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Abstract

Background: Bacillus thuringiensis (Bt) has been used in agriculture for a long time because of its insecticidal
proteins which make it a valuable environment-friendly biopesticide. However, its use is not only limited to
insecticidal properties. Current and previous studies indicate its potential as a biofertilizer for promoting plant
growth, the development of transgenic plants, and others. It is the presence of δ-endotoxins, especially cry protein,
which attributes the insecticidal property to the bacteria. Besides, there are some vegetative and secreted
insecticidal proteins that exert their toxic activity towards specific species.

Main body of abstract: The present review briefly provides an overview of the Bt uses and application as a
biocontrol agent against insect pest for sustainable agriculture. Historical development of Bt as biocontrol,
classification of various cry proteins, their mechanisms of actions against different insect-pest, and incorporation of
cry genes in the plant for developing transgenic Bt plants such as Bt cotton, potato, and maize. Applications of Bt
as biofertilizer and the various bioformulations as biopesticide are also described.

Short conclusion: Uses of harmful pesticides and chemical cause various health issues and environmental
problem; therefore, the Bt served as the best alternative to overcome the above issue. Also, we aim to explore the
potential as plant growth-promoting potential and solubilization of minerals and the uses as a biofertilizer, keeping
the high specificity and environmental safety of Bt. Its various formulations are commercially available and
considered an efficient alternative to chemical pesticides.

Keywords: Bacillus thuringiensis, Biopesticide, Biofertilizer, Environment, Human health

Background
Bacillus thuringiensis (Bt) is a gram-positive, spore-
forming bacteria known for its ability to produce crystal
proteins (Cry). Cry protein is believed to be toxic to
many insects and that is why Bt is used as a microbial
insecticide for improved resistance in plants by genetic
modification (Salehi Jouzani et al. 2008). When the in-
sect larvae ingest the proteinaceous crystal, the digestive
enzymes present in the gut activates the toxin and

results in pore formation in the cell membrane of the
gut, followed by paralysis of the gut and eventually caus-
ing the death of the larvae (Vachon et al. 2012). Cry pro-
teins target a diverse range of insect species primarily of
the order Lepidoptera (butterflies and moths), Coleop-
tera (beetles and weevils), and Diptera (flies and mosqui-
toes); however, there are reports regarding their toxicity
towards hymenopterans (wasps and bees) and nema-
todes (Domínguez-Arrizabalaga et al. 2020) (Fig. 1). The
use of Bt as biopesticide are efficient like chemical pesti-
cides, therefore, forms a part of the Integrated Pest Man-
agement strategy that prefers non-chemical pesticides
for pest control (Matyjaszczyk 2018).
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Besides the crystal proteins, Bt also synthesizes vegeta-
tive insecticidal protein (Vip) and secreted insecticidal
protein (Sip), which are biodegradable and affect specific
targets, especially species of Coleoptera and Lepidoptera
(Chakroun et al. 2016). Since the use of chemical pesti-
cides results in the development of resistance by the in-
sects and is harmful to both humans and the
environment, the focus is to develop effective biopesti-
cides using Bt. The current research focuses on develop-
ing genetically engineered crops to express insecticidal
property from Bt (Bravo et al. 2011). Moreover, it is a
host-specific bioinsecticide; hence, there is limited
chances of negatively affecting other organisms (Jain
et al. 2016). Further, its role as an insecticide has ex-
plored its potential in promoting plant growth (Armada
et al. 2016), bioremediation of heavy metals (Aceves-
Diez et al. 2015), and production of polymers (Singh
et al. 2013).

