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Abstract

Plant growth promoting rhizobacteria (PGPR) are diverse, naturally occurring bacteria that

establish a close association with plant roots and promote the growth and immunity of

plants. Established mechanisms involved in PGPR-mediated plant growth promotion

include regulation of phytohormones, improved nutrient availability, and antagonistic effects

on plant pathogens. In this study, we isolated a bacterium from the rhizospheric soil of a soy-

bean field in Chungcheong buk-do, South Korea. Using 16S rRNA sequencing, the bacte-

rium was identified as Bacillus aryabhattai strain SRB02. Here we show that this strain

significantly promotes the growth of soybean. Gas chromatography—mass spectrometry

analysis showed that SRB02 produced significant amounts of abscisic acid, indole acetic

acid, cytokinin and different gibberellic acids in culture. SRB02-treated soybean plants

showed significantly better heat stress tolerance than did untreated plants. These plants

also produced consistent levels of ABA under heat stress and exhibited ABA-mediated sto-

matal closure. High levels of IAA, JA, GA12, GA4, and GA7, were recorded in SRB02-

treated plants. These plants produced longer roots and shoots than those of control plants.

B. aryabhattai SRB02 was found to be highly tolerant to oxidative stress induced by H2O2

and MV potentiated by high catalase (CAT) and superoxide dismutase (SOD) activities.

SRB02 also tolerated high nitrosative stress induced by the nitric oxide donors GSNO and

CysNO. Because of these attributes, B. aryabhattai SRB02 may prove to be a valuable

resource for incorporation in biofertilizers and other soil amendments that seek to improve

crop productivity.
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Introduction

In natural ecosystems, plants interact with other organisms that make up the bulk of soil flora

and fauna. These interactions determine the microbial diversity of the soil, although not all of

these interactions are beneficial for the plants. Rhizobacteria that are found in the root zone

(rhizosphere) of plants colonize and interact with plant roots. Although parasitic species of rhi-

zobacteria exist, the term “rhizobacteria” is ordinarily used only in the context of mutually

beneficial or symbiotic associations in which the bacteria help in the promotion of plant

growth. That is why these bacteria are also called plant growth promoting rhizobacteria

(PGPR) [1, 2]. Plant growth promotion may come about through direct regulation of phyto-

hormonal activity, increasing root surface area, increasing tolerance to plant diseases [3–5],

rhizosphere engineering, siderophore production, phosphate solubilization, and the produc-

tion of active chemical signals [6, 7]. These phenomena have been observed in plant-PGPR

interactions involving agriculturally important crops such as canola [8], pepper [9], tomato

[10], cereals and legumes [11], and forest trees [12, 13]. PGPR have also been used for phytore-

mediation of contaminated soils [14]. Their growth promoting effects have been observed dur-

ing a variety of stress conditions such as salinity [2, 15], drought [16, 17], heat stress [18],

metal toxicity [19], and others. For these reasons, PGPR are now widely used as biofertilizers,

soil amendments, and rhizoremediators [20–22]. Although the positive effects of PGPR on

plant growth have been well known for decades, the underlying molecular mechanisms of

plant growth promotion are poorly understood [23].

Pseudomonas aeruginosa, when inoculated to soil with Zn toxicity, improved the growth of

wheat plants and their tolerance to oxidative stress as shown by an increase in the activity of

antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), and catalase

(CAT) [19]. Pepper plants inoculated with Bacillus licheniformis strain K11 tolerated drought

stress more efficiently than un-inoculated plants, which died after 15 days of drought treatment

[17]. Another study involving five different species of bacteria—Bacillus subtilis EY2, Bacillus

atrophaeus EY6, Bacillus spharicus EY30, Staphylococcus kloosii EY37, and Kocuria erythromyxa

EY43 found that these PGPR, were able to mitigate the deleterious effects of salt stress in straw-

berry plants [15]. Heat stress has been a limiting factor to agricultural production throughout

the world, especially during dry periods and in areas on and near the equator. In such areas,

the interactions of plants with different PGPR play important roles in ameliorating heat stress.

For example, heat stress tolerance of wheat plants was increased after treatment with Pseudo-

monas aeruginosa 2CpS1 [18], Bacillus amyloliquefaciens UCMB5110 and Azospirillum brasi-

lenseNO40 [24], and Pseudomonas putida AKMP7 [25]. However, the molecular mechanisms

underpinning heat stress tolerance of plants after PGPR treatment are largely unknown.

PGPR have been shown to promote the production of growth promoting phytohormones

[26] such as IAA [27, 28], cytokinin [29–31] and gibberellins [32–34], inhibit the synthesis of

ethylene [28, 35], and regulate endogenous ABA levels in plants [10]. Furthermore, Serratia

marcescens strain 90–166 has been shown to protect plants against cucumber mosaic virus

(CMV) in a jasmonic acid (JA)-dependent but SA/NPR1-independent manner, demonstrating

the activation of a JA signaling pathway by PGPR [36, 37]. Plant hormones have also been

known to act in synergistic and/or antagonistic manner to each other. For example, auxin and

cytokinin act antagonistically during biotic stress [38]. Similarly, ABA-cytokinin and SA-cyto-

kinin antagonism has been shown to modulate resistance against plant pathogens in tobacco

and rice respectively [39, 40]. Thus, in addition to their plant growth promoting properties,

PGPR can also provide protection against plant pathogens. Detailed reviews of the physiologi-

cal impacts of PGPR and their roles in the mitigation of different abiotic and biotic stresses in

plants are available in the literature [2, 4, 6–8, 22, 36].
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The above information shows that PGPR are highly diverse in their plant growth promoting

properties and represent a versatile target for use in improving overall crop production. For

successful targeted interventions in the soil microbiome, however, it is important to consider

soil microbial diversity, as there exist an intricate balance between the different types of micro-

organisms (and their relative populations) in the rhizosphere. Soil microbial diversity is pri-

marily determined by the extensive communication that takes place between plant roots and

associated microorganisms. This communication mostly takes place by means of the different

chemical compounds secreted by plant roots and rhizospheric microorganisms, compounds

that may serve as nutrients, toxins, or signaling molecules.

PGPR mainly belong to the genera Azospirrillum, Azotobacter, Arthrobacter, Bacillus, Clos-

tridium, Enterobacter, Pseudomonas, and Serratias [41] and among these, the species of Bacillus

and Pseudomonas have perhaps been the most extensively studied. Bacillus aryabhattai (strain

B8W22) was initially, isolated from cryotubes used to collect air samples from the Earth’s

stratosphere at an altitude between 27 and 41 km [42], resulting in suggestions of a cosmic ori-

gin of this bacterium. Subsequently, the bacterium was isolated from rhizosphere soil in many

parts of the world such as South Korea [43], India [44], and Tibet [45]. The plant growth pro-

moting activity of B. aryabhattai was first reported by Lee et al., who showed in 2012 that B.

aryabhattai promotes the growth of Xanthium italicum [43]. More recently, it has been shown

that zinc solubilizing strains of B. aryabhattai improved the growth of soybean and wheat

plants by increasing the mobilization and bio-fortification of zinc [46]. B. aryabhattai strains

have also been found useful for several other purposes, such as the biosynthesis of thermosta-

ble alkaline phosphatase [47] and the anti-leukemic tumor-inhibiting L-asparaginase enzyme

[48, 49], as well as pesticide degradation [44].

