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When performing continuous measurements of position with sensitivity 

approaching quantum mechanical limits, one must confront the fundamental effects 

of detector back-action. Back-action forces are responsible for the ultimate limit on 

continuous position detection, can also be harnessed to cool the observed structure 

[1,2,3,4], and are expected to generate quantum entanglement[5].  Back-action can 

also be evaded[6,7,11], allowing measurements with sensitivities that exceed the 

standard quantum limit, and potentially allowing for the generation of quantum 

squeezed states.  We realize a device based on the parametric coupling between an 

ultra-low dissipation nanomechanical resonator (Q~106) and a microwave resonator. 

[20] Here we demonstrate back-action evading (BAE) detection of a single 

quadrature of motion with sensitivity 4 times the quantum zero-point motion,
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quanta, and a parametric mechanical pre-amplification effect which is harnessed to 

achieve position resolution a factor 1.3 times ZPx .  

 

When attempting to obtain complete knowledge of the dynamics of a simple harmonic 

oscillator, x(t), back-action effects combined with the quantum zero-point motion of the 

oscillator limit the ultimate resolution to the standard quantum limit (SQL) [8,9].  The 

origin of this limit is the primitive fact that position and momentum are non-commuting 

observables,   ipx ˆ,ˆ , and are then linked through the equations of motion, 
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with mass m and natural frequency NR.   However, during the theoretical investigations 

of the quantum limits of gravitational wave detectors over 30 years ago, it was realized 

that not all oscillator observables suffer from this fundamental limitation on measurement 

precision[6, 7, 10 ].  The two quadratures of motion
 1X̂ , 2X̂ , where 
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Furthermore, it was realized how to couple 1X̂  to a detector in a way which does not 
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perturb the dynamics of 1X̂ :   0,ˆ
int1 HX , where intH  is the interaction Hamiltonian. 

[12,13] Thus, while a measurement of 1X̂  necessarily disturbs 2X̂ ,  

 

this disturbance has no effect on the subsequent dynamics or measurements of X1.  One 

can thus increase the coupling strength arbitrarily without fear of back-action, meaning 

that the sensitivity of such an ideal single quadrature probe is not fundamentally limited 

[11].  Such measurements are known as quantum non-demolition measurements (QND) 

[10]; the energy and phase of an oscillator form a similar  pair of conjugate QND 

variables[6]. 

 

In the early 1980’s it was realized that position detectors formed by the parametric 

coupling between electrical and mechanical oscillators can couple to a single mechanical 

quadrature of motion and can evade both quantum and excess classical sources of back-

action [12,13]; excess classical back-action forces are created by noise injected into the 

electrical resonator by non-ideal following amplifiers.  Furthermore, single-quadrature 

back-action evasion (BAE) techniques also are free from detector-induced mechanical 

damping [11,13]. 

 

These BAE techniques have been demonstrated on a number of gravitational wave 

detectors around the world[13], however they operate far from quantum mechanical 

limits.  More recently, a BAE scheme utilizing the interference of two mechanical 

resonators in an optical cavity has been proposed[14] and been shown to partially evade 

classical back-action[15]. This scheme is however limited to a narrow, non-resonant 



frequency band, and does not allow squeezing or a true QND measurement.   In this work, 

we demonstrate the manipulation of mechanical back-action effects of a stream of 

microwave photons. We realize a continuous, broad-band BAE scheme which allows 

resolution of a single quadrature near the zero-point motion, ZPx , and offer a path to 

QND quadrature detection with sensitivity below ZPx . 

 

The approach we have taken utilizes a radio-frequency nanomechanical resonator (NR) 

which is coupled tightly to a microfabricated superconducting microwave resonator 

(SMR) [16], and stimulated with a stream of microwave photons, shown in Figure 1. Our 

nanomechanical resonator (NR) is formed from high-stress silicon nitride which shows 

very low dissipation rates[17] with Q>106 at a temperature of 15mK. Two devices were 

cooled in a dilution refrigerator and probed through carefully filtered, high-bandwidth 

cables.  Using device 1 (NR = 2 π × 5.57 MHz, SMR = 2 π × 5.01 GHz), we studied 

backaction-evading measurement. Using device 2 (NR = 2 π × 6.37 MHz, SMR = 2 π × 

4.97 GHz), we further investigated backaction cooling at high pump powers. Recently, a 

somewhat similar device demonstrated back-action cooling from N=700 to N=140[18,19] 

and continuous position detection a factor of x  30  xZP  [20]; BAE techniques were 

not explored. 

