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Abstract

We study the back stable Schubert calculus of the infinite flag variety. Our main results
are:

– a formula for back stable (double) Schubert classes expressing them in terms of a
symmetric function part and a finite part;

– a novel definition of double and triple Stanley symmetric functions;
– a proof of the positivity of double Edelman–Greene coefficients generalizing the

results of Edelman–Greene and Lascoux–Schützenberger;
– the definition of a new class of bumpless pipedreams, giving new formulae for double

Schubert polynomials, back stable double Schubert polynomials, and a new form of
the Edelman–Greene insertion algorithm;

– the construction of the Peterson subalgebra of the infinite nilHecke algebra,
extending work of Peterson in the affine case;

– equivariant Pieri rules for the homology of the infinite Grassmannian;
– homology divided difference operators that create the equivariant homology Schubert

classes of the infinite Grassmannian.

1. Introduction

1.1 Flag varieties and Schubert polynomials

The flag variety Fln is the smooth projective algebraic variety classifying full flags inside an

n-dimensional complex vector space Cn. The cohomology ring H∗(Fln) was determined by

Borel [Bor53]: it is the quotient of the polynomial ring Q[x1, . . . , xn] by the ideal generated

by symmetric functions in x1, . . . , xn of positive degree.

The flag variety has a distinguished stratification by Schubert varieties, and the cohomology

classes of Schubert varieties form a basis of H∗(Fln), called the Schubert basis. Bernstein, Gelfand,

and Gelfand [BGG73] and Demazure [Dem74] found formulae for the Schubert basis in terms of

divided difference operators. Lascoux and Schützenberger [LS82] defined and studied polynomial

representatives for the Schubert classes, called the Schubert polynomials Sw ∈ Q[x1, . . . , xn].

Received 21 February 2019, accepted in final form 7 October 2020, published online 30 April 2021.
2020 Mathematics Subject Classification 14M15, 05E05 (primary).
Keywords: flag variety, Grassmannian, Schubert polynomial, Schur polynomial.

T.L. was supported by NSF DMS-1464693. S. J. Lee was supported by the National Research Foundation of
Korea (NRF) grant funded by the Korean government (MSIT) (No. 2019R1C1C1003473). M.S. was supported by
NSF DMS-1600653.
This journal is c○ Foundation Compositio Mathematica 2021. This is an Open Access article, distributed under
the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly
cited.

https://doi.org/10.1112/S0010437X21007028 Published online by Cambridge University Press

http://www.compositio.nl/
http://www.ams.org/msc/
http://www.compositio.nl/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1112/S0010437X21007028


T. Lam, S. Jin Lee and M. Shimozono

Lascoux and Schützenberger furthermore defined the double Schubert polynomials Sw(x; a) that

represent Schubert classes in the torus-equivariant cohomology ring H∗
T (Fln).

There is a rich combinatorial theory for Schubert polynomials. Among the fundamental

results crucial to us is the formula of Billey, Jockusch and Stanley [BJS93] for the monomial

expansion of Sw.

1.2 Back stable Schubert polynomials

In this work, we consider limits of Schubert polynomials called back stable Schubert polynomials

←−
Sw := lim

p→−∞
q→∞

Sw(xp, xp+1, . . . , xq),

for w ∈ SZ, the group of permutations of Z moving finitely many elements. Two of us (T.L. and

M.S.) first learnt of this construction from Knutson (personal communication). Buch (personal

communication, 2018) was also aware of how to back stabilize (double) Schubert polynomials.

Finally, one of us (S.-J. Lee) found them on his own independently.

Define the ring of back symmetric formal power series

←−
R := Λ ⊗ Q[. . . , x−1, x0, x1, . . .]

where Λ denotes the symmetric functions in . . . , x−1, x0. In Theorem 3.5, we show that the back

stable Schubert polynomials
←−
Sw form a basis of the ring

←−
R . As far as we are aware, the ring

←−
R

has not previously been explicitly studied.

1.3 Coproduct formula

Stanley [Sta84] defined the Stanley symmetric functions Fw ∈ Λ, for w ∈ SZ to study the enu-

meration of reduced words of permutations. It is well known that the symmetric functions

Fw can be obtained as ‘forward limits’ of the Schubert polynomials Sw. We give a new con-

struction of Fw from back stable Schubert polynomials. Namely, we define a natural algebra

homomorphism η0 :
←−
R → Λ and show that Stanley’s definition of Fw agrees with η0(Sw). This

is closely related to, and explains, a formula of Li [Li14]. In contrast, the map sending Sw to Fw

is not multiplicative.

We prove that back stable Schubert polynomials satisfy the ‘coproduct formula’

(Theorem 3.14)
←−
Sw =

∑

w
.
=uv

Fu ⊗ Sv, (1.1)

where w
.
= uv denotes a length-additive factorization such that v is a permutation not using

the reflection s0. The coproduct formula decomposes
←−
Sw into a ‘symmetric’ part and a ‘finite

polynomial’ part. We do not know of an analogue of the coproduct formula for finite Schubert

polynomials.

1.4 Double Stanley symmetric functions

Back stable double Schubert polynomials
←−
Sw(x; a) can also be defined in a similar manner (though

the existence of the limit is less clear; see Proposition 4.3), and we show (Theorem 4.7) that they

form a basis of the back symmetric double power series ring
←−
R (x; a) := Λ(x||a) ⊗Q[a] Q[x, a],

where Q[x, a] := Q[xi, ai | i ∈ Z] and Λ(x||a) is the ring of double symmetric functions. The ring

Λ(x||a) is the polynomial Q[a] = Q[. . . , a−1, a0, a1, . . . ]-algebra generated by the double power
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sums pk(x||a) :=
∑

i�0 xk
i −

∑
i�0 ak

i . The ring Λ(x||a) is a Q[a]-Hopf algebra with basis the

double Schur functions sλ(x||a), and is studied in detail by Molev [Mol09].

Generalizing η0, there is an algebra homomorphism ηa :
←−
R (x; a) → Λ(x||a). We define the

double Stanley symmetric functions Fw(x||a) ∈ Λ(x||a) by Fw(x||a) := ηa(
←−
R (x; a)). As far as

we are aware, the symmetric functions Fw(x||a) are novel. When w is 321-avoiding, the double

Stanley symmetric function is equal to the skew double Schur function which was studied by

Molev [Mol09]; see Proposition A.2.

One of our main theorems (Theorem 4.22) is a proof that the double Edelman–Greene

coefficients jw
λ (a) ∈ Q[a] given by the expansion of double Stanley symmetric functions

Fw(x||a) =
∑

λ

jw
λ (a)sλ(x||a)

into double Schur functions sλ(x||a) are positive polynomials in certain linear forms ai − aj .

The usual Edelman–Greene coefficients jw
λ (0) := jw

λ (a)|ai→0 are known to be positive by the

influential works of Edelman and Greene [EG87] and Lascoux and Schützenberger [LS85]. Molev

[Mol09] has given a combinatorial rule for the expansion coefficients of skew double Schurs into

double Schurs (that is, for jw
λ (a) where w is 321-avoiding) but it does not exhibit the above

positivity.

Back stable double Schubert polynomials satisfy (Theorem 4.16) the same kind of coproduct

formula (1.1) as the nondoubled version, with the double Stanley symmetric functions Fw(x||a)

replacing Fw and double Schubert polynomials Sw(x; a) replacing the usual finite Schubert

polynomials Sw.

1.5 Bumpless pipedreams

We introduce a combinatorial object called bumpless pipedreams, to study the monomial expan-

sion of back stable double Schubert polynomials. These are pipedreams where pipes are not

allowed to bump against each other, or equivalently, the ‘bumping’ or ‘double elbow tile’ is

forbidden.

Using bumpless pipedreams, we obtain:

• an expansion for double Schubert polynomials Sw(x; a) in terms of products of binomi-

als
∏

(xi − aj); (Our formula is different from the classical pipe-dream formula of Fomin

and Kirillov [FK96] for double Schubert polynomials: unlike theirs, our formula is obvi-

ously back stable. Hence we also obtain such an expansion for back stable double Schubert

polynomials.)

• a positive expression for the coefficient of sλ(x||a) in
←−
S(x; a) (Theorem 5.11);

• a new combinatorial interpretation of Edelman–Greene (EG) coefficients jw
λ (0) as the number

of certain EG pipedreams (Theorem 5.14).

Our bumpless pipedreams are a streamlined version of the interval positroid pipedreams

defined by Knutson [Knu14]. Heuristically, our formula for
←−
Sw(x; a) is obtained by ‘pulling back’

a Schubert variety in Fl to various Grassmannians where it can be identified (after equivariant

shifts) with graph Schubert varieties, a special class of positroid varieties. This connects our
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work with that of Knutson et al. [KLS13], who identified the equivariant cohomology classes of

positroid varieties with affine double Stanley symmetric functions.

When presenting our findings we were informed by Anna Weigandt1 that Lascoux’s use

[Las02] of alternating sign matrices (ASMs) in a formula for Grothendieck polynomials is very

close to our pipedreams; ours correspond to the subset of reduced ASMs. Our construction has

the advantage that the underlying permutation is evident; in the ASM one must go through an

algorithm to extract this information. Lascoux’s ASMs naturally compute in K-theory rather

than in cohomology.

1.6 Infinite flag variety

Whereas Schubert polynomials represent Schubert classes in the cohomology of the flag variety,

back stable Schubert polynomials represent Schubert classes in the cohomology of an appropriate

infinite flag variety.

The infinite Grassmannian Gr is an ind-finite variety over C, the points of which are identified

with (infinite-dimensional over C) admissible subspaces Λ ⊂ F , where F = C((t)) (see § 6). The

infinite Grassmannian can be presented as an infinite union of finite-dimensional Grassmannians.

The infinite flag variety Fl is an ind-finite variety over C, the points of which are identified with

admissible flags

Λ• = {· · · ⊂ Λ−1 ⊂ Λ0 ⊂ Λ1 ⊂ · · · }.

Under an isomorphism between
←−
R and the cohomology of Fl, we show in Theorem 6.7 that back

stable Schubert polynomials represent Schubert classes of Fl. For the infinite Grassmannian it is

well known that Schur functions represent Schubert classes. Our Fl differs somewhat from other

infinite-dimensional flag varieties we have seen in the literature (see for example [PS86]), and

thus we give a reasonably independent development in § 6.

The infinite flag variety Fl is the union of finite-dimensional flag varieties, and any product

ξxξy of two Schubert classes ξx, ξy ∈ H∗(Fl) can be computed within some finite-dimensional

flag variety. Naively, as some subset of the authors had mistakenly assumed, no interesting and

new phenomena would arise in the infinite case. To the contrary, in this article we present our

findings of entirely new phenomena that have no classical counterpart.

1.7 Localization and infinite nilHecke algebra

The torus-equivariant cohomology H∗
T (Fln) of the flag variety can be studied by localizing to

the torus fixed points, giving an injection H∗
T (Fln) →֒

⊕
v∈Sn

H∗
T (pt) ≃ Q[a1, . . . , an]. It is known

[Bil99, Remark 1] that the localization ξv|w of a Schubert class indexed by v ∈ Sn at the torus

fixed-point indexed w ∈ Sn is given by the evaluation Sv(wa; a) ∈ Q[a]. We prove in Proposi-

tion 7.9 an analogous result for the equivariant cohomology ring H∗
TZ

(Fl): the localization of a

Schubert class ξv at a TZ-fixed point w ∈ SZ is equal to a specialization
←−
Sv(wa; a) of the back

stable double Schubert polynomial.

Kostant and Kumar [KK86] studied the torus-equivariant cohomology of Kac–Moody flag

varieties (including the usual flag variety) using the action of the nilHecke ring on these coho-

mologies. We construct in § 7 an action of the infinite nilHecke ring A′ on H∗
TZ

(Fl), giving an

infinite rank variant of the results of Kostant and Kumar.

1 See the recent preprint [Wei20].
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1.8 Homology

The torus-equivariant cohomology ring H∗
TZ

(Gr) of the infinite Grassmannian is isomorphic to

the ring Λ(x||a) of double symmetric functions (see Theorem 6.6). The (appropriately completed)

equivariant homology HTZ
∗ (Gr) of the infinite Grassmannian is Hopf-dual to the Hopf algebra

Λ(x||a). Nonequivariantly, this can be explained by the homotopy equivalence Gr ∼= ΩSU(∞)

with a group. Restricting to a one-dimensional torus C× ⊂ TZ, the multiplication of HC×

∗ (Gr)

is induced by the direct sum operation on finite Grassmannians, and was studied in some detail

by Knutson and Lederer [KL15]. The geometry of the full multiplication on HTZ
∗ (Gr) is still

mysterious to us, and we hope to study it in the context of the affine infinite Grassmannian in

the future.

Molev [Mol09] studied the Hopf algebra Λ̂(y||a) Hopf-dual to Λ(x||a), and defined the basis

ŝλ(y||a) of dual Schur functions in Λ̂(y||a), dual to the double Schur functions. We identify

(Proposition 8.1) the Schubert basis of HTZ
∗ (Gr) with Molev’s dual Schur functions ŝλ(y||a)

[Mol09]. We use this to resolve (Theorem 8.12) a question posed in [KL15]: to find deformations of

Schur functions that have structure constants equal to the Knutson-Lederer direct sum product.

One of our main results (Theorem 8.6) is a recursive formula for the dual Schur functions

ŝλ(x||a) in terms of novel homology divided difference operators, which are divided difference

operators on equivariant variables, but conjugated by the equivariant Cauchy kernel. A similar

formula had previously been found independently by Nakagawa and Naruse [NN18], who was

studying the homology of the infinite Lagrangian Grassmannian. Our construction is also closely

related to the presentation of the equivariant homology of the affine Grassmannian given by

Bezrukavnikov et al. [BFM05]. We hope to return to the affine setting in the future.

We compute the ring structure of this equivariant homology ring by giving a positive Pieri

rule (Theorem 8.18). Our computation of the Pieri structure constants relies on some earlier

work of Lam and Shimozono [LS12] in the affine case, and on triple Stanley symmetric functions

Fw(x||a||b) that we define in § 10. The double Stanley symmetric functions Fw(x||a) are recovered

from Fw(x||a||b) by setting b = a. The triple Stanley symmetric functions distinguish ‘stable’

phenomena from ‘unstable’ phenomena in the limit from the affine to the infinite setting.

1.9 Affine Schubert calculus

Our study of back stable Schubert calculus is to a large extent motivated by our study of the

Schubert calculus of the affine flag variety F̃l, and in particular Lee’s recent definition of affine

Schubert polynomials [Lee19]. There is a surjection H∗(Fl) → H∗(F̃ln) from the cohomology of

the infinite flag variety to that of the affine flag variety of SL(n). A complete understanding of

this map yields a presentation for the cohomology of the affine flag variety. Thus this project

can be considered as a first step towards understanding the geometry and combinatorics of affine

Schubert polynomials and their equivariant analogues.

We shall apply back stable Schubert calculus to affine Schubert calculus in future work. In

particular, analogues of our coproduct formulae (Theorems 3.14 and 4.16) hold for equivariant

Schubert classes in the affine flag variety of any semisimple group G [LLS21].

1.10 Peterson subalgebra

The (finite) torus-equivariant cohomology ring H∗
T (F̃ln) of the affine flag variety F̃ln has an action

of the level zero affine nilHecke ring Ã. Peterson [Pet97, Lam08] constructed a subalgebra P̃ ⊂ Ã

(recalled in Appendix C) and showed that the torus-equivariant homology HT
∗ (G̃rn) of the affine
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Grassmannian G̃rn is isomorphic to P̃. We refer the reader to [LLM+14] for an introduction to

affine Grassmannian Schubert calculus.

While Kostant and Kumar’s definition of the nilHecke algebra applies to any Kac–Moody

flag variety, the definition of the Peterson algebra is special to the case of the affine flag variety

(of a semisimple group). Thus it came as a surprise that we are able to construct (Theorem 9.8)

a subalgebra P′ ⊂ A′ of the infinite nilHecke ring that is an analogue of the Peterson subalgebra

in the affine case. While the infinite symmetric group SZ is not an affine Coxeter group, we are

able to define elements in A′ that behave like translation elements in affine Coxeter groups.

Our infinite Peterson algebra P′ is in a precise sense the limit of Peterson algebras for affine

type A. This allows us to apply known positivity results in affine Schubert calculus to deduce

the positivity (Theorem 4.22) of double Edelman–Greene coefficients.

1.11 Other directions

Most of the results of the present work have K-theoretic analogues. We plan to address K-

theory in a separate work (Lam, Lee and Shimozono, Back stable K-theory Schubert calculus, in

preparation).

The results in this paper (for e.g. § 9.2) suggests the study of the affine infinite flag variety F̃l,

an ind-variety whose torus-fixed points are the affine infinite symmetric group SZ ⋉ Q∨
Z, where

Q∨
Z is the Z-span of root vectors ei − ej for i 
= j integers and ei is the standard basis of a lattice

with i ∈ Z. Curiously, Schubert classes of F̃l can have infinite codimension (elements of SZ ⋉ Q∨
Z

can have infinite length) and should lead to new phenomena in Schubert calculus.

2. Schubert polynomials

We recall known results concerning Lascoux and Schützenberger’s (double) Schubert polynomi-

als. None of the results in this section are new, but for completeness we provide short proofs for

many of them.

2.1 Notation

Throughout the paper, we set χ(True) = 1 and χ(False) = 0.

2.1.1 Permutations. Let SZ denote the subgroup of permutations of Z generated by si for

i ∈ Z where si exchanges i and i + 1. This is the group of permutations of Z that move finitely

many elements. Let S+ (respectively S−, respectively Sn) be the subgroup of SZ generated by

s1, s2, . . . (respectively s−1, s−2, . . ., respectively s1, s2, . . . , sn−1). We have S+ =
⋃

n�1Sn. We

write S�=0 = S− × S+. For w ∈ SZ denote by ℓ(w) the length of w and Red(w) for the set of

reduced words of w [Hum90, § 1.6]. For x, y, z ∈ SZ, we write z
.
= xy if z = xy and ℓ(z) = ℓ(x) +

ℓ(y). This notation generalizes to longer products z
.
= x1x2 · · ·xr. Let w

(n)
0 ∈ Sn be the longest

element [Hum90, § 1.8]. Let γ : SZ → SZ be the ‘shifting’ automorphism γ(si) = si+1 for all i ∈ Z.

Let � be the (strong) Bruhat order on SZ [Hum90, § 5.9]. For a fixed k ∈ Z, say that w ∈ SZ

is k-Grassmannian if w < wsi (equivalently, w(i) < w(i + 1) viewing w as a function Z → Z) for

all i ∈ Z − {k}. We write S0
Z for the set of 0-Grassmannian permutations.

2.1.2 Partitions. Let Y denote the set of partitions or Young diagrams. We consider a par-

tition λ = (λ1, . . . , λℓ) as an infinite sequence (λ1, . . . , λℓ, 0, 0, . . .) if necessary. Throughout the
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paper, Young diagrams are drawn in English notation: the boxes are top left justified in the plane.

For a Young diagram λ, we let λ′ denote the conjugate (or transpose) Young diagram. The

dominance order on partitions of the same size is given by λ � μ if
∑k

i=1 λi �
∑k

i=1 μi for all k.

There is a bijection between Y and S0
Z, given by λ �→ wλ, where

wλ(i) := i +

{
λ1−i if i � 0,

−λ′
i if i > 0.

(2.1)

A reduced expression for wλ is obtained by labeling the box (i, j) in the ith row and jth column

of the diagram of λ by sj−i and reading the rows from right to left starting with the bottom row.

If μ ⊂ λ, we define

wλ/µ := wλw−1
µ . (2.2)

We note that wλ
.
= wλ/µwµ. An element w ∈ SZ is 321-avoiding if there is no triple of integers

i < j < k such that w(i) > w(j) > w(k).

Lemma 2.1 [BJS93, § 2]. An element w ∈ SZ is 321-avoiding if and only if w = wλ/µ for some

partitions μ ⊂ λ.

Example 2.2. For λ = (3, 2), the values of wλ : Z → Z are given. For μ = (1) we have wµ = s0.

Reduced decompositions for wλ and wλ/µ are given.

i · · · −3 −2 −1 0 1 2 3 4 5 · · ·

wλ(i) · · · −3 −2 1 3 −1 0 2 4 5 · · ·

wλ(i) − i · · · 0 0 2 3 −2 −2 −1 0 0 · · ·

s0 s1 s2

s−1 s0

w(3,2) = (s0s−1)(s2s1s0)
s0 s1 s2

s0 s−1

w(3,2)/(1) = (s0s−1)(s2s1)

2.2 Schubert polynomials

Following [LS82], we define Schubert polynomials using divided difference operators. Let

Q[x+] := Q[x1, x2, x3, . . .] be the polynomial ring in infinitely many positively indexed variables

and Q[x] := Q[. . . , x−1, x0, x1, . . . ] the polynomial ring in variables indexed by integers. Define

the Q-algebra automorphism γ : Q[x] → Q[x] given by xi �→ xi+1.

For i ∈ Z the divided difference operator Ai : Q[x] → Q[x] is defined by

Ai(f) :=
f − si(f)

xi − xi+1
. (2.3)

We have the operator identities

A2
i = 0, (2.4)

AiAj = AjAi for |i − j| > 1, (2.5)

AiAi+1Ai = Ai+1AiAi+1. (2.6)

For w ∈ SZ this allows the definition of

Aw := Ai1Ai2 · · ·Aiℓ where (i1, i2, . . . , iℓ) ∈ Red(w). (2.7)
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Lemma 2.3. Both the kernel of Ai and the image of Ai are the subalgebra of si-invariant

elements.

For w ∈ Sn, the Schubert polynomial Sw ∈ Q[x+] is defined by

S
w

(n)
0

(x+) := xn−1
1 xn−2

2 · · ·x1
n−1, (2.8)

Sw(x+) := AiSwsi(x+) for any i with wsi > w. (2.9)

The polynomials Sw(x+) are well defined for w ∈ Sn by (2.5) and (2.6).

Lemma 2.4. Sw(x+) is well defined for w ∈ S+.

Proof. It suffices to show that the definitions of S
w

(n)
0

and S
w

(n+1)
0

are consistent. Using w
(n+1)
0

.
=

w
(n)
0 sn · · · s2s1 we have An · · ·A2A1(x

n
1xn−1

2 · · ·x1
n) = xn−1

1 xn−2
2 · · ·x1

n−1. �

We recall the monomial expansion of Sw due to Billey, Jockusch, and Stanley.

Theorem 2.5 [BJS93]. For w ∈ S+, we have

Sw(x+) =
∑

a1a2···aℓ∈Red(w)

∑

1�b1�b2�···�bℓ
ai<ai+1 =⇒ bi<bi+1

bi�ai

xb1xb2 · · ·xbℓ
. (2.10)

Define the code c(w) = (. . . , c−1, c0, c1, . . . ) of w ∈ SZ by

ci := |{j > i | w(j) < w(i)}|. (2.11)

The support of an indexed collection of integers (ci | i ∈ J) is the set of i ∈ J such that

ci 
= 0. The code gives a bijection from SZ to finitely supported sequences of nonnegative inte-

gers (. . . , c−1, c0, c1, . . . ). It restricts to a bijection from S+ to finitely supported sequences of

nonnegative integers (c1, c2, . . . ).

For a sequence b = (b1, b2, b3, . . .) of integers, let xb denote xb1
1 xb2

2 · · · . For two monomials xb

and xc in Q[x], we say that xc > xb in reverse-lex order if b 
= c and for the maximum i ∈ Z such

that bi 
= ci we have bi < ci. The following triangularity of Schubert polynomials with monomials

can be seen from Bergeron and Billey’s rc-graph formula for Schubert polynomials [BB93], and

is also proven in [BH95].

Proposition 2.6. The transition matrix between Schubert polynomials and monomials is

unitriangular:

Sw(x+) = xc(w) + reverse-lex lower terms. (2.12)
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Theorem 2.7. The Schubert polynomials are the unique family of polynomials {Sw(x+) ∈

Q[x+] | w ∈ S+} satisfying the following conditions:

Sid(x+) = 1, (2.13)

Sw(x+) is homogeneous of degree ℓ(w), (2.14)

AiSw(x+) =

{
Swsi(x+) if wsi < w,

0 otherwise.
(2.15)

The elements {Sw(x+) | w ∈ S+} form a basis of Q[x+] over Q.

Proof. For uniqueness, by induction we may assume that Swsi(x+) is uniquely determined for

all i such that wsi < w. Since the applications of all the Ai are specified on Sw, the difference

of any two solutions of (2.15), being in the kernel of all Ai, is S+-invariant by Lemma 2.3. But

Q[x+]S+ = Q, so the homogeneity assumption implies that the two solutions must be equal.

For existence, we note that the Schubert polynomials satisfy (2.13)–(2.15) when wsi < w.

When wsi > w, we have Sw = AiSwsi by (2.15) applied for wsi. The element Sw, being in

the image of Ai, is si-invariant and therefore is in kerAi by Lemma 2.3. That is, AiSw = 0,

establishing (2.15).

The basis property holds by Proposition 2.6. �

Remark 2.8. All the basis theorems for Schubert polynomials and their relatives, such as

Theorem 2.7, hold over Z.

2.3 Double Schubert polynomials

Let Q[x+, a+] := Q[x1, x2, . . . , a1, a2, . . .]. The divided difference operators Ai, i > 0 act on

Q[x+, a+] by acting on the x-variables only. Double Schubert polynomials [LS82] are defined

by the action of divided difference operators on the expression in (2.19). We summarize the

fundamental statements concerning double Schubert polynomials in the following theorem.

Theorem 2.9. There exists a unique family {Sw(x+; a+) ∈ Q[x+, a+] | w ∈ S+} of polynomials

satisfying the following conditions:

Sid(x+; a+) = 1, (2.16)

Sw(a+; a+) = 0 if w 
= id, (2.17)

AiSw(x+; a+) =

{
Swsi(x+; a+) if wsi < w,

0 otherwise.
(2.18)

The elements {Sw(x+; a+) | w ∈ S+} form a basis of Q[x+, a+] over Q[a+].

Proof. Uniqueness is proved as in Theorem 2.7. For existence, let

S
w

(n)
0

(x+; a+) =
∏

1�i,j�n
i+j�n

(xi − aj). (2.19)

This agrees with (2.16). It is straightforward to verify the double analogue of Lemma 2.4.
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For (2.17) it suffices to prove the stronger vanishing property

Sv(wa+; a+) = 0 unless v � w. (2.20)

Here Sv(wa+; a+) := Sv(aw(1), aw(2), . . . ; a+). Let v, w ∈ Sn with v 
� w. If v = w
(n)
0 , then by

inspection Sv(wa+; a+) = 0. So suppose v < w
(n)
0 . Let 1 � i � n − 1 be such that vsi > v. Then

vsi 
� w and also vsi 
� wsi. Substituting xk �→ aw(k) into AiSvsi(x+; a+) = Sv(x+; a+) and using

induction we have Sv(wa+; a+) = (ai − ai+1)
−1(Svsi(wa+; a+) − Svsi(wsia+; a+)) = 0, proving

(2.20).

The basis property follows from the fact that Sw(x+; 0) = Sw(x+) are a Q-basis of Q[x+]. �

2.4 Double Schubert polynomials into single

The following identity is proved in Appendix B.

Lemma 2.10. For w ∈ S+, we have
∑

w
.
=uv

(−1)ℓ(u)
Su−1(a+)Sv(a+) = δw,id. (2.21)

Proposition 2.11 ([Mac91, (6.1)], [FS94, Lemma 4.5]). Let w ∈ S+. Then

Sw(x+; a+) =
∑

w
.
=uv

(−1)ℓ(u)
Su−1(a+)Sv(x+). (2.22)

Proof. It suffices to verify the conditions of Theorem 2.9. Equation (2.16) is clear. Equation

(2.17) holds by Lemma 2.10. We prove (2.18) by induction on ℓ(w). The case ℓ(w) = 0 is trivial.

We have

Ai

∑

w
.
=uv

(−1)ℓ(u)
Su−1(a+)Sv(x+) =

∑

w
.
=uv

vsi<v

(−1)ℓ(u)
Su−1(a+)Svsi(x+)

=

{∑
wsi

.
=uv′(−1)ℓ(u)

Su−1(a+)Sv′(x+) if wsi < w,

0 otherwise.

This establishes (2.18) by induction. �

2.5 Left divided differences

Let Aa
i be the divided difference operator acting on the a-variables.