Except for the above two reports, however, no information is available on the growth pro-

moting effects of B. aryabhattai and/or its involvement in improving plant tolerance to biotic

and abiotic stresses. In this study, we evaluated the plant growth promoting properties of B.

aryabhattai strain SRB02 in soybean and rice plants.

Materials andmethods

Isolation and identification of B. aryabhattai

Bacteria were isolated from the rhizosphere soil (soil attached to the roots of the plants) of a

soybean field in the Chungcheong buk-do region of South Korea after prior permission

from the owner of the field. For this purpose, 1 g of soil was suspended in 9 ml sterile 0.85%

NaCl. The soil suspension was serially diluted up to 10−6, and then 100 μl of the suspension
was spread on tryptic soy agar (TSA) medium (MB Cell, Los Angeles, CA, USA). Multiple

single colonies were selected and sub-cultured in 5 ml tryptic soy broth (TSB) medium (MB

Cell) for 24 h at 30˚C. The identity of the bacterial isolates was confirmed through 16S

rRNA sequencing (Solgent, Daejeon, Korea). The phylogenetic position of the bacterial iso-

lates was determined by blasting the 16S rRNA sequence at NCBI (http://blast.ncbi.nlm.nih.

gov/Blast.cgi).

Growth of bacteria

For all the experiments, bacteria were grown either on LB-agar or LB-broth (Applichem,

Darmstadt, Germany) and incubated at 30˚C for 24 h. Bacillus thuringiensis strain ATCC

10792 (hereafter referred to as AY1) was used as a control bacterium of the same genus in sub-

sequent experiments.
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Soybean growth conditions

Seeds of the soybean cultivar Daewon were germinated on horticultural soil (fungus-free bio-

soil, Dongbu Farm, Hannong, South Korea) in filled plastic pots kept in a growth chamber at

28˚C /25˚C (day/night), 65% relative humidity and at light intensity of 1000 μmol/m/s under

long-day conditions (16 h light and 8 h dark).

Heat stress treatment and bacterial inoculation

Soybean plants in vegetative stage 3 [(V3) the stage at which the plants are unifoliate and

the first three trifoliate leaves are fully developed (https://extension.entm.purdue.edu/

fieldcropsipm/soybean-stages.php) were used for the heat stress experiment at 38˚C/30˚C (day

and night) as suggested by Li et al. [50] and others [51, 52]. For this purpose, soybean plants

were grown in pots (10 cm deep and 10 cm wide at the top). Prior to the heat treatment, the

soil surface was drenched with 10 ml of LB-grown bacterial culture (1 × 108 cfu/ml), or with

sterilized LB-broth, or with double distilled water for three days. Following a three-day accli-

mation period, plants were kept at 38˚C /30˚C (day/night) for heat stress treatment. Control

plants were grown at the optimum temperature conditions mentioned above. Plants were reg-

ularly observed and data were recorded. Leaf samples were collected after 0 h, 12 h, and 48 h of

heat treatment.

Plant growth parameters

Data were recorded on different growth parameters such as shoot length (SL), root length

(RL), fresh weight (FW), and dry weight (DW) after 10 days of bacterial inoculation. All data

were recorded on 10 plants per replicate and the experiment was repeated 3 times. Data were

statistically evaluated with Duncan’s multiple range test at a 95% level of confidence using SAS

9.1 (www.sas.com).

Scanning electron microscopy

Scanning electron microscopy was performed to confirm bacterial colonization of the plant

roots, and also to check stomatal movement in the leaves after treatment with SRB02 for analy-

sis of heat stress-related phenotypes. For this purpose, inoculated soybean plants were up-

rooted carefully, and the roots were gently washed in sterile distilled water and then freeze

dried. Approximately 5 mm2 pieces from leaves and roots of inoculated and control plants

were sputter-coated with gold using ion sputtering device (JFC-110E, EC&G, USA) and visual-

ized with an FE-SEM scanning electron microscope (S-4300, Hitachi, Tokyo, Japan).

Quantitative measurement of hormones from bacteria

Abscisic Acid (ABA) measurement. Bacterial ABA measurement was performed as

described by Cohen et al. [53]. For this purpose, 20 ml of extraction solution consisting

of 99% EtOAc (ethyl acetate), 1% glacial acetic acid, and 20 ng of the internal standard

[(±)-3,5,5,7,7,7-d6]-ABA, was added to 10 ml of bacterial culture media. The aqueous phase

was collected and extracts were evaporated. Dried residues were re-suspended in phosphate

buffer (pH 8.0), passed to polyvinylpolypyrrolidone (PVPP) columns with pH adjusted to 3.5

using 6N HCl and again then partitioned three times with EtOAc. Extracts were then com-

bined and evaporated. Dried residues were re-suspended in dichloromethane (CH2Cl2) and

passed through a silica cartridge (Waters, Milford, MA, USA) pre-washed with 10 ml of diethyl

ether:methanol (3:2 v/v). The extracts were dried again and methylated by adding diazo-

methane for ABA analysis in a GC/MS-SIM [Gas Chromatography/Mass Spectrometry

Bacillus aryabhattai SRB02 promotes the growth of soybean

PLOSONE | DOI:10.1371/journal.pone.0173203 March 10, 2017 4 / 28

https://extension.entm.purdue.edu/fieldcropsipm/soybean-stages.php
https://extension.entm.purdue.edu/fieldcropsipm/soybean-stages.php
http://www.sas.com


(GC/MS)–Selected Ion Monitoring (SIM)] (6890N network GC system and 5973 network

mass selective detector; Agilent, Palo Alto, CA, USA) and quantified using Lab-Base software

(Thermo Quest, Manchester, UK).

Indole Acetic Acid (IAA) measurement. Preliminary tests were performed for the pres-

ence of IAA in bacterial cultures using Salkowski reagent [54–56]. Bacterial IAA measure-

ments were then performed following the method of Park et al. [57]. Briefly, 10ml bacterial

cultures were grown at 30˚C for 2 days. Uniform concentrations of bacterial culture were

obtained by measuring the optical density of bacterial cultures at 600 nm and centrifuged at

15,000 rpm for 2 min. The supernatants were filtered through a 0.45 μm cellulose acetate filter

and the pH was adjusted to 2.8 with HCl before adding 40 μl of [D5]-IAA as an internal stan-

dard. Extracts were then partitioned with 4 ml ethyl acetate. The aqueous phases were com-

bined together and evaporated under a vacuum at 45˚C. Dried residues were re-suspended

using 60% methanol and the pH was adjusted to 8 ± 0.3 using 2N NH4OH, and the suspension

was passed through a reverse-phase C18 column. The methanolic fractions were prepared by

dissolving the residue in 1 ml of methanol and adding 1.5 ml ethereal diazomethane. The

methylated samples were re-dissolved in ethyl acetate before the IAA analysis using GC—MS

with SIM (6890 N network GC system, and 5973 network mass selective detector; Agilent,

Palo Alto, CA, USA).

