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1 Introduction

Gluon transverse momentum dependent(TMD) distribution functions take important in-

formation about the hadron structure. In high energy region, gluon as a parton usually

plays more important role than quark, since the momentum fraction of parton is always

very small. Thus, precise knowledge of gluon distribution functions is desired to make

precise prediction of the cross section. Since gluon is spin-1, it can have different polariza-

tions in a hadron. When the transverse momentum of the gluon in a hadron is integrated

over, there is only one gluon distribution function possible for unpolarized hadron, which

is the usual collinear gluon parton distribution function(PDF). In such integrated PDF

the gluon is unpolarized. But when the transverse momentum of gluon is unintegrated,

the transverse momentum of gluon can couple with the spin of gluon to give a description

of polarized distribution of gluon in a hadron [1]. For unpolarized hadron, there exists

two such transverse momentum dependent gluon distribution functions: one is denoted

as G(x, p2
⊥), which reflects the distribution of unpolarized gluon in a hadron, with lon-

gitudinal momentum fraction x and transverse momentum p⊥, the other is H⊥(x, p2
⊥),

which reflects the distribution of linearly polarized gluon in the hadron. So far, the second

gluon distribution function, i.e., H⊥(x, p2
⊥) has already aroused much interest in current

researches, such as the effect of H⊥ on higgs boson production at LHC [2–6]. One can see

e.g., [7, 8] for a review on linearly polarized gluon distribution function. Various schemes

are proposed to extract this function in literature. For hadron reaction, pair photon pro-

duction [9], photon-quarkonium [10] or quarkonium-quarkonium [11] associated production

– 1 –



J
H
E
P
1
1
(
2
0
1
7
)
0
6
9

are proposed to extract this function from a cos(2φ) azimuthal angle distribution in these

reactions. For hadron reaction, the problem is the potential breaking of TMD factorization

as pointed out in [12, 13]. All these proposed schemes require the detected final states are

colorless(for quarkonium the heavy quark pair from hard interaction is in a color singlet).

Contrast to hadron reaction, semi-inclusive deep inelastic scattering(SIDIS) for heavy quark

pair or di-jet production is expect to have an exact TMD factorization, and can be used

to extract some definite information about gluon TMD distribution functions. [14] have

examined the effect of H⊥ in heavy quark pair and di-jet production. For heavy quark pair

production, the study in [14] is at tree level or leading order of αs with a simplified TMD

formula. At this order the TMD formula just contains gluon TMD distribution functions

as nonperturbative quantities. To higher order of αs, the soft radiation from final heavy

quark pair will introduce an azimuthal angle dependent soft factor into TMD formula and

affect the azimuthal angle distribution of virtual photon,i.e., φq, which is used to extract

H⊥ in [14]. Because of the azimuthal angle dependent soft factor, a complete description

of φq distribution in the cross section is impossible. Instead we construct three azimuthal

angle weighted cross sections, which depend on only three integrated soft factors. These

weighted cross sections may help to extract H⊥. In [15], the TMD factorization for this

process is examined at one-loop level, with H⊥ not taken into account. It is found all

collinear and soft divergences can be absorbed into gluon distribution function and a soft

factor with azimuthal angle integrated. But part of the finite correction of hard coefficients

is absent in [15], and the study is confined to G(x, p2
⊥). In this paper, we want to study

the azimuthal angle effect introduced by the soft factor mentioned above. We will examine

the factorization formula for both G(x, p⊥) and H⊥(x, p⊥) based on diagram expansion

method presented in [16]. This method is different from the method in [15], which uses a

single gluon to replace initial hadron. The method based on diagram expansion enables us

to obtain the finite hard coefficients for various parton distributions in a systematic way.

In addition, we keep lepton azimuthal angle unintegrated in this work, which can provide

more observables. The structure of this paper is as follows: in sectionII we illustrate kine-

matics for heavy quark pair production in SIDIS; in sectionIII, tree level factorization and

resulting angular distributions are discussed, including lepton azimuthal angle distribu-

tions; in sectionIV, the factorization formula is examined at one-loop level and the hard

coefficients are calculated. In this section, the soft factors are also constructed and virtual

one-loop corrections to soft factors and distribution functions are calculated; in sectionV,

the effect of soft factor is discussed and three weighted cross sections are constructed to

extract H⊥; sectionVI is our summary.

2 Kinematics

We consider the scattering of electron and hadron

e(l) + hA(PA)→ e
(
l′
)

+Q(k1) + Q̄(k2) +X, (2.1)

where X represents undetected hadrons [17]. At order of α2
em, this process is dominated

by the exchange of a virtual photon between electron and hadron. The momentum of the
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virtual photon is qµ = lµ − l′µ. In perturbative region, Q2 = −q2 � Λ2
QCD. Q, Q̄ with

momenta k1, k2 are heavy quark and anti-quark produced in the hard collision. In the

center of mass(c.m.) frame of virtual photon γ∗ and initial hadron hA, we demand Q and

Q̄ are nearly back-to-back.

For convenience we define

Kµ = kµ1 + kµ2 , R
µ =

1

2
(kµ1 − kµ2 ) . (2.2)

Our requirement for the final quarks then becomes

RµT ∼ Q, K
µ
T � Q, (2.3)

where RT and KT are the transverse components of R and K, respectively. In the c.m.

frame of γ∗ and hA, the transverse vector is relative to Z-axis. Here ~PA is along +Z-axis,

and ~q is along −Z-axis.

