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Decentralized Traffic Signal Control with Fixed and

Adaptive Routing of Vehicles in Urban Road

Networks
Ali A. Zaidi, Balázs Kulcsár, and Henk Wymeersch

Abstract—City-wide control and coordination of traffic flow
can improve efficiency, fuel consumption, and safety. We con-
sider the problem of controlling traffic lights under fixed and
adaptive routing of vehicles in urban road networks. Multi-
commodity back-pressure algorithms, originally developed for
routing and scheduling in communication networks, are applied
to road networks to control traffic lights and adaptively reroute
vehicles. The performance of the algorithms is analyzed using a
microscopic traffic simulator. The results demonstrate that the
proposed multi-commodity and adaptive routing algorithms pro-
vide significant improvement over a fixed schedule controller and
a single-commodity back-pressure controller, in terms of various
performance metrics, including queue-length, trips completed,
travel times, and fair traffic distribution.

I. INTRODUCTION

IN urban road networks, traffic congestion is a major

problem leading to time loss, pollution, and accidents

[1]. Vehicle flows in such networks are controlled by traffic

lights and are affected by route choices that the drivers make.

Traffic conditions can thus be improved by the development of

efficient traffic signal control and route selection methods, see

the papers e.g., [2], [3] for a survey to the field. Traditionally,

traffic light controllers follow a pre-defined optimized schedule

[4], which may result in a poor performance under time-

varying traffic conditions and under very high traffic demands.

This problem can be alleviated through adaptive traffic signal

controllers, such as SCOOT, UTOPIA, SCATS, or RHODES

[5]–[7]. In these adaptive traffic controllers, real-time measure-

ments are collected using on-road detectors. Based on these

measurements, either the parameters (splits, offsets, cycle-

length) of the signal plans are adjusted on a cycle-to-cycle

basis or a best signal plan is selected from a pre-defined

set of signal plans. The implementation of these methods,

however, requires centralized decision making for all intersec-

tions based on the traffic-related measurements. In addition

to these traffic-adaptive signal control implementations, other

centralized traffic signal control algorithms have recently been

proposed [9]–[12] using different approaches from control

theory, such as linear quadratic regulator, robust control, and
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model predictive control. The traffic signal control problem

has also been studied under game theoretic formulations [13].

In contrast to the many centralized approaches for traffic

signal control, the literature on decentralized solutions, which

would be very useful especially for large urban areas, is

scarce. Recently, researchers in the transportation and control

communities have proposed different traffic-adaptive scalable

and distributed methods [14]–[21], where the general idea is

to solve a separate optimization problem for every intersec-

tion. These per-intersection optimization problems are loosely

coupled via real-time traffic conditions. The implementation

of these controllers requires either the knowledge of expected

traffic load on the links associated with the intersection during

the next cycle, or the difference between the traffic loads on

the links associated with the network. Many of these schemes

are inspired by scheduling and routing algorithms in wireless

networks, in particular the well-known back-pressure scheme

from [22]. Back-pressure is a decentralized scheme that can

provide maximum network throughput under the assumption

that all links in the network have infinite capacities (it is in

fact optimal in the sense of supporting maximum traffic arrival

rates that guarantee stability of queues in a stochastic sense).

This idea was first adapted to urban road networks in [16],

where it was shown that significant performance gains can be

achieved in terms of network queue lengths by employing a

back-pressure scheme for signal control. It was also shown to

provide good performance compared to the fixed time schedule

controllers, when the links have finite capacities. However,

[16] does not dynamically re-route vehicles, leading to local

bottlenecks in the road network.

In the literature, there exist different methods for route

selection based on different performance metrics such as

shortest path, shortest travel time, congestion minimization,

etc. For vehicle routing, the fundamental challenge is that the

traffic demand and vehicle departure times at different links in

a road network are not known a priori. However, the real-time

traffic information along with the historic traffic data can be

used to anticipate traffic conditions and has been shown to be

very useful in devising route selection methods [23]. Recent

works on traffic-adaptive routing methods include [24], [25].

In this paper, we extend [16] by performing both traffic-

adaptive signal control and routing, under back-pressure based

control methods. In particular, rather than a single-commodity

back-pressure scheme with fixed routes as in [16], we apply

a multi-commodity (one commodity per destination) version

of the back-pressure scheme [26], [27] under both fixed and
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Fig. 1: A four-way junction with 8 roads and 12 possible traffic

movements.

adaptive route selection. Our results demonstrate that the

proposed schemes can provide significant performance gains.

The remainder of this paper is organized as follows. In

Section II, we mathematically formulate the problem of traffic

signal control and adaptive routing of vehicles. The algo-

rithms based on back-pressure multi-commodity schemes are

proposed in Section III. Performance of these algorithms is

analyzed with a detailed discussion in Section IV. Finally,

the key findings are summarized in Section V along with

directions for future work on this topic.