Gibberellic Acid (GA) measurement. The quantification of GA in the bacterial cultures

was carried out according the protocol described by Lee et al. [58]. Bacterial culture filtrates

supplemented with (2H2) GA standards were processed for detection, identification and quan-

tification of GAs using gas chromatography and mass spectroscopy.

Quantitative measurement of plant endogenous ABA, JA, SA, GA, IAA
and cytokinin contents

Freeze-dried plant samples finely ground with a mortar and pestle were used for all the endog-

enous plant hormone analyses. ABA measurement was performed following the method of

Qi et al. [59]. Briefly, 0.1 g plant samples were dissolved in 20 ng of the internal standard

[(±)-3,5,5,7,7,7-d6]-ABA, including isopropanol:acetic acid (95:5) extraction solution, and

evaporated. They were dissolved again into 5 ml of 1N NaOH and washed three times with 3

ml of dichloromethane to remove chlorophyll. The aqueous phase was collected, pH was

adjusted to 3.5 with 6 N HCl, and the samples were partitioned three times in 10 ml ethyl ace-

tate (EtOAc) and evaporated. Residues were dissolved in phosphate buffer (pH 8.0) and run

through a polyvinyl polypyrrolidone (PVPP) column. After passing through the column, the

pH of the extracts was adjusted to 3.5 with 6N HCl, and the samples were again partitioned

three times with EtOAc. The extracts were evaporated and methylated with diazomethane and

then GC/MS-SIM analysis was conducted (6890 N network GC system, and the 5973 network

mass-selective detector; Agilent, Palo Alto, CA, USA). For quantification, Lab-Base software

was used (ThermoQuest, Manchester, UK).

JA concentrations were measured following the method of Creelman and Mullet [60].

Briefly, 0.1 g plant powder was suspended in an extraction solution of acetone:50 mM citric

acid (70:30, v/v) and 20 ng of (9,10-2H2)-9,10-dihydro-JA was added as an internal standard.

The suspension was evaporated at room temperature overnight and re-suspended in 0.1 M

potassium phosphate buffer, and the pH was adjusted to 2.5. Chlorophyll was removed from

the samples using diethyl amino ethyl cellulose (DEAE-cellulose) and then partitioned using

chloroform. Samples were then filtered through Na2SO4 and evaporated. Extracts were re-dis-

solved in 5 ml of diethyl ether three times then purified by passing them through a solid phase

extraction cartridge (500 mg of sorbent, amino propyl). The cartridges were washed with 5 ml
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of chloromethane and 2-propanol solution (2:1, v/v) three times. JA was then eluted three

times with 2 ml of diethyl ether and acetic acid solution (98:2, v/v) before methylation. The

extracts were then analyzed by GC-MS as described above.

Salicylic acid (SA) in SRB02-treated soybean plants was extracted as described by Seskar

et al. [61]. High performance liquid chromatography (HPLC) was performed using a C18

reverse phase column (HP Hypersil ODS, particle size 5 mm, pore size 120 Å; Waters, Milford,

MA, USA) and a Shimadzu RF-10AZL (Shimadzu, Kyoto, Japan) equipped with a fluorescence

detector with excitation and emission set at 305 nm and 365 nm, respectively. Flow rate was

maintained at 1.0 ml/min. For plant endogenous GAmeasurement, samples were lyophilized

and ground into fine powder using a mortar and pestle. Afterwards, samples were processed as

described above for bacterial GA measurements.

Plant IAA and cytokinin (Trans-Zeatin) measurements were performed as described by

[62] and [63] with minor modifications using Liquid Chromatography Electrospray-Ioniza-

tion Quadrupole Time-of-flight (LC-ESI-QTOF) TandemMass Spectrometry. Briefly, 200 mg

of freeze dried leaf samples from treated and un-treated control plants were finely ground and

2 ml of extraction buffer [2-propanol: H2O: concentrated HCl (2:1:0.002, vol/vol/vol)] was

added and incubated at 4˚C on a shaker for 30 min. Then 2 ml of dichloromethane was added

to each sample and incubated at 4˚C on a shaker for 30 min before centrifugation at 13,000g

for 5 min at 4˚C. The lower phase was then transferred to another tube and concentrated

using nitrogen evaporation and re-dissolved in 0.1 ml methanol. Finally 10 μl of the resulting
solution was analyzed in a XEVO G2-S QTOF Spectrometer (Waters, USA) connected with a

UPLC system (Waters, USA) using Acquity UPLC BEH C18 1.7 μM (2.1 x 100 mm) column.

All the experiments were repeated at least three times.

Quantitative measurements for all plant and bacterial hormones were performed three

times. Data were subjected for analysis of variance (ANOVA) using SigmaPlot1 (10.0).

Mean values were compared using Duncan’s Multiple Range Test (DMRT) at 95% level of

significance.

Stress media tests

B. aryabhattai SRB02 were tested for tolerance to multiple oxidative and nitrosative stresses.

For this purpose, SRB02 were grown on oxidative and nitrosative stress media. Oxidative stress

was given by supplementing LB agar media with 0.75 μM, 1 μM, 1.5 μM and 2 μMmethyl vio-

logen (MV) and 50 μM, 100 μM, 200 μM and 500 μMhydrogen peroxide (H2O2), while nitro-

sative stress was given by supplementing LB agar media with 4 mM, 4.5 mM, 5 mM and 6 mM

S-nitrosoglutathione (GSNO) and 3.5 mM, 4 mM, and 5 mM S-nitrocysteine (CysNO). Pilot

experiments were first conducted to adjust the above optimum concentrations. B. thuringiensis

strain AY1 was used as a control.

SOD-like activity test

The results of the stress media showed that SRB02 tolerated high oxidative stress given by

both MV (donor of the superoxide O_̄ 2 radical) and H2O2. This prompted us to investigate

the superoxide dismutase (SOD) and catalase activities of these bacteria. An SOD activity

test was performed following established procedures [64, 65] with minor modifications. For

this purpose, 3 ml of 50 mM Tris-cacodylic acid buffer (TCB, pH 8.2) was added to 2 ml LB

bacterial cultures (O.D 600nm = 0.2) and centrifuged at 8000 rpm for 5 min. Next, 950 μl of
the supernatant was mixed with 50 μl of 10 mM pyrogallol (A). Bacterial supernatant with

TCB (B), TCB with pyrogallol (C), and sterilized LB broth with pyrogallol, were used as
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comparative controls. The experiment was repeated three times and data were analyzed for

significant differences through Student’s T-test at 95% level of significance using Microsoft

Excel.