Lemma 2.12. For i > 0 and w ∈ S+,

Aa
i Sw(x+; a+) =

{
−Ssiw(x+; a+) if siw < w,

0 otherwise.
(2.23)

Proof. This is easily verified using Proposition 2.11. �

3. Back stable Schubert polynomials

We define the ring of back symmetric formal power series, and study the basis of back stable

Schubert polynomials.
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3.1 Symmetric functions in nonpositive variables

For b ∈ Z, let Λ(x�b) be the Q-algebra of symmetric functions in the variables xi for i ∈ Z

with i � b. We write Λ = Λ(x�0) = Λ(x−), emphasizing that our symmetric functions are in

variables with nonpositive indices. See Appendix A for the comparison with symmetric functions

in variables with positive indices.

The tensor product Λ ⊗ Λ is isomorphic to the Q-algebra of formal power series of bounded

total degree in x− and a− which are separately symmetric in x− and a−. Under this isomorphism,

we have g ⊗ h �→ g(x−)h(a−). We use this alternate notation without further mention.

The Q-algebra Λ is a Hopf algebra over Q, generated as a polynomial Q-algebra by primitive

elements

pk =
∑

i�0

xk
i .

That is, ∆(pk) = 1 ⊗ pk + pk ⊗ 1 (or ∆(pk) = pk(x−) + pk(a−)). Equivalently, for f ∈ Λ, ∆(f)

is given by plugging both x− and a− variable sets into f . The counit takes the coefficient of the

constant term, or equivalently, is the Q-algebra map sending pk �→ 0 for all k � 1. The antipode

is the Q-algebra automorphism sending pk �→ −pk for all k � 1. For a symmetric function f(x)

we write f(/x) for its image under the antipode.

The superization map

Λ → Λ ⊗ Λ, f �→ f(x/a) (3.1)

is the Q-algebra homomorphism defined by applying the coproduct ∆ followed by applying

the antipode in the second factor. Equivalently, it is the Q-algebra homomorphism sending

pk �→ pk(x−) − pk(a−). In particular, f(x/a) is symmetric in x− and symmetric in a−. We use

the notation f(x/a) instead of f(x−/a−) for the sake of simplicity.

3.2 Back symmetric formal power series

Let R be the Q-algebra of formal power series f in the variables xi for i ∈ Z such that f has

bounded total degree (there is an M such that all monomials in f have total degree at most M)

and the support of f is bounded above (there is an N such that the variables xi do not appear in

f for i > N). The group SZ acts on R by permuting variables. Say that f ∈ R is back symmetric

if there is a b ∈ Z such that si(f) = f for all i < b. Let
←−
R be the subset of back symmetric

elements of R.

Proposition 3.1. We have the equality

←−
R = Λ ⊗ Q[x]. (3.2)

Proof. It is straightforward to verify that
←−
R is a Q-subalgebra of R containing Λ and Q[x].

Suppose f ∈ R is back symmetric. Let b ∈ Z be such that si(f) = f for all i < b. Then

f ∈ Λ(x�b) ⊗ Q[xb+1, xb+2, . . . ] is a polynomial in the power sums pk(x�b) and the variables

xb+1, xb+2, . . . . But pk(x�b) − pk(x�0) ∈ Q[x]. It follows that f ∈ Λ ⊗ Q[x]. �

We emphasize that
←−
R is a polynomial Q-algebra with algebraically independent generators

pk for k � 1 and xi for i ∈ Z. The restriction of the action of SZ from R to
←−
R is given on algebra
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generators by

w(xi) = xw(i),

si(pk) =

{
pk if i 
= 0,

pk − xk
0 + xk

1 if i = 0.

For s0(pk) we use the computation

s0

∑

i�0

(xk
i − ak

i ) =
∑

i�−1

(xk
i − ak

i ) + s0(x
k
0 − ak

0) =
∑

i�−1

(xk
i − ak

i ) + xk
1 − ak

0 = pk − xk
0 + xk

1.

The divided difference operators Ai for i ∈ Z act on
←−
R using the same formula as (2.3).

3.3 Back stable limit

Let γ :
←−
R →

←−
R be the Q-algebra automorphism shifting all x variables, that is,

γ(xi) = xi+1, γ−1(xi) = xi−1, (3.3)

γ(pk) = pk + xk
1, γ−1(pk) = pk − xk

0. (3.4)

Given w ∈ SZ, let [p, q] ⊂ Z be an interval that contains all nonfixed points of w. Let S
[p,q]
w

be the usual Schubert polynomial but computed using the variables xp, xp+1, . . . , xq instead of

starting with x1. This is the same as shifting w to start at 1 instead of p, constructing the

Schubert polynomial, and then shifting variables to start at xp instead of x1. That is,

S
[p,q]
w (xp, . . . , xq) = γp−1(Sγ1−p(w)(x+)).

We say that the limit of a sequence f1, f2, . . . of formal power series is equal to a formal

power series f if, for each monomial M , the coefficient of M in f1, f2, . . . eventually stabilizes

and equals the coefficient in f .

Theorem 3.2. For w ∈ SZ, there is a well-defined power formal series
←−
Sw ∈

←−
R given by

←−
Sw := lim

p→−∞
q→∞

S
[p,q]
w

called the back stable Schubert polynomial. It has the monomial expansion

←−
Sw =

∑

a1a2···aℓ∈Red(w)

∑

b1�b2�···�bℓ
ai<ai+1 =⇒ bi<bi+1

bi�ai

xb1xb2 · · ·xbℓ
(3.5)

in which bi ∈ Z. Moreover, the back stable Schubert polynomials are the unique family {
←−
Sw ∈

←−
R | w ∈ SZ} of elements satisfying the following conditions:

←−
S id = 1, (3.6)

←−
Sw is homogeneous of degree ℓ(w), (3.7)

Ai
←−
Sw =

{←−
Swsi if wsi < w,

0 otherwise.
(3.8)
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Proof. The well-definedness of the series and its monomial expansion follows by taking the limit

of (2.10). Let w ∈ SZ. For i ≪ 0 we have wsi > w. By (2.15) and Lemma 2.3,
←−
Sw is si-symmetric.

Thus
←−
Sw is back symmetric.

Properties (3.6), (3.7) and (3.8) hold for
←−
Sw by the corresponding parts of Theorem 2.7 for

usual Schubert polynomials. �

Proposition 3.3. For w ∈ SZ, we have γ(
←−
Sw) =

←−
Sγ(w).

Proposition 3.4. For λ ∈ Y, we have
←−
Swλ

= sλ ∈ Λ(x−), the Schur function.

Proof. Let 0 < k < n be large enough such that λ is contained in the k × (n − k) rectangular

partition. For such partitions the map λ �→ γk(wλ) defines a bijection to the k-Grassmannian

elements of Sn. It is well known that Sγk(wλ) = sλ(x1, . . . , xk) [Ful97, Chapter 10, Proposi-

tion 8]. Applying γ−k we have S
[1−k,n−k]
wλ = sλ(x1−k . . . , x−1, x0). The result follows by letting

k, n → ∞. �

By Propositions 3.3 and 2.6 we have

←−
Sw = xc(w) + reverse-lex lower terms. (3.9)

Theorem 3.5. The back stable Schubert polynomials form a Q-basis of
←−
R .

Proof. By (3.9) the back stable Schubert polynomials are linearly independent. For spanning,

using Proposition 3.3 and applying γn for n sufficiently large, it suffices to show that any element

of Λ(x−) ⊗ Q[x+] is a Q-linear combination of finitely many back stable Schubert polynomials.

This holds due to the unitriangularity (3.9) of back stable Schubert polynomials with monomials

and the following facts: (i) the reverse-lex leading monomial xβ in any nonzero element of Λ(x−) ⊗

Q[x+] satisfies · · · � β−2 � β−1 � β0; (ii) if w ∈ SZ is such that c(w) = β for such a β, then · · · <

w(−2) < w(−1) < w(0); (iii) for such w,
←−
Sw is symmetric in x− so that

←−
Sw ∈ Λ(x−) ⊗ Q[x+];

(iv) there are finitely many γ below β in reverse-lex order such that xγ and xβ have the same

degree, and satisfying · · · � γ−2 � γ−1 � γ0. �

3.4 Stanley symmetric functions

Stanley [Sta84] defined Stanley symmetric functions Fw(x+) to enumerate reduced decomposi-

tions of permutations. These symmetric functions are also called stable Schubert polynomials,

and are usually defined by Fw(x+) := limn→∞ Sγn(w)(x+). Our definition Fw of Stanley sym-

metric function agrees (by Theorem 3.9) with the standard definition up to using x− instead

of x+.

There is a Q-algebra map η0 : Q[x] → Q given by evaluation at zero: xi �→ 0 for all i ∈ Z.

This induces a Q-algebra map 1 ⊗ η0 :
←−
R → Λ ⊗Q Q ∼= Λ, which we simply denote by η0 as well.

Remark 3.6. The map η0 ‘knows’ the difference between xi ∈ Q[x] and the xi that appear in

Λ = Λ(x−).

For w ∈ SZ, we define the Stanley symmetric function by

Fw := η0(
←−
Sw) ∈ Λ. (3.10)
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Recall the shifting automorphism γ : SZ → SZ from § 2.1.

Lemma 3.7. For f ∈
←−
R , we have η0(γ(f)) = η0(f).

Proof. This holds since η0 is a Q-algebra homomorphism and the claim is easily verified for the

algebra generators of
←−
R . �

Corollary 3.8. For w ∈ SZ, we have Fγ(w) = Fw.

Proof. Using Lemma 3.7 and Proposition 3.3, we have Fγ(w) = η0(
←−
Sγ(w)) = η0(γ(

←−
Sw)) =

η0(
←−
Sw) = Fw. �

Theorem 3.9 (cf. [Sta84]). For w ∈ SZ, we have

Fw =
∑

a1a2···aℓ∈Red(w)

∑

b1�b2�···�bℓ�0
ai<ai+1 =⇒ bi<bi+1

xb1xb2 · · ·xbℓ
. (3.11)

Proof. By Corollary 3.8 we may assume that w ∈ S+. Since wsi > w for i < 0,
←−
Sw is si-

symmetric for i < 0, that is,
←−
Sw ∈ Λ ⊗ Q[x+]. Therefore Fw is obtained from

←−
Sw by setting

xi = 0 for i � 1. Making this substitution in (3.5) yields (3.11). �

The Edelman–Greene coefficients jw
λ ∈ Z are defined by

Fw =
∑

λ

jw
λ sλ. (3.12)

These coefficients are known to be nonnegative and have a number of combinatorial interpre-

tations: leaves of the transition tree [LS85], promotion tableaux [Hai92], and peelable tableaux

[RS98]. In particular, by [EG87] jw
λ is equal to the number of reduced word tableaux for w: that

is, row strict and column strict tableaux of shape λ whose row-reading words are reduced words

for w.

Let ω be the involutive Q-algebra automorphism of Λ defined by ω(pr) = (−1)r−1pr for r � 1.

We have ω(sλ) = sλ′ for λ ∈ Y. The action of ω on a homogeneous element of degree d is equal to

that of the antipode times (−1)d. Let ω also denote the automorphism of SZ given by si �→ s−i

for all i ∈ Z.

Proposition 3.10. For w ∈ SZ, we have Fw−1 = ω(Fw) = Fω(w).

Proof. Reversal of a reduced word gives a bijection Red(w) → Red(w−1) that sends a

Coxeter–Knuth class of shape λ (see § 5.8) to a Coxeter–Knuth class of shape λ′. The first

equality follows.

Negating each entry of a reduced word gives a bijection Red(w) → Red(ω(w)) which sends

a Coxeter–Knuth class of shape λ to a Coxeter–Knuth class of shape λ′. The second equality

follows. �
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Proposition 3.11. For w ∈ SZ, we have

∆(Fw) =
∑

w
.
=uv

Fu ⊗ Fv, (3.13)

Fw(/x) = (−1)ℓ(w)Fw−1(x), (3.14)

Fw(x/a) =
∑

w
.
=uv

(−1)ℓ(u)Fu−1(a)Fv(x), (3.15)

Fw(a/a) = δw,id, (3.16)

Fw(x) =
∑

w
.
=uvz

(−1)ℓ(u)Fu−1(a)Fv(x)Fz(a). (3.17)

Proof. Equation (3.13) follows by plugging in two set of variables into (3.11). Equation (3.14)

follows from Proposition 3.10. Equation (3.15) is obtained by combining (3.13) and (3.14).

Equation (3.16) follows from the Hopf algebra axiom which asserts that superization followed

by multiplication is the counit. For (3.17) we have
∑

w
.
=uvz

(−1)ℓ(u)Fu−1(a)Fv(x)Fz(a) =
∑

w
.
=uvz

(−1)ℓ(u)Fu−1(a)Fv(a)Fz(x)

=
∑

w
.
=yz

Fy(a/a)Fz(x) = Fw(x)

using cocommutativity, (3.15), and (3.16). �

3.5 Negative Schubert polynomials

The following Schubert polynomials are indexed by permutations in S−, contain variables indexed

by nonpositive integers, and may contain signs. Recall S− and S�=0 from § 2.1 and the automor-

phism ω of SZ. It restricts to an isomorphism S− → S+. Let ω : Q[x] → Q[x] be the Q-algebra

automorphism defined by ω(xi) = −x1−i for i ∈ Z. For u ∈ S−, define Su(x−) ∈ Q[x−] by

Su(x−) := ω(Sω(u)(x+)). (3.18)

That is, in w replace the negatively indexed reflections with positively indexed ones, take

the usual Schubert polynomial in positively indexed variables, and then use ω to substitute

nonpositively indexed x variables for the positively indexed ones (with signs).

Example 3.12. For u = s−3s−2s−1, we have ω(u) = s3s2s1, Ss3s2s1(x+) = x3
1, and Su(x−) =

−x3
0. For i > 0 we have Ss−i = ωSsi = ω(x1 + · · · + xi) = −(x0 + x−1 + · · · + x1−i).

By Theorem 2.5, we have

Su(x−) =
∑

a1a2···aℓ∈R(u)

∑

0�b1�b2�···�bℓ
ai>ai+1 =⇒ bi>bi+1

bi�ai+1

xb1xb2 · · ·xbℓ
for u ∈ S−.

Note the +1 in bi � ai + 1.

For w ∈ S�=0, define Sw(x) ∈ Q[x] by

Sw(x) := Su(x−)Sv(x+) where w = uv with u ∈ S− and v ∈ S+. (3.19)
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Proposition 3.13. For w ∈ S�=0, we have ω(Sw(x)) = Sω(w)(x).

3.6 Coproduct formula

There is a coaction ∆ :
←−
R → Λ ⊗

←−
R of Λ on

←−
R , defined by the comultiplication on the first

factor of the tensor product Λ ⊗Q Q[x].

Theorem 3.14. Let w ∈ SZ. We have the coproduct formulae

∆(
←−
Sw) =

∑

w
.
=xy

Fx ⊗
←−
Sy, (3.20)

←−
Sw =

∑

w
.
=xy

y∈S�=0

Fx Sy. (3.21)

Proof. Equation (3.20) can be deduced from (3.21) and Proposition 3.11:

∆(
←−
Sw) =

∑

w
.
=xy

y∈S�=0

∆(Fx)Sy =
∑

w
.
=uvy

y∈S�=0

Fu ⊗ FvSy =
∑

w
.
=uz

Fu ⊗
←−
Sz.

We prove (3.21) by a cancellation argument. We say that a pair of integer sequences (a,b)

of the same length is a compatible pair, if b is weakly increasing and ai < ai+1 =⇒ bi < bi+1.

Let (x, y,a,b) index a monomial xb = xb1 · · ·xbℓ
on the right-hand side, corresponding to the

term Fx Sy and reduced word a = a1a2 · · · aℓ. By convention, to obtain a, we always factorize

y ∈ S�=0 as y = y′y′′ with y′ ∈ S− and y′′ ∈ S+. We will provide a partial sign-reversing involution

ι on the quadruples (x, y,a,b); the left-over monomials will give the left-hand side.

Suppose ℓ(x) = r, ℓ(y′) = s, ℓ(y′′) = t, and set ℓ = r + s + t. Call an index i ∈ [1, ℓ] bad if

bi > ai, and good if bi � ai. It follows from the definitions that all indices i ∈ [r + s + 1, ℓ] are

good, while all indices i ∈ [r + 1, r + s] are bad. Furthermore, if i ∈ [1, r] is bad, then ai < 0.

Let k be the largest bad index in [1, r], which we assume exists. We claim that sak
commutes

with sak+1
· · · sar . To see this, observe that if ak′ ∈ {ak − 1, ak, ak + 1} where k < k′ � r then we

must have bk′ > ak′ , contradicting our choice of k. If s = 0, we set

ι(x, y,a,b) = (a1 · · · âk · · · ar|akar+1 · · · at, b1 · · · b̂k · · · br|bkbr+1 · · · bt) = (x̃, ỹ, ã, b̃) (3.22)

where the vertical bar separates x from y. Thus ỹ′ = sak
. If s > 0, we compare bk with br+1.

If bk > br+1 or (bk = br+1 and ak < ar+1), then we again make the definition (3.22) where now

ỹ′ = sak
y′. We call this CASE A.

Suppose still that s > 0. If (bk < br+1) or (bk = br+1 and ak � ar+1) or (k does not exist)

then there is a unique index j ∈ [k, r] so that

ι(x, y,a,b) = (a1 · · · ajar+1aj+1 · · · ar|ar+2 · · · at, b1 · · · bjbr+1bj+1 · · · br|br+2 · · · bt) = (x̃, ỹ, ã, b̃)

has the property that (a1 · · · ajar+1aj+1 · · · ar, b1 · · · bjbr+1bj+1 · · · br) is a compatible sequence.

In this case, sar+1 commutes with saj+1 · · · sar . We call this CASE B.

Finally, if s = 0 and k does not exist, then ι is not defined.

It remains to observe that CASE A and CASE B are sent to each other via ι, which keeps

xb constant and changes ℓ(y′) by 1. �
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Let ω be the involutive Q-algebra automorphism of
←−
R given by combining the maps ω on Λ

from § 3.4 and on Q[x] from § 3.5.

Proposition 3.15. For all w ∈ SZ, we have ω(
←−
Sw) =

←−
Sω(w).

Proof. This follows immediately from Theorem 3.14 and Propositions 3.10 and 3.13. �

Remark 3.16. The elements {sλ ⊗ Sv | λ ∈ Y and v ∈ S�=0} form a Q-basis of
←−
R . It follows from

Theorem 3.14 that the coefficient of sλ ⊗ Sv in
←−
Sw is equal to jwv−1

λ if ℓ(wv−1) = ℓ(w) − ℓ(v),

and 0 otherwise.

Remark 3.17. Let νλ :
←−
R → Q[x] denote the linear map given by ‘taking the coefficient of sλ’.

Then

νλ(
←−
Sw) =

∑

v∈S�=0

ℓ(wv−1)=ℓ(w)−ℓ(v)

jwv−1

λ Sv. (3.23)

We will give an explicit description of the polynomial νλ(
←−
Sw) in Theorem 5.11.

3.7 Back stable Schubert structure constants

For u, v, w ∈ S+, define the usual Schubert structure constants cw
uv by

SuSv =
∑

w∈S+

cw
uvSw. (3.24)

For u, v, w ∈ SZ, define the back stable Schubert structure constants ←−c w
uv ∈ Q by

←−
Su

←−
Sv =

∑

w∈SZ

←−c w
uv

←−
Sw. (3.25)

By Proposition 3.3, we have

←−c
γn(w)
γn(u),γn(v) = ←−c w

uv for all u, v, w ∈ SZ and n ∈ Z. (3.26)

Proposition 3.18.

(i) For u, v, w ∈ S+, we have cw
uv = ←−c w

uv.

(ii) Every back stable Schubert structure constant is a usual Schubert structure constant.

Proof. Consider the Q-algebra homomorphism π+ :
←−
R → Q[x+] sending pr �→ 0 for r � 1, xi �→ 0

for i � 0 and xi �→ xi for i > 0. Applying π+ to Theorem 3.14 for y ∈ SZ we have

π+(
←−
Sy) =

{
Sy if y ∈ S+,

0 otherwise,
(3.27)

because π+ kills all symmetric functions with no constant term and all negative Schubert poly-

nomials of positive degree. Now let u, v ∈ S+. Applying π+ to (3.25) and using (3.27), (i)

follows.

For (ii), let u, v ∈ SZ. By (3.26), we may assume that u, v ∈ S+ and that the finitely many

w appearing in (3.25) are also in S+. The proof is completed by applying part (i). �
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Example 3.19. We have
←−
S

2
s1

=
←−
Ss2s1 +

←−
Ss0s1 and S

2
s1

= Ss2s1 . Shifting forward by one we

obtain
←−
S

2
s2

=
←−
Ss3s2 +

←−
Ss1s2 and S

2
s2

= Ss3s2 + Ss1s2 .

We derive a relation involving back stable Schubert structure constants and Edelman–Greene

coefficients.

Proposition 3.20. Let u ∈ Sm, v ∈ Sn and λ ∈ Y. Let u × v := uγm(v) ∈ Sm+n ⊂ S+. Then

ju×v
λ =

∑

w∈SZ

←−c w
uvj

w
λ . (3.28)

Proof. Since u × v ∈ Sm × Sn ⊂ Sm+n it follows that Su×v = SuSγm(v). We deduce that
←−
Su×v =

←−
Suγm(

←−
Sv). Using the algebra map η0 several times we obtain

Fu×v = FuFv = η0(
←−
Su

←−
Sv) = η0

( ∑

w∈SZ

←−c w
uv

←−
Sw

)
=

∑

w∈SZ

←−c w
uvFw.

Taking the coefficient of sλ we obtain (3.28). �

4. Back stable double Schubert polynomials

We define the back symmetric double power series ring, and study the basis of double back stable

Schubert polynomials.

4.1 Double symmetric functions

Let pk(x||a) := pk(x/a) =
∑

i�0 xk
i − ak

i , a formal power series in variables xi and ai; it is the

image of pk under superization. Let Λ(x||a) be the Q[a]-algebra generated by the elements

p1(x||a), p2(x||a), . . ., which are algebraically independent over Q[a]. We call Λ(x||a) the ring

of double symmetric functions (see [Mol09] for more details). For λ = (λ1, λ2, . . . , λℓ) ∈ Y, we

denote pλ(x||a) := pλ1(x||a) · · · pλℓ
(x||a).

The algebra Λ(x||a) is a Hopf algebra over Q[a] with primitive generators pk(x||a) for k � 1.

The counit is the Q[a]-algebra homomorphism ǫ : Λ(x||a) → Q[a] given by pk(x||a) �→ 0 for k � 1.

The antipode is the Q[a]-algebra homomorphism defined by pk(x||a) �→ −pk(x||a) for k � 1.

4.2 Back symmetric double power series

Define the back symmetric double power series ring
←−
R (x; a) := Λ(x||a) ⊗Q[a] Q[x, a], where

Q[x, a] := Q[xi, ai | i ∈ Z]. The ring
←−
R (x; a) has two actions of SZ: one that acts on all the

x variables and one that acts on all the a variables, including those in Λ(x||a). More precisely

for i ∈ Z let sx
i (respectively sa

i ) act on
←−
R (x; a) by exchanging xi and xi+1 (respectively ai and

ai+1) while leaving the other polynomial generators of Q[x, a] alone and

sx
i (pk(x||a)) =

{
pk(x||a) if i 
= 0,

pk(x||a) − xk
0 + xk

1 if i = 0,
, (4.1)

sa
i (pk(x||a)) =

{
pk(x||a) if i 
= 0,

pk(x||a) + ak
0 − ak

1 if i = 0.
. (4.2)
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For w ∈ SZ, we write wx (respectively wa) for this action of w on the x-variables (respectively

a-variables).

4.3 Localization of back symmetric formal power series

Let ǫ :
←−
R (x; a) → Q[a] be the Q[a]-algebra homomorphism which extends the counit ǫ of Λ(x||a)

via

ǫ(pk(x||a)) = 0 for all k � 1, (4.3)

ǫ(xi) = ai for all i ∈ Z. (4.4)

In other words ǫ ‘sets all xi to ai’ including those in pk(x||a). Define

f |w = ǫ(wx(f))) = f(wa; a) for f(x, a) ∈
←−
R (x; a) and w ∈ SZ. (4.5)

For any w ∈ SZ, let

Iw,+ := Z>0 ∩ w(Z�0), (4.6)

Iw,− := Z�0 ∩ w(Z>0). (4.7)

The map w �→ (Iw,+, Iw,−) is a bijection from S0
Z to pairs of finite sets (I+, I−) such that

I+ ⊂ Z>0, I− ⊂ Z�0, and |I+| = |I−|. Then the following holds.

Lemma 4.1. We have pk(x||a)|w =
∑

i∈Iw,+
ak

i −
∑

i∈Iw,−
ak

i .

Example 4.2. Using w = wλ of Example 2.2 we have Iw,+ = {1, 3} and Iw,− = {−1, 0}. Therefore

pk(x||a)|w = ak
1 + ak

3 − ak
−1 − ak

0.

4.4 Back stable double Schubert polynomials

Let γ be the Q-algebra automorphism of
←−
R (x; a) which shifts all variables forward by 1 in

←−
R (x; a). That is, γ(xi) = xi+1, γ(ai) = ai+1, and γ(pk(x||a)) = pk(x||a) + xk

1 − ak
1. As before, let

[p, q] be an interval of integers containing all integers moved by w ∈ SZ. Define

S
[p,q]
w (x; a) := γp−1(Sγ1−p(w)(x+; a+)). (4.8)

For w ∈ SZ, define the back stable double Schubert polynomial
←−
Sw(x; a) by

←−
Sw(x; a) := lim

p→−∞
q→∞

S
[p,q]
w (x; a). (4.9)

There is a double version of the monomial expansion (Theorem 2.5) of Schubert polynomials;

see for example [FK96]. However, the well-definedness of
←−
Sw(x; a) is not apparent from that

expansion. In Theorem 5.13 we give a new combinatorial formula for Sw(x+; a+) using bumpless

pipedreams as a sum of products of binomials xi − aj . Theorem 5.13 is compatible with the back

stable limit and yields a monomial formula (Theorem 5.2) for the back stable double Schubert

polynomials.

Proposition 4.3. For w ∈ SZ, Sw(x; a) is a well-defined series such that

←−
Sw(x; a) =

∑

w
.
=uv

(−1)ℓ(u)←−
Su−1(a)

←−
Sv(x). (4.10)
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Proof. Since length-additive factorizations are well behaved under shifting it follows that

S
[p,q]
w (x; a) = γp−1(Sγ1−p(w)(x+; a+))

= γp−1

( ∑

w
.
=uv

(−1)ℓ(u)
Sγ1−p(u−1)(a+)Sγ1−p(v)(x+)

)

=
∑

w
.
=uv

(−1)ℓ(u)
S

[p,q]
u−1 (a)S[p,q]

v (x)

using Proposition 2.11. Taking the limit as p → −∞ and q → ∞ we obtain (4.10). �

Corollary 4.4. For w ∈ SZ, we have γ(
←−
Sw(x; a)) =

←−
Sγ(w)(x; a).

Corollary 4.5. For w ∈ SZ, we have

←−
Sw(x; a) =

∑

w
.
=uvz

u,z∈S�=0

(−1)ℓ(u)
Su−1(a)Fv(x/a)Sz(x). (4.11)

In particular,
←−
Sw(x; a) ∈

←−
R (x; a).

Proof. Using (3.21) and Propositions 4.3 and 3.11 we have

←−
Sw(x; a) =

∑

w
.
=uv

(−1)ℓ(u)←−
Su−1(a)

←−
Sv(x)

=
∑

w
.
=uv

∑

u−1 .
=u1v1

v1∈S�=0

∑

v
.
=u2v2

v2∈S�=0

(−1)ℓ(u)Fu1(a)Sv1(a)Fu2(x)Sv2(x)

=
∑

w
.
=v−1

1 u−1
1 u2v2

v1,v2∈S�=0

(−1)ℓ(u1)+ℓ(v1)
Sv1(a)Fu1(a)Fu2(x)Sv2(x)

=
∑

w
.
=v−1

1 uv2

v1,v2∈S�=0

(−1)ℓ(v1)
Sv1(a)Fu(x/a)Sv2(x). �

Example 4.6. We have

←−
Ssi(x; a) = −Ssi(a) + Fsi(x/a) = −Ssi(a) + s1(x/a) = s1[x�0 − a�i],

←−
Ss1s0(x; a) = −Ss1(a)Fs0(x/a) + Fs1s0(x/a) = −a1s1(x/a) + s2(x/a),

←−
Ss−1s0 = −Ss−1(a)Fs0(x/a) + Fs−1s0(x/a) = a0s1(x/a) + s11(x/a),

←−
Ss0s−1 = Fs0s−1(x/a) + Fs0Ss−1(x) = s2(x/a) + s1(x/a)(−x0).
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Theorem 4.7. The back stable double Schubert polynomials {
←−
Sw(x; a) ∈

←−
R (x; a) | w ∈ SZ}

form the unique family of power series satisfying the following conditions:

←−
S id = 1, (4.12)

←−
Sw(a; a) = 0 if w 
= id, (4.13)

Ai
←−
Sw(x; a) =

{←−
Swsi(x; a) if wsi < w,

0 otherwise.
(4.14)

The elements {
←−
Sw(x; a) | w ∈ SZ} form a basis of

←−
R (x; a) over Q[a].