II. PROBLEM FORMULATION

A. Road Network

Consider an urban road network comprised of N links/roads

and L junctions (signalized intersections). We model the

network as a directed graph G = (R,J ), where

R = {R1, R2, . . . , RN} is the set of links and J =
{J1, J2, . . . , JL} is the set of junctions in the road network.
A vehicle exogenously enters the network from a certain link

(origin), travels along one or more links in the network and

finally leaves the network at a certain link (destination). Thus,

for each vehicle in the network, there is an associated origin

and destination pair. All vehicles that have a common origin

and destination pair constitute a flow f . Let F be the set of

all flows in the network and let (o(f), d(f)) be the origin–
destination pair for a flow f ∈ F , where o(f), d(f) ∈ R.
Let λf (t) be the rate at which vehicles associated with flow
f exogenously enter o(f) at discrete time slots t ∈ N,

with limT→∞
1
T

∑T

t=1 E[λf (t)] = λf . We assume that the

flow arrival processes are independent of each other and

also independent across time slots and have finite second

moments. At any time t, let Qab(t) be the number of vehicles
queued in a link Ra to move to an adjacent link Rb and let

Qa(t) =
∑

b Qab(t) be the the total queue length at link Ra.

B. Traffic Phase Switching

Each junction has certain traffic movements associated with

it. A traffic movement through a junction corresponding to

the vehicles exiting Ra and entering Rb is denoted by the pair

(Ra, Rb). Let Mi be the set of all traffic movements through
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Fig. 2: Typical phases through a four-way junction.
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Fig. 3: Typical phases through a three-way junction.

a junction Ji. Consider an example of a four-way junction in

Fig. 1, where there are twelve possible traffic movements. The

set of all possible traffic movements for this four-way junction

is given by

M = {(R3, R8), (R3, R1), (R7, R4), (R7, R6),

(R3, R6), (R7, R1), (R5, R4), (R5, R1),

(R2, R6), (R2, R8), (R2, R4), (R5, R8)}. (1)

A subset of traffic movements that can occur simultane-

ously through a junction constitute a phase. Let Pi =
{pi1, p

i
2, . . . , p

i
l} be the set of all possible phases through a

junction Ji. As examples, consider a four-way junction with

four possible phases in Fig. 2 and a three-way junction with

three possible phases in Fig. 3. Typical phases of the four-way

junction are given by

p1 = {(R3, R8), (R3, R1), (R7, R4), (R7, R6)},

p2 = {(R3, R6), (R7, R1)},

p3 = {(R5, R4), (R5, R1), (R2, R6), (R2, R8)},

p4 = {(R2, R4), (R5, R8)}, (2)

and for the three-way junction are given by

p1 = {(R15, R13), (R13, R18), (R17, R16)},

p2 = {(R17, R13)},

p3 = {(R14, R16), (R14, R18)}. (3)

Furthermore, we assume that with every possible movement

(Ra, Rb) through a junction, there is a rate sab(t) with which
vehicles can flow through the junction. That is, sab(t) is equal
to the number of vehicles that can go from link Ra to Rb if

a phase p is activated, where (Ra, Rb) ∈ p.



C. Routing of Vehicles

We consider that each vehicle that enters the network has a

fixed destination but the route it takes towards the destination

may be either fixed or variable. That is, we have two cases:

1) Fixed Routing: In fixed routing we assume that all

vehicles that have a common origin and destination,

follow the same route. That is, for all vehicles belonging

to a certain flow f in the network, the route is fixed. Let

L(f) be the set of links forming the route of flow f .

2) Adaptive Routing: In adaptive routing, the route of each

vehicle is adapted with traffic conditions. Thus, the

vehicles with a common origin and destination pair may

not necessarily follow the same route. We consider that

for every vehicle, the route is dynamically updated at

every junction. Whenever a vehicle enters a link Ra, its

next movement (Ra, Rb) through the upcoming junction
is decided in real-time and the vehicle joins one of the

possible queues (lanes) accordingly. For instance, in the

example shown in Fig. 1, when a vehicle enters R2,

it can join one of the three possible vehicle queues

{Q24, Q26, Q28}.

D. Control Problem

At every junction Ji, there is a controller Ci that has to
perform the following tasks at every time slot t.

1) Select a phase pik(t) ∈ Pi (i.e., the traffic controller

gives the right of way to certain traffic movements in

every time slot).

2) Make a routing decision for the vehicles (i.e., assign

queues to the vehicles) related to every flow f passing

through the given junction.