Pyrogallol (1,2,3-benzenetriol) is known for its high rate of autoxidation, especially at

higher pH values, and it has been used for separation of oxygen from other gases. SOD enzyme

rapidly dismutases univalent reduced oxygen, also called the superoxide anion radical (O_̄ 2).

SOD reduces the autoxidation of pyrogallol by about 99% in the presence of the Oˉ2_anion rad-

ical [66]. Hence, the extent of SOD activity can be estimated from the ability of the SOD

enzyme to inhibit the autoxidation of pyrogallol which is measured in terms of changes in the

absorbance (A) at a wavelength of 420 nm overtime at 25˚C. We measured this change in

absorbance after 2 min, 5 min, and 10 min, and we calculated SOD-like activity by the follow-

ing formula [65].

SOD activity ð%Þ ¼ 1�
A� B

C

� �

� 100

Catalase activity test

Catalase activity was tested using an Amplex1 Red Catalase Assay Kit (Molecular Probes,

Thermo Fisher, Waltham, MA, USA) according to the manufacturer’s instructions. The kit

provides an ultrasensitive but, simple method for measuring catalase activity based on a com-

petition assay between catalase enzyme and the Amplex Red reagent. Catalase first reacts with

H2O2 producing H2O and O2. The Amplex Red then reacts with any remaining H2O2 in the

presence of horseradish peroxidase (HRP), producing a fluorescent oxidation product, resoru-

fin. Increased production of catalase enzyme(s) overtime reduces the resorufin signal. Over-

night bacterial cultures (O.D 600 = 0.2) were centrifuged and the pellets were lysed in 0.1 M

Tris buffer (pH 7.4).

The experiment was performed in a 96-well plate by adding 25 μl each of SRB02 and AY1

cell lysates, catalase standard curve samples, and 40 μMH2O2. Following the decomposition of

hydrogen peroxide by catalase, 50 μMAmplex Red reagent and 0.2 U/ml horseradish peroxi-

dase (HRP) were added. Fluorescence was measured using a Multiskan™ GOmicroplate spec-

trophotometer (Thermo Fisher, Waltham, MA, USA) at 590 nm. The experiment was repeated

three times and data were analyzed for significant differences through Student’s T-test at 95%

level of significance using Microsoft Excel.

Gene expression analysis

Total RNA was extracted using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) and subse-

quent ethanol precipitation before cDNA synthesis. One microgram of RNA was used to syn-

thesize cDNA using a DiaStarTM RT Kit (Solgent, Daejeon, South Korea). Gene expression

was analyzed by two-step quantitative real time PCR using a QuantiSpeed SYBR Green Kit

(PhileKorea, Seoul, South Korea) in an Eco™ real-time PCR machine (Illumina, San Diego,

CA, USA) for 40 cycles. Each reaction contained 10 μl master mix, 1 μl each of 10 pmol/μl
primers (S1 Table), and 1 μl of cDNA, with final volume adjusted to 20 μl using nuclease free
water. The PCR reaction was performed with an initial denaturation step at 95˚C for 2 min

and subsequent denaturation steps at 95˚C for 10 s followed by annealing and extension at

60˚C for 30 s for 40 cycles.
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Results

B aryabhattai SRB02 as a plant growth promoting bacterium

As described above, we isolated bacteria from the rhizosphere soil of a soybean field in the

Chungcheong buk-do region of South Korea. After obtaining pure cultures, the target bacte-

rium was identified through 16S rRNA sequencing. The phylogenetic position of the bacterial

isolate was determined by blasting the 16S rRNA sequence on NCBI (http://blast.ncbi.nlm.nih.

gov/Blast.cgi). Phylogenetic analysis showed 100% similarity of the 16S rRNA sequence of our

target bacterium to B. aryabhattai strain SRB02 (S1 Fig) first reported by Kang et al. from

South Korea (NCBI accession No. KP860638.1) (https://www.ncbi.nlm.nih.gov/nucleotide/

803432357?report=genbank&log$=nuclalign&blast_rank=1&RID=RW73JGVC01R).

The overall analyses performed in this study showed that B. aryabhattai strain SRB02 (here-

after referred to as SRB02) significantly promoted the growth of soybean and rice. Scanning

electron microscopy showed that SRB02 successfully colonized the roots of soil-grown soybean

plants within 2 days of inoculation (Fig 1C) and resulted in significantly greater shoot length,

leaf size, and node number of both soybean (Fig 1A and 1B) than those observed for control

treatments, indicating that SRB02 is a plant growth promoting bacterium. In soybean plants

in particular, the growth promoting effect was observed in plants grown under optimum as

well as under high temperature conditions, indicating that SRB02 ameliorates heat stress in

soybean.

B. aryabhattai SRB02 regulates the production of growth hormones in
plants

SRB02-mediated growth promotion of soybean and rice plants prompted us to investigate

whether SRB02 can produce growth hormones and/or affect the regulation of endogenous

phytohormones. For this purpose, we measured various phytohormones in bacterial cultures

as well as in plants treated with SRB02.

SRB02 produces ABA and helps plants maintain ABA levels during heat
stress

Plants treated with SRB02 showed a sustained production of ABA from 12 h to 48 h after inoc-

ulation under both temperature regimes (Fig 2A and 2B). Similar results were obtained

using qRT-PCR analysis of genes involved in ABA biosynthesis: GmZEP (Glyma01g39310),

GmNCED (Glyma05g27250), and ABA responsive gene GmRD20A (Glyma03g41030). Very

similar transcript levels were recorded for these genes in soybean plants treated with SRB02 12

h to 48 h after inoculation, especially in plants grown at high temperature (Fig 2C–2H).

Interestingly, we observed medium to severe leaf chlorosis in control soybean plants follow-

ing heat stress treatment (Fig 2I), and increased expression of ABA biosynthesis genes (Fig 2D,

2F and 2H). On the other hand, in SRB02-treated plants, which produced normal levels of

ABA after 12 h to 24 h after inoculation, no chlorosis was observed (Fig 2I). Analysis of bacte-

rial cultures showed that SRB02 produced up to 2 ng/ml ABA in culture (Fig 2J). ABA-medi-

ated drought stress tolerance through stomatal closure is well known and as we expected, the

stomata of plants treated with SRB02 were almost closed under high day/night temperatures of

38˚C/30˚C compared to those of control plants (S2 Fig). Analysis of SRB02 cultures showed at

least 20-fold higher ABA accumulation than that of the control bacterium B. thuringiensis

strain AY1 (Fig 2J).

