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Back to almost Ricci solitons

Vladimir Rovenski∗, Sergey Stepanov†and Irina Tsyganok‡

Abstract

In the paper, we study complete almost Ricci solitons using the concepts and methods of
geometric dynamics and geometric analysis. In particular, we characterize Einstein mani-
folds in the class of complete almost Ricci solitons. Then, we examine compact almost Ricci
solitons using the orthogonal expansion of the Ricci tensor, this allows us to substantiate
the concept of almost Ricci solitons.
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1 Introduction

One of the important components of the theory of Ricci flow are self-similar solutions called
Ricci solitons, see [7, pp. 153-176]. Ricci solitons, which are a generalization of Einstein man-
ifolds, have been studied more and more intensively in the last twenty years. This theory,
besides being known after G. Perelman’s proof of the Poincaré conjecture (for details see [12]),
has a wide range of applications in differential geometry and theoretical physics. In turn, the
study of almost Ricci solitons, which are a generalization of quasi-Einstein manifolds and Ricci
solitons, was started by Pigola, Rigoli, Rimoldi, and Setty, see [15]. An n-dimensional (n ≥ 2)
Riemannian manifold (M,g) is called an almost Ricci soliton, if there exist a smooth complete
vector field ξ and a function λ ∈ C∞(M) such that

Ric =
1

2
Lξ g + λ g. (1.1)

Here, Ric is the Ricci tensor and Lξ is the Lie derivative operator in the direction of ξ. Namely,
(Lξ g)(X,Y ) = g(∇Xξ, Y )+ g(∇Y ξ,X) for all smooth vector fields X,Y on M , where ∇ is the
covariant derivative (Levi-Civita connection). Denote by (M,g, ξ, λ) an almost Ricci soliton.
For λ = const, it is a Ricci soliton. Note that when ξ is a Killing vector field, i.e., Lξ g = 0, an
almost Ricci soliton (M,g, ξ, λ) is Einstein manifold, i.e., Ric = s

n g, from which we can apply
Schur’s lemma, e.g., [11], to obtain λ = const. In the special case, where ξ = ∇f for some
function f ∈ C∞(M), we say that (M,g, ξ, λ) is a gradient almost Ricci soliton with potential
function f .

In [15], almost Ricci complete gradient solitons are considered. Other more recent papers
have studied compact almost Ricci solitons (e.g., [3, 2, 8]) or almost Ricci solitons on manifolds
with additional geometric structures, e.g., [10, 14]. There are also attempts to find applications
of almost Ricci solitons in theoretical physics, see, e.g., [9].

In Sections 2-3, we study complete almost Ricci solitons using concepts and methods of
geometric dynamics and geometric analysis. In Section 4, we study compact almost Ricci
solitons applying the orthogonal expansion of symmetric two-tensors (see [5, p. 130]) to the
Ricci tensor. In particular, this will make it possible to substantiate the concept of almost
Ricci solitons.
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2 Complete almost Ricci solitons

Here, we study complete almost Ricci solitons from the point of view of geometric dynamics,
see [19, 1]. Denote by θ the g-dual one-form of ξ and ∆̄ = ∇∗∇ the Laplace operator for
the formal adjoint operator ∇∗ of ∇. First, we formulate a lemma needed to prove our main
results.

Lemma 2.1. The vector field ξ of an almost Ricci soliton (M,g, ξ, λ) satisfies the equation

∆̄ θ = Ric(ξ, ·)− (n− 2) dλ . (2.1)

Recall that a vector field ξ generates a flow on a manifold, which is a one-parameter group of
infinitesimal self-diffeomorphisms [11, pp. 12-14]. A vector field ξ is an infinitesimal harmonic

transformation on (M,g) if the local one-parameter group of infinitesimal self-diffeomorphisms
generated by ξ is a group of harmonic self-diffeomorphisms. A vector field ξ is an infinitesimal
harmonic transformation in (M,g) if and only if ∆̄ θ = Ric(ξ, ·), where θ is the g-dual one-form
of ξ, see [17]. In particular, the Killing vector field is an example of an infinitesimal harmonic
transformation on (M,g), see [16]. Moreover, a vector field ξ associated with a Ricci soliton
(M,g, ξ, λ) is also an infinitesimal harmonic transformation on (M,g) [17, 18]. Note that a local
one-parameter group of infinitesimal harmonic transformations, or a harmonic flow generated
by ξ, is directly related to De Turck harmonic flows [7, pp. 113–117].