By considering only the contribution of virtual photon, the cross section we want to

study can be written as

dσ =
1

2s

e4Q2
q

Q4
(2π)4 d3l′

(2π)32l′0
d3k1

(2π)32E1

d3k2

(2π)32E2
LµνWµν , (2.4)

where the leptonic and hadronic tensors are

Lµν = 2
(
lµl′

ν
+ lν l′

µ − gµν l · l′
) .

= 4lµlν + q2gµν ;

Wµν =
∑
X

〈PAs|jν |QQ̄X〉〈QQ̄X|jµ(0)|PAs〉δ4 (PA + q − k1 − k2 − PX) . (2.5)

In leptonic tensor we have used QED gauge invariance qµWµν = 0 to eliminate all qµ and

qν in leptonic tensor. This will simplify our calculation.

Define

xB =
Q2

2PA · q
, y =

PA · q
PA · l

, z1 =
PA · k1

PA · q
, z2 =

PA · k2

PA · q
, s = (PA + l)2. (2.6)

The phase space integration measure can be written as

d3l′

2l′0
=
ys

4
dxBdydψl,

d3k1

2E1

d3k2

2E2
=

1

4
dy1dy2d

2KTd
2RT , (2.7)

where ψl is the azimuthal angle between l′T and RT ; y1,2 are the rapidities of final quark

and anti-quark, respectively.

Then, the differential cross section becomes

dσ

dxBdydψldy1dy2d2KTd2RT
=
yα2

emQ
2
q

64π3Q4
LµνWµν , (2.8)

where Qq is the electric charge of heavy quark in unit of the charge of electron. All

information about the cross section now is contained in the hadronic tensor Wµν . In next

sections we will focus on the factorization of hadronic tensor.
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γ∗N frame(c.m. frame of γ∗ and hA) is useful to describe the cross section, but it is not

very convenient for the calculation, especially for the factorization of Wµν , as we discussed

later. More convenient frame is the hadron frame defined as the c.m. frame of final heavy

quark and antiquark. In this frame, ~PA is still along +Z-axis, but virtual photon now

has a small transverse momentum q⊥. We use light-cone coordinate representation in this

paper. In this representation any vector aµ is written as (a+, a−, aµ⊥), where the transverse

components are relative to Z-axis and denoted by a⊥; ±-components are defined by two

light-like vectors nµ and n̄µ with n · n̄ = 1, i.e., a+ = n · a, a− = n̄ · a. The decomposition

of relevant momenta is like

PµA = P+
A n̄

µ, Kµ = K+n̄µ +K−nµ, qµ = q+n̄µ + q−nµ + qµ⊥. (2.9)

The following two tensors are useful to project transverse components of a vector:

gµν⊥ = gµν − nµn̄ν − nν n̄µ, εµν⊥ = εµν−+ = εµνρτ n̄ρnτ , (2.10)

and our convention for ε-tensor is ε0123 = 1 so that ε12
⊥ = 1. For any four-vector aµ its

transverse component is aµ⊥ = gµν⊥ aν .

Given these two frames, q⊥ in hadron frame and KT in γ∗N frame can be connected

to each other. In γ∗N frame,

Kµ
T = Kµ − αPµA − βqµ. (2.11)

Hence, the transverse component of KT in the hadron frame is

(KT )µ⊥ = −βqµ⊥ = −(z1 + z2)qµ⊥. (2.12)

On the other hand,

(KT )µ⊥ = gµν⊥ KTν = Kµ
T − P

µ
A

K2
T

PA ·K
. (2.13)

Combining these two equations we have

Kµ
T = −(z1 + z2)qµ⊥ + PµA

K2
T

PA ·K
. (2.14)

This is an exact result. In the region we are considering, KT is a small quantity, then the

second term with K2
T can be ignored at leading power level.

In this work all calculations will be performed in hadron frame. To define azimuthal

angles on the transverse plane we assign ~k1⊥ along +X-axis, and Y -axis is defined by

ε⊥-tensor, that is,

Xµ =
kµ1⊥

|~k1⊥|
, Y µ = εµν⊥ Xν . (2.15)

Then the azimuthal angles of virtual photon and initial lepton, φq and φl, are defined as

the angles of q⊥ and l⊥ relative to X-axis, respectively, as shown in figure 1. At leading

power of q⊥ expansion, φl is equal to ψl, which is defined in γ∗N frame. With these two
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φq

φl

X(�k1)
O

�q⊥

�l⊥

Figure 1. Azimuthal angles of virtual photon and initial lepton in the transverse plane of

hadron frame.

vectors Xµ and Y µ the transverse metric and anti-symmetric tensor can be written into

another form

gµν⊥ = −XµXν − Y µY ν , εµν⊥ = XµY ν −XνY µ. (2.16)

Since n, n̄,X, Y form a complete basis in four-dimension space, the leptonic tensor can be

expressed through these four vectors. Equivalently, one can choose PA,K,X, Y as basis.

The advantage of this basis is the calculation can be done in a covariant way.
The complete basis for symmetric rank-2 tensor is

Aµνi = {ñµñν , ñµXν + ñνXµ, ñµY ν + ñνY µ, XµXν + Y µY ν , XµXν − Y µY ν , XµY ν +XνY µ} ,
i = 1, · · · , 6.