The routing decisions are communicated to the corresponding

vehicles and the vehicles in the network are assumed to follow

the routing decision made by the traffic controller.

III. PROPOSED METHODS

In this section, we will describe two novel methods for

signal control: one with fixed routing and one with dynamic

routing. These methods are based on the back-pressure algo-

rithm [22], originally invented for scheduling and routing of

packets in wireless networks. In [16], a back-pressure schedul-

ing algorithm was used for traffic signal control, assuming

all vehicles follow fixed routes but ignoring the fact that all

vehicles in the network have different destinations (single-

commodity back pressure scheme). We now propose to em-

ploy multi-commodity back-pressure schemes for traffic signal

control with fixed as well as adaptive routing of vehicles. In

contrast to the single-commodity scheme where the vehicle

queue length information has to be known on a per-link basis,

the operation of multi-commodity schemes under fixed and

adaptive routing requires queue length information on a per-

flow and per-destination basis. Since the numbers of origins

and destinations in a road network are normally very big, it is

not possible to maintain physically separate vehicle queues

on a per-flow and per-destination basis. In order to tackle

this issue, we utilize the concept of virtual queues, which is

essential for the operation of the proposed multi-commodity

back-pressure traffic control schemes in road networks.

A. Virtual Queues and Virtual Vehicles

Following the wireless networking approach in [26], [27],

we introduce virtual traffic and virtual queues (referred to as

shadow queues in [27]) in the road network. For each vehicle

that exogenously enters a link in the network, we generate a

virtual vehicle with probability one and another virtual vehicle

with probability ε > 0. Hence, for any flow f in the network,

the arrival rate of virtual traffic is (1 + ε)λf (t). The reason
for introducing ε here is explained in Section III-D1. With

the virtual traffic we can associate two virtual queues: we

denote the number of virtual vehicles of flow f on link Ra

by Q̃f
a ; similarly, we denote the number of virtual vehicles

for destination d on link Ra by Q̃d
a. We note that virtual

traffic and queues are merely counters, which form a fictitious

queuing system on which the signal control and route control

algorithms are based. The real queues Qab(t) containing real
vehicles are maintained on a per movement basis, for every

possible movement (Ra, Rb) through a given junction.

B. Signal Control Algorithm with Fixed Routing

The signal control algorithm for each junction is decentral-

ized1. At each junction Ji, the algorithm works based on the

per flow virtual queue length information Q̃f
a for all links Ra

associated with the given junction. The algorithm works as

follows for each junction Ji:

1) For all (a, b) such that (Ra, Rb) ∈ Mi, determine the

flow with maximum back-pressure and then assign a

weight to that flow:

f⋆

ab(t) = argmax
f∈Fi

{Q̃f
a(t)− Q̃

f
b (t)}, (4)

Wab(t) = max{Q̃
f⋆

ab
(t)

a (t)− Q̃
f⋆

ab
(t)

b (t), 0}, (5)

where Fi is the set of all flows passing through links

Ra and Rb.

2) For each phase pik ∈ Pi, compute the pressure release

as

Spi

k

(t) =
∑

(Ra,Rb)∈pi

k

Wab(t)sab(t). (6)

3) The controller Ci at junction Ji activates the phase p
i
k⋆

with the highest pressure release, i.e., it selects

pik⋆ = arg max
pi

k
∈Pi

Spi

k

(t). (7)

When a certain phase is activated, the real vehicles in the

network move according to the given rates and the queues

1The algorithm is decentralized in the following sense. A controller at
a junction makes decisions based on local communication with vehicles
associated with those links that are connected to the given junction.



of real vehicles evolve accordingly. The virtual queues evolve

according to:

Q̃f
a(t+ 1) = Q̃f

a(t)−
∑

c:(Rc,Rb)

I{f=f⋆

ab
}sab(t)

+
∑

c:(Rc,Ra)

I{f=f⋆

ca
}sca(t)

+ I{a=o(f)}λ̃f (t), for a ̸= d(f), (8)

where I{·} is an indicator function (whose value is equal to

1 if the statement in its argument is true otherwise its value

is equal to 0) and λ̃f (t) is the number of virtual vehicles
associated with flow f that exogenously enter o(f) at time t.
We assume that Q̃f

a(t) = 0 for all a = d(f), i.e., a vehicle is
not counted in any queue when it enters its destination link.

C. Signal Control Algorithm with Adaptive Routing

We follow [27], where an algorithm is proposed that de-

couples routing and scheduling in wireless networks. Adaptive

routing operates by placing incoming vehicles in real queues

according to a probabilistic routing, which signal control is

based on back-pressure on virtual queues per destination.