The next corollary follows from Lemma 2.1.

Corollary 2.1. An n-dimensional (n ≥ 3) almost Ricci soliton (M,g, ξ, λ) is a Ricci soliton

if and only if its vector field ξ is an infinitesimal harmonic transformation. At the same

time, the vector field ξ associated with a two-dimensional almost Ricci soliton (M,g, ξ, λ) is an
infinitesimal harmonic transformation.

The function

e(ξ) :=
1

2
‖ξ‖2 = 1

2
g(ξ, ξ).

is said to be the energy density of the flow generated by the vector field ξ, see [19, pp. 273–274].
The kinetic energy of the flow of ξ is defined by the integral formula, see [1, pp. 2; 19; 37],

E(ξ) =

∫

M
e(ξ) d volg .

The kinetic energy can be infinite or finite (e.g., on a compact manifold). Note that the kinetic
energy plays an impotent role in Hamilton dynamics, see, e.g., [1].

Based on the above definition and Lemma 2.1, we formulate our main theorem.

Theorem 2.1. Let (M,g, ξ, λ) be an n-dimensional (n ≥ 3) complete almost Ricci soliton such

that the rate of change of λ along the trajectories of the ξ-flow is pointwise bounded from below

by Ric(ξ, ξ) :

Lξ λ ≥ Ric(ξ, ξ). (2.2)

If E(ξ) < ∞, then ξ is a parallel vector field and (M,g) is an Einstein manifold. Furthermore,

if the soliton has infinite volume, then ξ = 0.

According to the definition of the Lie derivative, e.g., [11, pp. 29-30], the Lie derivative of
a function f ∈ C1(M) with respect to vector field ξ in (2.2) is given by

Lξf = ξ(f) = df(ξ) = ∇ξf = g(∇f, ξ).

In particular, it follows from Theorem 2.1 that not every complete Riemannian manifold sup-
ports an almost Ricci soliton structure, see also [15, Corollary 1.5 and Example 2.4].
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Remark 2.1. If a Riemannian manifold (M,g) admits a complete parallel vector field, then
(M,g) is reducible, i.e., is locally the metric product of a real line and some other Riemannian
manifold. In Theorem 2.1, instead of condition “infinite volume” one can assume that (M,g)
is not reducible.

Theorem 2.1 can be supplemented as follows. Let (M,g, ξ, λ) be a two-dimensional complete
almost Ricci soliton satisfying Ric(ξ, ξ) ≤ 0 and E(ξ) < ∞, then (M,g, ξ, λ) is isometric
to Euclidean plane or one of the flat complete surfaces: cylinder, torus, Möbius band and
Klein bottle.

The following assertion follows from (1.1) and Theorem 2.1.

Corollary 2.2. Let (M,g, ξ, λ) be a complete almost Ricci soliton such that E(ξ) < ∞. If λ
is a non-decreasing function along trajectories of this flow and Lξ

√

e(ξ) ≤ −λ, then (M,g) is

an Einstein manifold. Furthermore, if the soliton has infinite volume, then ξ = 0.

Recall that the volume form of (M,g) is defined by equality ωg(∂1, . . . , ∂n) =
√
det g for

∂k = ∂/∂xk with respect to local coordinates x1, . . . , xn. Note also that a Riemannian manifold
(M,g) has a (global) volume element if and only if (M,g) is orientable, see [13, p. 195]. A volume
form on a connected manifold (M,g) has a single global invariant, namely the (overall) volume,
Vol(M,g) =

∫

M ωg d volg, which is invariant under volume-form preserving transformations.
The volume Vol(M,g) can be infinite or finite (e.g., Vol(M,g) < ∞ for a compact manifold M).

On the other hand, a complete non-compact Riemannian manifold with non-negative Ricci
curvature has infinite volume, see [4]. For the volume form ωg of (M,g), one can consider its
Lie derivative along trajectories of the flow of ξ. Namely, we have the following, see [12, p. 281]:
Lξ ωg = (div ξ)ωg. According to the definition of the Lie derivative, Lξ ωg measures the rate of
the change of the volume form ωg under deformations determined by a one-parameter group
of differentiable transformations (or a flow) generated by the vector field ξ.