(2.17)

With this basis leptonic tensor in hadron frame is expressed as

Lµν = Q2 4(1− y)

y2
ñµñν +Q2 1 + (1− y)2

y2
(XµXν + Y µY ν)

+ 2Q2

√
1−y(y−2)

y2
cosφl(ñ

µXν+ñνXµ) + 2Q2

√
1−y(y−2)

y2
sinφl(ñ

µY ν+ñνY µ)

+ 2Q2 1− y
y2

cos(2φl)(X
µXν − Y µY ν) + 2Q2 1− y

y2
sin(2φl)(X

µY ν +XνY µ),

(2.18)

where

ñµ =
1√

2αkPA ·K + α2
kK

2
(PA + αkK)µ, αk = −PA · q

K · q . (2.19)

In the decomposition we have considered the constraint of QED gauge invariance, that is,

PµA and Kµ must be combined into ñµ to ensure qµA
µν
i = 0. Since q ·X ∼ q · Y ∼ O(q⊥),

QED gauge invariance is preserved at leading power of q⊥. One can check that ñµ can

have another representation like

ñµ =
1

Q
(q + 2xBPA)µ +O(q⊥). (2.20)

This representation simplifies our calculation dramatically. Since hadronic tensor does not

depend on φl, this decomposition exhibits all possible lepton azimuthal angle distributions

for unpolarized lepton beam.
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Figure 2. TMD factorization for heavy quark pair production in DIS. The two central bubbles

represent hard subprocess, while lower bubble represents jet part of initial hadron.

3 Tree level azimuthal angle dependence

In hadron frame when q⊥ is small, Wµν can have a TMD factorization formula at the

leading power of q⊥ expansion. At tree level the formula reads

Wµν =
xB

xQ2Mp(N2
c − 1)

δ(1− z1 − z2)Hµν
αβ

∫
d2p⊥δ

2(p⊥ + q⊥)Φαβ(x, p⊥) +O
(
q⊥
Q
,
q⊥
k1⊥

)
,

(3.1)

where the gluon TMDPDF is [1]

Φαβ(x, p⊥) =

(
p+

2Mp

)−1 ∫
dξ−d2ξ⊥

(2π)3
eixξ

−P+
A +iξ⊥·p⊥〈PA|G+β

a⊥(0)G+α
a⊥ (0+, ξ−, ξ⊥)|PA〉

=− gαβ⊥ G
(
x, p2
⊥
)

+
2pα⊥p

β
⊥ − g

αβ
⊥ p2

⊥
2M2

p

H⊥
(
x, p2
⊥
)
, (3.2)

We work in Feynman gauge ∂µGµ = 0 in this work. The gauge links in Φαβ are suppressed

for simplicity. There is a color summation in the definition of gluon TMDPDF. Therefore,

there is a color average in the hard part. In formula eq. (3.1), the average factor 1/(N2
c −1)

has been extracted, so, the hard part Hµν
αβ in eq. (3.1) contains a summation over color.

The derivation of this factorization formula for hadronic tensor has been given in [18]

in detail. Under high energy limit or Q2 → ∞, the general structure of the interaction

factorizes into the form shown in figure 2, where the two central bubbles represent hard

interaction, in which all propagators are far off-shell, and the lower bubble represents

the jet part of initial hadron, in which all propagators are collinear to PA. All possible

soft interactions are ignored in figure 2. These soft interactions do not appear at the

leading order of αs. We will discuss them in one-loop correction. For this process, the

hard scales are Q and k1⊥, which are taken to be the same order in this paper. Under

the limit q⊥ � Q, k1⊥, the above factorization formula is obtained from the expansion

in λ ' q⊥/Q, q⊥/k1⊥. Leading power contribution of this process is given by collinear

partons, that is, the momentum of initial gluon satisfies pµ = (p+, p−, p⊥) ∼ Q(1, λ2, λ).

According to this scaling law p⊥, q⊥ are of the same order, and then the delta function

δ2(p⊥ + q⊥) itself is already of leading power. Therefore, both p⊥ and q⊥ can be ignored

in Hµν
αβ . This means Hµν

αβ are on-shell amplitudes. This fact ensures QED gauge invariance

of hadronic tensor.
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For factorization in Feynman gauge gluon distributions may have a problem concerning

super-leading power contribution, which appears when the gluon in figure 2 is longitudi-

nally polarized, i.e., G+. Such a gluon will give a 1/Λ enhancement compared to the

leading power contribution we stated above. Note that the delta function in the hard

part, δ2(p⊥+ q⊥), should not be expanded, then super-leading power contribution is given

by the longitudinal gluon with p⊥ = 0. For the one-gluon case considered here, such a

contribution from longitudinally gluon vanishes due to Ward identity. But in Feynman

gauge, there can be any number of longitudinal gluons connecting the central bubble and

lower bubble, whose contribution is not power suppressed. For the case with two gluons

connecting the central bubble and lower bubble as shown in figure 3(a), [19] has given an

explicit calculation to show the super-leading power contribution is absent even when the

transverse momentum of the parton is preserved. In addition, at leading power one of the

two gluons becomes gluon field strength tensor, the other is absorbed into gauge link as

shown in figure 3(b). With this conclusion we will simply take the gluon in figure 2 as trans-

versely polarized even at one-loop level, and will consider only the one-gluon case in our

calculation. This causes no problem about the hard coefficients at least at one-loop level.

