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Abstract-In this paper, back propagation is reinvestigated for 
an efficient evaluation of the gradient in arbitrary interconnec- 
tions of recurrent subsystems. It is shown that the error has to 
be back-propagated through the adjoint model of the system 
and that the gradient can only be obtained after a delay. A 
faster version, accelerated back propagation, that eliminates this 
delay, is also developed. Various schemes including the sensitivity 
method are studied to update the weights of the network using 
these gradients. Motivated by the Lyapunov approach and the 
adjoint model, the predictive back propagation and its variant, 
targeted back propagation, are proposed. A further refinement, 
predictive back propagation with filtering is then developed, 
where the states of the model are also updated. The convergence 
of this scheme is assured. It is shown that it is sufficient to back 
propagate as many time steps as the order of the system for 
convergence. As a preamble, convergence of on-line batch and 
sample-wise updates in feedforward models is analyzed using the 
Lyapunov approach. 

I. INTRODUCTION 

EURAL networks have recently emerged as a successful N tool in the fields of pattem classification [I]  and control 

of dynamic systems [2]-[8]. This is due to the computational 

efficiency of the back propagation algorithm [lo], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 1 11, and 

the versatility of the three layer feedforward neural network in 

approximating an arbitrary static nonlinearity [ 121, [ 131. In this 

paper, we further exploit these features for the identification of 

nonlinear dynamic systems using neural networks. Algorithms 

proposed in this paper are for time invariant systems but can be 

directly applied to the identification of plants that are slowly 

time varying. 

Identification of a system has two distinct steps; 1) choosing 

a proper model and 2) adjusting the parameters of the model 

so as to minimize a certain fit criterion. In the first part 

of this paper, we deal with the issue of choosing a neural 

network model for identification purposes. Since dynamic 

systems are described by differential or difference equations, 

in contrast to static systems that are described by algebraic 

equations, it is important to understand how general nonlinear 

dynamic systems can be modeled using neural networks that 

are versatile static maps. The choice of the model depends 

on whether all the states of the system or only the outputs 

are measured. If all the state variables are available, then a 
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multilayer perceptron is sufficient to model a dynamic system. 

Even if only the outputs are available for measurement, it is 

possible under certain assumptions, to predict the output from 

delayed inputs and outputs using a multilayer perceptron [3], 

[4]. But for modeling a general nonlinear system, we illustrate 

through an example that feedforward models are inadequate 

and hence propose dynamic recurrent neural models for this 

purpose. 

As for the second step of identification, i.e., parameter 

update, we use the gradient method for optimization. This 

procedure has two parts; 1) the gradient evaluation and 2) 

the update law. Though the gradient for static systems can 

be obtained using the standard back propagation algorithm, it 

fails in the presence of feedback. In such cases, the sensitivity 

method [9], [14], [15] and “back propagation through time” 

[2], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 5 ]  have been proposed for evaluating the gradient. The 

major drawback of the sensitivity method is that it is compu- 

tationally intensive. Though the computational efficiency can 

be improved in linear time invariant dynamic systems as in 

[16], an extension of that result to nonlinear systems is not 

possible. Also, back propagation through time as available in 

literature, is not applicable to all types of interconnections 

of dynamic elements. So in this paper, we reinvestigate back 

propagation in the context of identification of dynamic systems 

and establish that the gradient for any dynamic system or for 

any interconnection of dynamic subsystems can be obtained 

by back propagating the error through the adjoint model [17]. 

Also, under the assumption of local observability, we show 

that, it is sufficient for the sake of convergence of parameter 

update laws, to back propagate as many time steps as the 

order of the system. As we go back in time with the adjoint, 

a delay is associated with the calculation of the gradient. This 

is avoided by accelerating the back propagation in a scheme 

termed “accelerated back propagation.” This accelerated vari- 

ant is adopted as the standard for back propagation in our 

work. 

In recurrent models, though the gradient of the present cost 

with respect to a past parameter can be obtained using the 

adjoint, updating a past parameter in an online scheme is 

not possible. A few update schemes that reflect the various 
levels of approximation that can be made in this context 

are considered, the sensitivity method being one of them. 

Motivated by the Lyapunov approach and the adjoint model, 

a predictive scheme, predictive back propagation is proposed. 

A variant, targeted back propagation, which avoids explicit 
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prediction, is also presented. A further refinement, predictive 

back propagation with filtering, is developed, in which the 

states of the system are also updated. Updating the states 

allows convergence to be established for a general nonlinear 

system. As a preamble, the problem of model matching in 

static systems is considered and the convergence to local and 

global minima with batch and sample-by-sample updates is 

analysed using the Lyapunov approach. The analysis shows 

that, convergence to the global minimum (if the initial con- 

ditions are in its vicinity) or to a small enough ball around a 

local minimum can be guaranteed with sample-wise updates. 
Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 introduces different neural network models for the 

identification of nonlinear dynamical systems. In Section 111, 

a discussion on computing the gradient in recurrent models 

is undertaken. The main algorithm for back propagation in 

dynamic systems through the adjoint and its accelerated variant 

are developed in Section IV. Having obtained the gradient, the 

convergence of gradient descent update laws in feedforward 

and feedback models is analyzed in Sections V and VI respec- 

tively. Simulation results presented in Section VI1 illustrate the 

applicability of various methods in the context of identification 

and control of dynamic systems. 

11. MODELS FOR IDENTIFICATION OF 

NONLINEAR DYNAMIC SYSTEMS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A.  The State-Output Model 

It is well known in system theory that the state-output 

model, which relates the past and the present states, can 

represent a fairly large class of nonlinear dynamic systems. 

The state-output model is given by, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
.z(k) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf(z,(k - l), u(k - 1)) and y ( k )  = g( :c , (k) ,u(k) )  

where u ( k ) :  input, ~ ( k ) :  state of the model, y(k): output of 

the model, l cp(k) :  state of the plant, y,(k): output of the plant, 

and k :  discretized time. The nonlinear functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ( )  and y() 
are static and hence can be approximated using feedforward 

neural networks [12], [13]. 
If all the states of the plant are measured in addition to 

its outputs, then the problem of leaming f ( )  and y() are 

decoupled. The plant states, z p ( k ) ,  can be made the targeted 

outputs of the f ( )  network and the plant output, y p ( k ) ,  for the 

g ( )  network. Any supervised leaming algorithm such as back 

propagation [lo] can be used for learning. 

(1) 

B .  The Nonlinear- ARMA Models (NARMA) 

Though the state-output model is quite general, all the 

plant states are not usually available for measurement. In such 
cases, an extension of the Auto Regressive Moving Average 

(ARMA) model, the Nonlinear ARMA model, which predicts 

the present output as a nonlinear function of the past inputs 

and outputs is proposed [3] [4] (Fig. 2) .  

y(k)  = f (g,(k - I), yp(k - 2 ) .  . ' ' , :c/,(k - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA71). 

u(k),u(X:-  1) ;... fL(k -?n) .Wf (k ) )  ( 2 )  

Fig. 1 .  The state-utput model 

Fig. 2. NARMA-quation error model 

z z z  

Fig. 3. NARMA--output error model. 

This model is referred to as the prediction or series-parallel or 

equation error model or the model with teacher forcing [15]. 
Even though the overall system is dynamic, the nonlinear map zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f() in (2) is static and hence can be modeled by a multilayer 

perceptron. Also, since the targeted output y,(k) is available, 

standard back propagation [lo] can be used for learning. 
The representation capability of NARMA models is only 

a subset of the state-output models. This is due to the fact 

that a NARMA model doesn't store any state information and 

relies on the delayed values of the inputs and the outputs to 

reconstruct the states. If such a reconstruction is not possible, 

then the NARMA model will not be capable of representing 

the given system. More precisely, NARMA models work 

only when the mapping g of (1) is invertible with respect 

to the states z ( k ) .  If g is not invertible, then there is an 

ambiguity in reconstructing the states from the outputs. As an 

example consider the state-output model and its input-output 

representation given by: 

z ( k )  = az (k  - 1) + bu(k - 1) and y(k) = x 2 ( k )  (3) 

(4) 

Since ,/- is non-unique, no NARMA model can be 

used to represent (3). 
The representation capability can be improved by inter- 

connecting NARMA models. However, since only the model 

outputs are available for auto-regression at the subsystem level, 

the following NARMA model has to be used in interconnected 

systems: (Fig. 3) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Y(k) = f ( Y ( k  - 11, Y(k - 21,. . . > Y(k - n), u(k), 

u(k  - l), . ' ' , u(k  - m), Wf(k)) ( 5 )  

This model, which uses the model output for autoregression 

instead of the plant output, is referred to as the estimation or 

parallel or output error model. It is crucial to note that, the map 

f in ( 5 )  depends on the past values of its own output y(k), 
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Fig. 4. The recurrent state model. 

rendering the network non-feedforward. Hence, standard back 

propagation cannot be used for learning (5). 

C. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARecurrent State Model 

We note that the problem of recurrence has to be explicitly 

tackled when a general nonlinear system is to be learned. So 
the recui~ent version of the state-output model is proposed 

where multilayer perceptrons are used with feedback as shown 

in Fig. 4. This can represent any arbitrary nonlinear dynamic 

system, but learning with generalized delta rule (back propaga- 

tion) [ 101 is ruled out due to recursion. Explicitly showing the 

parametrization of the nonlinearities f and y in terms of their 

respective neural network weights zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWf and W,, the recurrent 

state model can be written as: 

In this section, we pointed out that if only the output informa- 

tion is available then the dynamics and nonlinearities cannot 

always be decoupled as in the NARMA-equation error models. 

Hence, this forces us to use recurrence in our models. In the 

rest of the paper, problems encountered in updating parameters 

in dynamic systems and adaptation amidst recurrence are dis- 

cussed. Since these issues are generic to any interconnections 

of dynamic systems, the algorithms developed are directly 

extendable to adaptive control of nonlinear systems. This topic 

will be pursued elsewhere. 

111. CALCULATION OF GRADIENT IN RECURRENT MODELS 

If the model is purely feedforward (e.g., state-output and 

NARMA-equation error models), then the gradient can be 

obtained by standard back propagation. However, if feedback 

or recurrence is present in the model (e.g., Recurrent State 

and NARMA-output error models), it is necessary to calculate 

the “gradient amidst dynamics” for adaptation. In other words, 

due to the present output depending upon the past output of 

the network, the present error depends not only on the present 

parameter set but also on the past parameter values. So these 

dependencies have to be considered in the calculation of the 

gradient. 

One method to calculate the “gradient amidst dynamics” is 

the sensitivity method [9] [14]. This method is also termed 

“on-line recurrent back propagation” [ 151 and the “dynamic 

back propagation” [9]. However, we stick to the terminology 
of “sensitivity method,” since this can be considered to be 

“forward propagation” [2] as it calculates the gradient forward 

in signal flow and time. Assuming that W f  and W, do not vary 

with time, (6) can be differentiated to obtain the derivative 

amidst dynamics with respect to representative components zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
‘WS and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi l l g  of f ( . )  and y(.) respectively. We use ‘7, J to 

denote the gradient of the scalar J with respect to a vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 
and 3, f to denote the Jacobian. The gradient is considered 

as a column vector of dimension dim(z) x 1 and the Jacobian 

has the dimension dim(f) x dim(z). Let us use f ( k )  to denote 

the network whose output is z ( k ) .  

(7) 
d z ( k )  d z ( k  - 1) a f ( k )  

dw f - = % ( k - l ) f ( k )  
awf 

+- 

From (7), we see that the “derivative amid dynamics” is the 

output of another recurrent network. This auxiliary network, 

called the sensitivity network, is similar to the original network 

(Fig. 4), the differences being 1) the network is a linearized 

version of the original, 2) the inputs of the system u(k )  do 

not enter this network, and 3)  the partial derivative of the map 

f (  .) is injected as its input. Linearization can be achieved by 

replacing the sigmoid units by linear gain blocks, the gain 

being equal to the gradient of the sigmoid in the original 

network. This method requires as many sensitivity networks as 

there are parameters in the map f (  .) making it computationally 

intensive. This is a major drawback of the sensitivity method. 

Also, the gradient is obtained under the assumption that the 

weights remain constant over time. Since we adapt the weights, 

this assumption is not valid and hence neither the proper 

gradient is obtained nor can the convergence be assured. 

In the sensitivity method the derivatives are calculated 

in the same direction as the signal flows and hence the 

necessity for one sensitivity model for each partial derivative. 

On the contrary, back propagation implements the chain rule 

of differentiation by the derivative of the error flowing in 

a direction opposite to that of the signal flow. Working 

backwards allows updating of all parameters of the network 

in a single run making it computationally efficient. 

If the recurrent model (6) is unfolded in time, it is possible to 

calculate the gradient by back propagating the error in the time 

axis also [IO], [ I  11. Due to the fact that in the recurrent model 

(6), the present state, z ( k ) ,  is a function of only the immediate 

past state, z ( k  - I), the network unfolded in time is layered 

(cascade interconnection of f ( )  blocks). This is referred to 

as “back propagation through time” algorithm [2], [5 ] .  The 

network unfolded in time for “N”  time steps is given by. 

y(k) = g [ f ( f ( f ( .  . . f ( J ( k  - N ) .  74k - N ) )  . . . ) .  
u(k  - 2 ) , ) U ( k  - l))] (9) 

However, in models such as the NARMA-output error model, 
where the present output y(k)  is a function of not just one but 

a number of its past values, unfolding and back propagation 

are not straightforward. 

Iv. BACK PROPAGATION IN DYNAMIC SYSTEMS 

To obtain the proper gradient amidst dynamics for arbitrary 

interconnections of dynamic subsystems, back propagation is 

reinvestigated leading to the following result. Though the mo- 

tivation for our approach is its applicability to more complex 

model structures, the result is stated for the recurrent model as 

it is a more versatile representation than the NARMA-output 
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error model. However, the proof is constructed by viewing the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f ( . )  map in (6) as a special case of the f ( . )  map of (5) so as 

to emphasize a wider applicability of the approach. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Consider a dynamic system represented by the 

recurrent state model (6 )  with input: u ( k )  E Rp, states: :r:(k) E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
R“, model and plant output: y(k) .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy , ( k )  E R‘. Let the in- 
stantaneous scalar cost be .I(IC) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$e(k)rc(k) with c ( k )  = 
! / ( A : )  - y f , ( k ) .  if the error is back-propagated through the adjoint 
model. whose initial conditions are set to zero with the adjoint 
input = (,( k )  at time instant “ k ”  and zero elsewhere, i.e., 

Theorem I :  

X(0)  = s;.(A),9(IC) e ( k ) , X ( i )  = s f ; , - , , f ( k  - 2 + 1)X(i - l), 

i =  1 , 2 , . . . , &  ( IO) 

then, the partial derivative of the instantaneous cost with respect 
to a representative component ’wws qf  f (.) with time tag ( k :  - 
d ) ,  41 E { 1, ... A : } .  *, is the product of, I )  the input 
enterin<? the M,eight “ u i ,  ” in the original network at time ( I C  - &) 
and 2 )  the input entering the wvight “w, ’’ after q5 retrograde 
time itnits in the adjoint netwvrk. IJI other words. the gradient 
VLI . , , , - , , , . ~ (~ )  and V I % . ~ ( A ~ J ( ~ )  can be obtained using 

V \ l ’ f ( A ’ - @ ) J ( k )  = ‘{l,(A-~),f(k - 4) A($) (11) 

VL,JAlJ(k) = ‘:;gi,,g(k:) e ( k )  (12) 

where ST(A-c*9-,lf(k - &) and 9f i . f (A-G2). f (k - &) are theJaco- 
bians obtainable jrom the map f (.) at the time instant ( I C  - a), 
and itf;,.,g(k) and 3~~.,cr,g(IC)fr-om the map g(.) at time instant 
“k.” U 

We precede the proof of this theorem by some discussion 

and remarks. 

Discussion on Theorem I :  To calculate the gradient amidst 

dynamics from the observed Jacobian, the adjoint model 

is seen to be useful. The adjoint of a dynamic system is 

constructed using the following rules [18]: I )  Reverse all 

signal flow, redefining nodes as summing junctions and vice 

versa. This converts inputs to outputs and vice versa. 2) 
Replace ‘‘t” in the arguments of all time varying coefficients 

by ( t f  - t ) ,  where “ t f ”  is the terminal time and “t” the forward 

time. Here “ t f ”  is the time of observation, “k:.” 3) If nonlinear 

blocks are present, they have to be successively linearized. 

Linearization in our case is achieved by using the derivative 

of the nonlinearity. 

Remark I :  From the construction of the adjoint system 

described above, it is clear that the network through which 

back propagation is performed in static systems [lo] is the 

adjoint of the forward system, the gradient being calculated 

at 4 = 0. 

Remark 2: Among various models that can be proposed for 

nonlinear system identification and control, the neural network 

models proposed here have an edge over others due to the fact 

that the adjoint of the nonlinearity can be constructed with no 

additional computational burden. 

Remark 3: Though similar adjoints are popular in the opti- 

mal control and missile guidance literature [ 181, [ 191, they only 

deal with the sensitivity of the cost or the output with respect 

to signals in the system. In such cases, the sensitivities are 

dependent only on the backward run. In the above theorem we 

extend this concept to deal with sensitivities of the cost with 

respect to the parameters of the system also. The point that has 

Fig. 5. Adjoint of the recurrent state model. 

Adjoint off(.) 

Fig. 6. Adjoint of the NARMA-utput error model. 

to be noted is that sensitivities with respect to the parameters 

do depend on the forward run also. Though sensitivities 

with respect to parameter variations using adjoints have been 

addressed to in circuit theory literature 1201, the parameters are 

considered time invariant. In the present development such an 

assumption is not required. 

Remurk 4: Note that by back propagating the error through 

the adjoint network, we apportion the error among weights 

spread over time. This is achieved by unfolding the network 

in time as in “back propagation through time.” However, the 

adjoint approach gives a systematic methodology of unfolding 

any given configuration in time and back propagating the error 

through it. 