In the well-known monograph [13, p. 195] the function div ξ was called the logarithmic rate

of change of volume (or, in other words, rate of volume expansion) under the flow generated
by the vector field ξ. On the other hand, the condition div ξ = 0 is equal to Lξ ωg = 0. This
means that the one-parameter group of differentiable transformations leaves ωg invariant or,
in other words, the vector field ξ is an infinitesimal automorphism of the volume form, see [19,
p. 6]. In dynamic, such a vector field ξ is said to be divergence-free and the flow generated
by it is said to be incompressible, see [13, p. 125]. The geometric dynamics of divergence-free
vector fields was studied in detail in the monograph [1].

The following proposition is true.

Lemma 2.2. Let (M,g, ξ, λ) be a complete oriented almost Ricci soliton such that the length

of ξ is integrable. If the logarithmic rate of volumetric expansion doesn’t change sign on M
under deformations determined by the flow of ξ, then (1.1) has the form

Ric =
1

2
Lξ g +

s

n
g ,

where components of the right hand side are orthogonal to each other with respect to the standard

pointwise scalar product. On the other hand, if (1.1) is of the form indicated above, then the

flow of ξ is incompressible.

Corollary 2.3. Let (M,g, ξ, λ) be a complete oriented almost Ricci soliton such that the length

of ξ is integrable. If the logarithmic rate of volumetric expansion doesn’t change sign on M
under deformations determined by the flow of ξ, then ξ satisfies the equation

∆̄ θ = Ric(ξ, ·) − n− 2

n
ds.
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3 Proof of results in Section 2

Proof of Lemma 2.1 and Corollary 2.1. The equation (1.1) has the following form with
respect to local coordinates x1, . . . , xn:

Rij =
1

2
Lξ gij + λ gij , (3.1)

where Rij , gij and ξi stand, respectively, for the components of the Ricci tensor Ric, the metric
tensor g, and the components ξi = gij ξ

j of ξ. Also θ = ξj is the one-form corresponding to ξ
under the duality defined by the metric g. According the formula Lξ gij = ∇i ξj +∇j ξi, where
∇i = ∇∂/∂xi , we obtain from (3.1) the equality

div ξ := ∇i ξ
i = s− nλ (3.2)

for the scalar curvature s of the metric g. Applying the operator ∇i = gij∇j to (3.1), we find

∇i∇i ξj +∇i∇j ξi = ∇j s− 2∇j λ . (3.3)

Using the contracted second Bianchi identity, see [11], and ∇i ξ
i of (3.2), we have

∇i∇j ξ
i = ∇j∇i ξ

i +Rij ξ
i = ∇j s− n∇j λ+Rij ξ

i.

Using this and noting that ∆̄ = −∇i∇i (the Laplace operator ∆̄ = ∇∗∇ and its expression in
coordinates coincide, see [5, Paragraph 1.55]), we rewrite (3.3) in the following form:

∆̄ ξj = Rij ξ
i − (n − 2)∇j λ . (3.4)

In coordinate-free form, (3.4) coincides with (2.1) that proves Lemma 2.1. By this and (2.1),
we complete the proof of Corollary 2.1. �

Proof of Theorem 2.1. In our case, the second Kato inequality, ‖ξ‖∆‖ξ‖ ≥ −g(∆̄ ξ, ξ),
see [4, p. 380],

‖ξ‖∆‖ξ‖ ≥ −g(∆̄ ξ, ξ),

using Lemma 2.1, can be rewritten in the following form:

‖ξ‖∆‖ξ‖ ≥ (n− 2)Lξλ−Ric(ξ, ξ),

where ∆ is the Laplace–Beltrami operator defined by the equality ∆ f = traceg∇ df for an
arbitrary function f ∈ C2(M). The assumption (2.2) for n ≥ 3 implies that ‖ξ‖∆‖ξ‖ ≥ 0.
Then by the classical theorem of geometric analysis (see [21]), either

∫

M ‖ξ‖p d volg = ∞ for a
positive number p > 1, or ‖ξ‖ = const. Thus, if ‖ξ‖ ∈ Lp(M,g) at least for one p > 1, then
‖ξ‖ = const. Note that the inequality E(f) < ∞ is equivalent to ‖ξ‖ ∈ L2(M,g). By the
above (for p = 2), and the condition E(f) < ∞, we get ‖ξ‖ = const. Using this and (3.4), we
derive

0 =
1

2
∆ g(ξ, ξ) = −g(∆̄ ξ, ξ) + ‖∇ ξ‖2 = −Ric(ξ, ξ) + (n− 2)Lξ λ+ ‖∇ ξ‖2. (3.5)