Bacillus aryabhattai SRB02 promotes the growth of soybean
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SRB02 produces IAA and modulates auxin signaling in soybean plants

SRB02-treated soybean plants showed low IAA levels compared to untreated control plants at

all the time points (Fig 3A). SRB02-mediated low IAA levels were observed in plants grown at

Fig 1. Bacillus aryabhattai SRB02 as a plant growth promoting rhizobacterium. Soil-grown soybean plants in
vegetative stage 3 (V3) were inoculated (by soil drenching) with LB-grown bacterial culture (1 × 108 cfu/ml), or with
sterilized LB broth or with double distilled water for 3 days and kept at 38˚C/30˚C (day/night) for the heat stress treatment,
following a 3-day acclimation period (A). SRB02 promoted the growth of soybean plants under all temperature regimes
and significantly increased the shoot length of soybean plants as well as leaf length, leaf width and number of nodes (B)
after successful colonization of roots within 2 days of inoculation (C). Each data point in panel B represents the mean of
at least three replicates. Error bars represent standard deviations. Bars with different letters are significantly different
from each other at P� 0.05.

doi:10.1371/journal.pone.0173203.g001
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Fig 2. Bacillus aryabhattai SRB02 produces ABA and regulates its levels in plants. Plants treated with B.
aryabhattai SRB02 produced constant levels of ABA under normal temperature conditions (A) as well as under
heat stress (B). These results are consistent with the very similar transcript accumulation of the ABA-related
genes ZEP (C, D),NCED (E, F), andRD20A (G, H) from 12 h to 48 h of SRB02 treatment under both
temperature regimes. Plants treated with SRB02 were more tolerant of heat stress and remained green, while
the leaves of control plants showed chlorotic symptoms (I). SRB02 produced a significantly higher amount of

Bacillus aryabhattai SRB02 promotes the growth of soybean
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both normal and high temperature conditions. Furthermore, in plants grown under heat stress

conditions significant quantity of IAA could only be detected up to 12 h after SRB02 treatment

(Fig 3B). Quantitative real time PCR analysis of plants grown under heat stress showed

significantly higher accumulation of two genes involved in auxin signaling: GmIAA16 (Gly-

ma02g16071) and GmIAA9 (Glyma01g02350) (Fig 3C & 3D) which both encode the Aux/

IAA transcriptional repressor proteins [67, 68] which explains low accumulation of IAA in

SRB02-treated plants. Analysis of SRB02 broth cultures with van Urk—Salkowski reagent indi-

cated high concentrations of auxin derivatives (Inset, Fig 3E). Salkowski reagent is a chromo-

genic reagent having high sensitivity and specificity to approximately 80 different indoles, and

it gives a pinkish to orange color upon reaction. Further chromatographic analyses of SRB02

and AY1 cultures using GC-MS showed a more than 20-fold increase in IAA in SRB cultures

over that in AY1 cultures (Fig 3E).

SRB02 modulates JA biosynthesis and cross-talk with SA in soybean

Analysis of soybean plants revealed a rapid increase in the biosynthesis of JA within 12 h of

inoculation and continuing up to 48 h (Fig 4A). However, under heat stress conditions, JA lev-

els decreased drastically after 12 h of SRB02 treatment (Fig 4B), though the concentration of

JA in SRB02-treated plants was still higher than in the control plants. Endogenous JA levels in

plants decrease significantly within the first 12 h of heat stress treatment accompanied by the

suppression of genes involved in JA biosynthesis [69]. As a result of the marked increase in JA

levels caused by SRB02 in soybean plants grown under optimum temperature conditions, we

expected JA levels to at least remain constant after heat treatment in SRB02-treated plants.

However, to our surprise, JA levels declined significantly after 12 h of inoculation with SRB02

under heat stress indicating that SRB02-mediated activation of the JA pathway is dependent

upon growth conditions. Several studies have reported PGPR-mediated protection of plants

through the activation of ISR, a defense pathway regulated by JA. Our results indicated that

following SRB02-mediated increase in JA content, the SA levels remained almost constant at

all the time points under study (Fig 4C and 4D), indicating that root colonization by SRB02

does not activate an SA dependent defense response.

SRB02 produces GAs and regulates GA biosynthesis in soybean

Analysis of SRB02-treated soybean plants grown under normal temperature conditions did

not show a significant increase in the concentration of most GAs except for GA4 and GA7 (Fig

5A). However, SRB02-treated plants grown under heat stress showed markedly greater pro-

duction of several GA derivatives than that in control plants (Fig 5B). SRB02 produced the GA

derivatives GA1, GA3, GA4, GA7, GA8, GA9, GA20, GA24, GA34, and GA53, with the highest

quantities being for GA4 and GA20, followed by GA7, GA24, and GA3 (Fig 5C).

SRB02 produces cytokinin and regulates cytokinin homeostasis in
soybean

As described earlier, the antagonistic behavior of auxin and cytokinin is well known. The

SRB02 mediated perturbation of auxin levels as well as of the auxin related transcriptional

machinery in soybean plants under normal and heat stress conditions tempted us to investi-

gate cytokinin levels in plants following SRB02 application. Results showed a significant and

ABA than did AY1 (J). Each data point represents the mean of at least three replicates. Error bars represent
standard deviations. Bars with different letters are significantly different from each other at P� 0.05.

doi:10.1371/journal.pone.0173203.g002
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Fig 3. Bacillus aryabhattai SRB02 produces IAA and transcriptionally regulates its production in plants.
Soybean plants treated with SRB02 accumulated lower quantity of IAA under optimum (A) and heat stress
conditions (B). SRB02-treated plants showed significantly higher expression of the Aux/IAA transcriptional
repressor genes IAA9 (C) and IAA16 (D) genes. Preliminary tests with Salkowski reagent showed the production
of IAA in SRB02 culture (Inset E). GC-MS analysis showed that SRB02 produced significantly higher amounts of
IAA than did AY1 (E). Error bars represent standard deviations. Each data point represents the mean of at least
three replications. Bars with different letters are significantly different from each other at P� 0.05.

doi:10.1371/journal.pone.0173203.g003
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Fig 4. Bacillus aryabhattai SRB02 promotes the production of jasmonic acid in plants. SRB02-treated soybean plants produced
significantly higher quantities of jasmonic acid under optimum temperature conditions at all the time points studied (A). Though JA accumulation
gradually declined from 12 h to 48 h after inoculation with SRB02 under heat stress, JA content was significantly higher in SRB02-treated plants
than in un-treated control plants for up to 12 h after inoculation (B). SRB02-treated soybean plants showed significantly less SA accumulation after
12, 24 and 48 h of inoculation both at optimal temperature (C) and high temperature conditions (D). Error bars represent standard deviations.
Each data point represents the mean of at least three replications. Bars with different letters are significantly different from each other at P� 0.05.

doi:10.1371/journal.pone.0173203.g004

Bacillus aryabhattai SRB02 promotes the growth of soybean

PLOSONE | DOI:10.1371/journal.pone.0173203 March 10, 2017 13 / 28



Fig 5. Bacillus aryabhattai SRB02 produces gibberellins and regulates their production in soybean.GC-MS analysis of plants
SRB02-treated plants grown under normal temperature conditions did not show significant variation in the accumulation of different GA derivatives
except for GA4 and GA7 (A). Under high temperature conditions, significantly higher quantities of GA4, GA7 and GA12 were recorded (B). Analysis
of bacterial cultures revealed significant quantities of several GA derivatives (C). Error bars represent standard deviations. Each data point
represents the mean of at least three replications. Bars with different letters are significantly different from each other at P� 0.05.

doi:10.1371/journal.pone.0173203.g005
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rapid reduction in cytokinin levels following SRB02 treatment under both temperature

regimes. The least quantity of cytokinin was recorded after 12 h of SRB02 treatment whereas

no cytokinin could be detected later in the plants treated with SRB02 whether grown under

optimum temperature conditions or under heat stress (Fig 6A1 & 6B1, respectively). Quantita-

tive real time PCR analysis showed a marked increase in the transcript accumulation of two

genes GMCKX04 and GmCKX07 in SRB02-treated plants grown under normal temperature

(Fig 6A2 & 6A3) and high temperature conditions (Fig 6B2 & 6B3). The CKX is a multi-gene

family present throughout the plant kingdom encoding cytokinin dehydrogenase proteins that

irreversibly degrade the phytohormone cytokinin in plants [70, 71]. LC-ESI-Q-TOF analysis

showed that SRB02 produced about 1.5 ng/ml cytokinin in liquid culture (Fig 6C).