Remark zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5: In comparison with the sensitivity method, 

which decimates the time tag of the weight, back propagation 

through the adjoint retains it. Also, the adjoint method does 

not assume the weights to remain constant, and is thus better 

suited in an adaptive context like ours. The adjoint method 

uses only one model to calculate the derivatives with respect 

to all the adjustable parameters of the map, which is a striking 

improvement over the sensitivity method. 

Remark 6:  As mentioned earlier, though Theorem 1 is only 

stated for the recurrent state model, the concept of adjoints is 

applicable to any kind of interconnection of subsystems. For 

an interconnected system, the adjoint of the configuration is 

first formed (by reversing signal flow between the subsystems 

and exchanging the nodes and summing junctions) and every 

subsystem is then replaced by its adjoint. Adjoints of the 

recurrent state and the NARMA-output error models are shown 

in Figs. 5 and 6. Note that if a NARMA+quation error 

model is a part of the interconnected system, the error is back 

propagated through the moving-average part only, where as 

for the output error model, back propagation has to be done 

through the auto-regressive part also. 

We first look into a more general result as far as the recurrent 

part of a dynamic system is concerned by considering the 

output to be dependent on a number of its past values as in 

Consider a dynamic system represented by the 
NARMA-output error model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5 )  with input: ,u(k) E RI’, model 
output and plant output: y(k) ~ TJ,, ( A : )  E RI. Let tlir instantaneous 
scalar cost be J ( k )  = ~ e ( k ) “ c , ( k )  “ith e ( k )  = ? / ( A : )  - y , , ( k ) .  /f 
the rrror is back-propagated through thr acljoitit model, with the 

(5). 
Lemma I :  



SRINIVASAN et al.: BACK PROPAGATION THROUGH ADJOINTS FOR THE IDENTIFICATION OF NONLINEAR DYNAMIC SYSTEMS 217 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
adjoint input zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= e ( k )  at time instant “k” and zero elsewhere, i.e., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

N O )  = e ( k ) ,  A($) = 9F(k--0jf(k - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi )  A ( i )  (13) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0-1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L=O 

then, the gradient VWf(kpd)  J ( k ) ,  can be obtained using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
VWf(k&-O)J(k) = STv,(k-mjf(k - 4)X(4) (14) 

obtainable from f (.). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 
where iZr(,-Ojf(k - i )  and 9L.,(k--0)f(k - 4) are the Jacobians 

We precede the proof of this lemma by some preliminary 

results. 
Proposition I : For the dynamic system ( 5 )  the gradient of the 

instantaneous cost J ( k )  with respect to W,(k - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4), the weights 
o f f ( . )  with time tag ( k  - 4),4 E (0, 1,2,  . . ,k},  V ~ ~ ( k - d ) J ( k ) ,  

is given by, 

Vn.,(k-QjJ(k) = % V f ( k - $ , j f @  - 4 P ; ( k - + ) Y ( V  e ( k )  (15) 

where the Jacobian 9 r ( k - o ) y ( k )  is obtained by the recursive 
relation, 

0-1 

3;(AbO)Y(k) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq ( k - + ) f ( k  - 2 )  q ( k - z ) Y ( J v  (16) 
Z=O 

wphere 3 T ( k - + j f ( k - i )  and 9;zf(k-d)f(k-4) are theJacobians 

Proof: Equation (15) follows from the chain rule of 

obtainable from f (.). 0 

differentiation by noting that, 

- 1  %~++f@ - 4) = % ~ f ( k - + ) Y ( k  - 4 )  and 

Vy(lC)J(k) = e ( k ) ,  (17) 

Equation ( 16) follows from the concept of total partial deriva- 

tives, where the effect of a change in y(k - 4) on y(k) through 

all y ( k  - i ) ,  i = 0 ,1 ,2 ,  . . , (4 - l), are summed, the direct 

effect of y ( k - 4 )  on y ( k - i )  being given by 3F(k -+ ) f ( k -z ) .  
0 

With initial conditions set to zero in the ad- 
joint model, and with the input = e ( k )  at time instant “k” and 
zero elsenvhere, the input to the adjoint of map f ( . )  afer 4 
retrograde time units in the adjoint run; i.e., X(4),  is given by 

Proof: Since the initial conditions are zeros, first part of 

(13) is apparent. Since the Jacobian is linearized version of 

the f(.) map, the output of the adjoint of f( .)  at a position 

separated by “j” delays from the adjoint input, (Fig. 6) at 

From the construction of the adjoint (Fig. 6), it is evident that 

this signal will take another “j” retrograde time steps to reach 

the input of the adjoint. So at a given retrograde time ‘‘4,” the 

signals at the input of the adjoint, will be such that i + j = 4. 
The second part of (13) is a summation over all such signals. 0 

The vector A(+) is equal to the product 
0 

Proposition 2: 

the recursive relation (13). 0 

retrograde time ‘5,’’ is of the form 3;(k-i-j) f ( k  - i )  X(i).  

Proposition 3: 

Proof by Induction: The proposition holds for 4 = 0, 

:\y, 
Jy,k-+)P(k) 4k). 

q ( k ) Y ( w k )  = e ( k )  = W O )  

i\.T sy(k- i )y(k)e(k)  = A ( i ) ,  i = 9 , 1 , . . - , 4 -  1 

(18) 

Assume the proposition to hold for all z 5 4 - 1. i.e., 

(19) 

E! Then from (13) and (16), the proposition holds for 4. 

Proof of Lemma I :  Applying Proposition 3 in (15) we get 

(14). Hence the gradient can be obtained by back propagating 
0 

Proof of Theorem I :  For the proof of the theorem, 

X(4)  through the map f() linearized at k - 4. 

(15)-(16) of Proposition 1 has to be changed to, 

b f ( k - d ) J ( k )  = %-f(k-,$)f(k - 4) 
x q ( k - + ) 4 k P : ( k ) g ( k )  4 k )  (20) 

i = 1 , 2 , .  . . , 4 .  S:(,)z(k) = I 

c-T Jz(k-p(k)  = S:(,-,)f@ - i + 1)S:(lC-,+1)+), 

(21) 

Consequently, Proposition 2 will include (10) instead of (13) 

and in Proposition 3, X(4) = 9 ~ ( , - + ~ z ( k )  3:(k)g(k)e(k) .  
Equation (11) of the theorem can be obtained along the 

same lines noting that the state of the recurrent model, z ( k ) ,  
depends only on the immediate past state, x(k - l), and 

is no dynamics in g(.). 
Accelerated Back Propagation: We will show later on that 

it is necessary to go back a finite number of steps, “N,” 
through the adjoint for calculating the gradient necessary for 

adaptation. From Theorem 1 it is clear that this gradient can 

be obtained only after a delay of “N ”  adjoint time units. 

However, since back propagation is only through a model 

of the system, the basic time unit for the adjoint can be 

much smaller than that of the plant. In other words, back 

propagation can be performed through a time scaled model 

so as to obtain the gradient without any delay. Then, the 

computational complexity will depend on “N ”  and not on the 

number of weights. In comparison with the sensitivity method, 

which does parallel computations, the computations performed 

here are serial. In the rest of our discussions, this accelerated 

variant will be used for back propagation wherever needed. 

c-T s , ( k ) g ( k )  = 9:(,)y(k). Equation (12) is obvious as there 

v. PARAMETER UPDATE PROCESS IN FEEDFORWARD MODELS 

Before we attack the problem of parameter update in re- 

current models, let us first consider the update of parameters 

in models with no feedback such as the state-output and 

NARMA-equation error models. In these systems, the gradient 

can be obtained using the standard back propagation. Using 

this gradient, the parameters can be updated either off-line 

or on-line. For convergence to a local minimum in an off- 

line update scheme, it is sufficient to show that, away from 

the minimum, the cost function is reduced in every iteration. 

Hence updating along the negative gradient is sufficient for 

global convergence. However, if the update is on-line, the 

cost function, (which in our case is the integral squared error) 

depends on the input applied raising an important question. 

If the parameter is so chosen that cost incurred with this 

particular input is reduced, will the cost incurred with other 

inputs also be uniformly better? For this, if we are in a position 

to associate a Lyapunov function independent of the inputs 

with the dynamics of the weights, then convergence can be 

assured. As we are interested in on-line update schemes, we 

address the choice of such Lyapunov functions in this section. 

The Lyapunov function to be chosen is for the dynamics 

of the weights and hence should be independent of the states 
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and inputs of the system. If the weights are updated along 

the negative gradient of the instantaneous cost, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW ( k  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 1) = 
W ( k )  - p V w ( k ) J ( k ) ,  then the change in Lyapunov function 

AV(k) will be given by, 

(22) 

Note that AV(k) K -VL(,)J(k)Vw(,lV(k) need not, in 

general, be sign definite. However, if the output is linear in 

parameters and V (  k )  is the Euclidean norm of the parameter 

error, AV(k)  5 0. Such a sign definiteness does not come 

through if the output and the error are nonlinear in parameters. 