Proof. Uniqueness follows as in the proof of Theorem 3.2. Since the double Schubert polynomials

are related by divided differences, the corresponding fact (4.14) also holds. For (4.13), applying

the map ǫ of § 4.3 to (4.11) and using (3.16), we have

←−
Sw(a; a) =

∑

w
.
=uz

u,z∈S�=0

(−1)ℓ(u)
Su(a)Sz(a).

This is 0 automatically if w 
∈ S�=0. If w ∈ S�=0 \ {id} then the vanishing follows from the

straightforward generalization of Lemma 2.10 to Sw for w ∈ S�=0.

The basis property follows from the fact that setting ai = 0 for all i ∈ Z gives
←−
Sw(x, 0) =

←−
Sw(x) and the latter are a basis of Λ ⊗ Q[x]. �

The back stable double Schubert polynomials localize the same way that ordinary double

Schubert polynomials do in the following sense.

Proposition 4.8. Let v, w ∈ SZ and let [p, q] ⊂ Z be an interval that contains all elements

moved by v and by w. Then
←−
Sv(wa; a) = S

[p,q]
v (wa; a).

Proof. By Corollary 4.4 we may assume that [p, q] = [1, n] for some n so that v, w ∈ Sn. We are

specializing xi �→ aw(i) for all i, and in particular xi �→ ai for all i � 0. Under this substitution

all the super Stanley functions in (4.11) vanish except those indexed by the identity. Using

Proposition 2.11, we have

←−
Sv(wa; a) =

∑

v
.
=uz

u,z∈S�=0

(−1)ℓ(u)
Su−1(a)Sz(wa) =

∑

v
.
=uz

u,z∈Sn

(−1)ℓ(u)
Su−1(a+)Sz(wa+) = Sv(wa+; a+).

�

Let sa
i and Aa

i be the reflection and divided difference operators acting on the a-variables in

both Q[a] and in pr(x||a).

Proposition 4.9. For all i ∈ Z and w ∈ SZ, we have

Aa
i

←−
Sw(x; a) =

{
−
←−
Ssiw(x; a) if siw < w,

0 otherwise.

Proof. This follows from (4.10) and (3.8). �
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4.5 Double Schur functions

We realize the double Schur functions (see [Mol09]) as the Grassmannian back stable double

Schubert polynomials. As such our double Schur functions are symmetric in x−. In Appendix A

a precise dictionary is given which connects our conventions with the literature, which uses

symmetric functions in x+.

Let γa be the shift of all of the a-variables, that is, the Q-algebra automorphism of Λ(x||a)

given by

γa(ai) = ai+1, γ−1
a (ai) = ai−1, (4.15)

γa(pk(x||a)) = pk(x||a) − ak
1, γ−1

a (pk(x||a)) = pk(x||a) + ak
0. (4.16)

By definition γa leaves the x variables alone. For λ ∈ Y define the double Schur function sλ(x||a) ∈

Λ(x||a) by

hr(x||a) := γr−1
a (hr(x/a)) sλ(x||a) := det γ1−j

a (hλi−i+j(x||a)). (4.17)

Example 4.10. The double Schur functions for λ = (r) and λ = (1, 1) are given by

hr(x||a) = hr(x�0/a�r−1) for r � 1,

s11(x||a) = det

(
h1(x||a) γ−1

a (h2(x||a))

h0(x||a) γ−1
a (h1(x||a))

)

= h1(x�0/a�0)h1(x�0/a�−1) − h2(x�0/a�0)

= h1(x/a)(h1(x/a) + a0) − h2(x/a)

= s11(x/a) + a0s1(x/a) =
←−
Ss−1s0(x; a)

by Example 4.6 for w(1,1) = s−1s0.

Proposition 4.11. For λ ∈ Y, we have
←−
Swλ

(x; a) = sλ(x||a).

Proof. Using [Mol09, (2.21)], one may compute sλ(x||a)|wλ
and show that sλ(x||a)|wµ vanishes

when λ 
⊆ μ (see also [LS13, Theorem 7]).

The result then follows from the characterization of
←−
Swλ

(x; a) obtained by combining

Proposition 6.3 and Theorem 6.6 below. �

4.6 Double Stanley symmetric functions

We introduce the double Stanley symmetric functions Fw(x||a) for w ∈ SZ. If w is a 321-avoiding

permutation, we recover Molev’s skew double Schur function; see Appendix A.4.

Let ηa be the Q[a]-algebra homomorphism Q[x, a] → Q[a] given by xi �→ ai. This induces a

Q[a]-algebra map 1 ⊗ ηa :
←−
R (x; a) → Λ(x||a) ⊗Q[a] Q[a] ∼= Λ(x||a), which we simply denote by ηa

as well.

Remark 4.12. Analogously to η0 in Remark 3.6, the map ηa substitutes xi �→ ai for the xi

generators of Q[x] but leaves the ‘xi in Λ(x||a)’ alone.

For w ∈ SZ, define the double Stanley symmetric function Fw(x||a) ∈ Λ(x||a) by

Fw(x||a) := ηa(
←−
Sw(x; a)). (4.18)
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Proposition 4.13. For w ∈ SZ, we have

Fw(x||a) =
∑

w
.
=uvz

u,z∈S�=0

(−1)u
Su−1(a)Fv(x/a)Sz(a). (4.19)

Proof. This follows from the definition (4.18) and Corollary 4.5. �

Proposition 4.14. For λ ∈ Y, we have Fwλ
(x||a) = sλ(x||a).

Proof. The Grassmannian double Stanley function is a double Schur function: Fwλ
(x||a) =

ηa(
←−
Swλ

) =
←−
Swλ

= sλ(x||a) by Proposition 4.11, since ηa is the identity when restricted to

Λ(x||a). �

4.7 Negative double Schubert polynomials

Let ω be the involutive Q-algebra automorphism of Q[x; a] given by ω(xi) = −x1−i and ω(ai) =

−a1−i for i ∈ Z. For w ∈ S−, define the negative double Schubert polynomial Sw(x−; a−) ∈

Q[x−, a−] by

Sw(x−; a−) := ω(Sω(w)(x+; a+)) for w ∈ S−. (4.20)

Define Sw(x; a) ∈ Q[x; a] for w ∈ S�=0 by

Sw(x; a) := Su(x+; a+)Sv(x−; a−) where w = uv with u ∈ S+ and v ∈ S−. (4.21)

Proposition 4.15. For w ∈ S�=0, we have

Sw(x; a) =
∑

w
.
=uv

(−1)u
Su−1(a)Sv(x), (4.22)

Sw(x) =
∑

w
.
=uv

Su(a)Sv(x; a). (4.23)

Proof. Equation (4.22) is straightforwardly reduced to the case that w ∈ S+, which is Proposi-

tion 2.11. Equation (4.23) follows from (4.22) by Corollary B.3. �

4.8 Coproduct formula

There is a coaction ∆ :
←−
R (x; a) → Λ(x||a) ⊗Q[a]

←−
R (x||a) of Λ(x||a) on

←−
R (x; a), defined by the

comultiplication on the first factor of the tensor product Λ(x||a) ⊗Q[a] Q[x, a].

Theorem 4.16. Let w ∈ SZ. We have the coproduct formulae

∆(
←−
Sw(x; a)) =

∑

w
.
=uv

Fu(x||a) ⊗
←−
Sv(x; a), (4.24)

←−
Sw(x; a) =

∑

w
.
=uv

v∈S�=0

Fu(x||a) Sv(x; a). (4.25)
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Proof. We first deduce (4.24) from (4.25). Using Corollary 4.5, Proposition 4.13 and Lemma 2.10

we have

∑

w
.
=uv

Fu(x||a) ⊗
←−
Sv(x; a)

=
∑

w
.
=u1v1z1u2v2z2

ui,zj∈S�=0

(−1)ℓ(u1)+ℓ(u2)
Su−1

1
(a)Fv1(x/a)Sz1(a) ⊗ Su−1

2
(a)Fv2(x/a)Sz2(x)

=
∑

w
.
=u1v1v2z2

u1,z2∈S�=0

(−1)ℓ(u1)
Su−1

1
(a)Fv1(x/a) ⊗ Fv2(x/a)Sz2(x)

= ∆

( ∑

w
.
=u1vz2

u1,z2∈S�=0

(−1)ℓ(u1)
Su−1

1
(a)Fv(x/a)Sz2(x)

)

= ∆(
←−
Sw(x; a)).

For (4.25), using Propositions 4.13 and 4.15 we have

∑

w
.
=uv

v∈S�=0

Fu(x||a) Sv(x; a) =
∑

w
.
=u1v1z1v

u1,z1,v∈S�=0

(−1)ℓ(u1)
Su1

−1(a)Fv1(x/a)Sz1(a)Sv(x; a)

=
∑

w
.
=u1v1z

u1,z∈S�=0

(−1)ℓ(u1)
Su1

−1(a)Fv1(x/a)Sz(x)

=
←−
Sw(x; a). �

Corollary 4.17. Let w ∈ SZ. Then

∆(Fw(x||a)) =
∑

w
.
=uv

Fu(x||a) ⊗ Fv(x||a).

Proof. We have ∆ ◦ ηa = (1 ⊗ ηa) ◦ ∆ acting on
←−
R (x; a), where (1 ⊗ ηa) acts on Λ(x||a) ⊗Q[a]

←−
R (x; a) by acting as ηa on the second factor. The result follows from (4.24). �

Recall the definition of wλ/µ from (2.2).

Corollary 4.18. For λ ∈ Y, we have

∆(sλ(x||a)) =
∑

µ⊂λ

Fwλ/µ
(x||a) ⊗ sµ(x||a). (4.26)

Proof. Consider (4.24) for
←−
Swλ

(x; a) = sλ(x||a). Let wλ
.
= uv. Since wλ ∈ S0

Z it follows that

v ∈ S0
Z. Let μ ∈ Y be such that μ ⊂ λ and wµ = v. Then u = wλ/µ and (4.26) follows. �

4.9 Dynkin reversal

Extend the Q-algebra automorphism ω of Q[x; a] to
←−
R (x; a) by ω(pk(x||a)) = (−1)k−1pk(x||a).
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Proposition 4.19. We have

ω(f)|ω(v) = ω(f |v) for f ∈
←−
R (x; a) and v ∈ SZ, (4.27)

ω(γa(f)) = γ−1
a (ω(f)) for f ∈

←−
R (x; a). (4.28)

Moreover,

ω(Fv(x/a)) = Fω(v)(x/a) for v ∈ SZ, (4.29)

ω(
←−
Sv(x; a)) =

←−
Sω(v)(x; a) for v ∈ SZ, (4.30)

ω(Fv(x||a)) = Fω(v)(x||a) for v ∈ SZ, (4.31)

ω(sλ(x||a)) = sλ′(x||a) for λ ∈ Y. (4.32)

Proof. It is straightforward to verify (4.27) on Q-algebra generators with the help of Lemma 4.1.

Equation (4.28) is also easily verified on algebra generators.

Equation (4.29) follows from Proposition 3.10 by superization. Equations (4.30) and (4.31)

follow by applying ω to the coproduct formulae (4.25) and Proposition 4.13. Equation (4.32)

follows from (4.30) and Proposition 4.11 using ω(wλ) = wλ′ .

Alternatively, (4.30) follows from the uniqueness of the Schubert basis as defined by

localizations. �

4.10 Double Edelman–Greene coefficients

Define the double Edelman–Greene coefficients jw
λ (a) ∈ Q[a] by the equality

Fw(x||a) =
∑

λ

jw
λ (a)sλ(x||a). (4.33)

Lemma 4.20. We have jw
∅ (a) = 0 unless w = id, and jid

∅ = 1.

Proof. By Theorem 4.7, we have
←−
Sw(a; a) = 0 if w 
= id and

←−
S id(a; a) = 1. The result follows

by localizing both sides of (4.33) at id. �

Example 4.21. We have Fsk+1sk
(x||a) = s2(x||a) + (a1 − ak+1)s1(x||a) and Fsk−1sk

(x||a) =

s11(x||a) + (ak − a0)s1(x||a) for all k ∈ Z. Thus j
sk+1sk

1 (a) = a1 − ak+1 and j
sk−1sk

1 (a) = ak − a0.

Theorem 4.22. Let x ∈ SZ and v ∈ S0
Z. Then jx

v (a) ∈ Q[a] is a positive integer polynomial in

the linear forms ai − aj where i ≺ j under the total ordering of Z given by

1 ≺ 2 ≺ 3 ≺ · · · ≺ −2 ≺ −1 ≺ 0.

Theorem 4.22 will be proven in § 9.9.

Define the coproduct structure constants ĉλ
µν(a) ∈ Q[a] for λ, μ, ν ∈ Y by

∆(sλ(x||a)) =
∑

µ,ν∈Y

ĉλ
µν(a)sµ(x||a) ⊗ sν(x||a). (4.34)

Proposition 4.23. For λ, μ, ν ∈ Y, we have ĉλ
µν(a) = j

wλ/µ
ν (a).
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Proof. This holds by taking the coefficient of sν(x||a) ⊗ sµ(x||a) in (4.26). �

Remark 4.24. In Theorem 8.18 we give a formula for ĉλ
µν(a) which is positive in the sense of

Theorem 4.22 in the special case that μ or ν is a hook.

Let d(λ) be the Durfee square of λ ∈ Y, the maximum index d such that λd � d. The following

change of basis coefficients between the double and super Schur bases were previously computed

in [ORV03] expressed as a determinantal formula and in [Mol09] by a tableau formula. We give

them as (signed) Schubert polynomials.

Proposition 4.25. For λ ∈ Y, we have

sλ(x||a) =
∑

µ⊂λ
d(µ)=d(λ)

(−1)|λ/µ|
Sw−1

λ/µ
(a)sµ(x/a), (4.35)

sλ(x/a) =
∑

µ⊂λ
d(µ)=d(λ)

Swλ/µ
(a)sµ(x||a). (4.36)

Proof. Consider (4.11) for
←−
Swλ

= sλ(x||a). For wλ
.
= uvz, arguing as in the proof of

Corollary 4.18, we first have z ∈ S0
Z ∩ S�=0 = {id}. Next we deduce that v = wµ for some μ ∈ Y

such that μ ⊂ λ. Thus u = wλ/µ. The condition wλ/µ ∈ S�=0 holds if and only if the skew shape

λ/μ contains no boxes on the main diagonal, that is, d(λ) = d(μ). This proves (4.35).

Equation (4.36) follows from (4.35) by Corollary B.3. �

Example 4.26. Let μ = (1) so that dµ = 1 and wµ = s0. Consider the λ such that s1(x||a) occurs

in sλ(x/a). We must have d(λ) = 1, that is, λ is a hook (p + 1, 1q) for p, q � 0. Then Swλ/µ
(a) =

(−a0)
qap

1.

5. Bumpless pipedreams

We shall consider various versions of bumpless pipedreams. These are tilings of some region in

the plane by the tiles: empty, NW elbow, SE elbow, horizontal line, crossing, and vertical line.

We shall use matrix coordinates for unit squares in the plane. Thus row coordinates increase

from top to bottom, column coordinates increase from left to right, and (i, j) indicates the square

in row i and column j.

5.1 SZ-bumpless pipedreams

Let w ∈ SZ. A w-bumpless pipedream is a bumpless pipedream covering the whole plane,

satisfying the following conditions.

(i) There is a bijective labeling of pipes by integers.

(ii) The pipe labeled i eventually heads south in column i and heads east in row w−1(i).

(iii) Two pipes cannot cross more than once.

(iv) For all N ≫ 0 and all N ≪ 0, the pipe labeled N travels north from (∞, N) to the square

(N, N) where it turns east and travels towards (N,∞).
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Figure 1. A bumpless pipedream with weight wt = (x−1 − a−1)(x1 − a0)(x1 − a2).

Because of condition (ii), every pipe has to make at least one turn. We call pipe i standard

if it makes exactly one turn and this turn is at the diagonal square (i, i). By (iv), all but finitely

many pipes are standard. We often omit standard pipes from our drawings of pipedreams. The

weight wt(P ) :=
∏

(xi − aj) of a pipedream P is the product of xi − aj over all empty tiles (i, j).

Example 5.1. Let w = s3s0s1. In one line notation, w(−2,−1, 0, 1, 2, 3, 4) = (−2,−1, 1, 2, 0, 4, 3)

and the rest are fixed points. Figure 1 shows a w-bumpless pipedream, where we have only drawn

the region {(i, j) | i, j ∈ [−2, 4]}. In the left picture, the empty tiles have been indicated, as have

the row and column numbers. The label of a pipe is the column number to which its south end

is attached. In the right picture, we have indicated the labels of the pipes instead of the row

numbers. The one-line notation of w can then be read off the east border.

Theorem 5.2. Let w ∈ SZ. Then
←−
Sw(x; a) =

∑
P wt(P ) where the sum is over all w-bumpless

pipedreams.

The proof of Theorem 5.2 is delayed to after Theorem 5.13.

5.2 Drooping and the Rothe pipedream

A w-bumpless pipedream is uniquely determined by the location of the two kinds of elbow tiles.

Each pipe has to turn at least once. There is a unique w-bumpless pipedream such that for all i,

pipe i turns right from south to east in the square (w−1(i), i). We call this the Rothe pipedream

D(w) of w. The empty tiles of the Rothe pipedream form what is commonly known as the Rothe

diagram of w.

Let P be a w-bumpless pipedream. A droop is a local move that swaps an SE elbow e with

an empty tile t, when the SE elbow lies strictly to the northwest of the empty tile. Let R be the

rectangle with northwest corner e and southeast corner t and let p be the pipe passing through

e. After the droop, the pipe p travels along the southmost row and eastmost column of R; a NW

elbow occupies the square that used to be empty while the square that contained an SE elbow

becomes empty. The droop is allowed only if all the following hold.

(i) The westmost column and northmost row of R contains p.

(ii) The rectangle R contains only one elbow which is at e.

(iii) After the droop we obtain a bumpless pipedream P ′.
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Figure 2. A Rothe bumpless pipedream P , and a sequence of two droops.

Pipes p′ 
= p do not move in a droop. We denote a droop by P ց P ′. Figure 2 shows a Rothe

bumpless pipedream followed by a sequence of two droops.

Proposition 5.3. Every w-bumpless pipedream can be obtained from the Rothe pipedream

D(w) of w by a sequence of droops.

Proof. Let P ′ be a w-bumpless pipedream which is not the Rothe pipedream and e be an NW

elbow that is northwestmost among NW elbows in P ′. Let p be the pipe passing through e. Then

p passes through SE elbows f (respectively f ′) in the same row (respectively column) as e. Let

R be the rectangle bounded by e, f, f ′ with northwest corner t. It is easy to see that t must be an

empty tile and R does not contain any other elbows. Thus there is a droop P ց P ′ which occurs

in the rectangle R, and P has strictly fewer NW elbows than P ′. Repeating, we eventually arrive

at the Rothe pipedream. �

Corollary 5.4. The number of empty tiles in a w-bumpless pipedream is equal to ℓ(w).

5.3 Halfplane crossless pipedreams

Let P be an SZ-bumpless pipedream. By (iv) of the definition, only finitely many crossings

appear. If we cut off, using a horizontal line, the bottom part of P containing all crossing tiles,

we will obtain a picture that we call a halfplane crossless pipedream. It turns out that the double

Schur function is a generating function of such pipedreams.

For λ ∈ Y, a λ-halfplane pipedream is a bumpless pipedream in the upper halfplane H =

Z�0 × Z such that the crossing tile is not used, and:

(i) there are (unlabeled) pipes entering from the southern boundary in the columns indexed

by I ⊂ Z;

(ii) setting (I+, I−) = (I ∩ Z>0, Z>0 \ I), we have I± = Iwλ,± (see (4.6), (4.7), and (2.1));

(iii) the ith eastmost pipe entering from the south heads off to the east in row 1 − i. (Equivalently,

for every row i ∈ Z�0, there is some pipe heading towards (i,∞).)

As before, the weight of a λ-halfplane pipedream is wt(P ) =
∏

(xi − aj), where the product

is over all empty tiles (i, j) in the halfplane H.

For example, taking λ = (2, 1, 1) we have wλ = s−2s−1s1s0 and (I+, I−) = ({2}, {−2}).

Figure 3 shows a λ-halfplane pipedream.

Lemma 5.5. The number of empty tiles in a λ-halfplane pipedream is equal to |λ|.
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Figure 3. A (2, 1, 1)-halfplane pipedream with weight wt = (x−3 − a−3)(x−2 − a−3)(x−1 −
a0)(x0 − a−2).

Theorem 5.6. Let λ be a partition. Then sλ(x||a) =
∑

P wt(P ) where the sum is over all

λ-halfplane pipedreams.

The proof of Theorem 5.6 is delayed to after Theorem 5.13.

A Z�0-semistandard Young tableau (SSYT) of shape λ is a filling of the Young diagram

λ (in English notation) with the integers 0,−1,−2, . . . such that rows are weakly increasing

and columns are strictly increasing. The weight wt(T ) of a Z�0-SSYT is the product wt(T ) =∏
(i,j)∈T (xT (i,j) − aT (i,j)+c(i,j)) where c(i, j) = j − i is the content of the square (i, j) in row i and

column j.

Corollary 5.7. Let λ be a partition. Then sλ(x||a) =
∑

T wt(T ) where the sum is over all

Z�0-SSYT of shape λ.

5.4 Rectangular Sn-bumpless pipedreams

Let w ∈ Sn. A w-rectangular bumpless pipedream is a bumpless pipedream in the n × 2n

rectangular region

Rn := {(i, j) | i ∈ [1, n] and j ∈ [1 − n, n]}.

The pipes are labeled 1 − n, 2 − n, . . . , 0, 1, . . . , n, entering the south boundary from left to right.

The positively labeled pipes exit the east boundary: pipe i exits in row i. The nonpositively

labeled pipes exit the north boundary. Two pipes intersect at most once, and a nonpositively

labeled pipe cannot intersect any other pipe. As before, the weight of a rectangular Sn-bumpless

pipedream P is given by wt(P ) =
∏

(xi − aj), with the product over all empty tiles (i, j).

Lemma 5.8. Let w ∈ Sn. Suppose P is an SZ-bumpless pipedream for w (considered an element

of SZ. Then the region inside the rectangle Rn is an Sn-rectangular bumpless pipedream for w.

We also associate a partition λ(P ) to an Sn-rectangular bumpless pipedream: it is obtained

by reading the north boundary edges from right to left, to then obtain the boundary of a partition

inside a n × n box, where empty edges correspond to steps to the left, and edges with a pipe

exiting correspond to downward steps. See Figure 4, where empty edges are marked e and edges

with a pipe exiting are marked x.

Lemma 5.9. Let w ∈ Sn and P be a w-bumpless pipedream. We have ℓ(w) = |λ(P )| +

deg(wt(P )).

911

https://doi.org/10.1112/S0010437X21007028 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X21007028


T. Lam, S. Jin Lee and M. Shimozono

Figure 4. The partition of a rectangular Sn-bumpless pipedream.

Example 5.10. Let w = 2143. In Figure 5 is a complete list of all w-bumpless pipedreams. The

nonpositively labeled pipes are those which enter from the bottom to the left of the dotted line.

Theorem 5.11. Let w ∈ Sn. Then we have
←−
Sw(x; a) =

∑
P wt(P )sλ(P )(x||a) where the sum is

over all w-rectangular bumpless pipedreams.

Theorem 5.11 is proved in § 12.4.

Corollary 5.12. Let w ∈ Sn. Then Fw(x||a) =
∑

P ηa(wt(P ))sλ(P )(x||a) where the sum is over

all w-rectangular bumpless pipedreams.

5.5 Square Sn-bumpless pipedreams

Let w ∈ Sn. A w-square bumpless pipedream is a bumpless pipedream in the n × n square region

Sn := {(i, j) | i ∈ [1, n] and j ∈ [1, n]}.

The pipes are labeled 1, . . . , n, entering the south boundary from left to right. The pipes exit

the east boundary: pipe i exits in row i. Two pipes intersect at most once. As before, the weight

of a square Sn-bumpless pipedream P is given by wt(P ) =
∏

(xi − aj), with the product over all

empty tiles (i, j). In Example 5.10, if we erase the left half and all nonpositively labeled pipes,

we obtain a square 2143-bumpless pipedream.

Theorem 5.13. For w ∈ Sn we have Sw(x+; a+) =
∑

P wt(P ) where the sum is over all w-

square bumpless pipedreams.

Proof. By Theorem 4.16 and Lemma 4.20, when
←−
Sw(x+; a+) is expanded in terms of {sλ(x||a) |

λ ∈ Y}, the coefficient of s∅(x||a) is equal to Sw(x+; a+). By Theorem 5.11, we thus have

Sw(x+; a+) =
∑

P

wt(P )

summed over w-rectangular bumpless pipedreams P satisfying λ(P ) = ∅. The condition λ(P ) = ∅

is equivalent to all nonpositively labeled pipes in P being completely vertical. In particular, the

nonpositively labeled pipes stay within the left n × n square of P . Such pipedreams are in

weight-preserving bijection with w-square bumpless pipedreams. �

Proof of Theorem 5.2. The special role of the row and column indexed 0 is arbitrary. In

Theorem 5.13, we could obtain a formula for the double Schubert polynomial S
[p,n]
w (x; a) (with

variables xp, xp+1, . . . , xn and ap, ap+1, . . . , an) if we worked with square w-bumpless pipedreams

in rows and columns indexed by p, p + 1, . . . , n. We note that such bumpless pipedreams are back
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Figure 5. Rectangular Sn-bumpless pipedreams for w = 2143.

stable: there is a natural weight-preserving injection sending such a pipedream for S
[p,n]
w (x; a)

to a pipedream for S
[p−1,n]
w (x; a). The union of all such square w-pipedreams are exactly the

w-bumpless pipedreams of Theorem 5.2. Taking p → −∞, Theorem 5.2 thus follows from the

definition of back stable double Schubert polynomial. �

Proof of Theorem 5.6. We apply Theorem 5.2 to w = wλ. We have wλ(1) < wλ(2) < · · · and

wλ(0) > wλ(−1) > · · · . It follows that in a wλ-bumpless pipedream the following are true.
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Figure 6. A 213-EG pipedream with partition (1).

(i) There are no crossings in rows indexed by nonpositive integers.

(ii) There are no empty tiles in rows indexed by positive integers.

Thus the lower half of a wλ-bumpless pipedream P is completely determined by λ, and the

upper half is a λ-halfplane pipedream. �

5.6 EG pipedreams

Let w ∈ Sn. Let P be a w-square bumpless pipedream. We call P a w-EG pipedream if all the

empty tiles are in the northeast corner, where they form a partition shape λ = λ(P ), called the

shape of P . See Figure 6.

Theorem 5.14. The Edelman–Greene coefficient jw
λ = jw

λ (0) of (3.12) is equal to the number

of w-EG pipedreams P satisfying λ(P ) = λ.

Proof. Specializing ai = 0 for all i in Corollary 5.12, we obtain Fw =
∑

P sλ(P ) where the sum is

over all w-rectangular bumpless pipedreams P with no empty tiles. In particular, the positively

labeled pipes in the right n × n square of P forms a w-EG pipedream. The nonpositively labeled

pipes in P have to fill up all the remaining tiles, and since they cannot intersect, there is a

unique way to do so. Thus there is a bijection between w-rectangular bumpless pipedreams with

no empty tiles and w-EG pipedreams. Finally, one verifies from the definitions that λ(P ) is

defined consistently for the two kinds of pipedreams. �

An empty tile T in a bumpless pipedream D is called a floating tile if there exists a pipe

that is northwest of T . A bumpless pipedream D is called near EG if it has a single floating tile.