Because p⊥ is set to zero, there is only one independent transverse momentum k1⊥ in

Hµν
αβ . Then previous vector basis for Lµν can also be applied to Hµν

αβ . That is,

Hµν
αβ =

∑
i,j

HijA
µν
i Bj

αβ , (3.3)

with Aµνi given by eq. (2.17) and

Bαβ
j =

{
XαXβ + Y αY β , XαXβ − Y αY β , XαY β +XβY α

}
, j = 1, 2, 3. (3.4)

Due to P-parity conservation the number of Y vector in AiBj must be even. So, there are

only following 10 rather than 18 nontrivial projected hard coefficients:

Hij = {H11, H12, H21, H22, H33, H41, H42, H51, H52, H63}. (3.5)

With these projected hard coefficients, the angular distributions on φq and φl can be
obtained as

dσ

dψldydxBdy1dy2d2KT d2RT

[
Q2
qα

2
emxByδ(1− z1 − z2)

16π3Q4xMp(N2
c − 1)

]−1
=

2(1− y)

y2
(
H11〈w1G〉 − cos(2φq)H12〈w2H

⊥〉
)

+
1 + (1− y)2

y2
(
H41〈w1G〉 − cos(2φq)H42〈w2H

⊥〉
)

− 2
√

1− y(y − 2)

y2
cosφl

(
H21〈w1G〉 − cos(2φq)H22〈w2H

⊥〉
)

+
2
√

1− y(y − 2)

y2
sinφl sin(2φq)H33〈w2H

⊥〉

+
2(1− y)

y2
cos 2φl

(
H51〈w1G〉 − cos(2φq)H52〈w2H

⊥〉
)
− 2(1− y)

y2
sin 2φl sin(2φq)H63〈w2H

⊥〉.
(3.6)
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(a)

p1

p2

(b)

Figure 3. Scattering with two collinear gluons in initial state. The two initial gluons cannot couple

into one gluon through tri-gluon vertex.

(a)

p, α p, β

k1

k2

(b) (c) (d)

Figure 4. Tree diagrams for the subprocess γ∗g → QQ̄.

where

〈w(p⊥, q⊥)f
(
x, p2
⊥
)
〉 ≡

∫
d2p⊥δ

2(p⊥ + q⊥)w(p⊥, q⊥)f
(
x, p2
⊥
)
, (3.7)

and

w1(p⊥, q⊥) = 1, w2(p⊥, q⊥) =
2(p⊥ · q⊥)2 − p2

⊥q
2
⊥

2M2
p q

2
⊥

. (3.8)

The tree level hard coefficients can be obtained by replacing the central bubbles in

figure 2 with the diagrams in figure 4. For the subprocess γ∗ + g → QQ̄, there are three

independent variables:

s1 = 2k1 · k2, t1 = −2p · k1, u1 = −2p · k2, (3.9)

where pµ = xPµA is the momentum of initial gluon. Another independent parameter we

choose in our calculation is quark mass m. For convenience we define

H̃ij =
1

g2
sNcCF

Hij . (3.10)
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After some simplifications the results are

H̃11 =H̃12 =
16
(
2m2 + s1 + t1 + u1

) (
m2
(
t21 + u21

)
− s1t1u1

)
t1u1 (t1 + u1) 2

=
16Q2|R⊥|2

t1u1
,

H̃21 =H̃22 = Q|R⊥|
4 (t1 − u1)

(
t1u1 (2s1 + t1 + u1)− 2m2

(
t21 + u21

))
t21u

2
1 (t1 + u1)

,

H̃33 =Q|R⊥|
4(t1 − u1)

t1u1
,

H̃41 =
2

t21u
2
1 (t1 + u1) 2

(
−8m4

(
t31u1 + 2t21u

2
1 + t1u

3
1 + t41 + u41

)
− 2m2

(
s1
(
−4t31u1 − 2t21u

2
1 − 4t1u

3
1 + t41 + u41

)
+ (t1 + u1)

(
t21 + u21

)
2
)

+t1u1
(
t21 + u21

) (
2s1 (t1 + u1) + 2s21 + (t1 + u1) 2

))
,

H̃42 =− 4
(
m2
(
t21 + u21

)
− s1t1u1

) (
4m2

(
t1u1 + t21 + u21

)
+
(
t21 + u21

)
(s1 + t1 + u1)

)
t21u

2
1 (t1 + u1) 2

,

H̃51 =
8
(
t1u1 (s1 + t1 + u1)−m2

(
t21 + u21

)) (
m2
(
t21 + u21

)
− s1t1u1

)
t21u

2
1 (t1 + u1) 2

,

H̃52 =− 4
(
2m4

(
t21+u21

)
2 − 2m2t1u1

(
t21+u21

)
(2s1+t1+u1)+ t21u

2
1

(
2s1(t1+u1)+ 2s21 +(t1+u1)2

))
t21u

2
1(t1 + u1) 2

,

H̃63 =
4
(
2m2

(
t21 + u21

)
− t1u1 (2s1 + t1 + u1)

)
t1u1 (t1 + u1)

, (3.11)

where

Q2 = −q2 = −
(
2m2 + s1 + t1 + u1

)
, R2
⊥ = −|R⊥|2 = k2

1⊥ =
m2
(
t21 + u2

1

)
− s1t1u1

(t1 + u1)2
.

(3.12)

From C-parity conservation H21,22,33 are anti-symmetric, while other ones are symmetric in

t1 and u1. Our result satisfies this symmetry. The momentum fraction x can be obtained

from s1 + t1 +u1 = −2m2−Q2, t1 = −2p ·k1 = −2xPA ·k1 and u1 = −2p ·k2 = −2xPA ·k2.