Then a parameter update law should resemble W ( k  + 1) = 
W ( k )  - pVwp)V(k ) .  However, if we define zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV ( k )  as the 

Euclidean norm of the parameter error, then the gradient 

cannot be evaluated. So, taking the motivation from off-line 

approaches, we integrate the squared error with respect to 

the inputs and states over the complete range of interest to 

get a candidate Lyapunov function. In other words, this can 

be viewed analogous to an off-line scheme where the costs 

with respect to all possible inputs are considered. The weight 

dynamics is separated out from the dynamics of the states 

by integrating the squared error over the entire state space of 

interest. 

Consider the weight dynamics, W g ( k  + 1) = w , ( k )  - 
pVW,(,.J(k) along with the output maps of the state-output 

model y(k)  = g(z , ( k ) ,u (k ) ,W, (k ) ) ,  and that of the plant 

yP(k) = g(z,(k);U(k), W,*), where J ( k )  = & d k ) - ~ , ( k ) ) ~ .  
A candidate for the Lyapunov function is obtained by integrat- 

ing the error criterion with respect to the state z p ( k )  and the 

input ,u(k) over the set of interest N weighting it by a suitable 

distribution D(z,, U ) :  

AV(k) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- ( P  + O(p))VT,( , )J(k)V,(k)V(k)  

V ( k )  = - J’ Ilg(z,, U ,  W 9 ( k ) )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 ( Z * , U € N )  

- g ( z p , u ,  w,*)112~(~,, u ) d z p d u  (23) 

Now three issues need to be addressed: 1)  Can the gradient of 

V ( k )  with respect to W, be calculated from a finite data set? 2 )  
If so, which update law will assure negative definiteness of the 

AV(k )  ? 3) At every instant the gradient for only one sample 

can be evaluated. Is it meaningful to use this for update? 

Answering these questions in the general framework of 

functional approximation with process noise is a formidable 

task. So we limit ourselves to the problem of matching 

two functions, where we assume that the plant generates its 

data using a similar network whose weights are unknown. 

To answer the first question, let us extend the concept of 

informative data sets [21], which is similar to “persistently 

existing inputs” and “general enough inputs.” Given a model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
g( .) parameterized by W,, and the set of interest N, then a set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 c N is said to be informative with respect to the model g( .) 
over the set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN, if an optimum over 2 is an optimum over N. 

Proposition 4 :  If the number ofparameters W, is finite then 
0 

Proof: In the problem of matching the outputs of two 

functions, the global minimum over the entire state-input set of 

interest N occurs when the weights of the networks generating 

them match. Once the weights match, the output of the two 

afinite informative data set exists. 

networks match for any subset of N. In other words, the global 

minimizer of the Lyapunov function obtained by integrating 

the error criterion over N is also a global minimizer if the 

integration is performed over any subset of N. The statement 

of the proposition is the converse of this statement. For the 

converse to be true, it should be possible to uniquely define 

the global minimum with the given subset. The number of 

independent conditions necessary to uniquely define a point 

in a finite dimensional space equals the cardinality of the 

parameter space. Since each input-output data is a condition 

on the optimal set of parameters, the global minimum can 

be uniquely defined by as many input points as there are 

parameters. Hence a finite informative data set exists. 0 
Remark 7: Though we have shown the existence of a finite 

data set, we need a consistent algorithm to take us to the 

global minimum. But, only convergence to a local minimum 

can be addressed when a gradient descent algorithm is used. 

But if we assume that the initial condition is in the vicinity 

of or in the attraction region of the global minimum, and if 

back propagation is used for optimization, then with a finite 

informative data set as above, global minimum with respect to 

that set will be reached, which by Proposition 4 is the desired 

global minimum. 

Having shown the existence of a finite informative data set 

at least in the vicinity of the global minimum, whose length 

is M (say), let us assume that every data set of length M 
is informative. Then the integration over the set N can be 

replaced by summation of the squared error over M terms. 

The distribution, D(s,,u) E D ( z ) ,  does not appear explicitly 

in the summation as it is imbedded in the sequence of states 

and inputs over the interval [k - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA4 + 1: k ] .  Let us also assume 

that the informative sets are so chosen that the Lyapunov 

function is independent of the input set over which summation 

is performed. 

1 
V ( k )  = - Ilg(:c,(k - i ) ! U ( k  - 2 ) :  W g ( k ) )  

i=o 

M - 1 

- g(z,(k - i ) ; U ( k  - i ) ,  W,*)llZ = c J ( k  - i )  
i=O 

(24) 

Proposition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5: If 1) every input data set of length M is 
informative with respect to the model g( .) over the set of interest 
N, 2 )  the second partials of V are bounded and 3) the update is 
done once in h.1 time steps using: 

wg(k. + 1) - W,(k - M + 1) = -/Lviig(k-I1f+I)V(k) 

2 1 - 1  

= -/‘ VM9(L&-1I+I) .J(k - 2 )  

(25) 

,=o 

then there exists a p > 0 such that the batch update cwwerges to 
a minimum. 0 

Proof: Since every data set of length M is informative, 

(24) can be chosen as a candidate Lyapunov function for the 

parameter update process. Since the weights have not changed 

during [ k  - M + 1, k ] ,  V ( k )  = V ( k  - M + 1). Using the 



mean value theorem for V(Wg(k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1)) in the neighborhood 

of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWg(k) ,  

Since the second derivative is bounded, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp can be so chosen that 

the second term is nonnegative. Then the Lyapunov function 

is non-increasing in successive batches and hence the batch 

Having proved the convergence of a batch processing type 

of update, now we tum to the third question viz., whether 

updating every time instant also converges. If update is done 

every instant, sample by sample, the update law W g ( k  + 1) = 
Wg(k)  - p V ~ , ( k ) J ( k )  can be rewritten as: 

update converges. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

Here V ~ , ( k - ~ ) J ( k - - z )  is being used instead of VWg(k--M+l) 

J ( k  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi) of the batch update law. If we expand the gradient in 

the neighborhood of Wg ( k  - M+ l), noting that the difference, 

(W,(k - i) - Wg(k - M + I)) is proportional to p, we get: 

As VWg(k--M+l)V(k), the sum of all sample gradients is 

bounded, the term p(k  - z), which consists of partial sums 
of sample gradients is bounded. So, if p is so chosen that 

Vwg(k-Mtl)V(k) always dominates the summation of p(k - 
i), then convergence is ensured. But as the weights approach 

an optimum, the summed gradient, V W , ( ~ - M + ~ ) V ( ~ )  tends 

to zero while the sample gradients need not do so. In one 

sense the sample gradients may contradict each other in such 

a way that the mean gradient goes to zero. So convergence 

to a local optimum cannot be assured with constant step size. 

However if the initial conditions are in the attraction region 

of the global minimum, convergence to the global minimum 

can be assured with a sample-by-sample update. 
I f  1) every input data set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof length M is 

informative with respect to the model g( .) over the set of interest 
N, 2) the second partials of V are bounded (iiiJ the initial 
conditions are in the attraction region of the global minimum and 
(iv) the update is done every time step using: 

Proposition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6: 
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W g ( k  + 1) = Wg(k)  - PVI/V,(k)J(k) (31) .... ~~ .~~~ . . ~ ~ ~ ~ ~ ~ ~ c 7  I ~~~ 

then there exists a p > 0 such that the sample-by-sample update 
converges to the global minimum. U 

Proofi In the case of matching two functions, by con- 

struction V w , ( k - ~ + l ) J ( k  - i) tends to zero for all ‘%’’ 
in the vicinity of the global minimum. For if the summa- 

tion of these gradients, V W , ( ~ - - M + ~ ) V ( ~ )  vanishes without 

every sample gradient vanishing, it means that it has not 

matched the function for some input, and hence is not a 

global minimum contradicting our assumption. So the gradient 

VW, ( k - - ~ + ~ ) V ( k )  vanishes iff V~+J, ( k - ~ + ~ ) J ( k - z )  vanishes 

for all “i.” This means that IIp(k-i)ll for all ‘5’’ goes to zero iff 

llVwg(k--M+l)V(k)II goes to zero. So there exists a constant a 
such that, summation of lip(& i)ll zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI a l lVw, (k - -~+~)V(k) I ( .  

Since the initial conditions are in the attraction region of the 

global minimum, p < & leads to the second term of (30) 
dominating the third, and the update performed every time 

U 
Now we analyze through this proposition how the asymp- 

totic solution will behave if the initial conditions are in the 

vicinity of a local minimum. 
Proposition 7: Let ,I3 be the upper bound of the sum 

E::,’ Ilp(k - i)ll and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy for that of llV2CvgVII. f f l )  the learning 
parameter p > 0 is small enough to avoid the effect of the 
second partials of V and 2 )  the update is done every time step 
using (31), then the norm of the gradient is confined to a ball 

0 
Proof: Given p, consider a ball around the optimum, 

where (JVw,VJJ 5 Pp, and the last term of (30) dominates. 

Outside this ball the Lyapunov function will be non-increasing 

and hence it will enter this ball. Having entered, the negative 

definiteness of the time derivative is lost and hence the norm of 

the gradient may increase. To calculate how much the increase 

can be, we apply the mean value theorem considering the effect 

of only the last term in (30) as it is the only perturbing term. 

step converges to the global minimum. 

llVW,(k-.bf)V(~)Il I DP + YP,Li2. 