B. aryabhattai tolerates high oxidative and nitrosative stress

Attachment, entry, or colonization of plant roots or any of the above-ground parts of a plant

by a pathogen usually triggers a defense response. Whether the defense response is successful

or not is the outcome of highly complex plant-pathogen interactions. Plant defense responses

are most often characterized by a change in the cellular redox state with an increased accumu-

lation of reactive oxygen species (ROS) and/or reactive nitrogen species (RNS). Successful

SRB02 root colonization and growth promotion of soybean by regulation of phytohormone

homeostasis prompted us to investigate the response of these bacteria to oxidative and nitrosa-

tive stresses. For this purpose, we grew B. aryabhattai SRB02 cultures on LB medium contain-

ing various concentrations of MV and H2O2 (for oxidative stress) and the nitric oxide donors

GSNO and CysNO (for nitrosative stress). Interestingly, SRB02 was able to tolerate the high

oxidative and nitrosative stresses induced by all the treatments better than AY1. SRB02 grew

efficiently on LB-agar plates containing up to 2 μMMV and 200 μMH2O2. Analysis of SRB02

cultures indicated significantly higher SOD (Fig 7A and 7B) and CAT activities than observed

for AY1 (Fig 7C and 7D), indicating the presence of highly active and efficient antioxidant

machinery in SRB02. Similarly, SRB02 also grew much better on GSNO and CysNO plates

(Fig 7E and 7F).

Discussion

The use of PGPR as microbial inoculants is becoming a widely accepted practice in intensive

agriculture, especially in the developed countries [72]. For this purpose, aggressive coloniza-

tion of plant roots is one of the key criteria used for selection of efficient PGPR. Root coloniza-

tion by various PGPR has been reported to occur in one to a few weeks, with bacterial

populations reaching a maximum point within 60 days [72]. The successful soybean root colo-

nization by SRB02 within 2 days of inoculation was surprisingly fast. This rapid root coloniza-

tion may well be aided by the response of SRB02 to exudates from soybean roots. Another

plant growth promoting bacterium from the genus Bacillus that responds to root exudates is B.

amyloliquefaciens. Strain NJN-6 of this bacterium has been shown to respond to organic acids

from root exudates of banana [73]. PGPR-mediated growth promotion is typically associated

with enhanced production of growth-related phytohormones such as auxin, ABA, cytokinin,

GA, and others though, it is now generally agreed that the phytohormones produced by PGPR

may not be of any physiological importance to these bacteria per se but are instead produced

by them as secondary metabolites in order to establish a better association with their host

plants.

Since ABA and GA biosynthesis follow the same pathway in plastids through the non-mev-

lonate or methylerythritol phosphate (MEP) biosynthetic route of terpenes [74], one feasible

hypothesis is that PGPR can produce both ABA and GA simultaneously and possibly enhance

Bacillus aryabhattai SRB02 promotes the growth of soybean
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Fig 6. Bacillus aryabhattai SRB02 produces cytokinin and regulates cytokinin homeostasis in soybean.
Results showed a significant and rapid reduction in cytokinin levels of SRB02-treated soybean plants grown under
normal temperature conditions after 12 h of inoculation (A1) potentiated by significantly higher transcript
accumulation of the cytokinin-dehydrogenase genesGmCKX04 (A2) andGmCKX07 (A3). Cytokinin levels also
decreased after treatment of soybean plants with SRB02 under heat stress conditions (B1) with a concomitant
increase in the expression ofGmCKX04 (B2) andGmCKX07 (B3) genes. LC-ESI-QTOF analysis showed that

Bacillus aryabhattai SRB02 promotes the growth of soybean
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SRB02 produced about 1.5 ng/ml cytokinin in liquid culture (C) compared to AY1 which did not produce any cytokinin.
Each data point represents the mean of at least three replicates. Error bars indicate standard deviation. Bars with
different letters are significantly different from each other at P� 0.05.

doi:10.1371/journal.pone.0173203.g006

Fig 7. Bacillus aryabhattai SRB02 tolerates high oxidative stress and nitrosative stress. SRB02 was found to be significantly more tolerant of
oxidative stress provoked by up to 2 μMMV than was AY1 (A), potentiated by significantly higher SOD activity (B). SRB02 was also significantly more
resistant to H2O2 than was AY1 (C) due to significantly high catalase activity (D). SRB02 was significantly more tolerant of nitrosative stress induced
by various concentrations of the NO donor GSNO (E) and CysNO (F) than AY1. Error bars represent standard deviations. Each data point represents
the mean of at least three replications. Bars with asterisk are significantly different (Student’s t-test) from each other at P� 0.05.

doi:10.1371/journal.pone.0173203.g007
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the ABA and GA levels of plant hosts. Adaptive responses of plants to heat stress usually

include an increase in endogenous ABA levels [75]. The effect of different concentrations of

ABA on heat stress tolerance of different plants has been extensively studied [76, 77]. However,

continuous production of high ABA levels is toxic to plants and leads to leaf chlorosis/necrosis

[78–80]. Interestingly, we observed medium to severe leaf chlorosis in control soybean plants

following heat stress treatment (Fig 2I), However, this may also be the effect of ABA accumula-

tion or ABA induced ethylene production following heat stress treatment [81, 82]. The B.

aryabhattai strain SRB02 isolated in this study not only produced ABA and GA but also signif-

icantly enhanced the levels of these phytohormones in soybean plants.