Main text
History
Bacillus thuringiensis (Bt) was first discovered in 1901
by the Japanese biologist, Shigetane Ishiwatari, before
which it was believed that an undescribed bacterium is
responsible for causing disease in silkworms (Ishiwata
1901). In 1911, Bt was rediscovered by Ernst Berliner, in
Germany, as the causative agent of a disease known as
Schlaffsucht in Mediterranean flour moth caterpillars,
Ephestia kuehniella Zell. Bt was named after the prov-
ince Thuringia where the infection was found. Hence, Bt
was initially considered a risk for silkworm rearing but

later it became an insecticidal agent (Berliner 1915;
Mazier et al. 1997). The first commercial production of
Bt was reported in 1938 in France and sold under the
name Sporeine (Brar et al. 2006). A study by Angus
(1956) demonstrated that the insecticidal action of Bt
was due to certain crystalline protein inclusions formed
during sporulation. Later, a study by Zakharyan et al.
(1976) noted the presence and involvement of plasmid
in crystal formation in Bt. Then, González et al. (1982)
used plasmid curing technique and affirmed the
localization of genes that code for crystal proteins on
transmissible plasmids. However, the first cloning and
characterization of these crystal protein-encoding genes
that showed toxicity towards tobacco hornworm larvae
were performed by Schnepf and Whiteley (1981) from
plasmid DNA of Bt subsp. kurstaki HD-1. This resulted
in rapid cloning of other cry genes, which ultimately led
to the expansion of genetic engineering towards Bt
transgenic plants and finally, Bt cotton reached the mar-
ket in 1996 (Shelton et al. 2002).

Bt toxin-diversity and classification
Bacillus thuringiensis strains produce 2 types of toxins,
cry and cyt proteins, which are also known as delta-
endotoxins (Bravo et al. 2007). These are synthesized by
the bacteria during its stationary phase when sporulation
occurs. They are produced as parasporal crystalline in-
clusions which get activated by the proteolytic action in-
side the insect’s gut after ingestion. These proteins are
not known to be toxic against invertebrates and are
called parasporins (PS) (Ohba et al. 2009). Besides this,

Fig. 1 Applications of Bacillus thuringiensis for sustainable agriculture
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certain toxins are produced during the vegetative phase,
termed as vegetative insecticidal proteins (Vip) and se-
creted insecticidal protein (Sip). The Sip (Sip1Aa1 ob-
tained from Bt strain EG2158) is the only known protein
to show toxicity against coleopteran larvae. These are se-
creted by the bacteria in the culture medium (Palma
et al. 2014).
The main types are the crystal (Cry) genes which en-

code intestinal cry protein (ICP) toxins and have a wide
spectrum of insecticidal activity. There are more than
800 cry genes classified under 75 families (Cry1 to Cry
75), 40 cyt genes grouped in 3 families (Cyt 1, cyt2,
cyt3), and 146 Vip genes categorized under 4 families
(Vip 1 to Vip4) (Crickmore et al. 2020). Initially, these
toxins were classified into 4 classes based on their amino
acid sequence homology and insecticidal properties. The
CryI toxins are toxic to Lepidopterans (butterflies and
moths), CryII genes are toxic to lepidopterans and dip-
terans (flies and mosquitoes), CryIII genes are toxic to
coleopterans (beetles and weevils), and CryIV genes are
toxic to dipterans (Höfte and Whiteley 1989). An add-
itional class, CryV, was added for the nematode-active
toxins (Sick et al. 1994). Similarly, secreted toxins show
their toxicity to a particular order of insects. Vip1 and
Vip2 are binary toxins and toxic to coleopterans and he-
mipterans (Sattar and Maiti 2011), Vip3, on the other
hand, is single-chain and show insecticidal activity to-
wards lepidopterans (Estruch et al. 1996). The nomen-
clature also determines the similarity in the amino acid
sequence between the cry genes on 4 levels for their dis-
tinguished. However, this naming method did not con-
sider the biological activity. In this system, each protoxin
acquired a name consisting of the mnemonic Cry (cyt,
Vip, or Sip) and divided into various ranks. For example,
at level 1, each gene in the family cry1 shares at least
45% similarity and will be categorized under cry1. The
secondary rank introduces a capital letter, say, Cry1A,
which indicates towards the sequences with the similar-
ity between 45 and 78%. This is followed by tertiary
rank, say, Cry1Aa, which increases the sequence identity
up to 95% but not less than 78%. At the fourth level,
quaternary rank, say, Cry1Aa2, clones that share at least
95% sequence identity are distinguished (Crickmore
1998; 2020).
Another method of classification by Bt toxin Nomen-