So the gradient will always be confined to a ball where 

IIVwg(k-~l)V(k)l1 5 /3p + yPp2. The size of this ball can 
U 

The convergence of f(.) maps in the state-output model 

(1) follows the same arguments. We conclude this section by 

noting that in the vicinity of the global minimum sample-by- 

sample update converges to the global minimum, while in the 

vicinity of a local minimum convergence to a small-enough 

ball around it can be assured. 

be made arbitrarily small by choosing a proper p. 

VI. PARAMETER UPDATE PROCESS IN RECURRENT MODELS 

So far we have been dealing with systems in which there is 

no feedback. The leaming problem then was an unconstrained 

optimization problem. But, if feedback is present in the system 
then the leaming Droblem is one of constrained ootimization. 
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the constraints originating from the dynamics of the system. 

Further, the past parameters can also affect the present output. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
So the gradients with respect to past and present parameter 
sets have to be obtained using the adjoint model described 

in Section IV. Updating the present parameter set using these 

gradients in an on-line scheme is discussed here. In particular, 

the recurrent map f (  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.) of (6) will be considered (The leaming 

of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg(.) map of (6) is identical to the problem discussed 

in the last section). In this section we will discuss through 

different schemes the various levels of approximation that 

can arise in this problem. We will initially assume that the 

Lyapunov function introduced in the last section (24) is the 

cost function to be minimized. Also, in Proposition 6 we saw 

that the samplewise update and batch update are equivalent if 

the initial conditions are in the vicinity of the global minimum. 

We will assume the initial conditions to be so and discuss the 

convergence to the global minimum with constant step size 

and samplewise update resembling (31). 

Scheme I 4 i r e c t  Adaptation: The first approximation is 

to assume that the effect of any past parameter set on the 

present error is negligible. So it is sufficient to adapt only the 

present parameter set. 

With this approximation, which is equivalent to ignoring 

the dynamics, the algorithm boils down to standard back 

propagation. This is computationally inexpensive and works 

when the dynamics are insignificant. 

Scheme 2-Sensitivity Method (Forward Implementation): 
The next approximation is to assume that the parameters 

remain constant as in the sensitivity calculation. We use 

V~v~(k+)J(k) ,b '  #J E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 0 , k ] ,  to adapt the weights W f ( k -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4).  
Since we are looking for a constant parameter set that would 

minimize J ( k ) ,  we resort to averaging that gives: 

k 

Wf(k + 1) = Wf(k) - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP VtV+$b)J(k), P > 0 (34) 
$b=O 

This update involves a summation that increases in length 

with time. In the forward implementation this summation 

is automatically taken care of. However, in the backward 

implementation, the length of adjoint run keeps increasing with 

time making the backward implementation impractical. Note 

that the update is not a batch update but a samplewise update. 

Scheme 34ens i t i v i t y  Method (Backward Implementation): 
Here we will modify Scheme 2 so that it is implementable in 

the backward sense. For this, we run the adjoint only for a 

finite period of time. For the sensitivity method to converge, 

a necessary condition is that the series 

Under this necessary condition, the effect of truncation of the 

summation gk+' is studied in the following proposition. 

Proposition 8: r f  (35)  holds, then 3 a finite N such that, the 
finite horizon update, 

N-1 

W,(k + 1) = W,(k)  - /I V W f ( k - @ ) J ( k )  (36) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
$ C O  

can be used instead of the infinite horizon update (34) for the 
purpose of optimization. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

Proof: For optimization, it is not necessary to follow the 

negative gradient, -gk+l, but is sufficient to choose a descent 

direction [22], -dk+ ' (N)  such that, g(k+l)Td(k+l)(N) > 0. 

Consider the sequence g(k+')Td(k+l)(N), where 

N - 1  

(37) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
$b=O 

Since g"' is a convergent series, either the last term or the 

sum of last few terms tend to zero as #J i k and k i 00. Also 

as k + CO and N i co,g(k+l)Td(k+f)(N) -+ g m T g m  > 
0 

With this proposition we prove that it is sufficient to go back 

a finite number of steps ( N )  through the adjoint making the 

backward implementation of the sensitivity method feasible. 

Note that the truncation in this context is not a further 

approximation over Scheme 2. On the contrary, the assumption 

that the parameters remain constant over a finite period can 

actually be met when batch processing is performed as shown 

below: 

0,3 a finite N such that, g(k+ ' )Td (k+ ' ) (N )  > 0. 

N-1 

$=O 

The major drawback in implementing this update is that it 

uses only $th of the information available as we disregard 
J ( k  - i ) ,  i = 1 ,2 , .  . . N - 1. On the contrary, if sample 

by sample update is done as in (36), then we are adapting 

a parameter that has a totally different time tag. 

Scheme 4-Predict ive Back Propagation: In a recurrent 
network the present weight W f ( k )  affects the future cost 

J ( k  + i )  for all i 2 0. So for analyzing how an error caused 

by the present set of weights evolves due to dynamics of the 

system, it is desirable to choose the criterion function that 

looks into the entire time scale up to infinity. However, since 

the state space of the system is finite, it is not necessary to 

analyse till infinity, a finite window of length "N" say being 

sufficient. Also for the sake of implementation it is required 

that the analysis interval be finite. Hence the gradient that 

has to be used is 

N-1 

which can be obtained only at time instant ( k  + N ) .  However, 

this gradient cannot be used to update the then weight, 
W f ( k  + N ) .  To resolve the problem of using derivatives with 

respect to past parameters to correct the present ones, we 

resort to prediction in this scheme. In the feedforward case, 

the Lyapunov function was chosen so that a weight gets tested 
over the entire input set of interest. In the presence of feedback, 

the criterion function is so chosen that it not only evaluates the 
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weights over the entire input space but also over the evolution 

of those inputs over the time axis. For this, we look ahead 

in time using an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN step prediction at every time instant and 

obtain the effect of the present parameters on the future costs. 

Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ i ( k )  be the N step prediction cost defined by 

1 N-l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- g ( z p ( k  + N - 4), u ( k  + N - 4))112 

J; = - Ilg(z(k + N - 4), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu(k + N + 4)) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
$=O 

(39) 

under the constraint 

x(k+N-+)  = f(z(k+N-4-1),’1L(k+N-4---1), WAk)) 

(40) 
Since the dynamics act as constraints, Lagrange multipliers 

are introduced to get 

1 
N - 1  

J,(k) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 $7(z(k + N - 4)) - g(z,(k + N - 4))112 
$=O 

- XT(4)[x(k + N - 4) - f ( k  + N - 411 (41) 

Differentiating (41) with respect to z( k + N - 4) and equating 

it to zero leads to the adjoint equation: 

A(4) = 3 : ( k + N - $ ) f ( k  + - 4 -k 1)A(4 - l )  

+ 9 z ( k + N - + ) g ( k  + - 4) 
[g(.(k + N - 4)) - g(zCp(k + N - 4111 

(42) 

V W f ( k ) J P ( k )  = % f ( k , f ( w ( N >  (43) 

As was seen earlier, to obtain the “gradient amidst dynamics,” 

Vwf(k,Jp(k), we first go ahead in time N steps by prediction 

and then go back in time through the adjoint of the system. In 

Theorem I ,  back propagation of a criterion that is of the form 

a[y(k) - y p ( k ) ] 2  was discussed, where the adjoint input was 

zero b’4 # 0. However, if the cost is a sum of squared errors, 

as in (39), then the adjoint input at retrograde time “@’ will 

be as in the second term of (42). 

Choice o f N :  In the following proposition, we show that 

the size of the prediction window “N”  should be at least the 

order of the system “n” and predicting over a larger interval 

is superfluous. 
Proposition 9: If the system is locally observable at all 

operating points then it is sufficient to back propagate as many 
0 

Proof: The gradient Vrvf(k) J .  ( k )  gives the decoupled 

effect of the weights at time “k,” W f ( k ) ,  on J p ( k ) ,  regardless 

of the weights used at other time instants during prediction, 

W f ( k  + i) for i = 1 , 2 , . . - , N  - 1. So let us assume that 

W f ( k  + 1) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW; for i = 1 , 2 , . . - , N  - 1. Then, given 

x ( k  - 1) = z p ( k  - l), the cost function J,(k) is just the 

cost associated with the time evolution of the error in the 

state (z(k:) - z p ( k ) )  = e, (say), which is induced by the 

mismatch in weights at time instant “k.” Considering the 

system linearized around an operating point and assuming 

that the operating point does not change, the cost and the 

time steps as the order of the system. 

22 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

sensitivities can be calculated as follows. For the simplicity of 

notation, let S x ( k ) f ( k )  = A and S,(,)g(k) = C. 