By (3.5), ξ is a parallel vector field, in particular, Lξ g = 0. From (1.1) we get Ric = λ g. Since
n ≥ 3, by Schur’s lemma, e.g., [11], we get λ = const. Thus, (M,g) is an Einstein manifold.
Next, if Vol(M,g) = ∞, then using E(f) < ∞ and ‖ξ‖ = const, we get ξ = 0. �

Proof of Corollary 2.2. From (3.1) we derive the following equation:

Rij ξ
iξj = ξi(∇i ξj) ξ

j + λ ‖ξ‖2, (3.6)

where ξi(∇i ξj)ξ
j = 1

2
ξi∇i(ξj ξ

j) = Lξ e(ξ). Thus, we can rewrite (3.6) in the form

Ric(ξ, ξ) = λ ‖ξ‖2 + Lξ e(ξ).
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Therefore, the condition Ric(ξ, ξ) ≤ 0 is equivalent to the inequality Lξ

√

e(ξ) ≤ −λ. From the
above, the validity of Corollary 2.2 follows. �

Proof of Lemma 2.2 and Corollary 2.3. Recall the following theorem, see [6]: Let ξ
be a smooth vector field on a complete oriented Riemannian manifold (M,g) such that ‖ξ‖ ∈
L1(M,g) and div ξ does not change sign on (M,g), then div ξ = 0 on (M,g). In particular, if
ξ is the vector field of a complete, noncompact and oriented almost Ricci soliton (M,g, ξ, λ),
then from (3.2) we obtain s = nλ. In this case, (1.1) can be rewritten in the form

Ric =
1

2
Lξ g +

s

n
g. (3.7)

Hence, g(1
2
Lξ g,

s
n g) = s

n div ξ = 0. Therefore, the terms of the right hand side of (3.7) are
orthogonal to each other with respect to the pointwise scalar product. In turn, (2.1) takes the
form ∆̄ θ = Ric(ξ, ·) + n−2

n ds. �

4 Compact almost Ricci solitons

Here, we study compact almost Ricci solitons using the orthogonal expansion of the Ricci tensor,
obtained using the Becce expansion of the space of symmetric two-tensors, see [6, p. 130].

Denote by SpM the space of symmetric covariant p-tensors on a compact Riemannian
manifold (M,g), and define the global scalar product for any ϕ,ϕ′ ∈ SpM by the formula

〈ϕ, ϕ′〉 =
∫

M
g(ϕ, ϕ′) d volg. (4.1)

Let δ∗ : C∞(S1M) → C∞(S2M) be the first-order differential operator defined by δ∗θ = 1

2
Lξ g

for any smooth one-form θ and its g-dual vector field ξ, see [5, p. 117; 514]. Let also δ :
C∞(S2M) → C∞(S1M) be the formal adjoint operator for δ∗, which is called the divergence
of symmetric two-tensors. In this case, 〈ϕ, δ∗θ〉 = 〈δϕ, θ〉 is true for any ϕ ∈ C∞(S2M) and θ ∈
C∞(S1M). For a compact Riemannian manifold (M,g), the algebraic sum Im δ∗ +C∞(M) · g
is closed in S2M , and the following decomposition is true:

S2M = (Im δ∗ + C∞(M) · g)⊕ (δ−1(0) ∩ trace−1

g (0)); (4.2)

furthermore, both factors in (4.2) are infinite-dimensional and orthogonal to each other with
respect to the global scalar product (4.1), see [5, p. 130].

Lemma 4.1. Let (M,g) be a compact n-dimensional Riemannian manifold and

Ric =
1

2
Lξ g + λ g + ϕ

the orthogonal expansion (with respect to the global scalar product) of the Ricci tensor for some

vector field ξ and divergence-free and trace-free symmetric two-form ϕ. Then

1. for n ≥ 3, the vector field ξ is an infinitesimal harmonic transformation if and only if

λ = const, and for n = 2, the vector field ξ is an infinitesimal harmonic transformation;

2. the assumptions n ≥ 3 and
∫

M (Lξ s) d volg ≥ 0 imply that ϕ = Ric − s
n g for the scalar

curvature s = const, and that ξ is a conformal Killing vector field.

Proof. For the Ricci tensor, decomposition (4.2) has the form

Ric =
(1

2
Lξ g + λ g

)

+ ϕ (4.3)

5



for some divergence-free and trace-free tensor ϕ ∈ C∞(S2M) and function λ ∈ C∞(M). From
(4.3) we get

−δθ := div ξ = s− nλ.

Applying the operator δ to (4.3), we find, see also (2.1),

∆̄ θ = Ric(ξ, ·)− (n− 2) dλ.