The explicit value is

x = xB
s1 + 2m2 +Q2

Q2(z1 + z2)
= xB

s1 + 2m2 +Q2

Q2
, (3.13)

in which all variables can be measured in experiment and in the last equality we have used

z1 + z2 = 1.

4 One-loop correction

For TMD factorization here, the relative transverse momentum of final heavy quark and
antiquark is fixed. The soft divergence from virtual correction cannot be cancelled by real
correction, since the phase space integration is incomplete for real correction. Usually, a
soft factor is introduced to absorb such soft divergences. The operator form of the soft
factor can be obtained by using eikonal approximation for soft gluons emitted by final
heavy quark pair and by initial gluon, see [20] for example. The procedure is standard and
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the heavy quark soft factor is

SQ(b⊥) =
1

Tr(T cT c)
×

× 〈0|Û †ṽ (b⊥,−∞)aeTr[Uv2(∞, b⊥)T eU†v1(∞, b⊥)Uv1(∞, 0)T dU†v2(∞, 0)]edÛṽ(0,−∞)da|0〉.
(4.1)

The definition of gauge link is

Uv(∞, b⊥) = P exp

[
−igs

∫ ∞
0

dλv ·G(b⊥ + λv)

]
,

Ûv(b⊥,−∞) = P exp

[
−igs

∫ 0

−∞
dλv · Ĝ(b⊥ + λv)

]
, (4.2)

with v an arbitrary vector and P the path-ordering product so that fields with smaller

λ are always put on right hand side of the fields with larger λ. Uv and Ûv are defined

in fundamental and adjoint representations of color group, respectively. Correspondingly,

Gµ = GµaT a and Ĝµ = Gµa T̂ a are gluon fields in fundamental and adjoint representations.

Note that T̂ cba = −if cba and Tr(T aT b) = δab/2 in this work. With such definitions of the

gauge link our covariant derivative is Dµ = ∂µ + igsG
µ
aT a. The Tr[· · · ] in eq. (4.1) acts

on matrices in fundamental representation. Then, one can check the definition eq. (4.1) is

color gauge invariant. At order of α0
s, S

Q(b⊥) is normalized to 1. The definition in eq. (4.1)

is given in coordinate space. To get the definition in momentum space one should do a

Fourier transformation, i.e.,

SQ(l⊥) =

∫
d2b⊥
(2π)2

eib⊥·l⊥SQ(b⊥). (4.3)

At order of α0
s, S

Q(l⊥) = δ2(l⊥).

The sources of the gauge links in SQ are clear: Uv1 and Uv2 are obtained from the

coupling of soft gluon to on-shell heavy quark or anti-quark by using eikonal approximation.

Here v1,2 = k1,2/m are the four-velocities of heavy quark and anti-quark, respectively; Ûṽ
is extracted from the coupling of soft gluon to initial hadron or gluon. Here ṽ is collinear

to the momentum of initial hadron. If ṽ2 = 0, SQ has a light-cone divergence, and thus

is not well-defined. As a regulator ṽ is modified to be a little away from the light-cone

direction but still with ṽ⊥ vanishing, i.e., ṽ+ � ṽ− and ṽ⊥ = 0.

Without the soft factor the tree level TMD formula eq. (3.1) cannot be right. The

correct one should be

Wµν =
xBδ(1−z1−z2)

xQ2Mp(N2
c −1)

∫
d2p⊥d

2l1⊥d
2l2⊥δ

2(p⊥+q⊥−l1⊥−l2⊥)Hµν
αβΦαβ(x, p⊥)SQ(l1⊥)S̄(l2⊥),

(4.4)

where Hµν
αβ is the hard part. S̄(l⊥) appears in order to avoid the double counting of soft

divergences, since the soft divergence in the correction to gluon TMDPDF Φαβ is also

contained in the correction to SQ. Except that now the gauge link is defined in adjoint

representation, S̄(l⊥) is the same as that defined in SIDIS [21], i.e.,

S̄(l⊥) =

∫
d2b⊥
(2π)2

eib⊥·l⊥
N2
c − 1

〈0|Û †ṽ (b⊥,−∞)aeÛ
†
v (∞, b⊥)edÛv(∞, 0)dcÛṽ(0,−∞)ca|0〉

. (4.5)
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In this soft factor the vector ṽ has appeared in SQ. Another vector appearing in the gauge

links is vµ = (v+, v−, 0⊥) with v− � v+. As stated before, the little offshellness of v and

ṽ is used to regularize light-cone singularity. Other regulartors for light-cone singularity

have been given by [22, 23]. The calculation procedure with these regulators is the same,

so, we will not calculate the hard coefficients once more using the regulators in [22, 23].

The calculation of one-loop hard coefficients can be performed in the same way as [16].

One-loop hard coefficient H
(1)
finite is given by∫

⊥
H

(1)
finiteΦαβ(x, p⊥)SQ(l1⊥)S̄(l2⊥) =

∫
⊥
H(1)Φαβ(x, p⊥)SQ(l1⊥)S̄(l2⊥)

−
∫
⊥
H(0)

[
Φ

(1)
αβ(x, p⊥)SQ(l1⊥)S̄(l2⊥)

+ Φαβ(x, p⊥)S
(1)
Q (l1⊥)S̄(l2⊥)

+Φαβ(x, p⊥)SQ(l1⊥)S̄(1)(l2⊥)
]
,∫

⊥
=

∫
d2p⊥d

2l1⊥d
2l2⊥δ

2(p⊥ + q⊥ − l1⊥ − l2⊥), (4.6)

where H(1),Φ(1), S
(1)
Q , S̄(1) represents the one-loop corrections to hard scattering part, gluon