1) Signal Control Algorithm: The signal control algorithm

for each junction is again decentralized. At each junction

Ji, the algorithm works based on the per destination virtual

queue length information Q̃d
a for all links Ra associated with

the given junction. The algorithm works as follows for each

junction Ji:

1) For all (a, b) such that (Ra, Rb) ∈ Mi, determine

the destination with maximum back-pressure and then

assign a weight to that destination:

d⋆ab(t) = argmax
d

{Q̃d
a(t)− Q̃d

b(t)}, (9)

Wab(t) = max{Q̃
d⋆

ab
(t)

a (t)− Q̃
d⋆

ab
(t)

b (t), 0}. (10)

2) For each phase pik ∈ Pi, compute the pressure release

as

Spi

k

(t) =
∑

(Ra,Rb)∈pi

k

Wab(t)sab(t). (11)

3) The controller Ci at junction Ji activates the phase with

the highest pressure release, i.e., it selects

pik⋆ = arg max
pi

k
∈Pi

Spi

k

(t). (12)

When a certain phase is activated, the real vehicles in the

network move according to the given rates and the queues

of real vehicles evolve accordingly. The virtual queues evolve

according to:

Q̃d
a(t+ 1) = Q̃d

a(t)−
∑

b:(Ra,Rb)∈Mi

I{d⋆

ab
(t)=d}sab(t)

+
∑

c:(Rc,Ra)∈Mi

I{d⋆

ca
(t)=d}sca(t)

+
∑

f∈F

I{o(f)=a,d(f)=d}λ̃f (t), for a ̸= d, (13)

where I{·} denotes the indicator function and λ̃f (t) is the num-
ber of virtual vehicles associated with flow f that exogenously

enter o(f) at time t. We assume that Q̃d
d = 0, i.e., a vehicle is

not counted in any queue when it enters its destination link.

2) Adaptive Route Control Algorithm: Let σd
ab(t) be the

number of virtual vehicles transferred from link Ra to link

Rb for destination d under the above signal control algorithm

during the time slot t, σ̄d
ab its expected value in stationary

regime, and σ̂d
ab(t) the estimate at time t of this expected

value.

1) At every junction, compute σ̂d
ab(t) for every feasible

movement (Ra, Rb) ∈ Mi associated with that junction

using an exponential averaging method:

σ̂d
ab(t) = (1− β)σ̂d

ab(t− 1) + βσd
ab(t), (14)

where 0 < β < 1 is a smoothing factor.
2) Compute the routing probabilities:

P d
ab(t) =

σ̂d
ab(t)∑

c:(Ra,Rc)∈Mi
σ̂d
ac(t)

. (15)

3) A vehicle entering link Ra joins real queue Qab with

probability P d
ab(t). That is, the vehicle entering Ra

destined for Rd will be routed to Rb with probability

P d
ab(t) at time t through the junction Ji.

The routing information is communicated to vehicles in terms

of probabilities or percentages. For example, consider that

for the four-way junction illustrated in Fig. 1 if [P d
24(t) =

0.1, P d
26(t) = 0.2, P d

28(t) = 0.7], then among all those

vehicles that enter link 2 having destination d, approximately

10 percent should join queue Q24, 20 percent should join

queue Q26, and 70 percent should join queue Q28. In this

setup, the routing probability is governed by the BP scheme,

implicitly. In fact, we first estimate the mean of the virtual

vehicles transferred from link a to b heading destination d, i.e.

the local flows to destination d. The estimation of the mean

uses a recursive method, taking into account the latest known

vehicle number at every instant t and the estimated mean from

the previous sample time. By means of the the average valued

local flows (towards a destination d) in stationary regions,

we split vehicles according to the probability calculated.

Moreover, we route vehicles in a local, decentralized context

(V2I communication is required though). Finally, BP only

enables traffic phase activation, while the proposed routing

solution distributes the virtual flows.

3) Enhancing the Performance of Adaptive Routing Algo-

rithm: It will be shown in Section IV that the proposed

back-pressure routing algorithm is suitable for heavily loaded

networks but can lead to unnecessarily long routes in a low

load situation. This is also the case in wireless networks,

where several methods have been proposed to improve the

delay performance of back-pressure routing [27], [28]. These

methods are usually based on including bias terms in the cal-

culation of queue backlogs. That is, if one wants to encourage

(discourage) traffic flow to a certain link, then one can add



bias terms in the the calculation of queue backlog differences.

For instance, one can modify (9) and (10) as follows:

d⋆ab(t) = argmax
d

{Q̃d
a(t)− Q̃d

b(t) + α(V d
a − V d

b )}, (16)

Wab(t) = max{Q̃
d⋆

ab
(t)

a (t)− Q̃
d⋆

ab
(t)

b (t)

+ α(V
d⋆

ab
(t)

a − V
d⋆

ab
(t)

b ), 0}, (17)

where V d
a is equal to the minimum number of links that exist

between link a and link d (destination d) and α is a non-

negative real number that can be optimized. A higher value of

α forces the vehicles to follow shorter paths, which is good

for low-load situations but may not be good in a high load

situation, as shown in Section IV.