5.7 Column moves

We define column moves that modify a bumpless pipedream in two adjacent columns; see

Figure 7. Only one of the pipes (the active pipe) is drawn in these pictures. For the move

to be allowed, the southeastmost tile must be an empty tile (before the move), and it must be

the only empty tile. Thus the move takes the empty tile from the southeastmost position to the

northwestmost position. There are usually other pipes in the move, and the ‘kinks are shifted

left’ if necessary; see the move on the right of Figure 7.

A column move is a droop if no kinks are present, and in addition, the pipe exits south in the

left column and exits east in the right column. We write D → D′ if two bumpless pipedreams

are related by a column move. We say that D′ is obtained from D by a downwards column move.

Lemma 5.15. Let D be a bumpless pipedream that is not an EG pipedream. Then D admits a

downwards column move D → D′.
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Figure 7. On the left: the different types of column moves. On the right: kinks are shifted to
the left.

Proof. Let E be any northwestmost floating tile in D. Then the tile W immediately to west of E

is nonempty, and must either be an NW elbow or a vertical line. Call this pipe p. Then p travels

up from W a number of tiles and turns towards the east at a tile T . We may perform a column

move in the rectangle with corners T and E. �

Lemma 5.16. Let D be a near EG pipedream. Then there is a unique sequence of moves D →

D′ → D′′ → · · · → D∗ where D∗ is a EG pipedream.

Write r(D) = D∗ for the EG pipedream of Lemma 5.16.

Remark 5.17. We can define an equivalence relation on bumpless pipedreams using column

moves. We caution the reader that multiple EG pipedreams can belong to a single such

equivalence class.

5.8 Insertion

Let D be an w-EG pipedream and i ∈ [1, n − 1] be such that siw > w, or equivalently, the pipes

labeled i and i + 1 do not cross in D. Let D′ be the bumpless diagram obtained from D by

swapping the pipes i and i + 1 in columns i and i + 1. Namely, if in D the first turn of pipe

i (respectively i + 1) is in row ai (respectively ai+1 > ai), then in D′ the first turn of pipe i

(respectively i + 1) is in row ai+1 (respectively ai). Other pipes that cross pipe i in column i

have their ‘kinks shifted left’ in D′. See Figure 8.

The northwestmost tile in the shown rectangle is always an empty tile in D′. Thus D′ is

either a EG pipedream or a near EG pipedream. Note that there are two possibilities for the

northeastmost tile in the shown rectangles.

We define the insertion D ← i to be the EG pipedream given by

D ← i := r(D′).

(Note that D ← i is not defined if the pipes i and i + 1 cross.) Let D0 be the unique EG

pipedream for the identity permutation. Let i = i1i2 · · · iℓ be a reduced word. Then define

915

https://doi.org/10.1112/S0010437X21007028 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X21007028


T. Lam, S. Jin Lee and M. Shimozono

Figure 8. Swapping pipes i and i′ = i + 1.

Figure 9. The computation of the EG pipedream P (1231). For each insertion step, both D′

and r(D′) are shown (if they are different).

(P, Q) = (P (i), Q(i)) by

P (i) = (· · · ((D0 ← iℓ) ← iℓ−1) · · · ) ← i1,

Q(i) = {λ(D0) ⊂ λ(D0 ← iℓ) ⊂ · · · ⊂ λ(P (i))}.

Note that Q(i) is a saturated chain of partitions, and is thus equivalent to a standard Young

tableau of shape λ(P (i)).

Example 5.18. Let n = 4 and i = 1231. We compute P (i), Q(i) in Figure 9.

We recall the Coxeter–Knuth equivalence relation on Red(w). It is generated by the

elementary relations

· · · ikj · · · ∼ · · · kij · · · for i < j < k,

· · · ikj · · · ∼ · · · jki · · · for i < j < k,

· · · i(i + 1)i · · · ∼ · · · (i + 1)i(i + 1) · · · .
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Edelman–Greene insertion provides a bijection C �→ T (C) between Coxeter–Knuth equivalence

classes C ⊂ Red(w) and reduced word tableaux T for w (see [EG87] and the paragraph containing

(3.12)). Bumpless pipedreams encode a new version of Edelman–Greene insertion.

Theorem 5.19. The map i �→ (P (i), Q(i)) induces a bijection between reduced words for Sn

and pairs consisting of an EG pipedream and a standard Young tableau of the same shape. For

a fixed EG pipedream D, the set CD := {i | P (i) = D} is a single Coxeter–Knuth equivalence

class. The shape of the reduced word tableau T (CD) is λ(D).

Problem 5.20. Find a direct shape-preserving bijection between EG pipedreams for w and

reduced word tableaux for w.2

Remark 5.21. There is a transpose analogue of column moves called row moves. We can

also define insertion into EG pipedreams using row moves. Theorem 5.19 holds with (usual)

Edelman–Greene insertion replaced by Edelman–Greene column insertion.

The insertion path of the insertion D ← i is the collection of positions through which the

empty tile travels in the calculation of r(D′). An insertion path consists of a number of boxes,

one in each of an interval of columns. Two insertion paths are compared by comparing respective

boxes in the same column.

The following key result is immediate from the definition of column moves.

Lemma 5.22. The pair (D, i) can be recovered uniquely from the pair

(D ← i,final box in the insertion path).

Lemma 5.23. Suppose i < j.

(i) Then the insertion path of D ← i is strictly below the insertion path of (D ← i) ← j.

(ii) Then the insertion path of D ← j is strictly above the insertion path of (D ← j) ← i.

Proof. We show claim (i); claim (ii) is similar. Let the insertion path of D1 = D ← i be the

boxes bi, bi−1, . . . , bs, where bk is in column k. Let the insertion path of (D ← i) ← j be the

boxes cj , cj−1, . . . , ct where ck is in column k. Consider the calculation of ci: the lowest elbow in

column i − 1 of D1 is at the same height as bi. Thus ci−1 must at the same height or above bi.

It follows that ci is above bi, and indeed it must be at least as high as bi−1 because there are no

elbows in column i above bi and below the row of bi−1. The claim (i) follows by repeating this

argument. �

Recall that the descent set Des(T ) of a standard Young tableau T is the set of letters j such

that j + 1 is in a lower row than j in T . The descent set Des(i) of a word i = i1 · · · iℓ is the

indices j such that ij > ij+1.

Corollary 5.24. For a reduced word i, we have Des(i) = Des(Q(i)).

Lemma 5.25. Let D be a EG pipedream and suppose i < j < k. Then we have (when the EG

pipedreams are defined):

2 Since our preprint was posted, solutions to this problem have appeared in [FGS18, Wei20].
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(i) ((D ← j) ← i) ← k = ((D ← j) ← k ← i);

(ii) ((D ← i) ← k) ← j = ((D ← k) ← i ← j).

Proof. We prove claim (i); claim (ii) is similar. By Lemma 5.23, the insertion path for D ← j is

above that of (D ← j) ← i. In particular, the two EG pipedreams (D ← j) ← i and D ← i differ

only in tiles that are below the insertion path of j. On the other hand, the insertion path for

(D ← j) ← k is above that of D ← j, and thus does not see the part the pipedream below the

insertion path of j. The desired equality follows. �

Lemma 5.26. Let D be an EG pipedream and suppose i, i + 1 ∈ [1, n − 1]. When the EG

pipedreams are defined, we have ((D ← i) ← i + 1) ← i = ((D ← i + 1) ← i) ← i + 1.

Proof. For the insertions to be defined, the pipes i, i + 1, and i + 2 in D do not intersect. Let

hi, hi+1, hi+2 be the heights of the boxes containing the first right elbow for the pipes i, i + 1,

and i + 2 respectively. Then hi is strictly above hi+1, which is strictly above hi+2.

Let us first consider D1 = ((D ← i) ← i + 1) ← i. To calculate (D ← i) we will first create

an empty tile in the box (i, hi) in column i. Instead of moving this empty tile to the northwest

immediately, let us keep it where it is, and consider the insertion of i + 1. This creates an empty

tile in the box (i + 1, hi). Finally, the second insertion of i creates an empty tile in (i, hi+1). Call

the resulting bumpless diagram D′
1. Checking the definitions, we see that D1 is obtained from

D′
1 by performing column moves on the three empty tiles, as long as we move the empty tiles in

order.

Now consider D2 = ((D ← i + 1) ← i) ← i + 1. To calculate (D ← i + 1) we will first create

an empty tile in the box (i + 1, hi+1) in column i. Applying a single downward move to this

empty tile, we see that it will end up in box (i, hi). At this point the first right elbow in column i

will be at height hi+1. Now we consider the insertion of i, which creates an empty tile at position

(i, hi+1). Finally, the second insertion of i + 1 creates an empty tile in (i + 1, hi). The resulting

bumpless diagram is identical to D′
1. To obtain D2, we perform column moves on the three empty

tiles in the correct order.

The difference between the calculation of D1 and D2 is that the order of applying column

moves to the empty tiles in positions (i, hi+1) and (i + 1, hi) are swapped. We claim that the

resulting EG-diagrams D1 and D2 are nevertheless identical. This is because the path of the tile

at (i, hi+1) (respectively (i + 1, hi)) stays below (respectively above) that of the tile at (i, hi).

Thus the corresponding column moves commute, as in the proof of Lemma 5.25. �

Proof of Theorem 5.19. Bijectivity is straightforward from the constructions: by Lemma 5.22,

the map i �→ (P (i), Q(i)) is injective, and applying this reverse map to pairs (P (i), Q(i)) shows

that the map is surjective.

By Lemmas 5.26 and 5.25, Coxeter–Knuth equivalent reduced words have the same insertion

EG pipedream. Thus the set {i | P (i) = D} is a union of Coxeter–Knuth equivalence classes. That

it is a single Coxeter–Knuth equivalence class can be deduced from Theorem 5.14. Alternatively,

the same claim can be deduced from the reversed versions of Lemmas 5.23, 5.26, and 5.25.

Let SYT(λ) denote the set of standard Young tableaux of shape λ. Then the collection

{Des(S) | S ∈ SYT(λ)} of descent sets uniquely determines λ. (For example, this collection

encodes the expansion of the Schur function sλ in terms of fundamental quasisymmetric func-

tions, and the assignment λ �→ sλ is injective.) Let sh(T ) denote the shape of a Young tableau T .
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Then for a Coxeter–Knuth equivalence class C, the equality of multisets

{Des(i) | i ∈ C} = {Des(S) | S ∈ SYT(sh(T (C)))}

is known to hold for Edelman–Greene insertion. The last claim then follows from Corollary 5.24.

�

6. Infinite flag variety

Let AZ denote the Dynkin diagram with Dynkin node set Z and simple bonds (i, i + 1) for

all i ∈ Z. In this section, we construct the infinite flag variety Fl explicitly. It is a ‘type AZ

Kac–Moody flag ind-variety’.3 It affords the action of a torus TZ. We define the Schubert basis

for the equivariant cohomology H∗
TZ

(Fl) of Fl as well as an algebraic construction for it called the

GKM (Goresky–Kottwitz–Macpherson) ring Ψ. Similar constructions are made for the infinite

Grassmannian Gr. Then we show that the GKM ring of Fl is isomorphic to the polynomial ring
←−
R (x, a) with Schubert basis corresponding to backstable Schubert polynomials. For more on

infinite Grassmannians, we refer the reader to [PS86].

6.1 Infinite Grassmannian

Let F = C((t)) be the space of formal Laurent series. For a ∈ Z, let Ea = {
∑∞

i=a cit
i | ci ∈ C} ⊂

F . For N ∈ Z>0 say that a C-subspace Λ ⊂ F is N -admissible if EN ⊂ Λ ⊂ E−N and that Λ is

admissible if it is admissible for some N ∈ Z>0. The virtual dimension vdim(Λ) of an admissible

subspace Λ is the difference

vdim(Λ) := dim(E0/(Λ ∩ E0)) − dim(Λ/(Λ ∩ E0)).

The Sato Grassmannian Gr• is the set of admissible subspaces in F . The Sato Grassmannian

is a disjoint union Gr• =
⊔

kGr(k), where Gr(k) consists of the admissible subspaces of virtual

dimension k. We will mostly focus on the infinite Grassmannian Gr := Gr(0).

There is a bijection between N -admissible subspaces of virtual dimension 0, and the points

of the finite-dimensional Grassmannian Gr(N, 2N) ∼= Gr(N, E−N/EN ) given by Λ �→ Λ/EN . We

have Gr =
⋃

NGr(N, 2N), from which Gr inherits the structure of an ind-variety over C.

6.2 Infinite flag variety

For N ∈ Z>0, an N -admissible flag (of virtual dimension 0) in F is a sequence

Λ•={· · · ⊂ Λ−1 ⊂ Λ0 ⊂ Λ1 ⊂ · · · }

of admissible subspaces satisfying the conditions: (i) vdim(Λi) = i; and (ii) Λi = E−i for all i

with |i| � N . An admissible flag is one that is N -admissible for some N ∈ Z>0.

The infinite flag variety Fl is the set of all admissible flags. There is a bijection from the set

of N -admissible flags to the points of the variety Fl(2N) ∼= Fl(E−N/EN ) of complete flags in the

2N -dimensional vector space E−N/EN given by Λ• �→ (Λ−N/EN ⊂ Λ1−N/EN ⊂ · · · ⊂ ΛN/EN ).

We have Fl =
⋃

NFl(2N) from which Fl inherits the structure of an ind-variety over C. For i ∈ Z

denote by πi : Fl → Gr(i) the projection map sending Λ• �→ Λi.

3 Strictly speaking, Kac–Moody Dynkin node sets are finite by definition. Kashiwara’s thick flag scheme
construction [Kas89] allows infinite Dynkin node sets.
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For k ∈ Z let Fl(k) denote the k-shifted infinite flag ind-variety, which is defined similarly to

Fl except that the condition vdim(Λi) = i + k is imposed. Each Fl(k) is isomorphic to Fl, and

we have the Sato flag variety Fl· =
⊔

kFl(k).

6.3 Schubert varieties

Let TZ = (C×)Z be the restricted product, whose elements have only finitely many nonidentity

factors. The torus TZ is the union
⋃

a�bT[a,b] of finite-dimensional subtori where T[a,b] consists of

the elements equal to the identity in positions outside of [a, b] ⊂ Z. The torus TZ acts naturally

on F , with the ith coordinate of TZ acting on the coefficient of ti. This induces an action of TZ

on Fl and Gr. The action of TZ on Fl(2N) (respectively Gr(N, 2N)) factors through the action

of T[−N,N−1] on Fl(2N) (respectively Gr(N, 2N)).

For (i, j) ∈ Z2 with i 
= j and a ∈ C define the C-linear transformation of F given by

xi,j(a)(tk) =

{
ti + atj if k = i,

tk otherwise.

Let SZ ⊂ GL(F ) via permutation matrices. Let B be the group of linear transformations of F

generated by TZ and xij(a) for a ∈ C for i < j. Let P be the group generated by B and S�=0 and

G the group generated by B and SZ. We call the group G the ‘minimal Kac–Moody group of

type AZ’ in analogy with the situation for Kac–Moody groups [Kum02, § 7.4]. Let E• ∈ Fl be

the standard flag (whose ith subspace is the standard subspace Ei for all i ∈ Z). Then Fl ∼= G/B

since G acts transitively on Fl and B is the stabilizer of E•. This isomorphism restricts to a

bijection of TZ-fixed points wE• �→ wB/B. The Schubert cell BwE• �→ BwB/B is isomorphic

to the affine space Cℓ(w) and is contained in Fl(2N) if w ∈ S[−N,N−1]. We define the Schubert

variety

Xw := BwB/B.

We have Gr ∼= G/P since G acts transitively on Gr and P is the stabilizer of E0. This restricts

to the bijection of TZ-fixed point sets wE0 �→ wP/P where w ∈ S0
Z. Define the Schubert variety

XGr
w := BwE0 which is isomorphic to BwP/P ⊂ G/P .

6.4 Equivariant cohomology of infinite flag variety

We work with cohomologies with coefficients in Q. The group TZ is homotopy equivalent to the

restricted product (S1)Z, which is a CW-complex of infinite dimension and with infinitely many

cells in each dimension. Then ETZ is homotopy equivalent to (S∞)Z, which is again a restricted

product where all but finitely many factors must be the basepoint of S∞. The classifying space

BTZ = ETZ/TZ is the restricted product (CP∞)Z. Thus

H∗(BTZ) = H∗
TZ

(pt) = Q[. . . , a−1, a0, a1, . . .] = Q[a].

The Schubert cells {BwB/B | w ∈ SZ} form a TZ-stable paving of Fl by finite-dimensional

affine spaces. By standard arguments, HTZ
∗ (Fl) has a basis given by the fundamental classes [Xw]:

HTZ
∗ (Fl) ∼=

⊕

w∈SZ

Q[a][Xw]. (6.1)
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Similarly,

HTZ
∗ (Gr) ∼=

⊕

w∈S0
Z

Q[a][XGr
w ]. (6.2)

The equivariant homology HTZ
∗ (Fl) = lim

−→
HTZ

∗ (Fl(2N)) is a direct limit of equivariant homologies

of finite flag varieties. We define the completed equivariant cohomology H∗
TZ

(Fl)′ of Fl to be the

dual Q[a]-algebra to HTZ
∗ (Fl):

H∗
TZ

(Fl)′ := HomQ[a](H
∗
TZ

(Fl)), Q[a]) ∼= lim
←−

H∗
TZ

(Fl(2N)) ∼=
∏

w∈SZ

Q[a]ξw,

where the Schubert classes {ξw | w ∈ SZ} are the cohomology classes dual to the fundamental

classes {[Xw] | w ∈ SZ} under the cap product. (Note that we do not invoke Poincare duality:

Fl is infinite-dimensional.) Let H∗
TZ

(Fl) be the subspace of H∗
TZ

(Fl)′ spanned by the Schubert

classes:

H∗
TZ

(Fl) ∼=
⊕

w∈SZ

Q[a]ξw ⊂ H∗
TZ

(Fl)′.

This is a kind of restricted dual of HTZ
∗ (Fl).

6.5 Localization and GKM rings for infinite flags and infinite Grassmannian

Localization [KK86, CS74, GKM98] provides explicit algebraic (GKM) constructions Ψ and ΨGr

of the TZ-equivariant cohomology rings H∗
TZ

(Fl) ∼= Ψ and H∗
TZ

(Gr) ∼= ΨGr and their Schubert

bases.

Let Fun(SZ, Q[a]) be the Q[a]-algebra of functions SZ → Q[a] under pointwise product. For

f ∈ Fun(SZ, Q[a]) and w ∈ SZ we write f |w for f(w).

Let R := {ai − aj | i 
= j} be the root system of type AZ and R+ := {ai − aj ∈ R | i < j} the

positive roots. For a root α = ai − aj , let sα ∈ SZ be the transposition swapping i and j.

Let Ψ′ be the Q[a]-submodule of Fun(SZ, Q[a]) consisting of functions f : SZ → Q[a] such

that

α divides f |sαw − f |w for all w ∈ SZ, α ∈ R. (6.3)

Example 6.1. For p ∈ Q[a], define Lp ∈ Fun(SZ, Q[a]) by Lp|w = w(p). Then Lp ∈ Ψ′. If p is

homogeneous of degree one then Lp is an equivariant line bundle class.

Lemma 6.2. The Q[a]-submodule Ψ′ ⊂ Fun(SZ, Q[a]) is a Q[a]-subalgebra.

Proof. Let φ, ψ ∈ Ψ′, α ∈ R and w ∈ SZ. Then (φψ)|sαw − (φψ)|w is a multiple of α since it is

the sum of two multiples of α, namely, φ|sαw(ψ|sαw − ψ|w) + (φ|sαw − φ|w)ψ|w. �

We call Ψ′ the completed GKM ring for Fl. It has a Schubert ‘basis’ {ξv | v ∈ SZ} (see (6.7))

which is characterized as follows.
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Proposition 6.3 [KK86]. There is a unique family of elements {ξv | v ∈ SZ} ⊂ Ψ′ such that

ξv|w = 0 unless v � w, (6.4)

ξv|w ∈ Q[a] is homogeneous of degree ℓ(v), (6.5)

ξv|v =
∏

α∈R+

sαv<v

(−α). (6.6)

Moreover,

Ψ′ =
∏

v∈SZ

Q[a]ξv. (6.7)

We define Ψ :=
⊕

v∈SZ
Q[a]ξv, which is the Q[a]-submodule of Ψ′ with basis ξv. It follows

from Theorem 6.6 below that Ψ is a Q[a]-subalgebra of Ψ′. We call Ψ the GKM ring of Fl. Define

the GKM ring ΨGr of Gr by

ΨGr = {f ∈ Ψ | f |wsi = f |w for all w ∈ SZ and i 
= 0}.

Recall the bijection λ �→ wλ (2.1).

Proposition 6.4. The Q[a]-algebra ΨGr has a Q[a]-basis {ξwλ | λ ∈ Y}.

The GKM rings of Fl and Gr are explicit realizations of the equivariant cohomology rings

H∗
TZ

(Fl) and H∗
TZ

(Gr) and their Schubert bases.

Proposition 6.5. There are Q[a]-algebra isomorphisms

H∗
TZ

(Fl) ∼= Ψ, (6.8)

H∗
TZ

(Gr) ∼= ΨGr (6.9)

under which the Schubert bases correspond.

Proof. We first show that H∗
TZ

(Fl)′ ∼= Ψ′. Let Ψ(2N) be the Q[a]-submodule of

Fun(S[−N,N−1], Q[a])

consisting of functions f : S[−N,N−1] → Q[a] such that

α divides f |sαw − f |w for all w, sαw ∈ S[−N,−N−1], α ∈ R.

By [KK86], H∗
TZ

(Fl(2N)) ∼= Ψ(2N). The inclusion ι2N : Fl(2N) →֒ Fl(2(N + 1)) is TZ-equivariant

and maps the torus fixed point w ∈ S[−N,N−1] ∈ Fl(2N)TZ to the torus fixed point w ∈

S[−N−1,N ] ∈ Fl(2(N + 1))TZ . Thus the pullback map ι∗2N : H∗
TZ

(Fl(2(N + 1))) → H∗
TZ

(Fl(2N))

can be identified with the restriction map r2N : Ψ(2(N + 1)) → Ψ(2N). We conclude that

H∗
TZ

(Fl)′ ∼= lim
←−

H∗
TZ

(Fl(2N)) ∼= lim
←−

Ψ(2N) ∼= Ψ′.

By the usual characterization of Schubert classes of Ψ(2N) and Ψ(2(N + 1)) (cf. Proposition 6.3),

the restriction map r2N sends a Schubert class to either a Schubert class, or to 0. This shows

that the isomorphism H∗
TZ

(Fl)′ ∼= Ψ′ sends the ξw ∈ H∗
TZ

(Fl)′ defined in terms of the basis dual to
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the homology basis, to the same named element of Ψ′ described in Proposition 6.3. This proves

(6.8). The proof of (6.9) is similar. �

6.6 Realization of Schubert basis of GKM ring by backstable Schubert polynomials

We show that the GKM rings are realized by polynomial algebras such that the Schubert bases

of the GKM rings correspond to backstable Schubert polynomials and double Schur polynomials

respectively.

Theorem 6.6. We have isomorphisms of Q[a]-algebras:

←−
R (x, a) ∼= Ψ,

←−
Sv(x; a) �−→ ξv for v ∈ SZ, (6.10)

Λ(x||a) ∼= ΨGr, sλ(x||a) �−→ ξλ
Gr for λ ∈ Y. (6.11)

Proof. Let f ∈
←−
R (x; a). Then f can be considered an element of Fun(SZ, Q[a]) by (4.5). For any

α = ai − aj ∈ R the element

f(sx
αwx; a) − f(wx; a) = (sx

α − id)f(wx; a)

is divisible by xα = xi − xj . Applying ǫ from § 4.3 we see that f ∈ Ψ. It is immediate that the

map
←−
R (x; a) → Ψ is a Q[a]-algebra homomorphism.

It is not hard to see that if f ∈
←−
R (x; a) is nonzero then it has a nonzero localization. Thus

←−
R (x; a) embeds into Ψ.

One may deduce that
←−
Sv(x; a) �→ ξv by checking the conditions of Proposition 6.3. In turn,

these can be verified by Proposition 4.8 and the analogue of Proposition 6.3 for Sn, which is

satisfied by the localizations of double Schubert polynomials Sv(wa+; a+) for v, w ∈ Sn [Bil99,

Remark 1].

The statements for Gr are obtained by taking S�=0-invariants. �

Theorem 6.6 specializes to the following.

Theorem 6.7. We have isomorphisms of Q-algebras

H∗(Fl)
∼
−→

←−
R,

H∗(Gr)
∼
−→ Λ

where the images of Schubert classes are
←−
Sw and sλ respectively.

Remark 6.8. The decomposition H∗(Fl) = H∗(Gr) ⊗Q Q[x] can be explained as follows. For

[p, q] ⊂ Z an interval of integers, let Fl[p,q] be the space of flags F• ∈ Fl such that Fi = Ei for

i ∈ Z \ [p, q]. Then Fl[p,q]
∼= Fl(Eq+1/Ep−1) is isomorphic to the variety of complete flags in a (q −

p + 2)-dimensional complex vector space. Let Fl>0 =
⋃

n∈Z>0
Fl[1,n] and Fl<0 =

⋃
n∈Z<0

Fl[n,−1].

For a fixed Λ ∈ Gr, the fiber π−1
0 (Λ) ⊂ Fl is isomorphic to Fl<0 × Fl>0 which has cohomology

ring Q[x>0] ⊗ Q[x�0] ∼= Q[x]. We expect the fibration π0 : Fl → Gr to be topologically trivial.

6.7 Shifting

For later use, we briefly consider the other components Fl(p) and Gr(p) of the Sato flag variety and

Sato Grassmannian. Let sh : Z → Z be the bijection sending i to i + 1 for all i ∈ Z. Consider the
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group SZ := 〈sh〉 ⋉ SZ, the group of bijections of Z generated by SZ and by sh. The TZ-fixed

points of Fl(p) for p ∈ Z are indexed by shpw for w ∈ SZ. The equivariant cohomology H∗
TZ

(Fl(p))

has Schubert basis ξshpv for v ∈ SZ.

Let γa be as in § 4.5.

Proposition 6.9. For every p ∈ Z, there is an isomorphism of rings

H∗
TZ

(Fl(p)) →
←−
R (x, a) ξshpv �→

←−
Sshpv(x; a)

satisfying i∗shpw(ξshpv) =
←−
Sshpv(sh

pwa; a).

Proof. The Schubert class ξshpv is determined by i∗shpw(ξshpv) = γp
a(i∗w(ξv)). Since shpw(xi) =

xp+w(i), from the definition, we have
←−
Sshpv(sh

pwa; a) = γp
a
←−
Sv(wa; a). The result follows. �

The equivariant cohomology H∗
TZ

(Gr(p)) has Schubert basis ξshpλ for λ ∈ Y. Extend the

definition of double Schur functions by sshpλ(x||a) := γp
asλ(x||a) ∈ Λ(x||a).

Proposition 6.10. For every p ∈ Z, there is an isomorphism of rings

H∗
TZ

(Gr(p)) → Λ(x||a) ξshpλ �→ sshpλ(x||a)

satisfying i∗shpw(ξshpλ) = sshpλ(shpwa||a).

7. NilHecke algebra and Hopf structure

We show that the Q[a]-algebra isomorphisms of Theorem 6.6 preserve additional structure: for

Ψ, two commuting actions of the nilHecke algebra of Kostant and Kumar [KK86]; and for ΨGr,

the Hopf Q[a]-algebra structure.

7.1 NilHecke algebra

Let Q(a) be the fraction field of Q[a]. Let Q(a)[SZ] be the twisted group algebra, with product

(fu)(gv) = (fu(g))(uv) for f, g ∈ Q(a) and u, v ∈ SZ. The ring Q(a)[SZ] acts on Q(a): SZ acts

by permuting variables and Q(a) acts by left multiplication. For i ∈ Z, we regard Ai as being an

element of Q(a)[SZ]:

Ai := α−1
i (id − si) ∈ Q(a)[SZ]. (7.1)

The elements Ai act on Q[a].

The (infinite) nilHecke algebra A is by definition the Q-subalgebra of Q(a)[SZ] generated by

Q[a] and the Ai. We have the commutation relation

Aif = Ai(f) + si(f)Ai for i ∈ Z, f ∈ Q[a]. (7.2)

One may show that the expansion of Aw ∈ Q(a)[SZ] (see (2.7)) into the left Q(a)[SZ]-basis SZ,

is triangular with respect to the Bruhat order. It follows that the Aw are a left Q[a]-basis of A.