clature Committee uses the homology approach and
forms 3 groups based on phylogenetics-3 domain
groups, bin group, and epsilon toxin (ETX) group. The
cry toxins belonging to three-domain group differ in
their amino acid sequence but share a common three-
domain structure. The structure includes a perforating
domain, central domain, and galactose-binding domain,
each playing a specific role during toxin activation
(Pardo-Lopez et al. 2013). The bin group contains toxins

derived from Lysinibacillus sphaericus (Cry 35 and
Cry36) (Berry 2012) and the ETX group contains toxins
that show resemblance to toxins produced by Clostrid-
ium epsilon (Alves et al. 2014). Their structure shows
fold like aerolysin, a toxin produced by Aeromonas
hydrophila and involved in pore formation (Knapp et al.
2010). The second types are the cytolytic (cyt) genes en-
coding non-specific cytolytic factor toxins that can aug-
ment the Cry toxins for enhanced insecticidal property
especially against dipterans (Butko 2003). This helps in
decreasing the resistance of insects towards cry proteins.
For instance, a study by Soberón et al. (2013) observed
that Cyt1Aa toxin produced by Bt helped in decreasing
the resistance developed by the larvae of Culex quinque-
fasciatus against Cry 4 and Cry11Aa toxin. Moreover,
there is evidence indicating a wider range of toxicity
(Guerchicoff et al. 2001).

Mechanism of toxicity (Bt as insecticide)
The most approved and widely accepted primary mode
of action of the Bt toxin is the lysis of epithelial cells in
the midgut of the insect. The toxin acts from the exter-
ior of the cells and enters into the plasma membrane
but it does not enter the cytoplasm. The earliest effect
shows the blabbing and swelling of columnar cells and
subsequent lysis of the columnar cells. The effect seen
on goblet cell is slower when compared (Liu et al. 2018).
The steps involved in the action in lepidopteran are ex-
plained in brief through. On the ingestion of the toxin in
lepidopteran in the first 5 min, the glucose uptake is in-
creased in the gut cells and the histopathology takes
place in the gut cells (Knowles 1994). After 5 min, the
mid-gut gets paralyzed. Within 10 min, the columnar
cells get swelled up and the columnar microvilli get bub-
bled. The histopathology takes place in the goblet cells.
Subsequently, the pH is increased in the blood and de-
creased in the lumen. Then, within 30 min, the activity
of potassium ion is increased in the gut cells which lead
to the decrease in the blood potassium ion level. The
leucine and the glucose level start to decrease leading
the gut cells to metabolically break down. After 30 min,
the cells undergo lysis and start to shed from the base-
ment membrane. Within 1 to 7 h, general paralysis takes
place. After 1 to 3 days, it dies to starvation (Liu et al.
2018). Different types of insecticidal proteins are pro-
duced by Bt. About 950 different types of toxins are
cloned from about 74 groups of cry, 3 groups of vip, and
3 groups of cyt protein (Crickmore et al. 2020).
Li et al. (2011) studied the toxicity behavior of Cry1Ac

and Cry3Aa against the pea aphid, Acyrthosiphon pisum
(Harris). Cry1Ac was observed to be efficiently hydro-
lyzed by aphid stomach membrane-associated cysteine
proteases (CP) whereas Cry3Aa was processed incom-
pletely and degraded partially. Cry1Ac could bind to the
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aphid gut epithelium but bioassays showed low aphid
toxicity. In addition, the competition assays using un-
labelled Cry1Ac and GalNAc and in vitro binding of
biotinylated-Cry1Ac to gut BBMVs (brush border mem-
brane vesicles) confirmed binding specificity besides gly-
can mediation of Cry1Ac binding. Further, Zhang et al.
(2019) revealed Vip3Aa11 and Vip3Aa39 proteins present-
ing 39 amino acid differential sites, sharing 95.06% amino
acid sequence similarity and effective against some Lepi-
doptera insect larvae. They also revealed 558 midgut genes
expressed differentially in Vip3Aa11-M-A and 65 midgut
genes expressed differentially in Vip3Aa39-M-A. The val-
idation for the sensitivity of these two Vip3Aa proteins to
trypsin and their binding properties to Agrotis ipsilon mid-
gut BBMV based on transcriptome profiling showed simi-
lar sensitivity to trypsin and both proteins could bind to
Agrotis ipsilon midgut BBMV along with competitive
binding between them (Zhang et al. 2019).