D. Stability and Optimality

1) Infinite Length Links: In this section we discuss opti-

mality of the proposed methods in the sense of supporting

maximum traffic arrivals in a road network under the assump-

tion that all links are infinitely long. Although in practice

all links in a network have finite lengths, the BP scheme is

originally inspired by its proven throughput optimality under

the assumption of links with infinite lengths. The earlier papers

[16], [19] that study single-commodity traffic signal control

under real queues guarantee optimality under the assumption

of infinite length links. In order to complement the existing

literature, we also provide this discussion. To be precise, we

first define stochastic stability and capacity region of a network

and then discuss the optimality.

Definition 1. A queue Q(t) with stochastic arrival and depar-
ture processes is said to be strongly stable if

lim sup
t→∞

1

t

t−1∑

τ=0

E[Q(τ)] < ∞. (18)

Furthermore, if all queues in a network are stable, then the

network is said to be stable.

Definition 2. The capacity region Λ associated with the

network is the closure of the set of all flow arrival rates that

can be stably supported by the network. That is, for a network

to be stable, we must have {λf}f∈F ∈ Λ. Furthermore, a

scheme that can stabilize all flows that have arrival rates in

the capacity region is known as a throughput-optimal scheme.

If the route of every flow f is fixed, then the capacity region

is the set of all flow arrivals that are supportable given the

set of flows and their corresponding routes. We note that the

capacity region of a network under fixed flow routes cannot be

larger than the capacity of the same network where routes of

the flows are not fixed, since capacity region cannot decrease

by removing path constraints on flows.

The traffic control and routing algorithms proposed above

are based on the algorithms for scheduling (rate allocation)

and routing of packets in a communication network. These

algorithms are throughput-optimal according to [26, Theorem

4] and [27, Theorem 1], where the authors show that if a

network is stable under the back-pressure scheme based on

real queues (which is already known to be optimal) with flow

arrival rate λf , then it is also stable (i.e., real queues are stable)

under the back-pressure scheme based on virtual queues with

flow arrival rate λf (1 + ε) for any ε > 0. In the proposed
traffic control algorithm, the phase activation (activation of a

set of movements) procedure is equivalent to scheduling over

a communication network. In contrast to a wireless communi-

cation network, this scheduling procedure is decentralized at

every junction because the activation of links associated with

one junction does not affect the activation of links at any other

junction if one assumes links to be infinitely long. The possible

traffic movements associated with a given junction can be

interpreted as connections in a wireless network. Similar to

a wireless network where packets cannot be simultaneously

transmitted with high rates over neighboring links due to cross-

link interference, here in the road network, some movements

at a junction cannot be activated simultaneously. With this

interpretation and equivalence in mind, we establish optimality

of the proposed traffic control and routing algorithms. The

algorithms are optimal in the sense that they can stably support

any flow arrival rate which is in the interior of the capacity

region.

2) Finite Length Links: When a network has links with

finite lengths, the issue of stability (according to Def. 1) does

not arise because the queues can never be unstable due to

finite length links. In this situation, stability corresponds to

maintaining bounded queue backlogs in the links where traffic

is being input to the network (ingress buffers in the context

of communication networks [29]), assuming that origin links

can be infinitely long. It is not known if the back-pressure

based schemes are throughput-optimal in this context. In the

following section, we analyze performance of the proposed

back-pressure based algorithms over a network having links

of finite lengths.

IV. PERFORMANCE ANALYSIS

We analyze performance of the proposed algorithms in

terms of queue lengths, trips completed, and travel time using

PTV VISSIM [30], which is a microscopic traffic simulator.

Within VISSIM, every vehicle is simulated individually and

several useful properties related to every vehicle can be

accessed dynamically. We will consider and compare four

distinct methods:

• Fixed time (FT) schedule signal controller: The possible

phases at each intersection are activated in a prede-

termined periodic fashion. All vehicles are assumed to

follow shortest routes to their respective destinations.

• Single-commodity back-pressure (SC-BP) controller: As

proposed in [16], each junction i maintain queues Qa(t)
for all connected links. For each pair (Ra, Rb) ∈ Mi, the

back pressure Wab(t) = Qa(t)−Qb(t) is computed. For
each phase pik ∈ Pi, the pressure release is computed

as Spi

k

(t) =
∑

(Ra,Rb)∈pi

k

Wab(t)sab(t). Finally, the
phase giving rise to the maximum pressure release is

selected. This approach is similar to Section III-B, but

does not distinguish between different flows. All vehicles

are assumed to follow shortest routes to their respective

destinations.
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Fig. 4: Road network with 24 intersections, 84 links, 16 origins and 16 destinations.