Viewing SZ ⊂ A via si = 1 − αiAi, for v, w ∈ SZ define the elements ev
w ∈ Q[a] by the

expansion of Weyl group elements into the basis Av of A:

w =
∑

v∈SZ

ev
wAv. (7.3)
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Example 7.1. Using (7.2) we have

s2s1 = (1 − α2A2)(1 − α1A1) = 1 − α1A1 − (α1 + α2)A2 + α2(s2(α1))A2A1.

Therefore es2s1
id = 1, es2s1

s1
= a2 − a1, es2s1

s2
= a3 − a1, es2s1

s2s1
= (a3 − a2)(a3 − a1), and es2s1

v = 0 for

other v ∈ SZ.

Proposition 7.2. The elements ev
w are uniquely defined by the initial conditions

ev
id = δv,id for all v ∈ SZ (7.4)

and either of the following.

(a) For all w ∈ SZ and i ∈ Z such that wsi < w,

ev
w = ev

wsi
+ w(αi)e

vsi
wsi

χ(vsi < v), (7.5)

evsi
w χ(vsi < v) = evsi

wsi
χ(vsi < v). (7.6)

(b) For all w ∈ SZ and i ∈ Z such that wsi < w,

ev
w = si(e

v
siw) − αisi(e

siv
siw)χ(siv < v), (7.7)

esiv
w χ(siv < v) = si(e

siv
siw)χ(siv < v). (7.8)

Let w ∈ SZ and a = (i1, i2, . . . , iℓ) ∈ Red(w). For 1 � j � ℓ let

βj(a) = si1si2 · · · sij−1(−αij ) = si1si2 · · · sij−1(aij+1 − aij ).

Proposition 7.3 [AJS94, Bil99]. Let w, v ∈ SZ and a = (i1, i2, . . . , iℓ) ∈ Red(w). Then we have

the closed formula

ev
w =

∑

b⊂a

∏

ij∈b

βj(a)

summed over all subwords of a that are reduced words for v.

Example 7.4. Let w = s1s2s1, a = (1, 2, 1) and v = s1. We have β1(a) = a2 − a1, β2(a) = s1(a3 −

a2) = a3 − a1, β3(a) = s1s2(a2 − a1) = a3 − a2. There are two subwords of a that are reduced

words of v, namely, (i1) and (i3). Therefore es1
s1s2s1

= β1(a) + β3(a) = a3 − a1. Using a′ =

(2, 1, 2) ∈ Red(w) we have β2(a
′) = a3 − a1, a unique subword of a′ that is a reduced word

of v, namely, (i2), and es1
s1s2s1

= β2(a
′) = a3 − a1.

It follows from Proposition 7.8(iii) below that the elements ev
w which were defined using A,

are none other than the localization values of equivariant Schubert classes at torus-fixed points.

Proposition 7.5. For v, w ∈ SZ, we have ξv|w = ev
w.

Recall the automorphism ω of § 3.6.

Lemma 7.6. For v, w ∈ SZ, we have ω(ξv|w) = ξω(v)|ω(w).

7.2 NilHecke actions

The GKM ring Ψ affords two actions of A which commute. The results in this subsection are

AZ-variants of the constructions of Kostant and Kumar [KK86].
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Proposition 7.7. (i) There is an action • of A on Ψ defined by

(Ai • ψ)|w = (w(αi))
−1(ψ|w − ψ|wsi), (7.9)

(p • ψ) = Lp ψ for p ∈ Q[a], (7.10)

where Lp is defined in Example 6.1. It satisfies

(u • ψ)|w = ψ|wu for u ∈ SZ. (7.11)

(ii) There is an action ∗ of A on Ψ given by

(Ai ∗ ψ)|w = α−1
i (ψ|w − si(ψ|siw)), (7.12)

(p ∗ ψ)|w = p ψ|w for p ∈ Q[a]. (7.13)

In particular the action of SZ on Ψ by ∗ is by conjugation:

(u ∗ ψ)|w = u(ψ|u−1w). (7.14)

(iii) The two actions commute.

(iv) For v ∈ SZ and i ∈ Z,

Ai • ξv =

{
ξvsi if vsi < v,

0 otherwise,
(7.15)

Ai ∗ ξv =

{
−ξsiv if siv < v,

0 otherwise.
(7.16)

Proof. We identify any function ψ ∈ Fun(SZ, Q(a)) with the left Q(a)-module homomorphism

ψ ∈ HomQ(a)(Q(a)[SZ], Q(a)) by extension by left Q(a)-linearity.

For (i), there is an action of Q(a)[SZ] on Fun(SZ, Q(a)) defined by

(b • ψ)|w = ψ|wb for b ∈ Q(a)[SZ].

For b = u ∈ SZ, we obtain (7.11). For a = Ai and a = p, we have

ψ|wAi = ψ|wα−1
i (id−si)

= ψ|w(αi)−1w(id−si) = w(αi)
−1

(
ψ|w − ψ|wsi

)
,

ψ|wp = ψ|(w(p)w) = w(p)ψ|w

which agrees with (7.9) and (7.10). To see that • restricts to an action of A on Ψ′, let ψ ∈ Ψ′. Note

that if α = w(αi) then wsi = sαw so that α divides ψ|w − ψ|sαw = ψ|w − ψ|wsi and Ai • ψ ∈ Ψ′.

For p ∈ Q[a] we have p • ψ = Lpψ ∈ Ψ′ since Ψ′ is a ring.

For (ii), again working over Q(a) the ∗-action is defined by (7.13) and (7.14). To show these

define an action of Q(a)[SZ] one must verify that the actions of p ∈ Q(a) and u ∈ SZ have the

proper commutation relation:

(u ∗ p ∗ ψ)|w = u(p ∗ ψ)|u−1w = u(pψ|u−1w) = u(p)u(ψ|u−1w) = (u(p) ∗ (u ∗ ψ))|w.

To check that ∗ restricts to an action of A on Ψ′, let ψ ∈ Ψ′. Note that for any p ∈

Q[a], si(p) − p = αig for some g ∈ Q[a] namely, g = −Ai(p). Then ψ|siw − ψ|w = αih for some
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h ∈ Q[a]. We have

ψ|w − si(ψ|siw) = ψ|w − si(ψ|w) + si(ψ|w) − si(ψ|siw)

= (id − si)(ψ|w) − si(αih)

= −αig + αisi(h) ∈ αiQ[a]

for some g ∈ Q[a]. Therefore Ai ∗ ψ ∈ Ψ. For p ∈ Q[a], it is immediate that p ∗ ψ ∈ Ψ′.

For (iii) it is straightforward to check over Q(a) that the operators p• and Ai• commute with

the operators q∗ and Aj∗.

Part (iv) follows by Propositions 7.2 and 7.5. Part (iv) implies that the two actions preserve

Ψ ⊂ Ψ′. �

The nilHecke algebra A has a comultiplication map ∆ : A → A ⊗Q[a] A given by

∆(w) := w ⊗ w for w ∈ SZ ⊂ A (7.17)

and extending by linearity over Q(a). One can show that (7.17) is equivalent to

∆(Ai) = Ai ⊗ 1 + si ⊗ Ai for i ∈ Z. (7.18)

We caution that A is not a Hopf algebra.

Define a pairing 〈· , ·〉 : Fun(SZ, Q(a)) ⊗Q(a) Q(a)[SZ] → Q(a) by

〈
ψ,

∑
aww

〉
=

∑
awψ(w) (7.19)

where aw ∈ Q(a). The following result follows from Proposition 7.7.

Proposition 7.8.

(i) Under the pairing 〈· , ·〉, Ψ′ and A are identified as dual Q[a]-modules.

(ii) The multiplication of Ψ′ is dual to the comultiplication ∆ of A.

(iii) For v, w ∈ SZ, we have 〈ξv , Aw〉 = δvw.

Proposition 7.9. The Q[a]-algebra isomorphism (6.10) is a A × A-module isomorphism.

Proof. The operators on
←−
R (x; a) given by Ax

i , multiplication by xi, Aa
i , and multiplication by

ai, correspond to the operators on Ψ given by Ai•, ai•, Ai∗, and ai∗ respectively. �

7.3 Hopf structure on ΨGr

Via (6.11), the ring ΨGr attains the structure of a Hopf algebra over Q[a]. We now describe the

comultiplication map ∆ : ΨGr → ΨGr ⊗Q[a] ΨGr.

Lemma 7.10. Let ψ ∈ ΨGr and w(1), w(2), . . . ∈ S0
Z be a sequence satisfying |Iw(k),+| = |Iw(k),−| =

k. Then ψ is uniquely determined by ψ|w(i) .

Proof. Fix the sequence w(1), w(2), . . . ∈ S0
Z. Let f =

∑
λ aλpλ(x||a) ∈ Λ(x||a) where aλ ∈ Q[a].

It suffices to show that f |w(k) 
= 0 for some k. Let S be the finite set of indices i such that ai

appears in some aλ. For sufficiently large k, the set Iw,+ \ S has cardinality greater than deg(f).

If μ = (μ1, . . . , μℓ) is minimal in dominance order in the set A = {λ | aλ 
= 0}, by Lemma 4.1
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the polynomial pµ(x||a)|w(k) ∈ Q[a] contains a term of the form aµaµ1
r1 aµ2

r2 · · · aµℓ
rℓ where r1 > r2 >

· · · > rℓ are the ℓ largest elements in Iw,+ \ S. This monomial does not appear in pλ(x||a)|w(k)

for λ ∈ A \ {μ}. The coefficient of this monomial must thus be nonzero in f |w(k) ∈ Q[a]. �

There is a partial multiplication map S0
Z × S0

Z → S0
Z. The product of x ∈ S0

Z and y ∈ S0
Z is

equal to z ∈ S0
Z if:(i) Ix,+ ∩ Iy,+ = ∅ = Ix,− ∩ Iy,−; and (ii) Ix,± ∪ Iy,± = Iz,±.

Proposition 7.11. There is a unique Hopf structure on ΨGr with comultiplication ∆ : ΨGr →

ΨGr ⊗Q[a] ΨGr given by

∆(ψ)|x⊗y = ψ|xy (7.20)

whenever x, y,∈ S0
Z and xy ∈ S0

Z is defined. With this Hopf structure, the map (6.11) is a Q[a]-

Hopf algebra isomorphism.

Proof. Suppose the product xy is well defined. By Lemma 4.1, we have

pk(x||a)|xy =
∑

i∈Ixy,+

ak
i −

∑

i∈Ixy,−

ak
i

=

( ∑

i∈Ix,+

ak
i −

∑

i∈Ix,−

ak
i

)
+

( ∑

i∈Iy,+

ak
i −

∑

i∈Iy,−

ak
i

)

= pk(x||a)|x + pk(x||a)|y

= (pk(x||a) ⊗ 1)|x⊗y + (1 ⊗ pk(x||a))|x⊗y

= ∆(pk(x||a))x⊗y.

Thus (7.20) is consistent with the comultiplication of Λ(x||a). By the same argument as in

the proof of Lemma 7.10, ∆(ψ) is completely determined by its values x ⊗ y for which xy is

defined. �

8. Homology Hopf algebra

In this section we identify Molev’s dual Schur functions [Mol09, § 3.1] with the equivariant homol-

ogy Schubert basis of Fl. Molev gave determinantal formulas for the Schur expansion of dual

Schurs and the inverse expansion [Mol09]: we give new formulas and simple proofs for these coef-

ficients expressed in terms of usual Schubert polynomials. We give a divided difference formula

for dual Schur functions. While we found the operators independently, the form presented here,

via conjugation by a Cauchy kernel, is due to Nakagawa and Naruse [NN18]. We further show

that a specialization of dual Schur functions represent classes (deforming the Schur functions)

defined by Knutson and Lederer [KL15].

Molev [Mol09] gave an explicit combinatorial formula for the general structure constants for

the dual Schurs. By Theorem 4.22 we know that these constants, which are elements of Q[a], have

a certain positivity property. When one factor is a hook we obtain a suitably positive formula

for the structure constants.
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8.1 Molev’s dual Schur functions

Let Λ(y) denote the Q-algebra of symmetric functions in y = (y0, y−1, y−2, . . . ) and Λ̂(y||a) the

completion of Q[a] ⊗Q Λ(y) whose elements are formal (possibly infinite) Q[a]-linear combina-

tions
∑

λ∈Y aλsλ(y) of Schur functions, with aλ ∈ Q[a]. The ring Λ̂(y||a) is a Q[a]-Hopf algebra

with coproduct ∆(pk(y)) = 1 ⊗ pk(y) + pk(y) ⊗ 1.

Define the Cauchy kernel

Ω = Ω(x−y/a−y) =
∏

i,j�0

1 − aiyj

1 − xiyj
= exp

( ∑

k�0

1

k
pk(x||a)pk(y)

)
.

This induces the structure of dual Q[a]-Hopf algebras on Λ(x||a) and Λ̂(y||a). Write 〈· , ·〉 for the

corresponding pairing Λ(x||a) ⊗Q[a] Λ̂(y||a) → Q[a]. Then by definition

〈sλ(x/a) , sµ(y)〉 = δλ,µ. (8.1)

Define ŝλ(y||a) ∈ Λ̂(y||a) by duality with the double Schur functions:

〈sλ(x||a) , ŝµ(y||a)〉 = δλµ. (8.2)

The ŝλ(y||a) are the nonpositive variable analogue of Molev’s dual Schur functions [Mol09, § 3.1].

The ring Λ̂(y||a) consists of formal (possibly infinite) Q[a]-linear combinations of the dual Schur

functions ŝλ(y||a).

From Proposition 6.5 and Theorem 6.6, we know that the ring H∗
TZ

(Gr) is a Hopf algebra. The

dual Hopf-algebra is the completion HTZ
∗ (Gr)′ =

∏
w∈SZ

Q[a][Xw] of the equivariant homology

HTZ
∗ (Gr) (see (6.2)). Since Λ(x||a) and Λ̂(y||a) are Hopf-dual, the following is immediate from

the definition (8.2).

Proposition 8.1. There is a Hopf Q[a]-algebra isomorphism HTZ
∗ (Gr)′ → Λ̂(y||a) sending the

equivariant Schubert class [Xw] of (6.2) to the dual Schur function ŝλ(y||a).

Recall the element wλ/µ ∈ SZ from (2.2). Proposition 4.25 implies the following.

Proposition 8.2. For μ ∈ Y, we have

ŝµ(y||a) =
∑

λ⊃µ
d(λ)=d(µ)

Swλ/µ
(a)sλ(y),

sµ(y) =
∑

λ⊃µ
d(λ)=d(µ)

(−1)|λ|−|µ|
Sw−1

λ/µ
(a)ŝλ(y||a).

Example 8.3. Let b, c ∈ Z�0 and let μ = (b + 1, 1c) be a hook partition. The partitions

λ ⊃ μ with dλ = dµ = 1 have the form λ = (B + 1, 1C) such that B � b and C � c.
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Let w = wλ/µ = s−Cs1−C · · · s−1−csBsB−1 · · · sb+1. We have

Sw(a) = Ss−C ···s−1−c(a)SsB ···sb+1
(a)

= ω(SsC ···sc+1)SsB ···sb+1
(a)

= ω(hC−c(a1, . . . , ac+1))hB−b(a1, . . . , ab+1)

= (−1)C−chC−c(a0, a−1, . . . , a−c)hB−b(a1, . . . , ab+1),

ŝ(b+1,1c)(y||a) =
∑

B�b,C�c

(−1)C−chC−c(a0, a−1, . . . , a−c)hB−b(a1, . . . , ab+1)s(B+1,C)(y).

8.2 Homology divided difference operators

Since α0 = a0 − a1, we use expressions such as

Ω(−α0y�0) = Ω(a1y�0/a0y�0) =
∏

k�0

1 − a0yk

1 − a1yk
.

Remark 8.4. The expression Ω(a1y/a0y) should be viewed as the action of the translation element

for the weight θ = a1 − a0 in a large rank limit of the affine type-A root system.

For i ∈ Z, define the operators

s̃a
i := Ω(xy/ay)sa

i Ω(ay/xy), (8.3)

δi := Ω(xy/ay)Aa
i Ω(ay/xy)]. (8.4)

It is clear that these operators, being conjugate to the operators sa
i and Aa

i respectively, satisfy

the type-A braid relations. Thus for any w ∈ SZ, δw = δi1 · · · δiℓ makes sense for any reduced

word (i1, i2, . . . , iℓ) ∈ Red(w).

Since Ω(ay/xy) is sa
i invariant for i 
= 0 we have

s̃a
i = si for i 
= 0, (8.5)

δi = Aa
i for i 
= 0. (8.6)

Since sa
0 only affects the variable a0 and no others in Ω[(a − x)y], we have the following operator

identities, where f ∈ Λ̂(y||a) acts by multiplication by f :

s̃a
0 = Ω(a1y/a0y)sa

0, (8.7)

δ0 = α−1
0 (id − s̃a

0), (8.8)

s̃a
i δi = δi, (8.9)

δif = fδi + Ai(f)s̃a
i . (8.10)

The last two follow by conjugating the relations sa
i A

a
i = Aa

i and Aif = fAi + Ai(f)sa
i by Ω :=

Ω[(xy/ay].

The diagonal index (or content) of a box in row i and column j is by definition the integer

j − i. For λ ∈ Y and d ∈ Z let λ + d denote the partition obtained by adding a corner to λ in the

dth diagonal if such a corner exists. Define λ − d similarly for removal of the corner in diagonal

d if it exists. By convention, if a symmetric function is indexed by λ ± d and the relevant cell in
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diagonal d does not exist then the expression is interpreted as 0. In particular, by Proposition 4.9

we have

Aa
i sλ(x||a) = −sλ−i(x||a) for all λ ∈ Y and i ∈ Z. (8.11)

Proposition 8.5. For all μ ∈ Y and i ∈ Z, we have

δi(ŝµ(y||a)) = ŝµ+i(y||a). (8.12)

Proof. Using (8.10), we have

0 = ΩAa
i (1) = δi(Ω) = δi

( ∑

λ

sλ(x||a)ŝλ(y||a)

)

=
∑

λ

(sλ(x||a)δi(ŝλ(y||a)) − sλ−i(x||a)s̃a
i (ŝλ(y||a)).

Taking the coefficient of sµ(x||a), we see that δi(ŝµ(y||a)) = 0 unless λ − i is a partition and

λ − i = μ, in which case λ = μ + i and δi(ŝµ(y||a)) = s̃a
i (ŝµ+i(y||a)). In the latter case, applying

s̃a
i to both sides and using (8.9), we obtain δi(ŝµ(y||a)) = ŝµ+i(y||a) as required. �

It follows that the dual Schurs can be created by applying the homology divided difference

operators to 1.

Theorem 8.6. For any λ ∈ Y, we have ŝλ(y||a) = δwλ
(1).

Example 8.7. By Example 8.3 ŝ1(y||a) =
∑

p,q�0(−a0)
qap

1sp+1,1q(y). We have

Ω(a1y/a0y) =
∑

p�0

ap
1hp[y]

∑

q�0

(−a0)
qeq[y]

=
∑

p,q�0

(−a0)
qap

1(s(p,1q)[y] + s(p+1,1q−1)[y])

= 1 + (a1 − a0)
∑

p,q�0

(−a0)
paq

1s(p+1,1q)[y],

ŝ1(y||a) = (αa
0)

−1(1 − Ω(a1y/a0y))

= δa
0(1).

Remark 8.8. This construction can also be adapted to compute the homology Schubert basis for

the affine Grassmannian of G = SLk+1, equivariant with respect to the maximal torus T of G.

The resulting basis is the k-double-Schur functions of [LS13]. A k-double Schur function consists

of a k-Schur function in its lowest degree and typically has infinitely many terms of higher degree

with equivariant coefficients.

8.3 δ-Schubert polynomials and δ-Schur functions

There is a Q-algebra morphism ηδ : Q[a] → Q[δ] given by

ηδ(ai) =

{
δ if i > 0,

0 if i � 0.
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We have an induced Q-algebra homomorphism ηδ : Λ(x||a) → Λ[δ] := ΛQ ⊗Q Q[δ] given by

ηδ(
∑

λ aλpλ(x||a)) =
∑

λ ηδ(aλ)pλ. This extends to the Q[x]-algebra homomorphism ηδ :
←−
R (x; a) →

←−
R [δ] :=

←−
R ⊗Q Q[δ] that acts on Q[x] as the identity.

Define the δ-Schubert polynomials
←−
S(x; δ) := ηδ(

←−
S(x; a)) and the δ-Schur functions

sλ(x||δ) := ηδ(sλ(x||a)). They form bases over Q[δ] for the rings
←−
R [δ] and Λ[δ] respectively.

8.4 δ-dual Schurs represent Knutson–Lederer classes

Knutson and Lederer [KL15] define a ring RHS
that is a one-parameter deformation of symmetric

functions Λ. Namely, RHS
is a free Q[δ]-module with basis [Xλ], λ ∈ Y.4

The multiplication in RHS
is defined as follows. Let

⊕
: Gr(a, a + b) × Gr(c, c + d) → Gr(a +

c, a + b + c + d) be the direct sum map (V, W ) �→ V ⊕ W . Let the circle S1 act on each Ca+b

by acting with weight 1 on the first b coordinates and weight 0 on the last a coordinates. This

induces an action of S1 on Gr(a, a + b). In RHS
, we have

[Xλ] · [Xµ] =
∑

ν

dν
λµ(δ)[Xν ],

where the right-hand side is the class in HS1

∗ (Gr(a + c, a + b + c + d)) of the direct sum⊕
(Xλ, Xµ) of two opposite Schubert varieties. Here a, b, c, d are chosen so that λ ⊆ a × b and

μ ⊆ c × d.

Define ŝλ(y||δ) by specializing ŝλ(y||a) via ai = 0 for i � 0 and ai = δ for i > 0.

Proposition 8.9. We have

ŝµ(y||δ) =
∑

λ⊃µ
d(λ)=d(µ)

λ/µ ⊂ first d(µ) rows

Swλ/µ
(1) δ|λ/µ|sλ(y). (8.13)

Proof. This is an immediate consequence of Proposition 8.2. �

Example 8.10. Consider the product ŝ(1)(y||δ)ŝ(1,1)(y||δ). To compare with [KL15, Example 1.3]

we restrict to the Grassmannian Gr(4, 7), that is, only keep sλ(y) when λ is contained in the

4 × 3 rectangle. We have

ŝ1(y||δ) = s1 + δs2 + δ2s3 + · · · ,

ŝ11(y||δ) = s11 + δs21 + δ2s31 + · · · ,

ŝ1(y||δ)ŝ11(y||δ) = δ0(s111 + s21) + δ1(2s211 + s22 + 2s31) + δ2(s221 + 3s311 + 2s32)

+ δ3(2s321 + s33) + δ4s331 + · · · .

We have

ŝ1(y||δ)ŝ11(y||δ) = δ0(ŝ111(y||δ) + ŝ21(y||δ)) + δ1(ŝ211(y||δ) + ŝ22(y||δ)) + δ2ŝ221(y||δ),

where

ŝ111(y||δ) = s111 + δs211 + δ2s311 + · · · ,

ŝ21(y||δ) = s21 + 2δs31 + · · · ,

4 Knutson–Lederer work over Z[δ], but for consistency with our current work we use Q[δ]. Our results generalize
to Z[δ].
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ŝ211(y||δ) = s211 + 2δs311 + · · · ,

ŝ22(y||δ) = s22 + 2δs32 + δ2s33 + · · · ,

ŝ221(y||a) = s221 + 2δs321 + δ2s331.

Proposition 8.11. The set {ŝλ(y||δ) | λ ∈ P} is dual to the basis {sλ(x||δ) | λ ∈ P} of Λ[δ].

The following result answers a question implicitly posed in [KL15].

Theorem 8.12. There is an isomorphism of Q[δ]-algebras

RHS
−→ Λ[δ] [Xλ] �−→ ŝλ(x||δ).

Proof. It suffices to show that the structure constants dν
λµ(δ) of RHS

are obtained from the

coproduct structure constants of the Hopf algebra Λ(x||a) after specializing ai = 0 for i � 0 and

ai = δ for i > 0.

For simplicity, we assume that a = b and c = d in the following calculation. Let us think of

Ca+c+c+a as spanned by ea+c, ea+c−1, . . . , e1, e0, e−1, . . . , e1−a−c, with a natural action of T =

(C×)a+c+c+a. We identify H∗
T (pt) = Q[aa+c, aa+c−1, . . . , a1−a−c]. We thus have actions of T on

Gr(c, c + c) (the c-dimensional subspaces of span(ec, ec−1, . . . , e1−c)) and on Gr(a, a + a) (the

a-dimensional subspaces of span(ea+c, ea+c−1, . . . , ec+1, e−c, e−c−1, e1−a−c)). Finally, we have a

T -action on Gr(a + c, a + c + c + a) and the direct sum map is T -equivariant, so we obtain a

map of H∗
T (pt)-modules

HT
∗ (Gr(a + c, a + c + c + a)) → H∗

T (Gr(a, a + a)) ⊗ H∗
T (Gr(c, c + c)). (8.14)

Since a T -equivariant cohomology class of any of these Grassmannians is determined by its value

at T -fixed points, the map (8.14) is completely determined by the direct sum map applied to

T -fixed points.

The T -fixed points of Gr(c, c + c) are then in bijection with pairs (J−, J+) satisfying J− ⊂

[1 − c, 0], J+ ⊂ [1, c] and |J−| = |J+|, via the map

(J−, J+) �→ span(ei | i ∈ ([1 − c, 0] \ J−) ∪ J+) ∈ Gr(c, c + c).

For Gr(a, a + a) we consider T -fixed points as pairs (K−, K+) with K− ⊆ [1 − a − c,−c] and

K+ ⊆ [c + 1, a + c]. Then the direct sum map induces the map ((K−, K+), (J−, J+)) �→ (J− ∪

K−, J+ ∪ K+). By Proposition 7.11, this agrees with the coproduct of Λ(x||a) in terms of local-

ization. (Note that in this work we do not give a geometric explanation of the coproduct of

Λ(x||a) similar to the direct sum map, which is not equivariant with respect to the natural

infinite-dimensional torus.)

By Proposition 12.1, the double Schur functions sλ(x||a) can be identified with the opposite

Schubert class [Xλ] in equivariant cohomology H∗
T (Gr(a, a + b)). It follows that the structure

constants of (8.14) with respect to the opposite Schubert classes [Xλ] coincide with the coproduct

structure constants (4.34) of the double Schur functions. Specializing ai = 0 for i � 0 and ai = δ

for i > 0 gives the desired conclusion. �

Remark 8.13. Knutson and Lederer [KL15] also define a K-theoretic analogue, and a result

similar to Theorem 8.12 holds.
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8.5 Homology equivariant Monk’s rule

A vertical strip is a skew shape that contains at most one box per row. A horizontal strip is

a skew shape that contains at most one box per column. A ribbon R = λ/μ is a (edgewise)

connected skew shape not containing any 2 × 2 square. A skew shape λ/μ is called thin if its

connected components are ribbons. We write c(λ/μ) for the number of connected components

of a thin skew shape.

Lemma 8.14. Let R = λ/μ be a nonempty ribbon. Then there exists exactly two shapes such

that λ/ρ is a vertical strip and ρ/μ is a horizontal strip.

Proof. The northeast most square of R can belong to either λ/ρ or ρ/μ. For all other boxes

b ∈ R, either R contains the square directly north of b in which case b ∈ λ/ρ or R contains the

square directly east of b in which case b ∈ ρ/μ. �

Suppose λ/μ is a skew shape. A Λ-decomposition of λ/μ is a pair D = (λ/ρ, ρ/μ) consisting

of a vertical strip and a horizontal strip. If λ/μ has a Λ-decomposition then it must be thin. In

this case, it follows from Lemma 8.14 that λ/μ has exactly 2c(λ/µ) Λ-decompositions.

The weight of a Λ-decomposition D = (λ/ρ, ρ/μ) is the product

wt(D) :=
∏

(i,j)∈λ/ρ

(aj−i+1 − a0)
∏

(i,j)∈ρ/µ

(a1 − aj−i+1) ∈ Q[a] (8.15)

which can be 0. If D = (λ/ρ, ρ/μ) is a Λ-decomposition, let D− be obtained from D by removing

the northeast most square of λ/μ from whichever of λ/ρ or ρ/μ that contains it.

Theorem 8.15. Let μ ∈ Y. We have

ŝ1(y||a)ŝµ(y||a) =
∑

λ

∑

D−

wt(D−)ŝλ(y||a), (8.16)

where the inner sum is over all distinct D− that can be obtained from some nonempty Λ-

decomposition D = (λ/ρ, ρ/μ) with outer shape λ.