Bt and genetically modified plants
The recent advancements in modern biotechnology es-
pecially in the field of agriculture are observed globally.
The global average of the biotech crops has reached
191.7 million hectares in the last 22 years (ISAAA 2019).
These are the fastest adapted crops that have now
reached to 70 countries after commercialization (Pocket
2018). Traits of Bt such as pest resistant and herbicide
are most extensively used in plant genetic engineering.
Bt toxin genes are widely used in many crops for enhan-
cing pest-resistant quality (Jouzani et al. 2017). Since the
commercialization of Bt crops, approximately 198 var-
ieties have been produced lining up 8 plants including
potato, soybean, corn, maize, eggplant, cotton, rice, pop-
lar, tomato, and maize. Recently, maize has gained the
largest number of approvals (137) from over 35 coun-
tries (ISAAA 2016). During sporulation, Bt forms aggre-
gated crystals that are cry toxins, which is an insecticidal
protein with a parasporal body and crystalline structure.
These toxins are effective on specific species like Nema-
toda, Lepidoptera, Coleoptera, Diptera, and Hymenop-
tera (Abbas 2018). Genetically modified (GM) crops
consist of one or more than one vip or cry genes. Cot-
ton, corn, and potato have 42, 115, and 30 variants, re-
spectively, and they are the most extensively approved
Bt-GM crop (ISAAA 2016). There are in total seven
anti-lepidopteran vip and cry genes used for enhancing
the resistance to Lepidopteran genes namely cry1A.105,
cry1Ab, cry1F, cry1Ac, cry2Ae, cry2Ab, and vip3A.
About 111 Bt varieties of anti-coleopteran genes are ap-
proved, among which some are anti-lepidopteran pests.
Two genes namely cry34Ab1–cry35Ab1 and cry3A are
used in nearly 34 and 60 GM crops, respectively, to pro-
duce varieties that are resistant to coleopteran pests
(Jouzani et al. 2017).

Further, Muddanuru et al. (2019) developed transgenic
castor (Ricinus communis L.) expressing the Cry1Aa of
Bt against lepidopteran insect pests. Bt toxins of the
Cry1I class show dual specificity for insects of Coleop-
tera and Lepidoptera. Berretta et al. (2020) evaluated the
toxicity of a Cry1Ia protein from an Argentinian Bt
strain against agricultural pests of Tenebrionidae, Curcu-
lionidae, Noctuidae, and Tortricidae. The protein was
toxic to Cydia pomonella, and Rachiplusia nu; however,
Alphitobius diaperinus, Anthonomus grandis, and Spo-
doptera frugiperda were not susceptible. Besides this,
Singh et al. (2021) revealed the potential of Cry protein
isolated from Bt to hamper the growth of S. litura, G.
malonella, B. cucurbitae, and C. pipens larvae, thereby,
the potential for plant breeders to produce resistant
crops.
In recent years, it has been seen that the cry genes

with resistant properties against nematodes and other
insects have not been approved at the commercial level.
Along with the advantages of GM crops, there lie poten-
tial risks to both human and animal health. It is assumed
that consumption of GM crops can cause the potential
development of diseases that are resistant to antibodies.
Although, any kind of threat or long-term effect has not
been reported (Bawa and Anilakumar 2013). Also, the
insecticidal proteins of Bt are utilized for formulations of
spore-crystal complexes along with their genes for pro-
ducing several GM crops. Despite the variability of the
Cry proteins, it is still crucial to search for toxins with a
broad-spectrum application so that alternatives are avail-
able to address the issues of insect resistance (Lazarte
et al. 2021).