  

The expected quantum Hamiltonian of our parametrically coupled system is given by: 
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mechanical and electrical oscillator creation (annihilation) operators.   The first term 



shows the parametric coupling of the SMR’s frequency to the mechanical 

motion: ˆ x  xZP a  a   and 
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where  xCg  is the coupling 

capacitance and CT is the SMR’s total effective capacitance. The term proportional to ˆ x 2 

results from the frequency pulling of the mechanical resonator by the SMR energy[21], 
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 . As we show below, this second-order term becomes important 

during BAE measurements. 

 

When the SMR is pumped, harmonic motion of the NR modulates the SMR resonant 

frequency, causing pump photons to be both up-converted and down-converted byNR  

[22, 23]. An up (down) converted photon is a result of the absorption (emission) of one 

mechanical quantum and leads to an increase (decrease) of NR damping and NR cooling 

(heating). The rate of up or down conversion is maximized when the final photon is 

degenerate with the cavity resonance: corresponding to a pump frequency of 

RED SMR NR  in the up conversion case, and BLUE SMR NR in the down 

conversion case. When NR / > 1, the sideband resolved limit, this process can in 

principle cool the NR to the quantum ground state, 1 aanNR  [22,23], and is 

essential to form a BAE transducer[13].  Sideband resolved cooling of a parametrically 

coupled mechanical/microwave transducer was first demonstrated with a gravitational 

wave transducer [24], cooling from T=5K ( 810n ) to T=2mK ( 510n ), and has 

recently been explored electronically [18] and opto-mechanically [3,4]. 

 



Figure 2 shows the back-action effects on both the NR damping rate, NRf , and thermal 

occupation factor, n NR , while driving the SMR with a single-tone pump, with RED   

or BLUE  .  The sideband produced is a measure of both mechanical quadratures of the 

mechanical motion and subject to the usual SQL on position detection [13,25]. When 

applying the largest possible pump powers at  RED  , with 8102~ SMRn , we find a 

position resolution of ZPxx  9.6 , by comparing the sideband amplitude to the noise 

floor. As the measurement power ( n SMR ) is increased the sensitivity approaches a limiting 

value of  ZPxx  7.6
 
due to the increase in back-action damping of the NR. This 

limiting resolution cannot be improved by improving NR properties or increased 

coupling to the SMR, and can only be improved with a superior microwave detector. The 

force sensitivity is limited by thermal motion of the NR to HzN18107.1   at the 

measurement temperature of 142 mK. The best achieved with this device was 

HzN19108   at 60 mK, equal to the highest force sensitivity achieved [1,26]. An 

essential ingredient to realize this position resolution is preparing highly monochromatic 

microwave photons.  We use high-Q, cryogenic, tunable copper cavities to filter the 

phase noise of our microwave pumps, and achieve L(+5.5MHz) = -195 dBc/Hz, 

comparable to the best sources demonstrated [27]. 

  

Using device 2, we extend the backaction cooling to higher pump powers, achieving an 

occupation factor of 412 NRn , a factor of 2 below the lowest n NR  obtained using 

passive refrigeration, n NR  25  [1]. Cooling in both devices is limited by excitation of the 

SMR and thermal heating of the NR at the highest pump powers, as well as a time 



varying, non-thermal dissipative force noise bath which appears to dominate over the 

thermal force noise at temperatures below ~60mK. Furthermore, subsequent 

measurements have shown that the NR experiences unexpected and as of yet, 

unexplained frequency drift and jitter comparable to NRf  (~5-15 Hz) and variation of the 

damping rate on the history of the amplitude of mechanical motion and microwave drive. 

