraded methyl

parathion, chlorpyrifos,

fenpropathrin, cypermethrin,

carbofuran and carbaryl when

concentration was 50 mg/L

Gong et al., 2018

Cupriavidus necator JMP134-ONP Nitrophenols Inserted ortho-nitrophenol

degradation operon (onpABC

gene cluster). This bacterium

was able to degrade two

isomers of nitrophenols

Hu et al., 2014

the presence of genes coding peroxiredoxin and alpha/beta
hydrolase, which may be involved in zearalenone degradation
(Guo et al., 2020).

Bioinformatics Tools
Bioinformatics approaches including biodegradative databases,
pathway prediction systems, and protein-structure predicting
tools may be used for biodegradation studies (Arora and Bae,
2014). Biodegradative databases provide information about
pollutants, their degradation pathways, bacteria, genes, and
enzymes in their degradation (Arora and Bae, 2014). Examples
of these databases are the EAWAG Biocatalysis/Biodegradation
Database (EAWAG-BBD), a database of biodegradative
oxygenases (OxDBase), Biodegradation Network-Molecular
Biology database (Bionemo), MetaCyc, and BioCyc (Arora and
Bae, 2014). The structure of enzymes involved in biodegradation
of environmental pollutants in Bacilli can be predicted by online
structure prediction tools such as Iterative Threading Assembly
Refinement server (I-TASSER) (Yang and Zhang, 2015), SWISS-
MODEL (Waterhouse et al., 2018), and optimized protein fold
RecognitION (ORION) (Ghouzam et al., 2015).

CONCLUSION

Many Bacilli have been isolated and characterized for
degradation of various environmental pollutants including
chloronitrophenols, dyes, drugs, pesticide, explosives, polycyclic
aromatic compounds, heterocyclic aromatic compounds, and
heavy metals. The biochemical characterization of degradation
pathways of various environmental pollutants was extensively
studied in Bacilli. The genes involved in the degradation of
various xenobiotic compounds have been identified from the
genome sequences of various xenobiotic degrading Bacilli.
Further studies on cloning and expression of these genes would
be useful to understand the mechanism of biodegradation. The
construction of genetically engineered Bacilli with improved
degradation efficiency will be useful for biodegradation
applications. Furthermore, genome editing tools may be used
to develop more efficient Bacilli for the bioremediation of
pollutants. Bioinformatics tools such as databases, pathway
prediction systems, and protein structure predicting tools are
useful to determine the fate of environmental pollutants in
the fields.
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