• Multi-commodity back-pressure control (MC-BP) with

fixed routing: The method described in Section III-B.

Moreover, all vehicles are assumed to follow shortest

routes to their respective destinations.

• Adaptive routing back-pressure control (AR-BP): The

method described in Section III-C.

For the sake of simplicity, we assume that sab(t) = sab for

all t, i.e., flow rate through a junction does not depend on time

or any other state2 in the road network. However, the traffic

signal control schemes presented above also applicable to the

situations where traffic movement rates are time varying.

A. Network and Simulation Parameters

The simulations are performed using a road network from

a central region in the Stockholm area, comprising 24 sig-

nalized intersections (16 three-way intersections and 8 four-

way intersections) and 84 links. The network is depicted in

Fig. 4. The lengths of the longest and the shortest links are

approximately 1980 meters and 333 meters. All links are

assumed to have three lanes, where each lane is 3.5 meters

wide. There are 16 traffic origins {O1,O2, . . . ,O16} and 16
destinations {D1,D2, . . . ,D16} in the network. The traffic

associated with an origin-destination pair Oi−Di forms a flow

fi. Hence, there are 16 traffic flows in total, {f1, f2, . . . , f16}.
We perform simulations with cars of dimensions 4.11 me-

ters × 1.5 meters and 4.76 meters× 1.5 meters. The maximum

speed of all vehicles is set to 70 km/h, as some of the links

on the boundary of the network in Fig. 4 are highways. We

assume that a car is in a queue if its speed is below a certain

threshold (here set to 5 km/h). For the fixed time schedule

control (FT), we assume the time period of each cycle equal

to 60 seconds at all intersections (both three-way and four-

way) according to the signal plan (phase distribution) given

in Table I3. For the back-pressure methods, we consider that

2For example, the state of the network may change in case of an accident.
3The time-loss due to amber or yellow signals is not considered in the

simulations, however, it can be incorporated easily in VISSIM.
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Fig. 5: Evolution of total queue length in the network over

time under different control methods with vehicle input rate

equal to 350 vehicles/hour.

a phase is activated after every 15 seconds. Moreover, all

the traffic related measurements are also taken after every 15

simulation seconds in order to update the signal phases and

the routing decisions under the back-pressure methods. All

simulations are performed for 7200 simulation seconds (i.e., 2

hours). Within VISSIM, we have set the simulation speed to 10

simulation seconds per second and the simulation resolution

is set equal to 1 in order to generate fastest simulation results.

Further details on how the simulations were performed using

VISSIM are given in Appendix A.

TABLE I: Phase distributions
Intersection Type p1 p2 p3 p4

Four-way 18 sec. 12 sec. 18 sec. 12 sec.

Three-way 24 sec. 12 sec. 24 sec. –

B. Simulation Results and Discussions

In Fig. 5, we fix vehicle arrival rate to 350 vehicles/hour

at all traffic origins and plot the evolution of queue length

over time under different signal control methods. Here, queue

length refers to the total number of vehicles that are queued

in the network. An arrival rate of 350 vehicles/hour per origin
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different control methods.
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Fig. 7: Average travel times computed over a 2 hours simula-

tion period as a function of the vehicle input arrival rate under

different control methods.

means that approximately 5600 vehicles enter the network per

hour since there are 16 origins. As we observe in Fig. 5,

AR-BP yields smallest queue length followed by MC-BP, SC-

BP, and FT respectively. Queue length under FT is increasing

approximately linearly over time, whereas for the BP based

methods the queue lengths remain bounded. It was already

shown in [16] that SC-BP outperforms SCATS (where a signal

plan is optimized over a set of fixed signal schedules) in terms

of queue lengths. An additional observation is that the multi-

commodity back-pressure schemes (MC-BP, AR-BP) have the

potential to provide considerable improvement over single-

commodity scheme.

In order to investigate further, we plot the average queue

lengths and average travel times of vehicles from their origins

to their respective destinations as functions of vehicle arrival

rates in Fig. 6 and Fig. 7 respectively. Here the averages are

taken over simulation time in the case of queue length and

over both simulation time and number of vehicles in the case

of travel time. According to Figs. 6–7, MC-BP is significantly

superior to SC-BP in terms of both average queue length and

average travel time at all vehicle arrival rates. The behavior

of AR-BP is not straightforward – it provides relatively much

smaller queue lengths but the travel times are very high at

low traffic volumes. Normally, one expects that a larger queue

length should lead to a higher travel time. In order to study

what makes the average travel times so high under AR-BP, we
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Fig. 8: Average vehicle speeds computed over a 2 hours

simulation time period as a function of the vehicle input arrival

rate under different control methods.

must consider the average speed of vehicles under all schemes.