The proof of Theorem 8.15 will be given in § 10.6. In the nonequivariant case with ai = 0,

Theorem 8.15 reduces to the usual one-box Pieri rule: when λ/μ is a single box, there are two

possible choices of D, but D− will always be empty and wt(D−) = 1.

Example 8.16. Let μ = (1). The support of ŝ1ŝ1 is the set of partitions of size at least 2 not

containing the boxes (3, 2) nor (2, 3). We have

ŝ1ŝ1 = ŝ2 + ŝ11 + (a1 − a2)ŝ3 + (a1 − a0)ŝ21 + (a−1 − a0)ŝ111

+ (a1 − a2)(a1 − a3)ŝ4 + (a1 − a0)(a1 − a2)ŝ31 + (a1 − a0)
2ŝ22

+ (a−1 − a0)(a1 − a0)ŝ211 + (a−1 − a0)(a−2 − a0)ŝ1111 + · · · .

First consider λ = (2, 2). Then the Λ-decompositions are given by taking ρ = (1, 1) or (2, 1). In

both cases, D− = ((2, 2)/(2, 1), (1, 1)/(1, 0)). Thus the coefficient of ŝ22 is wt(D−) = (a1 − a0)
2.

For ŝ211, the highest box (1, 2) in (2, 1, 1)/(1) is ignored. The box (2, 1) can be in either the

horizontal or vertical strip (contributing a1 − a0 or 0 respectively) while the box (3, 1) must be

in the vertical strip, contributing a−1 − a0, resulting in the coefficient (a1 − a0)(a−1 − a0).
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Finally, let us consider λ = (3, 1). The box (1, 3) is ignored. The box (1, 2) must be in the

horizontal strip of D− (giving weight (a1 − a2)) while the box (2, 1) can be in either the vertical

or horizontal strip (giving weights (a0 − a0) and (a1 − a0) respectively). The total contribution

is (a1 − a2)(a1 − a0).

Example 8.17. Let μ = (1, 1). The support of ŝ1ŝ11 consists of the partitions of size at least 3

which contain the partition (1, 1) and do not contain the boxes (2, 3) or (4, 2). We have

ŝ1ŝ11 = ŝ21 + ŝ111 + (a1 − a2)ŝ31 + (a1 − a0)ŝ22 + (a1 − a0)ŝ211 + (a−2 − a0)ŝ1111

+ (a1 − a2)(a1 − a3)ŝ41 + (a1 − a0)(a1 − a2)ŝ32 + (a1 − a0)(a1 − a2)ŝ311

+ (a1 − a0)
2ŝ221 + (a−2 − a0)(a1 − a0)ŝ2111 + (a−2 − a0)(a−3 − a0)ŝ11111 + · · · .

8.6 Homology equivariant Pieri rule

Let ρ/μ be a horizontal strip and q � 0 an integer. A q-horizontal filling of ρ/μ is a filling T of

ρ/μ with the numbers 1, 2, . . . , q + 1 so that the numbers are weakly increasing from left to right

regardless of row, and every number from 2 to q + 1 is used. (The number of such T is equal to

the number of semistandard Young tableaux for a single row of size |ρ/μ| − q using the numbers

1 through q + 1.) Define the weight of a q-horizontal filling T by

wtq(T ) :=
∏

(i,j)∈ρ/µ

(aT (i,j) − aj−i+1)

where the product is over all boxes (i, j) such that either T (i, j) = 1 or (i, j) is not the leftmost

occurrence of T (i, j) in T . Thus wt(T ) ∈ Q[a] has degree equal to |ρ/μ| − q (or is 0 if q > |ρ/μ|).

Similarly, a p-vertical filling of λ/ρ is a filling T of a vertical strip λ/ρ with integers 0,−1, . . . ,−p

so that the numbers are weakly decreasing from top to bottom regardless of column, and every

number from −1 to −p is used. Define the weight of a p-vertical filling T ′ by

wtp(T
′) :=

∏

(i,j)∈λ/ρ

(aj−i+1 − aT (i,j))

where the product is over all boxes (i, j) such that either T (i, j) = 0 or (i, j) is not the topmost

occurrence of T (i, j) in T .

A (p, q)-filling of a Λ-decomposition (λ/ρ, ρ/μ) is a pair (T ′, T ) consisting of a p-vertical

filling T ′ of λ/ρ and a q-horizontal filling T of ρ/μ. The (p, q)-weight of a Λ-decomposition

D = (λ/ρ, ρ/μ) is

wtp,q(D) :=
∑

(T ′,T )

wtp(T
′)wtq(T ) (8.17)

summed over all (p, q)-fillings (T ′, T ) of D. We note that wt0,0(D) is the weight wt(D) from

(8.15). Also note that if p > |λ/ρ| or q > |ρ/μ| then wtp,q(D) = 0.

The following result gives a rule for multiplication by a hook-shaped dual Schur function.

Theorem 8.18. Let μ ∈ Y and p, q � 0. We have

ŝ(q+1,1p)(y||a)ŝµ(y||a) =
∑

λ

∑

D−

wtp,q(D−)ŝλ(y||a), (8.18)
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where the inner sum is over all distinct D− that can be obtained from some nonempty Λ-

decomposition D = (λ/ρ, ρ/μ) with outer shape λ.

The proof of Theorem 8.18 will be given in § 10.7.

Remark 8.19. Suppose we forget equivariance by setting ai = 0 for all i. Let D be a nonempty

Λ-decomposition with outer shape λ appearing in (8.18). Then ĉλ
µ,(q+1,1p)(0) is the Little-

wood–Richardson coefficient, the coefficient of sλ in the product sµs(q+1,1p). The latter is the

number of standard tableaux S of shape λ/μ such that 1, 2, . . . , q + 1 go strictly east and weakly

north, and the numbers q + 1, q + 2, . . . , q + p + 1 go strictly south and weakly west [RW84]. By

Theorem 8.18, in order to contribute to the sum, wtp,q(D−) must be degree 0. This restricts

the sum over (p, q)-fillings (T ′, T ) of D− such that wtp(T
′) = 1 = wtq(T ). For each D− there

is a unique filling: in T ′ the numbers −1,−2, . . . ,−p are used once each and go strictly south

and weakly west, while in T the numbers 2, 3, . . . , q + 1 are used once each and go strictly east

and weakly north. These (T ′, T ) biject with the above standard tableaux S: q + 1 appears in the

northeastmost box of D in S, the numbers 2 through q + 1 in T are replaced in S by the numbers

1 through q, and the numbers −1,−2, . . . ,−p in T ′ are replaced by q + 2, q + 3, . . . , q + p + 1.

Thus the nonequivariant specialization of Theorem 8.18 agrees with the Littlewood–Richardson

rule.

Remark 8.20. By Proposition 4.23, ĉλ
µν(a) = j

wλ/µ
ν (a). Theorem 8.18 expresses these polynomials

positively in the sense of Theorem 4.22 when one of μ or ν is a hook. This should be compared

with [Mol09, § 4] in which a combinatorial formula is given for all ĉλ
µν(a). This formula does not

exhibit the positivity of Theorem 4.22.

Example 8.21. Let us compute ŝ11ŝ1 with μ = (1), p = 1 and q = 0. The answer is given in

Example 8.17.

First, consider λ = (2, 2). Then the Λ-decompositions are given by taking ρ = (1, 1) or

(2, 1). In both cases, D− = ((2, 2)/(2, 1), (1, 1)/(1, 0)). There is a single 0-horizontal filling of

(1, 1)/(1, 0): the box is filled with the number 1. There is a single 1-vertical filling of (2, 2)/(2, 1):

the box is filled with the number −1. Thus wt1,0(D−) = (a1 − a0) which is the coefficient of ŝ22.

Next, consider λ = (2, 1, 1). We have two possibilities for D−: (a) D− = ((1, 1, 1)/(1), ∅) or

(b) D− = ((1, 1, 1)/(1, 1), (1, 1)/(1)). For (a), there are two 1-vertical fillings: both boxes are

labeled −1 contributing wt1(T
′) = (a−1 − a−1) = 0, or one box is labeled 0 and the other −1 con-

tributing wt1(T
′) = (a0 − a0) = 0. For (b), there are unique 0-horizontal and 1-vertical fillings,

giving wt1,0(D−) = (a1 − a0). So the coefficient of ŝ211 is a1 − a0.

Finally, let us consider λ = (3, 1). The box (1, 3) is ignored. The box (1, 2) must be in the

horizontal strip of D− while the box (2, 1) must be in the vertical strip of D−. There is a unique

filling with (1, 0)-weight (a1 − a2) which is the coefficient of ŝ31.

9. Peterson subalgebra

In the affine setting, Peterson constructed a commutative subalgebra P̃ ⊂ Ã (recalled in

Appendix C) of the level-zero affine nilHecke algebra Ã, and showed that the torus-equivariant

homology HT
∗ (G̃rn) of the affine Grassmannian G̃rn is isomorphic to P̃ [Pet97, Lam08]. The

Peterson subalgebra P̃ is a nilHecke counterpart to the large commutative subgroup Zn−1 ⊂ S̃n

sitting inside the affine symmetric group.
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The infinite symmetric group SZ does not contain an analogous lattice as a subgroup. Nev-

ertheless, in this section, we construct a subalgebra P′ ⊂ A′ that is an analogue of Peterson’s

subalgebra for the (completed) infinite nilHecke algebra A′. We show that there is an isomorphism

P′ ∼= Λ̂(y||a) of Q[a]-Hopf algebras and identify the element jλ ∈ P′ that is mapped to the dual

Schur function ŝλ(y||a) under this isomorphism.

9.1 Affine symmetric group

The affine symmetric group S̃n is the infinite Coxeter group with generators s0, s1, . . . , sn−1 and

relations sisj = sjsi for |i − j| � 2 and sisi+1si = si+1sisi+1 for all i. Here indices are taken

modulo n.

We have an isomorphism S̃n
∼= Sn ⋊ Q∨, where Q∨ := {λ = (λ1, . . . , λn) |

∑n
i=1 λi = 0} ⊂ Zn

is the coroot lattice spanned by the simple coroots α∨
i = ei − ei+1 for 1 � i � n − 1. For λ ∈ Q∨,

we write tλ ∈ S̃n for the corresponding translation element. Then

tλtµ = tλ+µ = tµtλ (9.1)

and wtλw−1 = tw·λ.

Let S̃0
n be the set of 0-Grassmannian elements, i.e. those w ∈ S̃n such that wsi > w for all

i 
= 0. Each coset wSn for Sn inside S̃n contains a unique translation element tw, and a unique

0-Grassmannian element. Suppose w ∈ S̃0
n and tw = tµ for μ ∈ Q∨. Let uµ ∈ Sn be the shortest

element such that uµ(μ) is antidominant. Then tw = tµ
.
= wu−1

µ .

9.2 Translation elements

Unlike the affine symmetric group, the infinite symmetric group SZ does not contain translation

elements. Nevertheless, it is possible to define elements τw in the infinite nilHecke algebra which

behave like translation elements. Recall that in § 7.1 we have defined the nilHecke algebra A,

which has a Q[a]-basis Aw, w ∈ SZ. Let A′ denote the completion of A, consisting of formal

Q[a]-linear combinations of the elements Aw. For a given w ∈ SZ, there are only finitely many

pairs (u, v) ∈ SZ × SZ such that w
.
= uv. It follows that the multiplication in A induces a natural

Q[a]-algebra structure on A′.

Recall also that we defined a comultiplication map ∆ : A → A ⊗Q[a] A. Under the pairing

(7.19), A′ is dual to Ψ. It follows from Proposition 7.9 that ∆ extends to a comultiplication

A′ → A′ ⊗Q[a] A′.

Let [a, b] ⊂ Z be an interval. For n ≫ 0 there is an injective homomorphism S[a,b] → S̃n

defined by si �→ si mod n for a � i < b. Thus any w ∈ SZ can be viewed as an element of S̃n for

sufficiently large n.

Lemma 9.1. Let w ∈ S0
Z. There is a positive integer m and a word a in the symbols

{s−m, s1−m, . . . , s−1, s0, s1, . . . , sm−1} ∪ {r, r′} (9.2)

such that for any sufficiently large n ≫ m, a reduced word ã for tw (treating w as an element of

S̃n) is obtained from a by the substitutions

r �→ smsm+1 · · · s−m−1 and r′ �→ s−m−1 · · · sm+1sm. (9.3)
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Figure 10. For λ = (4, 4, 3, 1), we have I+ = {1, 3, 4} and I− = {−3,−1, 0}.

To explain how to find the above word, let Q∨
Z ⊂

⊕
i∈ZZei be the infinite coroot lattice, the

sublattice spanned by α∨
i = ei − ei+1 for i ∈ Z. Given λ ∈ Y let β = βλ ∈ Q∨

Z be the element

βλ =
∑

i∈Iwλ,+

ei −
∑

i∈Iwλ,−

ei

(see (2.1), (4.6), (4.7)). There is a projection Q∨
Z → Q∨ denoted β �→ β̄, onto the translation

lattice Q∨ in S̃n, given by ei �→ ei+nZ. We have

twλ = tβ̄λ
for λ ∈ Y.

Let m be large enough so that λ is contained in the m × m square partition and n � 2m.

Then |Iwλ,±| � m and all coordinates in β̄ are in {−1, 0, 1} with coordinates 1 (respectively −1)

occurring only in the first (respectively last) m positions.

To prove Lemma 9.1 it suffices to show that the element u−1
β̄

is in the image of a product of

the generators (9.2) under the substitution (9.3). Since images of r and r′ are inverses we may

replace u−1
β̄

by uβ̄ . It is enough to be able to sort β̄ to antidominant using the generators. This

is explained by the following example.

Example 9.2. Let λ = (4, 4, 3, 1). Let us take m = 4 and n = 11. We have I+ = {1, 3, 4} and

I− = {−3,−1, 0} because the vertical (respectively horizontal) line segments tracing the edge of

λ above (respectively below) the main diagonal, occur at segments 1, 3, 4 (respectively −3,−1, 0)

where the main diagonal separates segment 0 and 1. This is illustrated in Figure 10. We have

β̄ = (1, 0, 1, 1|0, 0, 0| − 1, 0,−1,−1) where the positions of the 1s (respectively −1s) are given by

I+ (respectively I−) mod n. The vertical bars separate the first m = 4 positions and the last m

positions. Between are zeros. Recalling that indices of reflections are identified modulo n, the

generators are s7, s8, s9, s10, s0, s1, s2, s3 and r �→ s6s5s4 and r′ �→ s4s5s6. We must move β̄ to the

antidominant chamber with a shortest element in Sn using the given generators. Starting with β̄

we may apply r′s7r to get (1, 0, 1,−1|0, 0, 0|1, 0,−1,−1), then apply simple generators to reach

(−1, 0, 1, 1|0, 0, 0| − 1,−1, 0, 1), then apply r′s7r to get (−1, 0, 1,−1|0, 0, 0|1,−1, 0, 1), simple gen-

erators to reach (−1,−1, 0, 1|0, 0, 0| − 1, 0, 1, 1), r′s7r to reach (−1,−1, 0,−1|0, 0, 0|1, 0, 1, 1), and

simple generators to reach (−1,−1,−1, 0|0, 0, 0|0, 1, 1, 1) which is antidominant.
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For b � 0 < a, define

ra,b :=

( ∞∏

i=a

si

)( b−1∏

i=−∞

si

)
= (sasa+1sa+2 · · · )(· · · sb−2sb−1), (9.4)

rb,a :=

( −∞∏

i=b−1

si

)( a∏

i=∞

si

)
= (sb−1sb−2 · · · )(· · · sa+2sa+1sa). (9.5)

Each of these are infinite words in the alphabet {si | i ∈ Z \ {0}}, and each is a concatenation

of two infinite reduced words. Abusing notation, we will use the same symbols ra,b and rb,a to

represent the following permutations of Z (that do not belong to SZ):

ra,b(i) =

⎧
⎪⎨
⎪⎩

i if b < i < a,

i + 1 if i � a or i < b,

a if i = b,

rb,a(i) =

⎧
⎪⎨
⎪⎩

i if b < i < a,

i − 1 if i > a or i � b,

b if i = a.

(9.6)

Let S denote the set of infinite words in the alphabet {si | i ∈ Z \ {0}} obtained as a finite

concatenation of the words si, i ∈ Z \ {0} and the words ra,b, a > 0 and b � 0. Suppose a ∈ S,

and s is a letter in a. Then we have a unique factorization a = a′ sa′′ where again a′,a′′ ∈ S.

We define a root β(s) by

β(s) := −a′ · (ai − ai+1)

if the letter s is equal to si. Here the action of a′ on Q[a] is the one induced by the action on Z

given by (9.6).

Definition 9.3. Let w ∈ S0
Z. Define the infinite translation element τw ∈ A′ as follows. Take

the word a of Lemma 9.1 and replace each occurrence of r or r′ by infinite words as follows:

r �→ rm,−m and r′ �→ r−m,m

to obtain an infinite word aw
∞ ∈ S. Now for v ∈ SZ, define ξv|τw ∈ Q[a] (cf. Proposition 7.3) by

ξv|τw :=
∑

b⊂aw
∞

∏

s∈b

β(s)

summed over finite subwords b of aw
∞ that are reduced words for v, and define τw ∈ A′ by

τw :=
∑

v∈SZ

ξv|τwAw. (9.7)

Remark 9.4. Suppose w ∈ S0
Z and we have Iw,+ = {1 � dt < dt−1 < · · · < d1} and Iw,− = {e1 <

e2 < · · · < et � 0}. Then a possible choice of aw
∞ is

u

( 1∏

j=t

rj,ej

)( 1∏

j=t

r1−j−fj ,dj

)
,

where u is a reduced word for w and fj = |Iw,− ∩ (−j, 0]| for j = 1, 2, . . . , t. Note that if w is the

identity element, then τw = 1.

939

https://doi.org/10.1112/S0010437X21007028 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X21007028


T. Lam, S. Jin Lee and M. Shimozono

Remark 9.5. In Definition 9.3 we have used Lemma 9.1 which relies on the notion of translation

elements in the affine symmetric group. In future work we plan to study the Schubert calculus

of a flag ind-variety associated to the affine infinite symmetric group Q∨
Z ⋊ SZ, which contains

translation elements τw as defined above.

Proposition 9.6. The elements τx satisfy the following properties.

(i) For x ∈ S0
Z, we have that τx is a well-defined element of A′ that does not depend on the

choices of m and a in Lemma 9.1.

(ii) The set {τx | x ∈ S0
Z} is linearly independent in A′.

(iii) If z = xy under the partial product of § 7.3, then τ z = τxτy = τyτx.

(iv) We have τxτy = τyτx for any x, y ∈ S0
Z.

(v) We have τxp = pτx for any x ∈ S0
Z and any p ∈ Q[a].

(vi) We have ∆(τx) = τx ⊗ τx for any x ∈ S0
Z.

Proposition 9.6 is proven in § 9.6.

9.3 The Peterson subalgebra

Let
⊕

wQ(a)τw denote the Q(a)-vector subspace of Q(a) ⊗Q[a] A′ spanned by the elements τw.

Define the Q[a]-submodule P ⊂ A′ by

P := A′ ∩
⊕

w

Q(a)τw.

By Proposition 9.6(iv), P lies within the centralizer subalgebra ZA′(Q[a]).

Recall that jw
λ (a) denotes the coefficient of the double Schur function sλ(x||a) in the double

Stanley symmetric function Fw(x||a). For λ ∈ Y, define

jλ =
∑

w

jw
λ (a)Aw ∈ A′.

Theorem 9.7. For any λ ∈ Y, we have jλ ∈ P, and it is the unique element of P satisfying

jλ = Awλ
+

∑

u/∈S0
Z

auAu, (9.8)

where au ∈ Q[a] and the summation is allowed to be infinite. The submodule P is a free Q[a]-

module with basis {jλ | λ ∈ Y}.

Theorem 9.7 will be proved in § 9.7. Let P′ be the completion of P whose elements are formal

Q[a]-linear combinations of the elements {jλ | λ ∈ Y}. We call P′ the Peterson subalgebra.

Theorem 9.8. The submodule P′ ⊂ A′ is a commutative and cocommutative Hopf algebra over

Q[a].

Conjecture 9.9. We have P′ = ZA′(Q[a]).

Theorem 9.10. There is an isomorphism P′ ∼= Λ̂(y||a) of Q[a]-Hopf algebras sending jλ to

ŝλ(y||a) for all λ ∈ Y.

Theorems 9.8 and 9.10 will be proved in § 9.8.
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Remark 9.11. Theorems 9.7, 9.8, and 9.10 hold over Z, but for consistency we work over Q.

9.4 Fomin–Stanley algebra

Let A denote the (infinite) nilCoxeter algebra, which is the Q-algebra with generators Ai, i ∈

Z, satisfying the relations (2.4), (2.5), and (2.6). The algebra A has Q-basis Aw, w ∈ SZ. Let

A′ denote the completion of A consisting of elements a =
∑

w awAw that are infinite Q-linear

combinations of the Aw. Since every w ∈ SZ has finitely many factorizations of the form w
.
= xy,

it follows that A′ is a Q-algebra. There is a natural map φ0 : A → A given by

φ0

( ∑

w

awAw

)
=

∑

w

φ0(aw)Aw,

where φ0(aw) ∈ Q is the constant term of the polynomial aw ∈ Q[a].

Define the Fomin–Stanley subalgebra B ⊂ A as the image φ0(P). Let j0
λ := φ0(jλ).

Theorem 9.12. The set {j0
λ | λ ∈ Y} form a Q-basis of B. There is a Hopf-isomorphism B → Λ

given by j0
λ �→ sλ.

Proof. Since {jλ | λ ∈ Y} form a basis of P, it is clear that {j0
λ | λ ∈ Y} spans B. Equation (9.8)

shows that j0
λ = Awλ

+ other terms are linearly independent. The last statement follows from

Theorems 9.8 and 9.10. �

9.5 Stability of affine double Edelman–Greene coefficients

Let n � 2. For v ∈ S̃n let ξv
F̃ln

∈ H∗
Tn

(F̃ln) be the torus equivariant Schubert class of the affine

flag ind-variety F̃ln (see § 11.2).

Following [LS12],5 define S̃0
n × S̃0

n matrices Ã and B̃ by

Ãvw = ξv
F̃ln

|w and B̃ = Ã−1.

Both matrices Ã and B̃ are lower-triangular when the rows and columns are ordered compatibly

with the Bruhat order on S̃0
n, and the entries belong to Q(a1, a2, . . . , an). For x ∈ S̃n and v ∈ S̃0

n,

denote by j̃x
v ∈ Q[a1, a2, . . . , an] the affine double Edelman–Greene coefficient, and let j̃v ∈ Ã

denote the j-basis element (see Appendix C).

Proposition 9.13 [LS12]. Let v, w ∈ S̃0
n and x ∈ S̃n. We have

tw =
∑

v∈S̃0
n, v�w

Ãvw j̃v, (9.9)

j̃v =
∑

w∈S̃0
n, w�v

B̃wvt
w, (9.10)

j̃x
v =

∑

w∈S̃0
n, w�v

B̃wvξ
x
F̃ln

(tw). (9.11)

Let evn : Q[a] → Q[a1, a2, . . . , an] denote the Q-algebra morphism given by ai �→ ai mod n.

Lemma 9.14. Let w, v ∈ SZ. Then for sufficiently large n ≫ 0 we have ξv
F̃ln

(w) = evn(ξv(w)).

5 Our ξv
F̃ln

|w differs from the one in [LS12] by a sign (−1)ℓ(v).
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Proof. This follows from Proposition 7.3 which also holds in the affine case as well as the infinite

case. �

Lemma 9.15. Let w, v ∈ S0
Z. Then there exists polynomials Avw(a), Bvw(a) ∈ Q[a] such that for

all n ≫ 0 we have Ãvw = evn(Avw) and B̃vw = evn(Bvw).

Proof. Follows immediately from Lemma 9.14. �

Lemma 9.16. Let x ∈ SZ and v ∈ S0
Z. There exists a polynomial q(a) ∈ Q[a] such that for all

n ≫ 0 we have that j̃x
v = evn(q).

Proof. Using Lemmas 9.1 and 9.14, we deduce that for any u ∈ SZ and w ∈ S0
Z, there is a

polynomial p(a) ∈ Q[a] such that for sufficiently large n, we have ξu
F̃ln

(w) = evn(p(a)). By Propo-

sition 9.13, we conclude that there is a polynomial q(a) ∈ Q[a] such that j̃x
v = evn(q(a)) for

sufficiently large n. �

9.6 Proof of Proposition 9.6

Let x ∈ S0
Z and v ∈ SZ. Only finitely many subwords of ax

∞ are reduced words for v, and for

n ≫ 0 there is a bijection between such subwords and subwords of ã that are reduced words for

v (now thought of as an element in S̃n). It thus follows from the definitions that for n ≫ 0 we

have

evn(ξv(τx)) = ξv
F̃ln

(tx). (9.12)

Claim (i) follows immediately. Claim (ii) follows from the similar claim in the affine nilHecke

algebra Ã.

Let x, y ∈ S0
Z and v ∈ SZ. Only finitely many pairs of terms from the expansion (9.7) for τx

and τy contribute to the coefficient of Av in the product τxτy. Thus for n ≫ 0 the coefficient of

Av in τxτy is taken to the coefficient of Av in txty by evn. Claims (iii) and (iv) now follow from

similar statements in the affine case (see (9.1)).

Let x ∈ S0
Z , v ∈ SZ, and p ∈ Q[a]. Only finitely many terms of the expansion (9.7) for τx

contribute to the coefficient of Av in τxp. Thus for n ≫ 0 the coefficient of Av in τxp is taken to

the coefficient of Av in txevn(p) by evn. Claim (v) now follows from (C.1) in the affine case.

Let v ∈ SZ. Then for n ≫ 0, the calculation of ∆(Av) in the affine nilHecke ring Ã is identical

to that in A. Claim (vi) now follows from the equality ∆(tx) = tx ⊗ tx in the affine case (see

(C.2)).

9.7 Proof of Theorem 9.7

Proposition 9.17. Let x ∈ SZ and v ∈ S0
Z. For all n ≫ 0, we have j̃x

v = evn(jx
v ).

Proof. By Theorem 11.4, the image of
←−
Sx(x; a) in H∗

T (F̃ln) represents ξx
F̃ln

for sufficiently large n.

By Proposition 11.3, the double Stanley function Fx(x||a) represents the affine double Stanley

class ̟(ξx
F̃ln

) ∈ H∗
T (G̃rn) for sufficiently large n. By Theorem 11.4, the image of svλ

(x||a) in

H∗
T (G̃rn) represents ξv

G̃rn
for sufficiently large n. We conclude that evn(jx

v ) = j̃x
v . �

By Proposition 9.17, the element jλ ∈ A′ is the limit (taking limits of coefficients of Av) of

j̃wλ
∈ Ã as n → ∞. By (9.12), the element τw ∈ A′ is a similar limit of the elements tw ∈ Ã.

942

https://doi.org/10.1112/S0010437X21007028 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X21007028


Back stable Schubert calculus

Combining Lemmas 9.15 and (9.10), we thus conclude that

jλ =
∑

v∈S̃0
n

v�wλ

Bvwλ
τv.

It follows that jλ ∈ P. The expansion (9.8) follows from Theorem C.1.

By Lemmas 9.15 and (9.9), we have that both {jλ | λ ∈ Y} and {τw | w ∈ S0
Z} form bases

of Q(a) ⊗Q[a] P. Thus an arbitrary element of a =
∑

aw
Aw ∈ P is uniquely determined by the

coefficients {aw ∈ Q[a] | w ∈ S0
Z}. Indeed, we have a =

∑
λ∈Y awλ

jλ and the sum must be finite.

It follows that P is a free Q[a]-module with basis {jλ | λ ∈ Y}.

9.8 Proof of Theorems 9.8 and 9.10

Proposition 9.18. For λ, ν ∈ Y, we have

jλjµ =
∑

ν⊃µ

j
wν/µ

λ jν . (9.13)

Proof. Let us calculate the coefficient of sλ(x||a) ⊗ sµ(x||a) in ∆(Fw(x||a)). On the one hand,

∆(Fw(x||a)) =
∑

ν∈Y

jw
ν ∆(sν(x||a)) =

∑

ν∈Y

jw
ν

∑

µ⊂ν

Fwν/µ
(x||a) ⊗ sµ(x||a)

by Corollary 4.18. So the coefficient is equal to
∑

ν⊃µ j
wν/µ

λ jw
ν , which is the coefficient of Aw on

the right-hand side of (9.13).