 

To surpass the position sensitivity found when using a single cavity drive tone, we drive 

simultaneously with both red and blue pumps. Taking BLUE RED  2NR  600Hz , we 

balance the rates of up and down conversion, producing no back-action damping while 

remaining sensitive to both quadratures of the mechanical motion. Figure 2 shows NRf  

and NRn  which are essentially independent of SMRn .  The position resolution x  in this 

case continues to improve as SMRn  increases, limited in principle to ZPx  by back-action 

force fluctuations. Here we achieve ZPxx  2.4 , limited by the power handling of the 

SMR and the noise floor of our microwave detection circuit. Given that NRn  does not 

systematically increase as the measurement strength is increased, we can place limits on 

the back-action force noise and find that  90BA
Fx SS .  

  

To perform BAE, we need a measurement scheme sensitive to only a single mechanical 

quadrature.  This is accomplished by pumping with equal intensity phase-coherent pumps 

at both RED  and BLUE , such that the up- and down-converted sidebands coherently 

interfere, NRREDBLUE  2 . In this case, the measurement field is modulated at the 

NR resonant frequency:    ttEtE NRSMR  coscos)( 0   [13]. Figure 4 shows the phase 



sensitive nature of this detection scheme: by driving the mechanical resonator with a 

small resonant electrostatic force, we see that the detected signal at SMR  depends 

sinusoidally on the relative phase between the modulation of the cavity field,  tNRcos , 

and the resulting motion.  In this way, the signals which are detected and amplified, do 

not capture all the information about the NR motion; one learns almost exclusively 

information regarding the X1 quadrature, without observing X2.   

 

For pump strengths below our highest values, we observe that NRf and n NR  are 

essentially unchanged due to the balance between up and down conversion (Figure 2.)  

The highest sensitivity to one quadrature is: ZPxX  1.41 , which is a limited by the 

additive noise of our microwave amplifier. While this sensitivity is comparable to that 

achieved with the previous two measurement schemes, the BAE scheme differs in being 

subject to no fundamental quantum limit on position resolution. An ideal amplifier would 

enable our device to achieve a position resolution below the SQL, ZPxX  7.01 , by 

using the BAE scheme. We believe this is the first time that quadrature measurements of 

sufficiently high resolution have been realized which should in principle produce 

conditionally squeezed states[11].  

 

To probe the BAE nature of this scheme we inject microwave frequency noise (generated 

by a chain of noisy amplifiers) into the SMR.  The resulting cavity fluctuations will act as 

a classical source of back-action, and will heat the mechanics. As show in Fig. 4, when 

we pump the cavity with a single tone at RED , the back-action driven mechanical motion 

results in a signal which is out of phase with the fluctuating cavity voltage, squashing the 



output noise. However, when we pump with two tones in BAE configuration, no 

mechanical signature is seen in the output noise. This is a direct consequence of the BAE: 

the measured X1 quadrature is unaffected by the cavity fluctuations. The expected 

effectiveness of the BAE technique is given by the ratio of backaction fluctuations in X2 

to those appearing in X1,   410032 22
1

2
2  NRXX  [11,13]. Averaging time and 

slow drifts of the NR frequency limit the resolution of X1 flucutations. Estimating the 

maximum resolvable signal in the noise spectrum, we find a BAE effectiveness 

2
1

2
2 XX   of at least 82.  

  

When the largest pump powers are applied in the BAE configuration, we find both 

linewidth narrowing and a dramatic increase in NR noise temperature.  This is a result of 

a parametric amplification effect which originates from electrostatic frequency pulling of 

the NR proportional to the square of the SMR charge[21].  In the BAE configuration, the 

NR spring constant is modulated at NR2 , which results in degenerate parametric 

amplification of the NR.  When the size of the periodic NR frequency shift becomes 

comparable to NRf , significant mechanical parametric amplification is observed. At our 

highest BAE drives, we have observed NRf  narrowed to 2.1 Hz, and amplification 

factors of 11.6dB, which yields a measurement imprecision corresponding to 

ZPxx  3.1 . [28]. 

 

This parametric effect and eventual instability limits the pump power and sensitivity of 

this BAE scheme.  Analysis shows that the parametric amplification and de-amplification 



is in a basis which is rotated by /4 from the measured quadrature X1. Figure 3(b) shows 

this parametric gain at three different pump powers, observed by homodyne detection of 

the sideband of a weak red-detuned microwave probe signal, while driving the mechanics 

at NR .Although this effect is expected to destroy the BAE nature of the two tone 

detection, it offers other beneficial effects as it modifies the NR dissipation rate without 

associated noise. The increase in n NR  is a result of mechanical pre-amplification of the 

amplified quadrature.  We have observed thermal noise squeezing[29] of the de-amplified 

quadrature which will be described in a future publication. 