TMDPDF, and the two soft factors, respectively. One-loop integral in H(1) includes parton-

like contribution [19], for which the loop integral is collinear to p or PA. This parton-like

part has been included in tree level result and should be subtracted to avoid calculating tree

level diagrams by twice. For details of subtraction one can consult [16, 19, 24]. At leading

power one can show that all real corrections to hadronic tensor can be subtracted by the

correction to gluon distribution and soft factors. If the final gluon is collinear to PA, [19]

has shown that its coupling to heavy quarks can be absorbed into gauge link in gluon

distributions. If the final gluon is soft, one can use eikonal approximation to transform the

coupling of soft gluon to collinear gluon or to heavy quarks into gauge links in heavy quark

soft factor SQ. The overlap between Φαβ and SQ in soft region is subtracted by another

soft factor S̄.

Hence, only virtual corrections contribute to one-loop hard coefficients. For virtual

correction, the delta function δ2(p⊥ + q⊥ − l1⊥ − l2⊥) has been of leading power. So,

p⊥, q⊥ can be ignored in one-loop hard part H(1), and then H(1) is the product of on-shell

amplitudes for subprocess γ∗ + p → QQ̄. It is in this way the QED gauge invariance is

preserved. If the TMD factorization formula is correct the subtracted hard coefficients

H
(1)
finite must be free of any infrared(IR) divergence. It should be noted that in formula

eq. (4.4) all gluon TMDPDF, SQ and S̄ are renormalized quantities, i.e., the UV divergences

in these functions are removed by MS scheme. Thus these nonperturbative quantities all

contain a renormalization scale µ. In this work, both UV and IR divergences are regularized

in dimensional scheme with D = 4 − ε. Specially, in our scheme only loop momentum is

generalized to D-dimension space, all other momenta are defined in four-dimension space.

This is the four-dimensional-helicity(FDH) scheme(see [25] and references therein). This

scheme is convenient for the tensor decomposition of hard part as done in eq. (3.3). Next

we will first calculate the virtual correction to gluon TMDPDF and to the two soft factors

– 11 –
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(a)

k

(b)

Figure 5. Diagrams contributing to virtual correction of gluon TMDPDF, where the cross on left

hand side of the cut is the special vertex for gluon field strength tensor. The external gluon takes

momentum kµ, and it is going into the vertex.

and then present the structure of one-loop virtual correction to hadronic tensor. In the

last subsection we present the explicit result of hard coefficients after subtraction.

4.1 Virtual correction to nonperturbative quantities

The complete gluon TMDPDF with gauge links is

Φαβ(x, p⊥) =

(
p+

2Mp

)−1 ∫
dξ−d2ξ⊥

(2π)3
×

× e−ixξ−P+
A−iξ⊥·p⊥〈PA|G+β

b⊥ (ξ)Û †v (∞, ξ)bcÛv(∞, 0)caG
+α
a⊥ (0)|PA〉ξ+=0. (4.7)

The virtual correction to this function is still obtained by power expansion. The diagrams

contributing to virtual correction are given in figure 5. Here we take figure 5(a) as an exam-

ple to illustrate our calculation scheme. According to collinear approximation, the leading

power contribution of figure 5(a) is from the region where the momentum of the parton

going through the hooked line is collinear to PA, i.e., kµ = (k+, k−, k⊥) ∼ Q(1, λ2, λ).

Therefore,

Φ
(1)
αβ(x, p⊥) =

∫
d4kδ2(k⊥ − p⊥)δ(k+ − p+)Mρτ,cd

αβ (k+, k−, k⊥)∫
d4ξ

(2π)4
e−ik·ξ〈PA|Gτ⊥d(ξ+, ξ−, ξ⊥)Gρ⊥c(0)|PA〉

'
∫
d2k⊥δ

2(k⊥ − p⊥)Mρτ,cd
αβ (p+, 0, k⊥)∫

dξ−d2ξ⊥
(2π)3

e−ip
+ξ−−ik⊥·ξ⊥〈PA|Gτ⊥d(0, ξ−, ξ⊥)Gρ⊥c(0)|PA〉, (4.8)

where

Mρτ,cd
αβ (k+, k−, k⊥) = −ig2

s

(
p+

2Mp

)−1

CAδcd

∫
dnl

(2π)n

[
k+gαµ⊥ −nµ(k+l)α⊥

]
vνΓρνµ(k, l,−k−l)

(v · l + iε)(l2 + iε)[(k + l)2 + iε]
,

Γρνµ(k, l,−k − l) = gρν(k − l)µ + gνµ(2l + k)ρ + gµρ(−2k − l)ν . (4.9)

Now in M(k) the loop integral is divergent when k⊥ goes to zero if n = 4. But since the

divergence is logarithms-like, it can be regularized in dimensional scheme. Then, M(k) is
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k, α, a

q, μ, b

l

−iδab(n · kgαµ⊥ − nµqα⊥)

Figure 6. The special vertex for the coupling of gluon field strength tensor and gauge link, where

q = k + l.

well-defined at k⊥ = 0, and it can be expanded as

M(p+, 0, k⊥) = M(p+, 0, 0) + kρ⊥
∂

∂kρ⊥
M(p+, 0, 0) + · · · . (4.10)

Note that the hard scale in M(p+, 0, k⊥) is ζ2 = (2v · p)2/v2, so, high twist contribution is

suppressed by k⊥/ζ. Since the delta function δ2(k⊥ − p⊥) is already of leading power or

leading twist, only the first term in the expansion should be preserved. Thus,

Φ
(1)
αβ(x, p⊥) 'M(p+, 0, 0)ρτ,abαβ∫

d2k⊥δ
2(k⊥−p⊥)

∫
dξ−d2ξ⊥

(2π)3
e−ip

+ξ−−ip⊥·ξ⊥〈PA|Gτ⊥b(0, ξ−, ξ⊥)Gρ⊥a(0)|PA〉.