. N-l 

+=0 

If we assume that the system is observable, then the observ- 

ability matrix 0, is full rank and so is 0~ for any N 2 n. 
Hence @$ON is positive definite. The observability matrix 

and the sensitivity are given by, 

Ideally, we would like to evaluate the weights over the 

entire time axis. In such a case we would have calculated 

A, = O~O,e,. But since we go only for a finite length of 

time, we have X(N) as in (48). These two adjoint outputs are 

related by, X(N) = (O$@,)(O~O,)-lX,. However, both 

(050,) and (02@,)-’ are positive definite for N _> n. 
So if -A, is a descent direction, so is -X(N). This means 

that it is sufficient to back propagate as many time steps as 

are required to make ON full rank, which is the order of the 

0 
Remark8: From the above proposition we see that as a 

dynamic system cannot be assessed with a single sample, we 

need to wait for a certain minimum number of time units equal 

to the order of the system. Also we see that a longer delay 

does not yield any further information. This waiting time is 

circumvented in the present scheme by the use of prediction. 

In the context of adaptation in dynamic systems, we see that 

there are two issues that have to be addressed. The first issue is 

the error caused by the mismatch of weights. In Proposition 9, 

we considered the propagation of the state error arising due to 
the mismatch in the weights, in order to judge how a change in 

the present weights will affect the long term cost. The second 

issue is how we can control (keep within certain bounds) the 

propagation of the state error. In the present scheme and the 

next we will assume that the propagation of the state error 

is somehow kept under control. In the last scheme (Scheme 

&Predictive Back Propagation with Filtering), we propose 

a methodology to keep the propagation of the error under 

control. 

Now assuming that every data set of length M is infor- 
mative, in this case even over the time axis, we define the 

Lyapunov function: 

system from the observability assumption. 

M-I 

P(k) = J,”(k - i) 
i = O  

(49) 
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Proposition 10: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI f l )  the system is observable, 2 )  every input 
data set of length M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis informative with respect to the model f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(.) 
over the set of interest N, 3) If the initial states of the plant and 
the model match at the beginning of every batch of length M ,  4 )  
the second partials of 9 are bounded and 5 )  the update is done 
once in M time steps using: 

W f ( k  + 1) - W f ( k  - M + 1) 
M-1 

- _  - P V W f ( k - - M + l ) w  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-P V W f ( ” M + l ) J P ( k  - 2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A*($)  = S:(k--I+N--I)f(k - + N - 4 + 1)A*(4 - 1) 

V W J , ( k - M + l ) J p ( k  - 2) = S T W f ( k - M + l ) f ( l “  - W ( N )  

Z=O 

(50) 

+ S : ( k - - r + N - 4 ) 9 (  k - i + N - 4) 

x [g (z (k  - i + N - 4)) - g(zP(k - i + N - 4))] (51) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(52)  

converges to a minimum. 0 
then there exists a p > 0 such that the batch update process 

Proof: The batch cost Q ( k )  arises due to 1) mismatch in 

initial conditions and 2) mismatch in weights. By the assump- 

tion on the initial conditions, the batch cost depends only on 

the mismatch of weights. From Proposition 9, the finite horizon 

gradient evaluated over N steps, Vwf(k-~+l)\Tr(k), is a 

descent direction. Under the assumption of informative sets, 

the proof follows from Proposition 5, where the convergence 
of a batch update along a descent direction is proved. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

Proposition I I :  If I )  the system is observable, 2 )  every input 
data set of length M is informative with respect to the model f (.) 
over the set of interest N, 3)  the states of the plant and model 
somehow match every sample, 4 )  the second partials of 9 are 
bounded and 5) the update is done every time step using: 

Wf(k + 1) = Wf(k) - P V W f ( k )  J P ( k )  (53) 

where V W f ( k ) J p ( k )  is calculated as in (42)-(43), then, there 
exists a p > 0 such that the sample by sample update process 
either converges to the global minimum or to a close enough 

0 
0 

Remark 9: The key problem in using prediction is that 

the future values are not available to us for correction. To 
overcome this we place our model “N” steps behind in time, 

i.e., at ( k  - N ) ,  and predict from ( k  - N + 1) to “k.” In a 

samplewise update this should be carried out every sampling 

instant with the new weights. In other words, the adaptation 

will not be in real time but behind it by “N” time units. 

This is only an implementation aspect and does not affect 

convergence. 

Scheme 5-Targeted Back Propagation: The major prob- 

lem in Scheme 4 is that it requires explicit prediction that is 

computationally expensive. This was done so that the time tag 

of the weight and the time tag of the gradient are matched. 

In this scheme we look into an altemative that avoids explicit 
prediction. The key idea is that in static maps, the gradient 

can be calculated independent of time, once the target inputs 

and outputs are available. In particular, if in the recurrent 

state model (6),  good estimates of the states are available, 

then the problem gets decoupled as in the case of state-output 

model ( I ) .  

neighborhood of a local minimum. 
Proof: Follows from Propositions 6, 7, and 10. 

So, instead of obtaining the gradient with respect to the past 

weights (the problem is that the weights have changed and we 

don’t know how to use these gradients), we use the adjoint to 

calculate the gradient with respect to the state z ( k  - N )  and 

correct it. Also note that in the predictive back propagation 

scheme, gradient calculation in (43) is just back propagating 

X(N) through a static map. Let z’(k - N )  be used to represent 

the corrected state. Then, 

z ’ ( k  - N )  = z ( k  - N )  - 9V,(k-&(lC - N )  
= z ( k  - N )  - QX(N),7) > 0. (54) 

In this scheme the state variables are considered as adjustable 

parameters that are updated to minimize the cost function Jp.  
By updating along the gradient, in an off-line scheme, the 

state converges to its desired value. Assuming that such a 

convergence is also possible in an on-line update like ours, 

the corrected states, z ’ ( k  - N )  and z’(k - N - 1) can be 

taken to be the true values of xp. Then we have an input-output 

relationship, [ z ’ ( k - N - l ) , u ( k - N - 1 ) ]  ---f z ’ ( k - N ) ,  which 

can be presented to the static map f (  .) for the calculation of 

the gradient. So we reapply z’( k - N - l), U (  k - N - 1) to the 

network at time “k” and use the error to correct the present 

map. The gradient obtained is: 

V W f ( k )  J t ( k )  = %&(k)f(k)(f(.’(k - N - 11, 

u(k - N - l),W,(k)) - z’(k - N ) ) ( 5 5 )  

Wf(k)) - .’(k - N)1I2 (56)  

1 

2 
Jt(k) = - I l f ( d ( k  - N - 1 ) , ~ ( k  - N - I), 

Note that, in the absence of changes in weights, if z ’ ( k  - 
N - 1) = z ( k  - N - l), then the error term is equal to 

vX(N).  Hence the same gradient as in (42)-(43) is obtained. 

[Vw,(k,Jt(k) = Vwf(k) J p ( k ) ] .  However, with the previous 
state and weights updated the gradient is altered so as to 

account for the change in the weights. Though the gradient 

of Scheme 5 can be obtained as 9 ---f 0, it is seen that a non- 

zero 71 speeds up convergence. In comparison with the earlier 

scheme, this algorithm requires only an additional rerun of the 

static map instead of an N step prediction. 

Scheme &Predict ive Back Propagation with Filtering: In 

the convergence analysis of the predictive scheme, it is not 

realistic to assume that the plant and the model states match 

at every sampling instant. Further, any mismatch in weights 

leads to a mismatch in the states. To take care of this spill-over 

from one sampling instant to another, the states should also be 

adapted. In the context of parameter adaptation, correction of 

the states is quite logical and improves the speed of adaptation. 

Consider a situation in which a state was pushed into error 

due to a wrong parameter. If we do not adapt the states, 

they will not retum to their true values even if the parameters 

converge to their correct values. The error in the states will 

then be attributed to the parameters leading to instability in 

the adaptation mechanism. 

In the targeted back propagation scheme a methodology 

for the correction of the states was discussed. In the present 

scheme we combine the last two schemes, by first correcting 
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the state and then using the corrected value for further pre- 

diction. Hence, this scheme requires prediction at every time 

instant. The convergence result with the parameter and state 

updates is stated in the following theorem. 

We first introduce the notation that will be used. Let a 

transformation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3, be defined by, 3 = E-lDE, 
where A = E-lDE, E the matrix of eigenvectors, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD the 

diagonal matrix containing the eigenvalues and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa a diagonal 

matrix defined by, 

Theorem 2: If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1)  the system is observable, 2 )  the second 
partials of Q are bounded, 3 )  every input data set of length M 
(say) is informative with respect to the model f (.) over the input- 
state set of interest N,  4 )  if the gradient is obtained using the 
adjoint equations (42)-(43), 5 )  the parameters are updated every 
time step using (53), and 6 )  the states updated using: 

E(k - N )  = ( 2  + 6) [Z</(k - N - 1)ZI’ 

< / ( k  - N )  = ( [ - 1 ( k  - N )  + q(o;F@Ar))-l (59) 
(60) d ( k  - N )  = ~ ( k  - N )  - ~ [ ’ ( k  - N ) X ( N )  

where [ ( k )  is an estimate of the covariance of the error in 
the states, r the upper bound that describes the influence of 
- the weight mismatch in the dynamics of the estimated norm, 
A = T(Sz(k-Nl  f(k - N ) ) ,  ON the observability matrix of 
the linearized transformed system at time instant ( k  - N )  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n = q11c11 ((@ZQ,v(I, 7)  the error is such that the linearization 
is valid, then, there exist constants q, p > 0 such that the sample- 
wise update converges either to the global minimum or to a close 

U 
Proof: If the states of the model and the plant do not 

match at every sampling instant, then J p ( k ) ,  and hence its 

batch sum consists of two components: that caused due to a 

mismatch in the parameters, 9,(k), and that caused due to an 

error in the initial state, 9, (k ) ,  i.e., q ( k )  = 9, (k )  + 9 , (k ) ,  
where 9 , (k )  has the summation form of e,(ONT@N)e, from 
(46). From Proposition 1 1  it can be seen that the error caused 

by the parameters, Q,(k), keeps decreasing in successive 

batches. The proof will be completed if we show that some 

function of the error in states e, also reduces in successive 

enough neighborhood of the local minimum. 

batches. In this proof we construct a function that decreases 

in every time step and hence the result is directly applicable 

to sample-wise updates. 