Fig. 8 shows that average vehicle speeds are always highest

under AR-BP. This implies that the vehicles travel longer

distances on average to reach their destinations under AR-BP,

especially when the vehicle arrival rates are low. Under MC-

BP, a path for every vehicle from its origin to its destination

is pre-defined, whereas in AR-BP a next hop route is chosen

at every intersection. When the network is under-saturated,

the pressure terms (queue backlog differences) are very low

and a vehicle may traverse several links before arriving its

destination, thus taking a route that is unnecessarily long.

However, it is this adaptive routing that forces the vehicles

to distribute in the network more uniformly and thus reduces

congestion queue lengths when the network is heavily loaded.

In a saturated network, although vehicles may follow a longer

route on average under AR-BP, the travel time is significantly

lower on average compared to the fixed routing methods as

shown in Fig. 7. This reduction in average travel time happens

due to a smaller queue lengths in the network as observed in

Fig. 6.

In Section III-C3 we presented a modified version of AR-BP

scheme that can force vehicles to avoid unnecessarily long

routes in a load situation. This modified AR-BP method can

be optimized for a given network. In Fig. 9 and Fig. 10, we

plot average travel time and average queue lengths under the

modified AR-BP scheme with different values of α. (Note that

α = 0 gives the original AR-BP scheme.) A higher value of

α forces the vehicles to follow shorter path, which is good

for low-load situations but may not be good in a high load

situation. According to Fig. 9 and Fig. 10, there exits a value

of α (equal to 1.5) for the given network that provides good

performance in both low load and high load scenarios in terms

of travel time as well as congestion.

Next we investigate the network throughput in terms of the

number of vehicles exiting the network (number of completed

trips) under different signal control methods. In Fig. 11, we

plot the total number vehicles that exit the given network in

two hours when the traffic is continuously arriving at a fixed

rate. Interestingly, FT provides higher throughput than SC-

BP at very high input traffic load, despite the fact that FT

always gives rise to a higher time averaged queue length than
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Fig. 9: Average travel time computed over a 2 hours simulation

time period as a function of the vehicle input arrival rate under

the modified AR-BP method.
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Fig. 10: Average queue length computed over a 2 hours

simulation time period as a function of the vehicle input arrival

rate under the modified AR-BP method.

SC-BP according to Fig. 6. This happens due to the fact that

when back-pressure schemes are employed over a network

with finite length links, some links can experience deadlock

situation, as observed in [19]. Deadlocks make the controllers

non-work conserving4 and may cause congestion propagation

to other links in a network. The deadlocks occur at very high

traffic loads depending on the network topology and especially

when there is a significant mismatch between lengths (or

capacities) of adjacent links. Note that our simulated network

is quite asymmetric in terms of lengths of different links and

therefore it is also more susceptible to deadlocks. One way of

resolving deadlocks under SC-BP is to use normalized pres-

sure functions [19]. Interestingly, the proposed back-pressure

schemes MC-BP and AR-BP are robust against deadlocks

because their control decisions are based on virtual queues

that keep growing irrespective of the lengths (capacities) of

their corresponding links.

Finally, we analyze performance of the proposed methods

under the following two measures that are relevant in high

load situations: i) latent demand and ii) latent delay. Latent

demand refers to the total number of vehicles that are waiting

till the end of simulation to enter the network. Latent delay

4 A control is work-conserving if the two conditions, i) Qab(t) > 0 and
ii) Qb(t) < Cb, are sufficient to ensure that the server of the junction works
during slot t, where Cb is capacity of link b. Non-work conservation is a sign
of inefficiency [19].
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Fig. 11: Total number of vehicles that exit the network, i.e.,

reach their destinations during a 2 hour simulation period

under different control methods.
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Fig. 12: Total number of vehicles that could not enter the

network until the end of 2 hour simulation period under

different control methods.

refers to the total waiting time of all vehicles that are not able

to immediately enter the network. This also includes waiting

time (outside the network) of the vehicles which were later

able to enter the network before the end of the simulation

time. In Fig. 12 and Fig. 13, we have plotted latent demand and

latent delay as functions of vehicle arrival rates, respectively.

These simulation results also indicate the benefits of using

virtual queues in back-pressure methods and adaptive routing

in general for saturated networks.

From the above discussion, we conclude that the multi-
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Fig. 14: Normalized queue lengths at vehicle arrival rate equal

to 350 vehicles/hour.

commodity back-pressure control methods are significantly

superior to the single-commodity back-pressure traffic method

in terms of travel time, queue length, and trips completed.