(4.11)

Now by changing gluon field to field strength tensor the integral of above equation is just

gluon TMDPDF itself. From the derivation one can see that dimensional scheme is crucial

for our power expansion. Note that the nonlinear term in gluon field strength tensor also

contributes. Its effect is reflected in the special vertex [26] for the coupling of gluon and

gauge link, as shown in figure 6. The total correction of figure 5(a) is

Φ
(1)
αβ(x, p⊥) =2× αsCA

4π

(4πµ2)ε/2

Γ(2− ε/2)
×

×
[

4

ε
B
(

2− ε

2
, 1 +

ε

2

)
B
(
− ε

2
, 1 +

ε

2

)(
ζ2
)−ε/2

+

(
2

εUV
− 2

εIR

)]
Φ

(0)
αβ(x, p⊥),

(4.12)

where the factor 2 represents contribution from conjugated diagrams. Note that in this

expression and formulas following ε is εIR implicitly, unless there is a special illustration.

Besides, wave function renormalization for the gauge link is given by figure 5(b) and

its conjugate, the result is

Φ
(1)
αβ(x, p⊥)|b = 2×

(
Z1/2
v − 1

)
Φ

(0)
αβ(x, p⊥),

Zv = 1 +
αs
π
CA

(
1

εUV
− 1

εIR

)
. (4.13)
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v1

ṽ

(a)

v2

(b) (c) (d) (e)

(f)

Figure 7. Virtual correction to heavy quark soft factor, where we just show the left part of the

total diagram, since the right part is trivial. The black dot in the diagram represents color matrix.

The sum of eq. (4.12) and eq. (4.13) is the total virtual correction to gluon TMDPDF,

that is,

Φ
(1)
αβ(x, p⊥) = 2WΦΦ

(0)
αβ(x, p⊥),

WΦ =
(
Z1/2
v − 1

)
+
αsCA

4π

(4πµ2)ε/2

Γ(2− ε/2)
×

×
[

4

ε
B
(

2− ε

2
, 1 +

ε

2

)
B
(
− ε

2
, 1 +

ε

2

)(
ζ2
)−ε/2

+

(
2

εUV
− 2

εIR

)]
. (4.14)

Since the derivation does not depend on the polarization of initial hadron and the parton

or gluon, the result indicates the virtual correction is the same to the two gluon TMDPDFs

we consider here. Note that we will not calculate the self-energy correction to initial gluon

in our following calculation for one-loop hard part, because this self-energy correction can

be subtracted totally. For this reason, we do not calculate this self-energy correction to

Φαβ here.

There is no power expansion in higher order correction to soft factors, so, their virtual

corrections are easy to calculate. The virtual correction to SQ(l⊥) is from figure 7. The

result is

S
(1)
Q (l⊥) = 2WSQS

(0)
Q (l⊥),

WSQ =
(√

Zv1Zv2Zṽ − 1
)
− αs

4π

(
1

εUV
− 1

εIR

)[
CA

(
ln

(2v1 · ṽ)2

v2
1 ṽ

2
+ ln

(2v2 · ṽ)2

v2
2 ṽ

2

)

+(CA − 2CF )
1 + λ

λ1/2
ln

1− λ1/2

1 + λ1/2

]
, λ =

1−
√
v2

1v
2
2/(v1 · v2)2

1 +
√
v2

1v
2
2/(v1 · v2)2

, (4.15)

v1 and v2 are the four-velocities of heavy quark and anti-quark, respectively. If one takes

v2
1 = v2

2 = 1, λ becomes the usual phase space factor for final heavy quark pair, i.e.,

λ = 1− 4m2/(k1 + k2)2 = ρ2
12.
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(a)

ṽ

v

(b) (c)

Figure 8. Virtual correction to soft factor.

The virtual correction to S(l⊥) is from figure 8, and the result is

S̄(1)(l⊥) = 2WSS̄
(0)(l⊥),

WS = −
[(√

ZvZṽ − 1
)
− αs

2π
CA

(
1

εUV
− 1

εIR

)
ln

(2v · ṽ)2

v2ṽ2

]
. (4.16)

Note that in the derivation of these results we have ignored the corrections vanishing under

the limit v2, ṽ2 → 0.