On the other hand, by Corollary 4.17, we have

∆(Fw(x||a)) =
∑

w
.
=uv

Fu(x||a) ⊗ Fv(x||a) =
∑

λ,µ

∑

w
.
=uv

ju
λjv

µ(sλ(x||a) ⊗ sµ(x||a)).

So the coefficient is also equal to
∑

w
.
=uv ju

λjv
µ, which (using Proposition 9.6(v) to obtain that jλ

commutes with Q[a]) is equal to the coefficient of Aw on the left-hand side of (9.13). �

It follows from Proposition 9.18 that P′ is a commutative Q[a]-algebra. Together with

Proposition 9.6(vi), we obtain Theorem 9.8.

The pairing (7.19) induces a pairing between P′ and ΨGr. By Proposition 7.8(iii), we have

〈ξv , jλ〉 = δvwλ
for v ∈ S0

Z and λ ∈ Y. Thus P′ and ΨGr are dual Q[a]-modules. By Proposition

7.8(ii), the comultiplication in P′ is dual to the multiplication in ΨGr. By comparing Proposi-

tion 9.18 and Corollary 4.18, the multiplication of P′ is dual to the multiplication in ΨGr. Thus

P′ and ΨGr are dual Q[a]-Hopf algebras. By Proposition 7.11 and the definition of sλ(y||a), we

have an induced isomorphism of Q[a]-Hopf algebras P′ ∼= Λ̂(y||a) sending jλ to sλ(y||a). This

completes the proof of Theorem 9.10.

9.9 Proof of Theorem 4.22

The polynomial jx
v (a) ∈ Q[a] belongs to a subring of the form Q[a1−m, a2−m, . . . , am] for some

m. Suppose n ≫ m. Then j̃x
v (a) ∈ Q[a1, . . . , an], and by Proposition 9.17, it is the image of jx

v (a)
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under evn. Pick a cutoff c satisfying m ≪ c ≪ n − m. Make the substitution

ai �→

{
ai if 1 � i � c,

ai−n if c < i � n,

to j̃x
v (a). The resulting polynomial must equal jx

v (a).

By Theorem C.2, we have that j̃x
v (a) is a positive integer polynomial expression in the linear

forms

a1 − a2, a2 − a3, . . . , an−1 − an.

Applying the above substitution to this expression gives the desired expression for jx
v (a).

10. Back stable triple Schubert polynomials

In this section we define triple back stable Schubert polynomials and triple Stanley symmetric

functions. This allows effective computation of some double Edelman–Greene coefficients and

structure constants for dual Schur functions. Before we provide the precise definition, we present

some motivation.

Corollary 3.8 states that Fγ(w)(x) = Fw(x) where Fw is the Stanley symmetric function.

However, the same statement is not true for double Stanley symmetric functions.

Example 10.1. Recall superization notation from (3.1):

Fs1s0(x||a) =
←−
Ss1s0(x; a) = h2(x�0/a�1) = h2(x�0/a�0) − a1h1(x�0/a�0),

Fs2s1(x||a) = ηa(
←−
Ss2s1(x; a)) = ηa(h2(x�1/a�2))

= ηa(h2(x�0/a�0) + (x1 − a1 − a2)h1(x�0/a�0) + (x1 − a1)(x1 − a2))

= h2(x�0/a�0) − a2h1(x�0/a�0).

Note that the only difference between Fs1s0(x||a) and Fs2s1(x||a) is the coefficient in front

of the term h1(x�0/a�0), and if we compute Fs3s2(x||a), this coefficient becomes a3. In general,

when we shift w by γ, certain variables ai remain the same and other variables aj become aj+1.

Roughly speaking, triple Stanley symmetric functions separate stable ai and shifted aj when

applying γ to w, by replacing stable variables ai by bi. To make the construction formal, we

start by defining back stable triple Schubert polynomials.

10.1 Tripling

Let νa,b : Λ(a) → Λ(b) be the map that changes symmetric functions from the a-variables to

b-variables. Let Λ(x/b) ⊂ Λ(x) ⊗Q Λ(b) denote the image of the superization map pk �→ pk(x/b).

We use the same notation for the Q[a]-algebra maps

νa,b :
←−
R (a) = Λ(a) ⊗Q Q[a] → Λ(b) ⊗Q Q[a], pk(a) ⊗ 1 �→ pk(b) ⊗ 1

νa,b : Λ(x||a) → Λ(x/b) ⊗Q Q[a], pk(x/a) �→ pk(x/b)

and the Q[x, a]-algebra map

νa,b :
←−
R (x; a) = Λ(x||a) ⊗Q[a] Q[x, a] → Λ(x/b) ⊗Q Q[x, a], pk(x/a) �→ pk(x/b).
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These maps change a variables to b variables but only ‘in symmetric functions’. All of these maps

are Q[a]-algebra isomorphisms: the inverse is the substitution f �→ f |b=a. Finally, note that we

have an injection Λ(x||a) →֒ Λ(x) ⊗ Λ(a) ⊗ Q[a], and the action of νa,b on Λ(x||a) is simply given

by 1 ⊗ νa,b ⊗ 1 : Λ(x) ⊗ Λ(a) ⊗ Q[a] → Λ(x) ⊗ Λ(b) ⊗ Q[a].

10.2 Back stable triple Schubert polynomials

For w ∈ SZ, define the back stable triple Schubert polynomials
←−
Sw(x; a; b) ∈ Λ(x/b) ⊗Q Q[x, a]

by
←−
Sw(x; a; b) := νa,b(

←−
Sw(x; a)).

The set {
←−
Sw(x; a; b) | w ∈ SZ} form a basis of Λ(x/b) ⊗Q Q[x, a] over Q[a]. In particular, the

structure constants for
←−
Sw(x; a; b) (which are equal to the structure constants for

←−
Sw(x; a))

belong in Q[a].

Example 10.2. Continuing Example 10.1, we have

←−
Ss1s0(x; a; b) = h2(x�0/b�0) − a1h1(x�0/b�0),

←−
Ss2s1(x; a; b) = h2(x�0/b�0) + (x1 − a1 − a2)h1(x�0/b�0) + (x1 − a1)(x1 − a2)).

Proposition 10.3. Let w ∈ SZ. We have

←−
Sw(x; a; b) =

∑

w
.
=uvz

u,z∈S�=0

(−1)ℓ(u)
Su−1(a)Fv(x/b)Sz(x) =

∑

w
.
=uv

(−1)ℓ(u)νa,b(
←−
Su−1(a))

←−
Sv(x).

Proof. The first equality follows from applying νa,b to (4.11). The second equality follows from

applying νa,b to Proposition 4.3. �

Recall that Ax
i (respectively Aa

i , Ab
i) denotes the divided difference operator in the x-variables

(respectively a-variables, b-variables).

Proposition 10.4. For w ∈ SZ and i ∈ Z, we have

Ax
i

←−
Sw(x; a; b) =

{←−
Swsi(x; a; b) if wsi < w,

0 otherwise.

For w ∈ SZ and i ∈ Z − {0}, we have

Aa
i

←−
Sw(x; a; b) =

{
−
←−
Ssiw(x; a; b) if siw < w,

0 otherwise.

Proof. The first statement follows immediately from the last equality in Proposition 10.3 and

Theorem 3.2. For i 
= 0, we have Aa
i ◦ νa,b = νa,b ◦ Aa

i , so the second statement follows by

Proposition 4.9. �

10.3 Triple Stanley symmetric functions

Define the triple Stanley symmetric functions by

Fw(x||a||b) := νa,b(Fw(x||a)).
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Example 10.5. Continuing Example 10.2, we have

Fs1s0(x||a||b)=h2(x�0/b�0)− a1h1(x�0/b�0) and Fs2s1(x||a||b)=h2(x�0/b�0)− a2h1(x�0/b�0).

By Proposition 4.13 and Theorem 4.16, we have

Fw(x||a||b) =
∑

w
.
=uvz

u,z∈S�=0

(−1)ℓ(u)
Su−1(a)Fv(x/b)Sz(a),

←−
Sw(x; a; b) =

∑

w
.
=uv

v∈S�=0

Fu(x||a||b)Sv(x; a).

It follows from (3.15) that Fw(x||a||b) satisfies the supersymmetry (cf. [Mol09, (2.15)])

Fw−1(x||a||b) = (−1)ℓ(w)Fw(b||a||x).

Lemma 10.6. Let w ∈ SZ. Then

Fw(x||a||b) =
∑

w
.
=uvz

(−1)ℓ(u)←−
Su−1(a)Fv(x/b)

←−
Sz(a).

Proof. We have

∑

w
.
=uvz

(−1)ℓ(u)←−
Su−1(a)Fv(x/b)

←−
Sz(a)

=
∑

w
.
=u1u2vz1z2
u1,z2∈S�=0

(−1)ℓ(u1)+ℓ(u2)
Su−1

1
(a)Fu−1

2
(a)Fv(x/b)Fz1(a)Sz2(a)

=
∑

w
.
=u1xz2

u1,z2∈S�=0

(−1)ℓ(u1)
Su−1

1
(a)

( ∑

x
.
=u2vz2

(−1)ℓ(u2)Fu−1
2

(a)Fv(x/b)Fz1(a)

)
Sz2(a)

=
∑

w
.
=u1xz2

u1,z2∈S�=0

(−1)ℓ(u1)
Su−1

1
(a)Fx(x/b)Sz2(a) = Fw(x||a||b)

using Theorem 3.14 and (3.15). �

Define the triple Schur functions (essentially the same as the supersymmetric Schur functions

of Molev [Mol09, § 2.4]) by sλ(x||a||b) := νa,b(sλ(x||a)). Then

Fw(x||a||b) =
∑

λ

jw
λ (a)sλ(x||a||b), (10.1)

where jw
λ (a) are the usual double Edelman–Greene coefficients. The triple Edelman–Greene

coefficients are defined by

Fw(x||a||b) =
∑

λ

jw
λ (a, b)sλ(x||b)

946

https://doi.org/10.1112/S0010437X21007028 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X21007028


Back stable Schubert calculus

and satisfy deg(jw
λ (a, b)) = ℓ(w) − |λ|. It is clear that jw

λ (a, a) = jw
λ (a), but by (10.1), we also

have

jw
λ (a, b) =

∑

µ

jw
µ (a)j

wµ

λ (a, b). (10.2)

Recall the Q-algebra automorphism γa of § 4.5. This map can be applied to the Q[a]-algebra

Λ(x/b) ⊗Q Q[x, a] or to the Q[a]-algebra Q[a, b]. Recall also γ : SZ → SZ from § 2.1.

Proposition 10.7. For w ∈ SZ, we have Fγ(w)(x||a||b) = γa(Fw(x||a||b)).

Proof. The proposition follows from Lemma 10.6 and Corollaries 4.4 and 3.8. �

Corollary 10.8. Let λ ∈ Y and w ∈ SZ. Then j
γ(w)
λ (a, b) = γa(j

w
λ (a, b)).

Thus triple Stanley symmetric functions allow us to distinguish between ‘stable’ phenomena

(the b-variables) and the ‘shifted’ phenomena (the a-variables).

Example 10.9. Continuing Example 10.5, we have

Fs1s0(x; a; b) = h2(x�0/b�0) − a1h1(x�0/b�0)

= h2(x�0/b�1) + (b1 − a1)h1(x�0/b�0)

= h2(x||b) − (b1 − a1)h1(x||b),

Fs2s1(x; a; b) = h2(x�0/b�0) − a2h1(x�0/b�0)

= h2(x||b) − (b1 − a2)h1(x||b).

Therefore, js1s0

(1) (a, b) = b1 − a1 and js2s1

(1) (a, b) = b1 − a2.

10.4 Double to triple

We have an explicit formula for jw
λ (a, b) in terms of double Edelman–Greene coefficients jw

λ (a).

Recall the definition of Durfee square d(λ) from before Proposition 4.25.

Proposition 10.10. Let λ, μ ∈ Y. Then

jwλ
µ (a, b) =

∑

ρ: µ⊆ρ⊆λ
d(µ)=d(ρ)=d(λ)

(−1)|λ/ρ|
Sw−1

λ/ρ
(a)Swρ/µ

(b).

For μ ∈ Y and w ∈ SZ we have

jw
µ (a, b) =

∑

λ,ρ: λ⊃ρ⊃µ
d(λ)=d(ρ)=d(µ)

(−1)|λ/ρ|jw
λ (a)Sw−1

λ/ρ
(a)Swρ/µ

(b). (10.3)

Proof. By Proposition 4.25, we have

sλ(x||a||b) =
∑

ρ⊂λ
d(ρ)=d(λ)

(−1)|λ/ρ|
Sw−1

λ/ρ
(a)sρ(x/b) =

∑

µ⊂ρ⊂λ
d(µ)=d(ρ)=d(λ)

(−1)|λ/ρ|
Sw−1

λ/ρ
(a)Swρ/µ

(b)sµ(x||b).

This gives the first formula. The second formula follows from (10.2). �
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The following result follows from (10.3).

Proposition 10.11. Let w ∈ Y, w ∈ SZ, and i ∈ Z − {0}. Then

Ab
ij

w
µ (a, b) =

{
jw
µ+i(a, b) if μ has an addable box on diagonal i,

0 if μ has no addable box on diagonal i.

10.5 Triple Edelman–Greene coefficients for a hook

In this section we compute jw
(q+1,1p)(a, b) for all w ∈ SZ and p, q � 0, in a way that exhibits the

positivity of Theorem 4.22.

The support of a permutation w ∈ SZ is the finite set of integers

|w| := {i | si appears in a reduced word of w} ⊂ Z.

A permutation w ∈ SZ is called increasing (respectively decreasing) if it has a reduced word

si1si2 · · · siℓ such that i1 < i2 < · · · < iℓ (respectively i1 > i2 > · · · > iℓ). For J ⊂ Z a finite set,

we denote by uJ ∈ SZ (respectively dJ ∈ SZ) the unique increasing (respectively decreasing)

permutation with support J .

We call w ∈ SZ a Λ if it has a factorization of the form w
.
= uJdK . Such factorizations are

called Λ-factorizations. We consider two factorizations to be distinct if their pairs (J, K) are

distinct. We call a reduced word u a Λ-word if it is first increasing then decreasing. Associated

to a Λ-factorization is a unique Λ-reduced word.

Suppose w admits a nontrivial Λ-factorization id 
= w
.
= uJdK . Let m = max |w|, J ′ = J \

{m} and K ′ = K \ {m}. There are exactly two pairs (J, K) corresponding to a given pair (J ′, K ′):

m occurs in exactly one of J and K.

For a finite set T = {t1, t2, . . . , tr} ⊂ Z, let aT denote the sequence of variables

(at1 , at2 , . . . , atr). For the above T let T + 1 = {t1 + 1, . . . , tr + 1}.

Theorem 10.12. Let p, q � 0 and w ∈ SZ. Then jw
λ (a, b) = 0 unless w is a Λ, in which case

jw
(q+1,1p)(a, b) =

∑

(J ′,K′) distinct

w
.
=uJdK

Ss|K′|···sq+1(b; aK′+1)Ss−|J′|···s−1−p(b; aJ ′+1) (10.4)

where the sum runs over all distinct pairs (J ′, K ′) coming from Λ-factorizations w = uJdK and

Sv±(b; aJ ′+1) is the image of Sv±(b; a±) under the substitution a± �→ aJ ′+1 where v± ∈ S±.

Remark 10.13. The coefficients jw
λ (a, b) appear to satisfy the following generalization of the pos-

itivity in Theorem 4.22: jw
λ (a, b) is a sum of products of binomials c − d where c and d are

variables with c ≺ d where

b1 ≺ b2 ≺ · · · ≺ a1 ≺ a2 ≺ · · · ≺ a−2 ≺ a−1 ≺ a0 ≺ · · · ≺ b−2 ≺ b−1 ≺ b0.

The double Schubert polynomials occurring in Theorem 10.12 satisfy this positivity, say, by the

formula for the monomial expansion of double Schubert polynomials in [FK96].

Remark 10.14. It is possible to obtain more efficient formulas than those in Theorem 10.12,

especially when p = q = 0, by grouping terms according to the set of maxima for each of the

maximal subintervals of |w|.
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Example 10.15. Let w = s1s2. For jw
1 there is a single summand (J ′, K ′) = ({1}, ∅) corresponding

to either of the factorizations (J, K) = ({1, 2}, ∅) or (J, K) = ({1}, {2}). Then js1s2
1 (a, b) = a2 −

b0. More generally, for w = sisi+1 · · · sk, we have jw
1 (a, b) = (ak − b0)(ak−1 − b0) · · · (ai+1 − b0).

Let θ = a1 − a0. The proof of Theorem 10.12 uses localization formulas for Schubert classes

in equivariant cohomology H∗
Tn

(F̃ln) (see § 11.2) of the affine flag variety. In this context we set

ai = ai+n for all i ∈ Z. We shall use the following result [LS12, Theorem 6].

Theorem 10.16. For every id 
= x ∈ Sn, we have θ−1ξx−1

F̃ln
|sθ

∈ Q[a1, a2, . . . , an] and

j̃s0 = As0 +
∑

id �=x∈Sn

(
(−1)ℓ(x)θ−1ξx−1

F̃ln
|sθ

Ax + (−1)ℓ(x)ξx−1

F̃ln
|sθ

As0x

)
.

Lemma 10.17. Let id 
= x ∈ Sn. Then ξx
F̃ln

|sθ
= 0 unless x is a Λ, in which case

(−1)ℓ(x)ξx
F̃ln

|sθ
= (a1 − a0)

∑

(J ′,K′) distinct

x
.
=uJdK

Ss|J′|···s1(a; aJ ′+1)Ss−|K′|···s−1(a; aK′+1). (10.5)

Proof. We compute ξx
F̃ln

|sθ
as an element of Q[a0, a1, . . . , an−1] (setting an = a0), using Propo-

sition 7.3, picking the reduced word u = s1s2 · · · sn−1 · · · s2s1 of sθ. If x has no Λ-factorization,

then u does not contain a reduced word for x. For i 
= n − 1, the roots β(si) associated to si

are ai+1 − a1 (left occurrence) and a0 − ai+1 (right occurrence), the sum of which is a0 − a1. We

also have β(sn−1) = a0 − a1.

Summing over the Λ-factorizations, the simple generator sm where m = max(|w|) contributes

a factor of (a1 − a0) to (−1)ℓ(x)ξx|sθ
. The remaining simple generators contribute

∏
j∈J ′(a1 −

aj+1)
∏

k∈K′(ak+1 − a0). Finally, these products of binomials are double Schubert polynomials:

∏

j∈J ′

(a1 − aj+1) = Ss|J′|···s1(a; aJ ′ + 1),
∏

k∈K′

(ak+1 − a0) = Ss−|K′|···s−1(a; aK′+1). �

Proof of Theorem 10.12. First suppose that w ∈ S+. Combining Theorem 10.16 and

Lemma 10.17 with the limiting arguments of § 9.5, we deduce (noting that Theorem 10.16 has

‘x−1’) that

jw
1 (a) =

∑

(J ′,K′) distinct
w

.
=uJdK

Ss|K′|···s1(a; aK′+1)Ss−|J′|···s−1(a; aJ ′+1).

Recall the shift automorphism γ : SZ → SZ from § 2.1. It follows that we must have

jw
1 (a, b) =

∑

(J ′,K′) distinct
w

.
=uJdK

Ss|K′|···s1(b; aK′+1)Ss−|J′|···s−1(b; aJ ′+1),

to be consistent with Corollary 10.8, and this must hold for all w ∈ SZ. The formula for a general

hook (q + 1, 1p) follows by Proposition 10.11. �

10.6 Proof of Theorem 8.15

By Theorem 9.10 and Proposition 9.18, the coefficient of ŝλ(y||a) in the product ŝ1(y||a)ŝµ(y||a)

is equal to 0 if μ 
⊆ λ and equal to j
wλ/µ

1 (a) otherwise.
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Lemma 10.18. Let μ ⊆ λ and z = wλ/µ be a Λ. Then λ/μ is a thin skew shape.

10.7 Proof of Theorem 8.18

The product ŝ(q+1,1p)(y||a)ŝµ(y||a) is computed by evaluating jz
(q+1,1p)(a) where z is 321-avoiding.

Thus Theorem 8.18 is obtained from Theorem 10.12. Let D = (λ/ρ, ρ/μ) be a Λ-decomposition.

The key equality is

Ab
u[−p,−1]d[1,q]

wt(D) = wtp,q(D).

This in turn follows from the equality

wtp,q(D) = Ss|ρ/µ|s|ρ/µ|−1···sq+1(a; aJ+1)Ss−|λ/ρ|...s−p−1(a; aK+1),

where J is the set of diagonals in ρ/μ and K is the set of diagonals in λ/μ.

11. Affine flag variety

In this section, we recall the equivariant cohomologies of affine flag varieties and affine Grassman-

nians. We preview some results in affine Schubert calculus that will be developed in subsequent

work. We use notation for affine symmetric groups as in § 9.1.

11.1 Affine flag variety and affine Grassmannian

We consider affine flag varieties F̃l
·

n and affine Grassmannians G̃r
·

n of GLn(C). A lattice L in

Fn is a free C[[t]]-submodule satisfying L ⊗C[[t]] F = Fn. There is a map ζ : Fn → F sending

tkei to tkn+i, compatible with infinite linear combinations. Under ζ, a lattice L ⊂ Fn is sent to

an admissible subspace Λ ⊂ F . We often identify a lattice L with the corresponding admissible

subspace Λ = ζ(L).

The affine Grassmannian G̃r
·

n consists of all lattices in Fn. It embeds inside the Sato Grass-

mannian Gr·, and thus inherits the structure of an ind-variety over C. We have G̃r
·

n =
⊔

kG̃r
(k)

n ,

where G̃r
(k)

n := Gr(k) ∩ G̃rn. The neutral component G̃rn := G̃r
(0)

n is the affine Grassmannian of

SLn(C).

An affine flag in Fn is a sequence

L•= · · · ⊂ L−1 ⊂ L0 ⊂ L1 ⊂ · · ·

of lattices Li ⊂ Fn, such that dimLi/Li−1 = 1 for all i and Li−n = tLi. The affine flag variety

F̃l
·

n consists of all affine flags in Fn. We have F̃l
·

n =
⊔

kF̃l
(k)

n where L• ∈ F̃l
(k)

n if L0 ∈ G̃r
(k)

n . The

neutral component F̃ln := F̃l
(0)

n is the affine flag variety of SLn(C).

The image Λ• = ζ(L•) is a flag of admissible subspaces in F . However, it is not an admissible

flag since it is possible that ζ(Li) 
= Ei for infinitely many i ∈ Z. We do not have an embedding of

F̃l
·

n in the Sato flag variety Fl·. Nevertheless, F̃l
·

n is known to be an ind-variety over C [Kum02].

11.2 Equivariant cohomology of affine flag variety

Let Tn be the maximal torus of GLn(C). We have H∗
Tn

(pt) ∼= Q[a1, . . . , an]. Write γa : Q[a] → Q[a]

for the Q-algebra isomorphism given by ai �→ ai+1 mod n.

The torus Tn acts on G̃rn and F̃ln. Let S̃n be the affine Coxeter group of SLn(C) and Sn =

Z ⋉ S̃n = 〈sh〉 × S̃n the affine Weyl group of GLn(C). For w ∈ Sn, let ξw
F̃ln

denote the Schubert
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class of H∗
Tn

(F̃l
·

n) indexed by w. Similarly, the Schubert classes ξw
G̃rn

∈ H∗
Tn

(G̃r
·

n) of G̃r
·

n are

indexed by 0-affine Grassmannian elements w ∈ S0
n := Z × S̃0

n ⊂ Sn. We have

H∗
Tn

(F̃l
·

n) ∼=
⊕

w∈Sn

H∗
Tn

(pt) ξw and H∗
Tn

(G̃r
·

n) ∼=
⊕

w∈S0
n

H∗
Tn

(pt) ξw.

There is a wrongway map [Lam08, LSS10] ̟ : H∗
Tn

(F̃ln) → H∗
Tn

(G̃rn) induced by the

homotopy equivalences ΩSU(n) ∼= G̃rn and LSU(n)/Tn
∼= F̃ln, and the inclusion ΩSU(n) →֒

LSU(n)/Tn. The class ̟(ξ) is completely determined by its localization at Tn-fixed points of

G̃rn:

̟(ξ)|tλSn = ξ|tλ for λ ∈ Q∨. (11.1)

11.3 Presentations

We have a ring map evn : H∗
TZ

(pt) → H∗
Tn

(pt) which sets equal ai = ai+n for all i ∈ Z.

The inclusion G̃rn →֒ Gr induces a map of H∗
Tn

(pt)-algebras:

H∗
TZ

(Gr) ⊗evn H∗
Tn

(pt) → H∗
Tn

(G̃rn). (11.2)

To explain this, we would like to embed Tn into TZ in an n-periodic manner, but our definition

of TZ requires all but finitely many entries to be identity. However, the action of Tn on G̃rn is

compatible with the action of TZ on Gr as follows. Take N = mn for some positive integer m.

If we restrict ourselves to the finite-dimensional piece
⋃

kGr(k, 2N) of Gr, then the action of

TZ factors through T[−N,N−1], and this is the same as the action of Tn on G̃rn ∩ (
⋃

kGr(k, 2N))

where we embed Tn into T[−N,N−1] in a n-periodic manner. Thus the embedding G̃rn → Gr is

‘essentially’ Tn-equivariant, and induces (11.2) by pullback.

Unfortunately, no such map is available for F̃ln. Nevertheless, we have the following algebraic

construction. For f ∈
←−
R (x; a) and w ∈ S̃n, we define f(wa; a) analogues to the case w ∈ SZ (see

[LS13] for details for the case f ∈ Λ(x||a)). Let
←−
R (x; a)evn :=

←−
R (x; a) ⊗evn Q[a1, . . . , an] and

Λ(x||a)evn := Λ(x||a) ⊗evn Q[a1, . . . , an].

Proposition 11.1. We have a Q[a1, . . . , an]-algebra morphism φn :
←−
R (x; a)evn → H∗

Tn
(F̃ln)

restricting to φn : Λ(x||a)evn → H∗
Tn

(G̃rn), forming commutative diagrams

←−
R (x; a)evn

Λ(x||a)evn

H
∗

Tn

(F̃ln)
∏

w∈S̃n

H
∗

Tn

(pt) H
∗

Tn

(G̃rn)
∏

w∈S̃0
n

H
∗

Tn

(pt)

φn φn

localization localization

(11.3)

where the diagonal arrows are given by f(x; a) �→ (w �→ f(wa; a)) ∈ Fun(S̃n, Q[a1, . . . , an]).

Proof. Let Ψ̃n ⊂ Fun(S̃n, Q[a1, . . . , an]) denote the image of H∗
Tn

(F̃ln) under localization. It is

given by GKM conditions similar to (6.3). It is straightforward to check that the generators xi and

pk(x||a) of
←−
R (x; a)evn are sent to Ψ̃n under the diagonal map f(x; a) �→ (w �→ f(wa; a)). Further-

more, this diagonal map is clearly a Q[a1, . . . , an] algebra morphism. This uniquely determines

the map φn with the desired properties. �
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In fact, the map φn is a surjection and gives a presentation of the cohomologies H∗
Tn

(F̃ln)

and H∗
Tn

(G̃rn). We shall study these presentations in further detail in future work.

Remark 11.2. The map φn cannot be induced by any continuous map F̃ln → Fl that sends Tn-

fixed points to TZ-fixed points. This is because for any w ∈ S̃n and v ∈ SZ, one can always find

f(x; a) ∈
←−
R (x; a) such that f(wa; a) 
= f(va; a).

Proposition 11.3. We have the following commutative diagram.

←−
R (x; a)evn

Λ(x||a)evn

H
∗

Tn

(F̃ln) H
∗

Tn

(G̃rn)

ηa

�

(11.4)

Proof. By (11.1) and Proposition 11.1, it suffices to check that for f(x; a) ∈
←−
R (x; a)evn and

λ ∈ Q∨, we have

f(tλa; a) = ηa(f)(tλa; a). (11.5)

For f ∈ Λ(x||a), a formula for f(tλa; a) is given in [LS13, § 4.5]. For p ∈ Q[x, a], we have tλxi =

xi + λiδ = xi (since we are working with the finite, or level zero, torus Tn rather than the affine

one). Thus p(tλa; a) = ηa(p) for p ∈ Q[x, a] and (11.5) holds. �

11.4 Small affine Schubert classes

We shall need the following result concerning ‘small’ affine Schubert polynomials.