Therefore, for n ≥ 3, ξ is an infinitesimal harmonic transformation if and only if λ = const,
and for n = 2, the vector field ξ is an infinitesimal harmonic transformation. On the other
hand, using nλ = δ θ + s, we derive the following equalities:

0 = 〈ϕ, δ∗θ + λg〉 = 〈Ric− δ∗θ − λ g, δ∗θ + λ g〉
= 〈Ric, δ∗θ〉 − 〈δ∗θ, δ∗θ〉 − 〈λ g, δ∗θ〉+ 〈Ric, λ g〉 − 〈δ∗θ, λ g〉 − 〈λ g, λ g〉

= 〈δRic, θ〉 − 〈δ∗θ, δ∗θ〉 − 2〈λ g, δ∗θ〉+
∫

M
(λ s) d volg − n

∫

M
λ2 d volg

= −1

2
〈ds, θ〉 − 〈δ∗θ, δ∗θ〉+ 2〈dλ, θ〉+

∫

M
λ(s− nλ) d volg

= −1

2
〈ds, θ〉 − 〈δ∗θ, δ∗θ〉+ 2〈dλ, θ〉 −

∫

M
(λ δ θ) d volg

= −1

2
〈ds, θ〉 − 〈δ∗θ, δ∗θ〉+ 〈dλ, θ〉. (4.4)

Hence,
n 〈dλ, θ〉 = 〈d(δ θ + s), θ〉 = 〈dδθ, θ〉+ 〈ds, θ〉 = 〈δθ, δθ〉 + 〈ds, θ〉. (4.5)

Therefore, from (4.4) and (4.5) we derive

n− 2

2n

∫

M
(Lξ s) d volg = −〈δ∗θ, δ∗θ〉+ 1

n
〈δθ, δθ〉 ≤ 0,

because ‖ϕ‖2 ≥ 1

n (traceg ϕ)
2 for any covariant two-tensor ϕ.

The assumptions n ≥ 3 and
∫

M (Lξ s) d volg ≥ 0, or, in particular, Lξ s ≥ 0, imply

〈δ∗θ, δ∗θ〉 − 1

n
〈δθ, δθ〉 = 0. (4.6)

On the other hand, the following equality is valid:

∥

∥

1

2
Lξ g −

1

n
(div ξ) g

∥

∥

2
= g(δ∗θ, δ∗θ)− 1

n
(δ θ)2. (4.7)

From (4.6) and (4.7) we find that

1

2
Lξ g =

1

n
(div ξ) g,

i.e., ξ is a conformal Killing vector field. In this case, from (4.3) we deduce that

ϕ = Ric− s

n
g,

to which we can apply Schur’s lemma and then conclude that s = const. �

A statement similar to the following corollary was proved in [17] for Ricci solitons.

Corollary 4.1. Let (M,g, ξ, λ) be an n-dimensional (n ≥ 3) compact almost Ricci soliton such

that
∫

M
(Lξ s) d volg ≥ 0

for its scalar curvature s. Then (M,g) is isometric to a Euclidean n-sphere.

6



Proof. For ϕ = 0, equations (4.3) have the form of almost Ricci soliton equations (1.1). Thus,
if (M,g, ξ, λ) is a compact almost Ricci soliton such that

∫

M
(Lξ s) d volg ≥ 0,

or, in particular, Lξ s ≥ 0, then it is an Einstein manifold, and ξ is a conformal Killing vector
field. By [20, Corollary 4.5], the soliton is a Euclidean sphere. �

Remark 4.1. The concept of almost Ricci soliton was introduced in [15] as a Riemannian
manifold (M,g) satisfying the equation

Ric +
1

2
LV g = λ g,

where λ ∈ C∞(M) and V is a smooth vector field on M . The above equation and (1.1) are
equivalent. Namely, if we suppose that ξ = −V , then we derive (1.1) from the above equation.
Thus, the inequalities Lξ s ≥ 0 and

∫

M (Lξ s) d volg ≥ 0 (with the scalar curvature s of the
metric g) can be rewritten in the form LV s ≤ 0 and

∫

M (LV s) d volg ≤ 0, respectively, see
also [3], where inequalities are replaced by equalities. For example, if s = const along the
trajectories of the flow of ξ on a compact almost Ricci soliton (M,g, ξ, λ) with a nonconstant
function λ, then (M,g) is isometric to a Euclidean n-sphere, see [3].
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