 

The techniques demonstrated here show the power of back-action engineering when 

performing strong measurement, and are expected to enable a number of significant 

advancements in the area of quantum state preparation and measurement of a mechanical 

device. The quantum ground state appears within reach with a combination of increasing 

SMR frequency, impedance, coupling xCg   and critical current of the SMR (e.g. using 

Nb-based SMR.)  Furthermore, by increasing the SMR fundamental frequency to 10 GHz, 

while keeping all other device parameters the same, we expect to be able to realize 

sensitivity to one quadrature of ZPxX  5.01  .  This would allow the realization and 

study of squeezed mechanical states [11] which can be useful for ultra-sensitive detection 

and also provide a quantitative measurement of decoherence[30].  
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FIGURE 1 | Device and measurement scheme. (a) shows a false-colored SEM 

micrograph of device 1: a 260nm thick Al SMR, capacitively coupled (Cg, 85 nm gap) to 

an Al coated (105nm) high stress SiN (60nm thick) nanomechanical resonator (NR): 

30m x 170nm x 165nm.  The SMR is formed by a 11.8 mm long, 50 co-planar wave 

guide (CPW) with a 16 m wide center line, with matched ~4.5 fF coupling capacitors, 

on a high resistivity (>10k) <100> Si wafer, with damping rate = 2 . 500 kHz. 

Device 2 incorporates a 115 niobium CPW with = 2 . 272 kHz but is otherwise 

similar to device 1. (b) shows a measurement of the device 1 SMR transmission and the 

spectral location of the microwave pumps and up- and down-converted photons. (c) 

shows a schematic of our cryogenic microwave measurement circuit. Total capacitance 

KgT CCCC 2 . 
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FIGURE 2 | Linewidth, NRf , and occupation factor, n NR , vs. SMR occupation. (a) 

and (b) show NR behavior for a single pump tone: red  (●,●), or blue  (●). Solid lines 

show fits of the data to expressions in [11]. (See Supplementary Online Materials for 

details.) (c) and (d) show behavior for two pump tones: HzNRredblue 6002    (●), 

and NRredblue  2  (●).  Only in the BAE configuration (●), at high pump power we 

observe NRf  narrowing and mechanical amplification due to the parametric 

amplification. Drifts in the NR damping rate and frequency result in significant scatter in 

the (●) points undergoing parametric amplification. Shaded region is inaccessible to BAE 



due to parametric instability. Insets show spectrally the arrangement of pump and 

sideband tones relative to the microwave resonance. (●,●,●,●) taken with device 1 at a 

fridge temperature of 142mK, (●) taken with device 2 at a fridge temperature of 100mK.  
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FIGURE 3 | Measured  position sensitivity vs. SMR occupation. Device 1. Same 

pump configurations and symbols as used in Fig. 2.  The horizontal red line shows the 

limiting sensitivity for a single pump tone. The slanted black line shows the expected 

sensitivity with no backaction damping. Shaded region is inaccessible to BAE due to 

parametric instability. The inset shows the parametric mechanical gain for three BAE 

pump levels, verses the SMR phase (referenced to the beating of the BAE pump.)  
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FIGURE 4 | Single-quadrature detection and BAE. Device 1. (a) shows the power 

spectrum at the SMR resonant frequency with 36 dB of excess noise injected to 

demonstrate the BAE scheme.  Response to a single pump tone applied at RED  (red line 

data, black line lorentzian fit) shows a “hole” in the noise due to backaction-driven 

motion of the NR correlated with the SMR fluctuating voltage. Response to two pumps 

NRREDBLUE  2  (purple line) shows no backaction-driven motion in the measured 

quadrature. (b) shows the phase-sensitive nature of the scheme, coupling to only one 

mechanical quadrature. (c) shows the thermal motion of X1 measured at 142mK 

demonstrating ultra-sensitive detection of the single quadrature.  
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