Theorem 11.4. Suppose that w ∈ SZ (respectively w ∈ S0
Z), which we also consider an element

of S̃n (respectively S̃0
n) for n ≫ 0. For sufficiently large n ≫ 0 the image of

←−
Sw(x; a) in H∗

Tn
(F̃ln)

is equal to ξw
F̃ln

(respectively the image of sλ(x||a) in H∗
Tn

(G̃rn) is equal to ξλ
G̃rn

).

Proof. We sketch the proof. There are divided difference operators Aī : H∗
Tn

(F̃ln) → H∗
Tn

(F̃ln)

for ī ∈ Z/nZ, and the Schubert classes ξw
F̃ln

are determined by recurrences similar to (7.15). One

then checks that for Schubert classes indexed by small w ∈ SZ, the action of Ai on
←−
R (x; a) and on

H∗
Tn

(F̃ln) are compatible: Aī ◦ φn = φn ◦ Ai acting on
←−
Sw(x; a), when i ∈ Z is chosen carefully.

It follows that
←−
Sw(x; a) represents ξw

F̃ln
for sufficiently large n. �

12. Graph Schubert varieties

12.1 Schubert varieties and double Schur functions

Fix a positive integer n. Let Gr(n, 2n) denote the Grassmannian of n-planes in C2n =

span(e1−n, e2−n, . . . , en). We let the torus T2n = (C×)2n act on C2n, and identify H∗
T2n

(pt) =

Q[a1−n, a2−n, . . . , an], so that the weight of the basis vector ei ∈ C2n is equal to ai. The

T -fixed points of Gr(n, 2n) are the points eI ∈ Gr(n, 2n), where I is an n-element subset

I ⊂ [1 − n, n]. There is a bijection from partitions λ fitting in a n × n box to the collection(
[1−n,n]

n

)
of subsets of size n in the interval [1 − n, n], given by λ �→ I(λ) = ([1, n] \ S+) ∪ S−,

where λ = λ(S−, S+); see § 2.1. The Schubert variety Xλ has codimension |λ| and contains the
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T -fixed points eI(µ) for μ ⊇ λ. Via the forgetful map Q[a] → H∗
T2n

(pt) which sets ai to 0 for

i /∈ [1 − n, n], H∗
T2n

(pt) ⊗Q[a] Λ(x||a) has a Q[a1−n, . . . , an]-algebra structure.6

Proposition 12.1. There is a surjection

H∗
T2n

(pt) ⊗Q[a] Λ(x||a) �→ H∗
T2n

(Gr(n, 2n)) (12.1)

of Q[a1−n, a2−n, . . . , an]-algebras such that sλ(x||a) �→ [Xλ].

The surjection (12.1) is compatible with localization, analogous to (11.3).

Remark 12.2. Let Sn act on the x-variables in R = Q[x1−n, . . . , x−1, x0, a1−n, . . . , an]. We may

realize H∗
T2n

(Gr(n, 2n)) as a quotient of RSn . The map of Proposition 12.1 is given by sending

sλ(x||a) to the truncation S
[1−n,n]
wλ (x; a).

12.2 The graph Schubert class

We describe Knutson’s graph Schubert variety. Let w ∈ Sn. Let M◦
w = B−wB+ ⊂ Mn×n and

Mw = M◦
w ⊂ Mn×n be the matrix Schubert variety. Let V ◦

w = (In|M
◦
w) ⊂ Mn×2n where we place

the n × n identity matrix side by side with M◦
w. Let π : M◦

n×2n → Gr(n, 2n) be the projection to

Gr(n, 2n) from the rank n matrices M◦
n×2n in Mn×2n. The graph Schubert variety G(w) is given

by

G(w) = π(V ◦
w) ⊂ Gr(n, 2n).

Define f̃w ∈ Sn by f̃w(i) = w(i) + n for 1 � i � n and f̃w(i) = i + n for n + 1 � i � 2n. Then

G(w) is equal to the positroid variety Πf̃w
(see § 6 in [KLS13]). Let [G(w)] ∈ H∗

T2n
(Gr(n, 2n))

denote the torus-equivariant cohomology class of G(w).

Define the n-rotated double Stanley symmetric function F
(n)
w (x||a) ∈ Λ(x||a) as the image of

←−
Sw(x; a) under the map of Q[a]-algebras

Λ(x||a) ⊗Q[a] Q[x, a] → Λ(x||a) (12.2)

which is the identity on Λ(x||a) and sends xi ∈ Q[x, a] to ai−n.

Theorem 12.3. Under (12.1), the image of F
(n)
w (x||a) in H∗

T2n
(Gr(n, 2n)) is equal to [G(w)].

12.3 Proof of Theorem 12.3

There is an embedding ι : Gr(n, 2n) → G̃r
(n)

2n , placing the Grassmannian as a Schubert variety

at the ‘bottom’ of the affine Grassmannian of GL2n. This induces a pullback back map ι∗ :

H∗
T2n

(G̃r
(n)

2n ) → H∗
T2n

(Gr(n, 2n)). There is also the wrongway map of rings ̟ : H∗
T2n

(F̃l
(n)

2n ) →

H∗
T2n

(G̃r
(n)

2n ).

For a bounded affine permutation f , let [Πf ] ∈ H∗
T2n

(Gr(n, 2n)) denote its equivariant coho-

mology class, and let ξf ∈ H∗
T2n

(F̃l
(n)

2n ) denote the Schubert class. The following result is due to

Knutson, Lam and Speyer [KLS13] (see also He and Lam [HL15]).

Theorem 12.4. For any positroid variety Πf , we have ι∗ ◦ ̟(ξf ) = [Πf ].

6 Let λc denote the partition that is the complement of λ in the n × n square. Our Xλ is equal to Knutson’s Xλc

[Knu14].

953

https://doi.org/10.1112/S0010437X21007028 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X21007028


T. Lam, S. Jin Lee and M. Shimozono

In particular, this result holds for Πf = Πf̃w
= G(w). The remainder of the proof is concerned

with working through the interpretation of Theorem 12.4 in terms of double symmetric functions.

Let us first consider ξf̃w ∈ H∗
T ′
2n

(F̃l
(n)

2n ). Here, we use T ′
2n to distinguish from T2n. We have

H∗
T ′
2n

(pt) = Q[a1, a2, . . . , a2n] but H∗
T2n

(pt) = Q[a1−n, a2−n, . . . , an]. Recall from Proposition 11.1

the algebra map φn :
←−
R (x; a)evn → H∗

T2n
(F̃l2n). Combining Theorem 11.4 with Proposition 6.9

(and the analogue of Proposition 6.9 for F̃l
(n)

2n ), we obtain φn(
←−
Sshnw(x; a)) = ξf̃w

F̃l
(n)
2n

. By Proposi-

tion 11.3, the class ̟(ξf̃w) ∈ H∗
T ′
2n

(Gr
(n)
2n ) is the image under φn of the element ηa(

←−
Sshnw(x; a)) ∈

Λ(x||a).

Finally, we need to switch from T ′
2n back to the isomorphic torus T2n. This is simply the map

ai �→ ai−n on Q[a]. Thus

γ−n
a

(←−
Sshnw(x; a)|xi �→ai

)
= F (n)

w (x||a) = ̟(ξf̃w) ∈ H∗
T2n

(Gr
(n)
2n ).

Theorem 12.3 follows from this equality and Theorem 12.4.

12.4 Proof of Theorem 5.11

By the main result of [Knu14] applied to the interval positroid variety G(w), we have the

expansion

[G(w)] =
∑

D

wt(D)[Xλ(D)]

where the sum is over all IP pipedreams D for G(w) that live in the triangular region {(i, j) | 1 �

i � j � 2n}. We do not give the full definition of IP pipedream here. Indeed, for the special case

of G(w), the IP pipedreams are in a canonical bijection with rectangular w-bumpless pipedreams.

Let P be a rectangular w-bumpless pipedream. We produce an IP pipedream D as follows.

(i) Erase all boxes in the lower-triangular part of the left n × n square of P (these boxes always

contain vertical pipes).

(ii) Add an upper-triangular part below the right n × n square of P , and fill with vertical pipes.

(iii) Rename the pipes numbered 1, 2, . . . , n to the letters A1, A2, . . . , An.

(iv) Rename the nonpositively numbered pipes to the label 1.

(v) Add 0 pipes so that every tile has two pipes (in an empty tile, we use a double elbow).

In Figure 11, all 0 pipes enter from the left and all 1 (respectively lettered) pipes come up

from the bottom entering the diagram to the left (respectively right) of the dotted line.

Going through the definition of IP pipedream in [Knu14], we see that they are in bijec-

tion with rectangular w-bumpless pipedreams. Comparing wt(D) with wt(P ), it follows from

Proposition 12.1 and Theorem 12.3 that in H∗
T2n

(Gr(n, 2n)) we have

F (n)
w (x||a) =

∑

P

wt(n)(P )sλ(P )(x||a), (12.3)

where the summation is over all rectangular w-bumpless pipedreams, and wt(n)(P ) =

wt(P )|xi �→ai−n . But we have injections Sn →֒ Sn+1 →֒ · · · . The rectangular Sn+1-bumpless

pipedreams P ′ for w are obtained from the rectangular Sn-bumpless pipedreams P for w

by: (i) adding an elbow in the southeastern most corner; (ii) filling the rest of the southmost

row with vertical pipes; and (iii) filling the rest of the eastmost column with horizontal pipes.
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Figure 11. From a bumpless pipedream to an IP pipedream.

Thus, (12.3) holds for all sufficiently large n, where the summation is over the same set of rect-

angular w-bumpless pipedreams. The only expansion of
←−
S(x; a) in terms of sλ(x||a) consistent

with this is the one in Theorem 5.11.

12.5 Divided difference formula for graph Schubert class

For completeness, we include the following formula due to Allen Knutson.

Theorem 12.5. Let w ∈ Sn. Then

[G(w)] = Aw0

(( ∏

1−n�i<j�0

(xi − aj)

)
γ−n

x Sw(x+; a+)

)
,

where the action of Aw0 is defined by the action of Sn on the variables x1−n, . . . , x−1, x0.

Sketch of proof. We use the notation of § 12.2. There is a canonical projection

H∗
GLn×T2n

(Mn×2n) → H∗
GLn×T2n

(M◦
n×2n) ∼= H∗

T2n
(Gr(n, 2n)).

By [BF17] this map has a section σ : H∗
T2n

(Gr(n, 2n)) → H∗
GLn×T2n

(Mn×2n) such that for any

closed subscheme Z ⊂ Gr(n, 2n), σ([Z]) = [π−1(Z)]. In particular σ([Xλ]) = [π−1(Xλ)] which

is identified with the double Schur polynomial S
[1−n,n]
wλ (x; a) in variables x1−n, . . . , x0 and
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a1−n, . . . , an where the row torus Tn ⊂ GLn acts on Mn×2n by the weights x1−n through x0 and

T2n acts on columns by weights a1−n through an. Let Z = G(w) and Y = π−1(G(w)) ⊂ Mn×2n.

In the notation of § 12.2 we have σ([G(w)]) = [Y ]. Let Y ′ be the closed B−-stable subvariety

(B−|Mw) of Mn×2n. Since M◦
w is B−-stable we have

Y = GLn · (I|M◦
w) = B+B−(I|M◦

w) = B+(B−|M◦
w) = B+Y ′.

Since B+ acts freely on (B−|M
◦
w) one may show that [Y ] = Aw0 [Y

′] where [Y ′] ∈

H∗
Tn×T2n

(Mn×2n). But Y ′ is a product. The equivariant class of the affine space B− is the product

of the weights of the matrix entries that are set to zero in B− and the equivariant class of Mw,

which is γ−n
x Sw(x+; a+) by [KM05] (the shift in x variables is due to the convention on weights).

We deduce that

[Y ′] =

( ∏

1−n�i<j�0

(xi − aj)

)
γ−n

x (Sw(x; a))

as required. �

Example 12.6. Let n = 2 and w = s1. Then Sw(x+; a+) = x1 − a1, γ−n
x (Sw(x+; a+)) = x−1 − a1

and

σ([G(w)]) = A−1((x−1 − a0)(x−1 − a1))

= x−1 + x0 − a0 − a1

= (x−1 + x0 − a−1 − a0) + (a−1 − a1)

= σ([X�]) + (a−1 − a1)σ([X∅]).

On the other hand, we have
←−
Sw = s1(x||a) + (x1 − a1). Setting x1 �→ a−1, the formula for

F
(2)
s1 (x||a) agrees with the above computation.
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Appendix A. Dictionary between positive and nonpositive alphabets

The literature uses double Schur symmetric functions s>0
λ (x||a) (e.g. [Mol09, § 2.1]) while we

use s�0
λ (x||a). The two kinds of double Schurs are compared explicitly below using localization.

For more connections with various kinds of double Schur polynomials used in the literature, see

[Mol09, § 2.1].

A.1 Positive alphabets

Recall that x+ = (x1, x2, . . . ) and x− = (x0, x−1, . . . ) and similarly for a+ and a−.

Let Q[a] = Q[ai | i ∈ Z] and Λ>0(x||a) the polynomial Q[a]-algebra generated by pk(x+/a+)

for k � 1. Recall the definition of γa from (4.15). Define

h>0
r (x||a) = γ1−r

a hr(x+/a+), s>0
λ (x||a) = det γj−1

a h>0
λi−i+j(x||a).
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A.2 Nonpositive alphabets

Let Λ�0(x||a) be the polynomial Q[a]-algebra with generators pk(x−/a−) for k � 1. Define

h�0
r (x||a) = γr−1

a hr(x−/a−), s�0
λ (x||a) = det γ1−j

a h�0
λi−i+j(x||a). (A.1)

Applying ω and using (4.28) we have

e�0
r (x||a) = γ1−r

a er(x−/a−), s�0
λ (x||a) = det γj−1

a e�0
λ′

i−i+j
(x||a). (A.2)

A.3 Localization

Proposition A.1. Let Φ : Λ>0(x||a) → Λ�0(x||a) be the Q[a]-algebra isomorphism given by

pk(x+/a+) �→ −pk(x−/a−) for all k � 1. (A.3)

It satisfies

Φ(f)|w = f |w for all f ∈ Λ>0(x||a) and w ∈ SZ. (A.4)

Moreover,

Φ(s>0
λ (x||a)) = (−1)|λ|s�0

λ′ (x||a) for all λ ∈ Y. (A.5)

Proof. Checking (A.4) on algebra generators, we have

pk(x+/a+)|w + pk(x−/a−)|w = pk(wa+/a+) + pk(wa−/a−) = pk(waZ/aZ) = pk(aZ/aZ) = 0.

Since Φ acts like the antipode (up to changing nonpositive for positive alphabets), we have the

equality Φ(sλ(x+/a+)) = (−1)|λ|sλ′(x−/a−) for all λ ∈ Y. It is straightforward to verify that Φ

is γa-equivariant: Φ(γa(f)) = γa(Φ(f)) for all f ∈ Λ>0(x||a). We compute

Φ(s>0
λ (x||a)) = det Φ(γj−1

a (h>0
λi−i+j(x||a)))

= det Φ(γj−(λi−i+j)
a hλi−i+j(x+/a+))

= det γi−λi
a (−1)λi−i+jeλi−i+j(x−/a−)

= (−1)|λ| det γj−1
a e�0

λi−i+j(x||a)

= (−1)|λ|s�0
λ′ (x||a). �

A.4 Molev’s skew double Schur functions

Molev’s skew double Schur functions [Mol98, Mol09, ORV03] are the positive variable analogues

of double Stanley functions for 321-avoiding permutations.

For λ ∈ Y and n � ℓ(λ) the double Schur polynomial, sλ(x1, . . . , xn||a) may be defined by

Sγn(wλ). It is stable (the limit as n → ∞ is well defined), yielding the element s>0
λ (x||a) ∈

Λ>0(x||a).

The same is true of Molev’s skew double Schur polynomials sν/µ(x1, . . . , xn||a) as defined in

[Mol09, (2.20)], because they have a stable expansion into double Schur polynomials as n → ∞.

Define F>0
ν/µ(x||a) ∈ Λ>0(x||a) by F>0

ν/µ(x||a) := limn→∞ sν/µ(x1, . . . , xn||a).

Recalling wλ/µ from (2.2), we have ω(wν/µ) = wν′/µ′ . We define F�0
ν/µ(x||a) := F�0

wν/µ
(x||a).
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Proposition A.2. With Φ as in Proposition A.1,

Φ(F>0
ν/µ(x||a)) = (−1)|ν|−|µ|F�0

ν′/µ′(x||a).

Appendix B. Schubert Inversion

B.1 Proof of Lemma 2.10

Proof. We expand using the Billey–Jockusch–Stanley formula (2.10):
∑

w
.
=uy

(−1)ℓ(y)
Su−1(x+)Sy(x+)

=
∑

a1a2···aℓ∈Red(w)

(
ℓ+1∑

k=0

(−1)k
∑

b1�b2�···�bk�1�bk+1�bk+2�···�bℓ

if i>k then ai<ai+1 =⇒ bi<bi+1

if i<k then ai>ai+1 =⇒ bi>bi+1

bi�ai

xb1xb2 · · ·xbℓ

)
.

We perform a sign-reversing involution on the inner sum on the right-hand side (contained inside

the parentheses) as follows. If either (k > 0 and bk < bk+1) or k = ℓ, then we change k to k − 1.

If either (k < ℓ and bk > bk+1) or k = 0, then we change k to k + 1. If 0 < k < ℓ and bk = bk+1,

then we change k to k − 1 if ak < ak+1; we change k to k + 1 if ak > ak+1. �

B.2 Inverting systems with Schubert polynomials as change-of-basis matrix

Let W ⊂ S �=0 be a subgroup generated by simple reflections si for i ∈ I for some I ⊂ Z − {0}.

For J ⊂ I let WJ be the subgroup of W generated by si for i ∈ J . For x, y ∈ W say x J� y if

yx−1 ∈ WJ and ℓ(yx−1) + ℓ(x) = ℓ(y). Equivalently, x J� y if and only if there is a v ∈ WJ such

that y
.
= vx.

Lemma B.1. Let W ′ be a fixed coset of WJ\W . Then the W ′ × W ′-matrices

Ax,y = (−1)ℓ(yx−1)χ(x J
� y)Sxy−1(a),

Bx,y = χ(x J
� y)Syx−1(a)

are mutually inverse.

Proof. For x, y ∈ W ′, we have

(AB)xy =
∑

z∈W ′

AxzBzy

=
∑

z

χ(x J
� z)χ(z J

� y)(−1)ℓ(zx−1)
Sxz−1(a)Syz−1(a).

Thus (AB)xy = 0 unless x J� y. Let us assume this. Let u, v ∈ WJ be such that ux = z and

vz = y. There are factorizations y
.
= vz and y

.
= vux with

(AB)xy =
∑

vu=yx−1

(−1)ℓ(u)
Su−1(a)Sv(a) = δx,y

using the obvious generalization of Lemma 2.10 to S�=0. �
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The right-hand analogue also holds. For x, y ∈ W say x �J y if x−1y ∈ WJ and ℓ(x) +

ℓ(x−1y) = ℓ(y). Equivalently, x �J y if and only if there is a v ∈ WJ such that y
.
= xv.

Lemma B.2. Let W ′ be a fixed coset of W/WJ . The W ′ × W ′-matrices

Ax,y = (−1)ℓ(x−1y)χ(x �
J y)Sy−1x(a),

Bx,y = χ(x �
J y)Sx−1y(a)

are inverses.

Corollary B.3. Let {Fw | w ∈ W} and {Gw | w ∈ W} be families of elements.

(a) Then we have

Fw =
∑

w
.
=uv

(u,v)∈WJ×W

(−1)ℓ(u)
Su−1(a)Gv for all w ∈ W (B.1)

if and only if

Gw =
∑

w
.
=uv

(u,v)∈WJ×W

Su(a)Fv for all w ∈ W ; (B.2)

(b) and we have

Fw =
∑

w
.
=

(v,z)∈W×WJ

(−1)ℓ(z)GvSz−1(a) for all w ∈ W (B.3)

if and only if

Gw =
∑

w
.
=vz

(v,z)∈W×WJ

FvSz(a) for all w ∈ W. (B.4)

Appendix C. Level zero affine nilHecke ring

We recall in this section standard results the affine nilHecke algebra and the Peterson subalgebra.

We use affine symmetric group notation from § 9.1.

C.1 Level zero affine nilHecke ring

Let Ã denote the level zero affine nilHecke ring (see for example [LS12] for details). It has

Q[a1, a2, . . . , an]-basis {Aw | w ∈ S̃n}. There is an injection S̃n →֒ Ã that is a group isomorphism

onto its image. It is given by si �→ 1 − αiAi = 1 − (ai+1 − ai)Asi . The image of S̃n in Ã forms a

basis of Ã over Q(a1, a2, . . . , an).

The action of S̃n on Q[a1, . . . , an] is the level 0 action. Thus in Ã we have the commutation

relation

(wtλ)p = (w · p)(wtλ) (C.1)

for p ∈ Q[a1, . . . , an] and w ∈ Sn. In particular, tλ ∈ Z
Ã
(Q[a1, . . . , an]).

The affine nilHecke ring Ã has a coproduct map ∆ : Ã → Ã ⊗Q[a1,...,an] Ã which is

Q[a1, . . . , an]-linear and satisfies

∆(w) = w ⊗ w for w ∈ S̃n. (C.2)
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C.2 Peterson algebra

Let P̃ := Z
Ã
(Q[a1, . . . , an]) denote the Peterson subalgebra of Ã, defined as the centralizer of

Q[a1, . . . , an] inside Ã. Then P̃ has basis {tλ | λ ∈ Q∨} over Q(a1, . . . , an).

Theorem C.1. The Peterson subalgebra P̃ is a commutative subalgebra of Ã. It is a free

Q[a1, . . . , an]-module with basis {j̃λ | λ ∈ Q∨}. The element j̃λ ∈ P̃ is uniquely characterized

by the expansion

j̃λ = Aw +
∑

u/∈S̃0
n

j̃u
λAu

for j̃u
λ ∈ Q[a1, . . . , an], where wSn = tλSn.

The following result follows from combining [LS10], which proves Peterson’s isomorphism of

localizations of H∗(G̃r) and the equivariant quantum cohomology H∗
Tn

(Fln) together with an

explicit correspondence of Schubert classes, and the positivity result of [Mih06] in equivariant

quantum cohomology.

Theorem C.2. Let λ ∈ Q∨ and u ∈ S̃n. Then j̃u
λ ∈ Z�0[ai − aj | 1 � i < j � n].
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Pet97 D. Peterson, Quantum cohomology of G/P, Lecture Notes (M.I.T., Spring 1997).

PS86 A. Pressley and G. Segal, Loop groups, Oxford Mathematical Monographs, Oxford Science
Publications (The Clarendon Press, Oxford University Press, New York, NY, 1986).

RS98 V. Reiner and M. Shimozono, Percentage-avoiding, northwest shapes and peelable tableaux,
J. Combin. Theory Ser. A 82 (1998), 1–73.

RW84 J. Remmel and R. Whitney, Multiplying Schur functions, J. Algorithms 5 (1984), 471–487.

Sta84 R.P. Stanley, On the number of reduced decompositions of elements of Coxeter groups,
European J. Combin. 5 (1984), 359–372.

Wei20 A. Weigandt, Bumpless pipe dreams and alternating sign matrices, Preprint (2020),
arXiv:2003.07342.

Thomas Lam tfylam@umich.edu

Department of Mathematics, University of Michigan, 530 Church St., Ann Arbor, MI 48109,
USA

Seung Jin Lee lsjin@snu.ac.kr

Department of Mathematical Sciences, Research Institute of Mathematics, Seoul National
University, Gwanak-ro 1, Gwanak-gu, Seoul 151-747, Republic of Korea

Mark Shimozono mshimo@math.vt.edu

Department of Mathematics, MC 0123, Virginia Tech, 460 McBryde Hall, 255 Stanger St.,
Blacksburg, VA 24061, USA

962

https://doi.org/10.1112/S0010437X21007028 Published online by Cambridge University Press

https://arxiv.org/abs/1812.03328
https://arxiv.org/abs/2003.07342
https://doi.org/10.1112/S0010437X21007028

	1 Introduction
	1.1 Flag varieties and Schubert polynomials
	1.2 Back stable Schubert polynomials
	1.3 Coproduct formula
	1.4 Double Stanley symmetric functions
	1.5 Bumpless pipedreams
	1.6 Infinite flag variety
	1.7 Localization and infinite nilHecke algebra
	1.8 Homology
	1.9 Affine Schubert calculus
	1.10 Peterson subalgebra
	1.11 Other directions

	2 Schubert polynomials
	2.1 Notation
	2.1.1 Permutations
	2.1.2 Partitions

	2.2 Schubert polynomials
	2.3 Double Schubert polynomials
	2.4 Double Schubert polynomials into single
	2.5 Left divided differences

	3 Back stable Schubert polynomials
	3.1 Symmetric functions in nonpositive variables
	3.2 Back symmetric formal power series
	3.3 Back stable limit
	3.4 Stanley symmetric functions
	3.5 Negative Schubert polynomials
	3.6 Coproduct formula
	3.7 Back stable Schubert structure constants

	4 Back stable double Schubert polynomials
	4.1 Double symmetric functions
	4.2 Back symmetric double power series
	4.3 Localization of back symmetric formal power series
	4.4 Back stable double Schubert polynomials
	4.5 Double Schur functions
	4.6 Double Stanley symmetric functions
	4.7 Negative double Schubert polynomials
	4.8 Coproduct formula
	4.9 Dynkin reversal
	4.10 Double Edelman–Greene coefficients

	5 Bumpless pipedreams
	5.1 SZ-bumpless pipedreams
	5.2 Drooping and the Rothe pipedream
	5.3 Halfplane crossless pipedreams
	5.4 Rectangular Sn-bumpless pipedreams
	5.5 Square Sn-bumpless pipedreams
	5.6 EG pipedreams
	5.7 Column moves
	5.8 Insertion

	6 Infinite flag variety
	6.1 Infinite Grassmannian
	6.2 Infinite flag variety
	6.3 Schubert varieties
	6.4 Equivariant cohomology of infinite flag variety
	6.5 Localization and GKM rings for infinite flags and infinite Grassmannian
	6.6 Realization of Schubert basis of GKM ring by backstable Schubert polynomials
	6.7 Shifting

	7 NilHecke algebra and Hopf structure
	7.1 NilHecke algebra
	7.2 NilHecke actions
	7.3 Hopf structure on Gr

	8 Homology Hopf algebra
	8.1 Molev's dual Schur functions
	8.2 Homology divided difference operators
	8.3 δ-Schubert polynomials and δ-Schur functions
	8.4 δ-dual Schurs represent Knutson--Lederer classes
	8.5 Homology equivariant Monk's rule
	8.6 Homology equivariant Pieri rule

	9 Peterson subalgebra
	9.1 Affine symmetric group
	9.2 Translation elements
	9.3 The Peterson subalgebra
	9.4 Fomin–Stanley algebra
	9.5 Stability of affine double Edelman–Greene coefficients
	9.6 Proof of Proposition 9.6
	9.7 Proof of Theorem 9.7
	9.8 Proof of Theorems 9.8 and 9.10
	9.9 Proof of Theorem 4.22

	10 Back stable triple Schubert polynomials
	10.1 Tripling
	10.2 Back stable triple Schubert polynomials
	10.3 Triple Stanley symmetric functions
	10.4 Double to triple
	10.5 Triple Edelman–Greene coefficients for a hook
	10.6 Proof of Theorem 8.15
	10.7 Proof of Theorem 8.18

	11 Affine flag variety
	11.1 Affine flag variety and affine Grassmannian
	11.2 Equivariant cohomology of affine flag variety
	11.3 Presentations
	11.4 Small affine Schubert classes

	12 Graph Schubert varieties
	12.1 Schubert varieties and double Schur functions
	12.2 The graph Schubert class
	12.3 Proof of Theorem 12.3
	12.4 Proof of Theorem 5.11
	12.5 Divided difference formula for graph Schubert class

	Acknowledgements
	Appendix . A. Dictionary between positive and nonpositive alphabets
	A.1 Positive alphabets
	A.2 Nonpositive alphabets
	A.3 Localization
	A.4 Molev's skew double Schur functions

	Appendix . B. Schubert Inversion
	B.1 Proof of Lemma 2.10
	B.2 Inverting systems with Schubert polynomials as change-of-basis matrix

	Appendix . C. Level zero affine nilHecke ring
	C.1 Level zero affine nilHecke ring
	C.2 Peterson algebra

	References