Let e, ( k  - N )  be the actual error in the states and [( k - N )  
the estimated covariance of it. A candidate Lyapunov function 

that can be associated with the dynamics of the error in the 

states [23] is: 

1 v,(~c) = ZezT(k - N)[-’(Ic - N)e,(k - N )  

v2(k - N )  = (1 + ~ ) ! P i ( k  - N )  and v”(k - N )  

= Q L ( k  - N) (62) 

The error in the states depends upon the past corrected error 

and the error induced by the parameter errors. 

e,(k) = S * ( k ) f ( W ( k  - 1) + r q W ( k )  
5 3ea (k  - I) + r@,(k) (63) 

Let the covariance be updated by using the recursive equation 
(58). With the updates (58) and (63) (time update-update 

between sampling instants), we will show that the function V, 
is non-increasing; i.e., V,(k) 5 V,(k  - 1). 

Equation (64) can be obtained by noting: 1)  q, is mono- 

tonically non-increasing, i.e., *$(IC- N -  I)+ (I +&)Q;(k - 
N )  5 (2 + ~ ) * ; ( k  - N - l), 2) Ilz-h’ll 5 fillrll, and 3) 

perfect square. 

Though V,(k) 5 V,l(k - l), the covariance E(k - N )  may 

become unbounded with time. To avoid this, we correct the 

states along the gradient of the Lyapunov function and also 

update the covariance [ ( k  - N )  in such a way that V, keeps 

decreasing with the measurement update (correction process); 

i.e., V J k )  5 V,(k), and < is bounded. From (46) the state 

correction (60) can be written as, 

z ’ (k-N)  = z (k -N) -q  <‘(k-N)(@K@N)e,(k-N) (65) 

If the covariance be updated using (59) and v as in (62), the 
change in V, will be, 

(e;T[/-le; - 2 ~ , 2 ~ [ { - 1 z - ’ r  + q;rTx-T<’-lx-lr) is 

V,’(k) - Vz(k) 
1 
2 

= -(eLT(k - N)E’-’(~ - N)ea(k - N )  

VZ(k)  - V,l(k - 1) 
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1 rTr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
111 II - zQE(k - N I T ( &  - 71111’11 Il@T,@Nll) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 o(66) 

We see that V, is non-increasing during both estimation and 

correction; i.e., V , ( k )  5 V,(lc) 5 V;(IC-1). Also [ is bounded 

from above by ~ ( @ T , @ N ) - ~ .  Since (@:ON) is positive 

definite from the observability assumption and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA71 > 0 , t  does 

not blow up to infinity. With the covariance appearing in the 

update equation, whenever the estimated covariance of the 

error is large then a large step is taken along the descent 

direction. This is necessary as our correction should at least 

compensate for the increase in error due to dynamics. By our 

bound on [, we find that 1’A < e,, which is acceptable in a 

quadratic programming problem like ours. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASo, if we redefine 

the Lyapunov function as 

(67) 

where 9 , ~  ( I C )  is the sum of V, ( I C )  over the batch, then the up- 

dates mentioned in the theorem decrease it monotonically and 

hence the batch update converges. Arguments for samplewise zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
17 

Extended Kalmanfiltering: For the adaptation of states, we 

go back in time through the adjoint and correct a past state. 

From there an “N” step prediction is done to correct the 

present state. Due to the dynamics we go through a backward 

and a forward pass. This can be solved without going back 

and forth in time by using a Kalman filter [24]. Targeted back 

propagation is a scheme that performs parameter adaptation 

without prediction. Using the concept of Extended Kalman 

filtering the state adaptation can be performed without explicit 

prediction. These two concepts can be combined to yield 

a scheme “targeted back propagation with filtering,” which 

approximates the above scheme and is computationally less 

expensive. 

Remark zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10: Note that if the system is stable, the system 

dynamics itself reduces the state error. In such cases, state 

update as in Theorem 2 is not very essential. 

Remark 11 : All the algorithms developed here are applica- 

ble to cases where the model is some arbitrary interconnection 

of subsystems (NARMA-autput error model). The steps that 

have to be used in learning such an interconnected system are: 

1) Construct the adjoint of the interconnecting loop replacing 

every subsystem by its corresponding adjoint to obtain the 

adjoint of the overall system. 2) Back propagate the error 

through the overall adjoint to calculate the gradient with 

respect to the weights and signals. 3) Using the gradient, the 

adaptation can be performed using any one of the schemes 

developed earlier. 

* ’ ( IC )  = *, ( IC) + * , € ( I C )  

update follow from Propositions 6 and 7. 

Fig. 7. Response for a unit step input. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Fig. 8. Response for a 0.1 unit step input. 

We close this section by noting that the algorithms presented 

here are quite computationally intensive compared to those 

used for feedforward systems, which is inevitable if the 

dynamics are significant. 

VII. SIMULATION RESULTS 

Here we present a simple example to illustrate the ideas 

reported in this paper. The plant considered is a second order 

plant described by the state and output equations: 

Z l ( k )  = f ( Z l ( k  - I), Zz(k - 11, u(k  - I ) ) ,  

y(k) = Q ( k )  = q(IC - 1) (68) 

?‘he nonlinear mapping f(.) with which the plant generates its 

output is chosen to be a three layer perceptron with 3 inputs, 

3 hidden nodes and one output. Bipolar sigmoid nonlinearity 

is used for activation in all units. Weights for the plant are 

arbitrarily chosen so that its dynamic behavior is interesting. 

For the choice of weights used in this simulation, the responses 

for step inputs of 0.1 unit and 1 unit are shown in Figs. 7 and 

8. It can be seen that the response for a 0.1 unit step enters 

a limit cycle while that for an unit step is well damped. Also 

note that the DC gain of the system is negative. 

For the model, a similar network is used. Also we assume 

that full state information is not available and hence the 

leaming situation is similar to that of the recurrent state model. 
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Fig. 9. Direct adaptation. 

N&e J 8io.h. 

Fig. 11.  Sensitivity method-backward. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
U, I 

Fig. 10. Sensitivity method-forward. 

During adaptation the weights are kept bounded by using a 

hard saturation on the weights. The initial conditions of the 

model are chosen randomly and the input to the plant is a 

random signal of length 50 repeated over and again. The 

update is done in batches with the batch length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA“M” being 

50. The number of back propagation steps, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA“N,” is chosen to 

be the order of the system, which is 2. Since the number of 

weights in this network is 16, to uniquely define it amidst 

second order dynamics the batch size of 50 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 16(2 + 1) 
was chosen. For a proper comparison of various schemes, the 

plant, the initial conditions, the learning rate, and the input 

to the system are kept the same in all simulation trials. The 

comparison is made by studying the time behavior of the 

fitness criterion, which is a Lyapunov function over different 

batches. 

Since the dynamics is quite significant, the direct update 

scheme is incapable of decreasing the Lyapunov function as 

shown in Fig. 9. The Lyapunov function saturates at a high 

value due to the boundedness of the sigmoid nonlinearity. The 

sensitivity method implemented in the forward sense also does 

not converge under the conditions of the present simulation 

(Fig. 10). The weights start blowing up, only to be limited by 

their saturation limits. This may be due to the fact that once 

the summation for the sensitivity calculation starts increasing 

in length, the step size used is too large to assure a decrease 

NUL. 4 Bach.  

Fig. 12. Predictive back propagation. 

in cost. However, the backward implementation of sensitivity 

method converges. Though it is capable of eventually reducing 

the Lyapunov function, it does not do so monotonically (Fig. 

11). The extent of the increase of the Lyapunov function in 

the divergent phases keeps reducing with time. This can be 

attributed to the fact that, as the changes in weights keep 

reducing with time, the constancy of weights assumption 

required for the sensitivity method is met with increasing 

fidelity. Ultimately, its performance is comparable to that of 

other methods. 

For the other three schemes (Figs. 12, 13, and 14) monotonic 

decrease of the Lyapunov function is observed indicating 

that these schemes are globally convergent. Monotonic con- 

vergence in the predictive and targeted back propagation 

cases means that for this system the state error is reduced 

automatically and the spill-over across batches is not large 

enough to cause instability. Hence filtering is not very essential 

and this fact can be used to reduce the computational burden. 