Bt as a biofertilizer
There are several bacterial species such as Klebsiella,
Pseudomonas, Rhizobium, Caulobacter, and Azotobacter
are known for enhancing plant growth (Kumar et al.
2016). Bt, although known for its insecticidal activity, is
also a plant growth-promoting bacterium. The indirect
effect can be observed as it decreases the infection by in-
sects but certain studies indicate towards its direct effect
by colonization in legumes which result in an increase in
nodulation and thus growth of the plant (Qi et al. 2016).
A study by Seshadri et al. (2007) showed that species

of Bacillus (Bt and B. sphaericus) can solubilize phos-
phates and thereby supporting plant growth. This is
beneficial since the mineral is present in a high amount
in soil, but its uptake is limited because of its undis-
solved form. Similarly, dissolution of iron is also difficult,
and plant uses the siderophore-iron complex for its up-
take. Siderophores are produced by microorganisms and
bind with iron and aid in their uptake. A study by Wil-
son et al. (2006) indicated the production of catecholate-
type siderophores by Bt strain ATCC 33679, which
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bound with high affinity to iron and improved its supply
to plants. Improved growth in plants has been shown in
a study by Mishra et al. (2009) where they investigated
that Bacillus thuringiensis-KR1 along with Bradyrhizo-
bium japonicum increased the number of root nodules,
improved root volume, root weight, and shoot weight in
soybean.
Another study by Mishra et al. (2009) showed that co-

inoculation of Bt with another bacteria Rhizobium legu-
minosarum in pea plants enhanced the nodulation and
increased the dry weight of pea. The colonization of Bt
is not only observed in lentils but is also reported by
Pindi et al. (2014) which showed enhanced growth in
cabbage and cotton respectively. Similarly, when co-
inoculated with mycorrhiza, Armada et al. (2016) re-
ported an improvement in drought tolerance and an in-
crease in oxidative metabolism in plants of Lavandula. A
recent study by Bandopadhyay (2020) involved the use
of Bt A5-BRSC as a charcoal-based biofertilizer for 2
years on Abelmoschus esculentus and evaluated its po-
tential in improving plant growth considering both nu-
tritional and morphological characteristics of the plant.
He observed a significant increase in shoot height, leaf
diameter, weight of both fruit and seed, and length of
roots. Along with this, nearly about 70% increase in pro-
tein content of leaf, more than 60% increase in soluble
sugar content, and about 30% increase in protein con-
tent of the pod were observed with the use of Bt as a
biofertilizer. These evident studies thus prove that using
Bt is not only helpful as an insecticide but also has po-
tential as a biofertilizer that is also beneficial for the
growth of the plant.

Bt formulations
Though Bt serves as an excellent biopesticide, it faces
some problem during storage and stability. The formula-
tion will not only stabilize the biopesticide, but it will
also solve some other problems such as application and
handling of the product, protect from environmental ef-
fects, and enhance activities of agents like microbes in
the field (Derua et al. 2018). The most important object-
ive is the widespread and commercialization of these
biopesticides globally. The present day’s formulation has
additional benefits of speed killing, dry and wet (mois-
ture), wind, rains, and characteristics of plants such as
the chemistry of leaves (Brar et al. 2006).

Conclusion
Bacillus thuringiensis (Bt) is used as a potential biopesti-
cide to control pests in agriculture due to its various in-
secticidal proteins. Thereby, the insecticidal toxins
derived from Bt make it a novel organism with immense
potential for agricultural development. With the ad-
vancement in technology, its genetic content is now

being engineered for the development of Bt-GM crops,
which are resistant to pests and insects but without
harmful effects on humans, the environment, and benefi-
cial organisms. The use of Bt formulations in form of
sprays or liquid suspensions on a commercial scale is in-
creasing. Since the toxin is produced continuously for a
longer time, it is comparatively better than chemical pes-
ticides in terms of application and field management as
well as cost and efficiency. Further research is underway
for exploring other useful benefits of Bt. Besides, being
used as a microbial pesticide, Bt has also been used as a
plant growth-promoting bacterium for enhancing the
productivity of crops. However, more focused and in-
depth research is still required to ensure its effectiveness
and long-term effects on the crops, environment, and
human health. In addition, studies at the cellular and
molecular levels using animal models are vital to fully
understand its mode of action for usage as medicine.
Additionally, advanced research on the stability, quan-
tity, and crop-specific application dosages are equally es-
sential to ensure the safety of sustainable agriculture.
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