Abscisic acid positively regulates drought stress tolerance in plants [83]. ABA-mediated

drought stress tolerance through stomatal closure is well known [84]. Since different types of

stresses induce the production of ABA in plants, it is now widely regarded as a stress hormone

and its physiological impact and its production under different basal and induced conditions

has been described [84–86]. SRB02-mediated heat stress tolerance of soybean plants potenti-

ated through sustained production of ABA and expression of related genes compelled us to

investigate stomatal movement in soybean plants under heat stress. As expected, the stomata

of plants treated with SRB02 were almost closed under high day/night temperatures of 38˚C/

30˚C compared to those of control plants (S2 Fig). These results are similar to the findings of

other studies that reported the production of ABA by different PGPR, as well as enhancement

of the levels of ABA and other phytohormones in host plants. In 2001 and 2007, Cohen et al.

demonstrated that Azospirillum lipoferum and A. brasilense Sp. 245 not only produce ABA but

they also enhance ABA levels in maize and Arabidopsis plants 2-fold [53, 87, 88]. By compari-

son, the B. aryabhattai strain SRB02 identified in this study produced up to 2 ng/ml ABA and

enhanced ABA levels of soybean plants more than 4-fold especially at the earlier time points of

12 h post inoculation.

It appears that plants synthesize ABA through cleavage of carotenes such as neoxanthin

[89], while lower organisms such as fungi produce it directly from farnesyl pyrophosphate

[90]. The ABA biosynthetic pathway in bacteria is unknown, however. PGPR-mediated growth

regulation is partly governed by the regulation of auxin biosynthesis. Although a very large

proportion (almost 80%) of bacteria colonizing the rhizosphere have been identified as positive

for IAA production, an equally large percentage of these are gram-negative, a common charac-

teristic of phyto-pathogenic bacteria. A limited number of gram-positive soil-living bacteria

have been reported to produce IAA, e.g., B. subtilis and B. amyloliquefaciens, and the first of

these is also a well-established bio-control agent [91]. B. aryabhattai strain SRB02 isolated in

this study produced up to 5.8 μg/ml IAA in culture. However, to our surprise, SRB02 inocula-

tion resulted in a significant decrease in the IAA content of soybean plants grown under nor-

mal as well as heat stress conditions. Furthermore, after 48 h of SRB02 inoculation, we could

not detected any IAA in soybean plants grown under optimum temperature conditions.

Modulation in phytohormone production in response to different biotic and abiotic

stresses is well known. Key phytohormones such as auxin and cytokinin have been shown to

decrease under heat stress [92–94]. Several plant growth promoting rhizobacterial species not

only produce auxins per se but also regulate IAA biosynthesis in their respective host plants. At

least 20 different strains of A. brasilense and A. lipoferum have been shown to produce indole-

3-acetic acid (IAA), indole-3-ethanol, indole-3-methanol, and indole-3-lactic acid, and several

of these strains also promoted IAA biosynthesis in maize seedlings [95]. Un-like ABA, the bio-

synthesis of IAA in bacteria is relatively well known, with tryptophan being the major precur-

sor for IAA production, and with tryptophan-deficient mutants that lack trp gene being

unable to produce IAA [28]. As such, multiple pathways have been suggested for the synthesis

of IAA in bacteria, involving indole-3-pyruvic acid (IPA), indole-3-acetamide (IAM), and
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indole-3-acetonitrile (IAN) as important intermediates, although all use tryptophan as a pre-

cursor [96, 97]. Several PGPR have been shown to produce auxin in culture and interfere with

auxin biosynthesis in plants. PGPR produce IAA from tryptophan which is present in plant

roots in varying concentrations depending upon plant genotype [98]. It is also important to

mention that the function of auxin in plants is concentration dependent i.e. low concentra-

tions of IAA simulates elongation of the primary root, whereas high levels of IAA stimulate the

formation of lateral roots and root hairs [99, 100]. SRB02-treated soybean plants produced

more secondary roots under both temperature regimes compared to un-treated control plants

(S3 Fig). This indicates that the significantly higher quantity of IAA produced by SRB02 once

transported into the plant system, exerted an inhibitory effect on auxin biosynthesis and

impede primary root formation. Furthermore, this higher quantity of IAA cued a counter-

response measure in plant cells switching off the endogenous auxin-production machinery at

transcriptional level as shown by a significant increase in the expression of transcriptional

repressor genes IAA9 and IAA16. During root colonization, such PGPR also produce second-

ary metabolites and signaling molecules such as 2,4-diacetylphloroglucinol (DAPG) and nitric

oxide (NO) [101, 102]. NO has been shown to regulate auxin biosynthesis in plants [103] as

well as PGPR-mediated auxin production in plants [102]. The extremely resistant nature of

SRB02 to nitrosative and oxidative stress may correlate with SRB02-mediated homeostasis of

IAA in soybean plants. IAA and ABA have been shown to act antagonistically in planta [104–

106]. SRB02-mediated reduction of IAA in soybean plants may just be the antagonistic out-

come of the ABA-stabilizing effect of SRB02 in these plants. Astonishingly, the production of

IAA by PGPR may not always prove beneficial for plants. For example, IAA production by

Pseudomonas putida favors root colonization of Azospirillum brasilense, ultimately promoting

plant growth [107], but IAA production has also been found necessary for pathogenesis [108,

109]. This suggests that IAA and other plant hormones not only control plant development

but can also act as signaling molecules. Furthermore, as a result of the constant interaction

between plants and pathogens during the course of evolution, phyto-pathogens have learned

to produce and use these signaling molecules to their advantage while communicating with

other microorganisms and/or with host plants.

PGPR have been shown to protect plants against plant pathogens through a pathway that

is SA and NPR1-independent but JA dependent [37]. The PGPR S.marcescens strain 90–

166 induced the expression of PDF1.2::GUS in Arabidopsis Col-0 and npr1-1mutant back-

grounds after 3 days of inoculation but did not induce PR1 expression. It also protected SA-

deficient nahG plants against infection by cucumber mosaic virus (CMV) [37], indicating

that PGPR play an important role in induced systemic resistance (ISR). Even though strain

90–166 has been shown to produce SA it was not the primary determinant responsible for

activating ISR in cucumber and tobacco against bacterial and fungal pathogens [110, 111],

since the SA-negative S.marcescens strain 90-166-1441 also induced resistance against bacte-

rial pathogens in tobacco wild type and nahGmutant lines [110] and in Arabidopsis nahG

plants [37], indicating that activation of plant defense responses by some PGPR can occur

only through the activation of the JA pathway but not the SA pathway. On the other hand,

some PGPR may also induce systemic acquired resistance (SAR) which requires the activa-

tion of the SA pathway [112]. The B. aryabhattai SRB02 strain isolated in this study signifi-

cantly enhanced JA production in soybean plants. Endogenous JA levels in plants decrease

significantly within the first 12 h of heat stress treatment accompanied by the suppression of

genes involved in JA biosynthesis [69]. As a result of the marked increase in JA levels caused

by SRB02 in soybean plants grown under optimum temperature conditions, we expected JA

levels to at least remain constant after heat treatment in SRB02-treated plants. However, to

our surprise, JA levels declined significantly after 12 h of inoculation with SRB02 under heat
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stress indicating that SRB02-mediated activation of the JA pathway is dependent upon

growth conditions.