However the convergence is faster with filtering and is the best 

among all schemes discussed. The convergence properties of 
the Targeted scheme lie in between those of the Predictive 

schemes with and without filtering, since the weight update of 

the Targeted scheme is accomplished only indirectly through 

filtering. 

As a second example, illustrative of how control problems 

can be attacked using the algorithms reported here, we consider 
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Fig. 13. Targeted back propagation. 
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Fig. 14. Predictive back propagation with filtering. 
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Fig. 16. Sensitivity method-forward. 
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Fig. 15. Direct adaptation. Fig. 18. Predictive back propagation. 

an unit feedback system around the same plant with an unity 

gain proportional controller. In the simulation we assume 

that the system configuration and the plant dynamics are 

known while the gain of the controller is unknown. The 

gain has to determined from the reference input and the 

plant output. The derivative of the cost function with respect 

to the controller gain is obtained by back propagating the 

error through the adjoint of the plant. The time evolution 

of the estimated gain in the various schemes are shown 

in Figs. 15 to 20. The direct adaptation leads to a limit 

cycle, while the forward implementation of the sensitivity 

method initially overshoots and converges very slowly. The 

convergence of the backward implementation of the sensitivity 

method is quite fast but is characterized by a large overshoot. 

Barring a few differences, the convergence characteristics of 

the Predictive and Targeted back propagation schemes are 
similar. With filtering, the convergence is faster with no 

overshoot. 
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Fig. 19. Targeted back propagation. 
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Fig. 20. Predictive back propagation with filtering. 

VIII. CONCLUSION 

In this paper, it was shown that for identification of general 

nonlinear dynamic systems the use of recurrent models is 

inevitable. In cases where the model is an interconnection of 

dynamic subsystems, it was illustrated that the adjoint model 

can be used to calculate the gradient. To update the weights 

of the network using the gradient various schemes were pro- 

posed with increasing levels of computational complexity. The 

convergence of predictive back propagation with filtering was 

established. As a preamble, convergence issues in feedforward 

models was analyzed using a Lyapunov approach. 
The update schemes presented here are directly extend- 

able to any interconnection of dynamic subsystems. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASo, the 

adaptive control problem can be solved using the algorithms 

reported here by casting it as a problem of identification with 

an interconnected model. Though the algorithms discussed 

here are computationally more expensive compared to their 

feedforward counterparts, they are competitive in comparison 

with the algorithms available in the current literature for 

recurrent models. An increase in computational complexity 

is naturally expected due to the dynamics and is inevitable if 

the dynamics encountered is significant. 

REFERENCES 

[ I ]  R. P. Lipmann, “An introduction to computing with neural nets,” IEEE 
ASSP Magazine vol. 2, pp. 4-22, Apr. 1987. 

R. J. Hunt, D. Sbarbaro, R. Zbikowski and P. J. Gawthrop, “Neural 
networks for control systems-A survey,” Automurica, vol. 28, no. 6, 
pp. 1083-1112, 1992. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
K. S. Narendra and K. Parthasarathy, “Identification and control of dy- 
namical systems using neural networks,” IEEE Trans. Neural Networks, 
vol. 1, pp. 4-27, 1990. 
S. Chen and S. A. Billings, “Nonlinear system identification using neural 
networks,” International Journal of Control, vol. 51, pp. 1191-1214, 
1990. 
P. J. Werbos, “Back propagation through time: What it does and how zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
to do it,” Proc. IEEE, vol. 78, pp. 1550-1560, Oct. 1990. 
A. G. Barto, R. S. Sutton and C. W. Anderson, “Neuron-like adaptive 
elements that can solve difficult learning control problems,” IEEE Trans. 
System Man, Cybernetics, vol. 13, pp. 834-846, 1983. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
M. Kawato, Y. Uno, M. Isobe and R. Suzuki, “Hierarchical neural 
network model for voluntary movement with application to robotics,” 
IEEE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAconnol sysfems magazine, vol. 8, no. 2, pp. 8-16, 1988. 
D. Nguyen and B. Widrow, “Neural networks for self-learning control 
systems,” IEEE control systems magazine, vol. 10, no. 3, pp. 18-23, 
Apr. 1990. 
K. S. Narendra and K. Parthasarathy, “Gradient methods for the op- 
timization of dynamical systems containing neural networks,” IEEE 
Trans. Neural Networks, vol. 2, pp. 252-262, 1991. 
D. E. Rumelhart, G. E. Hinton and R. J. Williams, “Learning intemal 
representations by error propagation,” in Parallel Distributed Process- 
ing: ExpIorations in the Microsrrucfure of Cognition. Cambridge, MA: 
MIT Press, ch. 8, vol. 1: Foundations, pp. 318-362. 
P. J. Werbos, “Beyond regression: new tools for prediction and analysis 
in behavioral sciences,” P h.D Thesis, Harvard University, 1974. 
G. Cybenko, “Continuous value neural networks with two hidden layers 
are sufficient,” Math. Control Signals and Sysfems, vol. 2, pp. 303-314, 
1989. 
K. Funahashi, “On the approximate realization of continuous mappings 
by neural networks,” Neural Networks, vol. 2, pp. 183-192, 1989. 
J. B. CNZ Jr., Ed., Sysfem Sensitivity Analysis, Stroudsburg PA: Dowder, 
Hutchinson and Ross, 1973. 
R. J. Williams and D. Zipser, “A Learning algorithm for continually 
running fully recurrent neural networks,” Neural Compuration, vol. 1, 

pp. 270-280, 1989. 
K. S. Narendra and L. E. McBride. Jr., “Multi-parameter self- 
optimization using correlation techniques,” IEEE Trans. Auro. Contr., 

B. Srinivasan, U. R. Prasad and N. J. Rao, “Improved back propagation 
methods for identification of nonlinear dynamical systems using neural 
networks,” IJCNN92, vol. 2, pp. 59-63, Beijing, 1992. 
P. Zarchan, “Strategic and tactical missile guidance,” vol. 124, AIAA 
Publication 1990. 
A. E. Bryson and Y. C. Ho, Applied Optimal Control: Optimisation, 
Estimation and Control. Blaisdel Publishing Company, 1969. 
S. W. Director and R. A. Rhorer, “The generalised adjoint network 
and network sensitivities,” IEEE Transacrion Circuit Theory, CT-16, pp. 

L. Ljung, System Identijkation: Theory for the User. Prentice Hall, 1987. 
R. Fletcher, Practical Methods of Optimization. Vol. I ,  New York: J. 
Wiley zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Sons, 1980. 
A. H. Jazwinski, Stochastic Processes and Filtering Theory. Academic 
Press, 1970. 
R. C. K. Lee, “Optimal estimation, identification and control,” Research 
monograph 28, Cambridge, MA: MIT Press, 1964. 

vol. AC-9, pp. 31-38, 1964. 

318-323, 1969. 

Balasubrahmanyan Srinivasan received the B.E. 
degree in Electronics and Communication Engineer- 
ing from the Bharathiar University, Coimbatore, 
India in 1988. He received the M.Tech. in Elec- 
tronics Design and Technology from the Indian 
Institute of Science, Bangalore, India in 1990, where 
he is currently pursuing the Ph.D. degree in the 
Department of Computer Science and Automation. 

He spent an year in the Control Laboratory at the 
Swiss Federal Institute of Technology, Lausanne, 
Switzerland. His research interests include adaptive 
and optimal control of nonlinear systems, neural 
networks, and motion control. 



228 

Upadrasta Ravikirana Prasad zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(M’68) was bom 
in Guntur, India in 1944. He received the B.Sc. 
degree in Physics and the B.E. (Hons.) degree 
in Electrical Engineering from Andhra University, 
Visakhapatnam, India, and the Ph.D. degree from 
the Indian Institute of Technology, Kanpur, India. 
in 1960, 1965 and 1970 respectively. 

He was a research associate at the Indian Institute 
of Technology, Kanpur, India during 1970-71. In 
1972, he joined the Indian Institute of Science, 
Bangalore, India where he is currently a Professor 

in the Department of Computer Science and Automation. He was a Nuffield 
Fellow at the Department of Electronic System Design, Cranfield Institute of 
Technology, Cranfield, England during 1979-80, and a Visiting Scientist at the 
Institute of Flight Systems Dynamics, German Aerospace Research Organi- 
zation, Oberpfaffenhofen, Germany during 1987-88. His research interests 
include control systems, differential games, neural networks, and applications. 

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 5, NO. 2, MARCH 1994 

Nalam Jaganmohan Rao, (S’68-M’70), received 
the B.E. degree in Telecommunication Engineering 
from Andhra University, Visakhapatnam, India in 
1964, the M.Tech. degree in Industrial Electronics 
from the Indian Institute of Technology, Bombay, 
India in 1966 and the Ph.D. degree in Control 
Theory from the Indian Institute of Technology, 
Kanpur, India in 1972. 

In 1972, he joined the School of Automation 
at the Indian Institute of Science, Bangalore, India 
where he is currently a Professor. Since 1981, he is 

the Chairman of the Centre for Electronics Design and Technology at the same 
Institute. His areas of interest are digital systems, motion control systems and 
engineering education. 