Another advantage of employing multi-commodity schemes is

that it allows for relatively fair distribution of vehicle queues

associated with different origin-destination pairs (flows) within

the network. As an example, in Fig. 14 we have shown

the normalized average queue lengths of all flows (origin-

destination pairs) in the network under SC-BP and MC-BP,

with a traffic arrival rate equal to 350 vehicles/hour. We can see

that the queue length distribution among different traffic flows

is more fair when the multi-commodity scheme is employed.

Remark on Communication Requirements: The performance

gains discussed under the proposed back-pressure based meth-

ods (fixed and adaptive routing) are achieved assuming perfect

communication between vehicles and controllers. In MC-BP

and AR-BP, every vehicle has to communicate with upcoming

controller and/or the adjacent controllers, depending on how

these schemes are realized in practice. Moreover, under AR-

BP the controllers have to communicate the routing infor-

mation to the vehicles. The routing probabilities calculated

according to (15) can be broadcast to all vehicles in the form of

a look-up table and the vehicles would then adapt their routes

depending on the received routing probabilities. We believe

that the results presented in this paper provide motivation for

analyzing back-pressure schemes under imperfect vehicle-to-

infrastructure communication and exploring relevant commu-

nication protocols.

V. CONCLUSIONS AND FUTURE DIRECTIONS

We studied the problem of decentralized traffic signal con-

trol and adaptive routing of vehicles under different back-

pressure control schemes, namely, single-commodity back-

pressure (SC-BP), multi-commodity back-pressure (MC-BP),

and adaptive routing back-pressure (AR-BP). The proposed

back-pressure methods address network level traffic control by

means of the interacting queue dynamics on adjacent roads.

Note, however, that the algorithms are applied locally, follow-

ing decentralized control policies, relying on knowledge of

adjacent queues. We observed that MC-BP always outperforms

SC-BP in terms of average queue lengths, average vehicle

travel time, and the number of trips completed. In addition,

multi-commodity methods allow for relatively fair distribution

of vehicle queues associated with different origin-destination

pairs (flows) within the network. Due to the use of virtual

queues, MC-BP and AR-BP are more robust to deadlock

situations than SC-BP.

In SC-BP and MC-BP, all vehicles follow fixed routes. Fixed

routing is not appropriate when a road network is heavily

loaded with vehicles, since links will get more congested. AR-

BP is able to to distribute vehicles more uniformly across the

network, thereby significantly improving congestion, through-

put, and travel times (on average). For low load situations,

AR-BP may lead to unnecessarily long route selections for

some vehicles, giving very high travel times on average. In

such situations, a simple fixed-time control can have better

performance. Alternatively, a modified version of AR-BP can

be used to reduce travel times by restricting route selection

from a set of fewer paths. In practice, the proposed routing

method can be complemented with additional intelligence to

avoid unnecessarily long routes in the case of very low traffic

demand.

The implementations of MC-BP and AR-BP require commu-

nication from every vehicle to the traffic controller located at

the upcoming intersection and/or between adjacent controllers,

depending on how these schemes are realized in practice. For

AR-BP, the controller also needs to broadcast routing informa-

tion comprised of routing probabilities (or turning percentages)

to the vehicles. An interesting direction in future would be to

investigate MC-BP and AR-BP schemes subject to uncertain

and delayed queue information.It will be useful to devise

suitable protocols for vehicle-to-infrastructure communication.

The proposed methods have been shown to be optimal in

the sense of supporting maximum traffic arrival rate while

maintaining stable queues under the assumption of infinite

length links. The stability regions of a general network under

the BP schemes are only known under the assumption of

infinite length links. Thus, another useful direction would to

characterize the stability regions of a road network with finite-

length links under different BP schemes. Here, stability of

a network would mean that all queues at the traffic origins

are stable. All back-pressure based signal control algorithms

proposed so far assume a fixed (pre-defined) signal phase

duration. It will be interesting to study how much we can

gain by keeping both phase duration and phase activation as

functions of queue length information.

APPENDIX A

SIMULATION DETAILS

The simulations are performed by allowing data exchange

between MATLAB and VISSIM using the following proce-

dure: Create the network file (.inp file) using VISSIM GUI,

based on a network image taken from Google Earth. Drop all

relevant objects (vehicle inputs, controllers, routing decisions,

data collection points) in the network with desired initial

parameters/settings. Save these settings in a file (.ini file).

Create a MATLAB script, where first activate the VISSSIM

COM server, and then load the network file and the settings

file. Within the MATLAB script, one can access all relevant

objects and change the control signals on state of the traffic.
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