Several PGPR-plant interactions have been shown to involve cytokinin production [29, 30,

113, 114]. It appears that PGPR-produced cytokinin mediated growth promotion in plants

requires the function of cytokinin receptors CRE1,AHK2 and AHK3, and RPN12 a gene

involved in cytokinin signaling as PGPR-mediated growth promotion was reduced in AHK2-2

single and double mutant combinations and in RPN12, whereas the triple mutant CRE1-12/

AHK2-2/AHK3-3was insensitive to PGPR inoculation [30]. In a recently published study,

Grosskinsky et al. demonstrated the role of microbial cytokinin production in plant defense

against the hemi-biotrophic bacterium Pseudomonas syringae [115]. They showed that the

resistance of Arabidopsis plants to bacterial infection was potentiated by the cytokinin pro-

duced by Pseudomonas fluorescens strain G20-18 as cytokinin deficient loss-of-function G20-

18 mutants exhibited impaired biocontrol. Furthermore, biocontrol activity was restored after

functional complementation of these strains with cytokinin biosynthetic genes. However, P.

fluorescence–produced cytokinin mediated biocontrol was found to be SA-dependent and it

also required active cytokinin perception as shown by Arabidopsis mutant analysis. This

shows the potential of such PGPR for incorporation into integrated plant protection programs.

Though the SRB02 bacterial strain isolated in this study produce cytokinin in culture, signifi-

cant reduction in cytokinin levels was observed in SRB02-treated plants grown under both

temperature regimes with a concomitant increase in the expression of cytokinin dehydroge-

nase genes (GmCKX04 and GmCKX07) which degrade cytokinin. Furthermore, antagonistic

roles of ABA and cytokinin have been demonstrated during abiotic stresses [116]. Thus, low

cytokinin levels in SRB02-treated plants may be due to the negative effects of increase ABA lev-

els in these plants.

Different PGPR such as Bacillus pumilus and B. licheniformis produce gibberellins such as

GA1, GA3, GA4, and GA20, and they suppress GA-deficient phenotypes of alder seedlings

[32]. Earlier studies also described GA production by different PGPR, such as Rhizobium pha-

seoli [117], Azospirillum lipoferum [118], A. brasilense [119], and others. According to these

studies, PGPR cultures contain nanogram amounts of GA1, GA3, GA4, GA9, GA20, and other

GA derivatives. PGPR, when applied to plant roots, increase endogenous GA levels in maize

[120]. Promicromonospora sp. SE188 produced GA1, GA4, GA9, GA12, GA19, GA20, GA24,

GA34, and GA53 in culture and significantly enhanced the production of GA12, GA24, GA9,

GA4, and GA34 in tomato plants [121]. In this study, we did not observe a direct linear or

inverse relationship between the phytohormone profiles of SRB02 and SRB02-treated plant,

whether grown under normal temperature or high temperature conditions. For example vari-

ous GAs measured from SRB02 cultures and SRB02-treated soybean plants did not correlate

with each other. Furthermore, various GA derivatives differ in their biological activity, hence

further increasing the complexity and significance of PGPR-host plant interaction.

Methyl viologen is a superoxide radical (O_̄ 2) donor. In plants, superoxide radicals and/or

other ROS are generated in response to different stresses. These highly reactive and toxic mole-

cules which are mainly produced in the mitochondria and chloroplasts can damage cellular

proteins, lipids, carbohydrates, and DNA, resulting in oxidative stress [122]. On the other

hand, plants also possess very efficient enzymatic antioxidant defense machinery. Superoxide

dismutase (SOD) provides protection against superoxide radicals, while catalase enzymes

(CAT) degrade H2O2. Enzymes such as ascorbate peroxidase (APX), glutathione reductase

(GR), monodehydroascorbate reductase (MDHR), glutathione S-transferase (GST), and oth-

ers, are also important components of plants’ antioxidant machinery. Analysis of SRB02 cul-

tures indicated significantly higher SOD and CAT activities than those observed in AY1

cultures, indicating the presence of highly active and efficient antioxidant machinery in
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SRB02. Similarly, SRB02 also grew much better on GSNO and CysNO plates. These results

parallel the findings of other studies that report oxidative and nitrosative stress tolerant PGPR

[19, 123]. However, the question of how PGPR tolerate high oxidative and nitrosative stresses

remains largely unanswered. Storz et al. in 1999 reviewed the mechanisms by which several

rhizospheric and other bacteria tolerate high oxidative stress [124]. More recently, Shen et al.

(2013), through comparative genomic analysis of four PGPR in the genus Pseudomonas,

showed the presence of ROS-detoxifying enzymes, including 11 peroxidases, 5 catalases, 2

superoxide dismutases, and 19 glutathione S-transferases [123]. Functional components such

as the two-component regulator GacS/GacA [125], and SoxR and OxyR [126], are key regula-

tors of oxidative stress tolerance in PGPR. Furthermore, exopolysaccharides and polyhydrox-

yalkanoates have also been shown to play important roles in oxidative stress tolerance in

PGPR [127] and other bacteria [128]. Over-expression of flavodoxin in E. coli, the nitrogen fix-

ing bacterium Ensifer meliloti, and the PGPR Pseudomonas fluorescens strain Aur6 enhanced

the tolerance of these bacteria to oxidative stress provoked by H2O2 and paraquat or atrazine;

on solid medium which is also in agreement with the findings of this study.

Similarly, microbial enzymes responsible for providing resistance to nitrosative stress have

been identified through functional genetics analyses of several non-PGPR bacteria [129–131].

One such enzyme that is highly conserved from bacteria to humans is S-nitrosoglutathione

reductase (GSNOR) [131], which controls the global levels of S-nitrosothiols (SNO) through

the process of denitrosylation [132]. Other enzymes such as flavorubredoxin nitric oxide

reductase and flavohemoglobin denitrosylase play important roles in direct consumption of

NO [130, 133], whereas the bacterial AhpC peroxiredoxin proteins are responsible for direct

consumption of peroxynitrite. Nitrosative stress tolerance has been studied extensively in bac-

terial-mammalian host systems, but very little information is available about this phenomenon

in PGPR. Information related to the fate of NO in the interactions of plants with rhizospheric

bacteria is extremely important as several nitrifying and de-nitrifying bacteria play important

roles in nitrogen and NO cycles.

The use of PGPR in agriculture is gaining importance and is becoming a permanent part of

cropping systems throughout the world. It is not only environment-friendly but also cost-

effective, reliable, and durable. The use of gram-positive PGPR such as the B. aryabhattai strain

SRB02 identified in this study is of special importance as these bacteria have the ability to form

resistant endospores. Once applied and established in a field they can survive harsh conditions

for a significant period of time. Our results show that B. aryabhattai strain SRB02 rapidly colo-

nizes the roots of host plants and promotes their growth by regulating the homeostasis of sev-

eral phytohormones, and it is also highly resistant to oxidative and nitrosative stresses, making

it a valuable organism for incorporation into biofertilizers and other soil amendments for the

improvement of crop productivity. Further studies are required to determine the molecular

mechanisms underpinning oxidative and nitrosative stress tolerance in SRB02 and to exploit

this information for engineering PGPR in order to further increase their plant growth promot-

ing abilities.
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