4.2 Structure of one-loop virtual correction to hard part

Next we consider the virtual correction to hadronic tensor. The central bubble in figure 2

on the left hand side of the cut at one-loop level is given by diagrams in figure 9, where

self-energy corrections to external fermion lines are not shown, since they are trivial to

be taken into account. The contribution of conjugated diagrams are not shown but taken

into account in the calculation. Denoting the amplitude for the subprocess q(p) + γ∗(q)→
Q(k1) + Q̄(k2) as Mµ

α, the one-loop hard part is

H
µν(1)
αβ =Mµ(1)

α

(
Mν(0)

β

)∗
+Mµ(0)

α

(
Mν(1)

β

)∗
. (4.17)

As an example, the tree level amplitude in figure 4 is

Mµ(0)
α = −gT a

[
1

2p · k2
(ū(k1)γµ/pγαv(k2)− 2k2αū(k1)γµv(k2))− (k1 ↔ k2)

]
, (4.18)

where α is transverse Lorentz index for initial gluon and µ is that for photon. By using

this amplitude the result in eq. (3.11) can be obtained. From eq. (4.17) it is clear

Hµν
αβ =

(
Hνµ
βα

)∗
. (4.19)

So, if the hard part is symmetric in (µ, α) and (ν, β), it must be real. Since the transverse

momenta p⊥ and q⊥ are ignored in one-loop hard part, the decomposition for tree level

hard part in eq. (3.3) can also be applied to one-loop hard part. From eq. (3.3), the one-

loop hard part has such a symmetry automatically. So, all projected hard coefficients H ij

are real. Since tree level amplitude M(0) is real, we just need the real part of one-loop

amplitude. This simplifies the calculation, since absorptive part needs some caution for

the iε prescription in propagators in the loop.

Next we discuss the IR property of one-loop amplitude. The complete amplitude is very

complicated, but the IR divergent part can be shown to be simple and proportional to tree
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k1

k2

p

q, µ

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k)

Figure 9. One-loop virtual corrections to the amplitude in hard scattering part, where the self-

energy corrections to external heavy quark and anti-quark is not shown, since they are trivial to be

taken into account.

level amplitude. Here IR divergences include soft and collinear ones. These divergences can

appear only in figure 9(a,b,c,f,i). Our observation is the loop integrals with IR divergence

can be expressed through three basic scalar loop integrals. Figure 9(a) contains only soft

divergence, which is caused by the soft gluon exchange between the two quarks. Such soft

divergence is contained in following integral,

I
(0)
Box−a(k1, k2) =

∫
l

1

[l2+iε] [(l−k2)2−m2+iε] [(l+p−k2)2−m2+iε][(l+k1)2−m2+iε]
,∫

l
=

∫
dnl

(2π)n
. (4.20)

The soft divergence of such box integral can be expressed through scalar triangle inte-

grals [27]. In soft region with lµ = (l+, l−, lµ⊥) ∼ Q(λ, λ, λ), (l + p − k2)2 −m2 is offshell.

Thus setting l = 0 in this propagator does not affect the IR divergence. This off-shell

propagator can be decomposed as

1

(l + p− k2)2 −m2
=

1

(p− k2)2 −m2
+

l2 − 2l · k2 + 2l · p
2p · k2[(l + p− k2)2 −m2]

. (4.21)

The second term gives IR finite contribution. Then,

I
(0)
Box−a(k1, k2) =

1

−2p · k2
CTri1(s1) + DBox1(t1, u1),

CTri1(s1) =

∫
l

1

(l2 + iε)[(l − k2)2 −m2 + iε][(l + k1)2 −m2 + iε]
. (4.22)
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All soft divergence of the box integral now is contained in the triangle integral CTri1(s1).

Note that CTri1(s1) is symmetric in k1, k2 or t1, u1. By exchanging k1 and k2, the soft

divergence of figure 9(b) is obtained. After some simplifications the sum of the divergent

parts of figure 9(a,b) is

Mµ
α|IRa+b

.
= − ig2(CA − 2CF )(2k1 · k2)

CTri1(s1)

{
−gT a 1

2p · k2
(ū(k1)γµ/pγαv(k2)− 2k2αū(k1)γµv(k2))− (k1 ↔ k2)

}
.

(4.23)

The quantity in {· · · } is rightly the tree level amplitude. Hence,

Mµ
α|IRa+b

.
= −ig2(CA − 2CF )(2k1 · k2)CTri1(s1)Mµ(0)

α . (4.24)

For figure 9(c), both soft and collinear divergences are contained in the loop integral,

and the overlap of these two divergences makes the extraction of IR part nontrivial. The

divergent loop integrals for this diagram are

I
(0,1,2)
Box−c =

∫
l

{1, (l+/p+), (l+/p+)2}
D0D1D2D3

, (4.25)

with

D0 = l2, D1 = (l + p)2, D2 = (l + p− k2)2 −m2, D3 = (l + k1)2 −m2. (4.26)

In I
(0)
Boxc, collinear divergence comes from the region where lµ is collinear to pµ, while soft

divergence comes from two regions: one is lµ is soft, the other is (p− l)µ is soft. In I
(1,2)
Boxc,

collinear divergences come from the same region as I
(0)
Boxc, but the soft divergence only

comes from the region where (p − l)µ is soft. Note that the integral with (l+)3 in the

integrand is absent in the amplitude, although this integral is also IR divergent.

As we will show, the divergent part of Box-c can still be expressed through triangle

integrals. First, setting l = 0 in D2 gives

I
(0)
Box−c

.
= − 1

2p · k2

∫
l

1

D0D1D3
− 1

p · k2

∫
l

l · k2

D0D1D2D3
, (4.27)

where
.
= means the equality holds up to IR finite corrections. Now l · k2 = l+k−2 + l−k+

2 +

l⊥ · k2, but l− and l⊥ are suppressed by λ or λ2 in soft or collinear regions, so, l− and l⊥
can be dropped. Then

1

p · k2

∫
l

l · k2

D0D1D2D3

.
=

1

p+

∫
l

l+

D0D1D2D3

.
=

1

p · q

∫
l

l · q
D0D1D2D3

.
=

1

p · q

∫
l

l · (k1 + k2)

D0D1D2D3

=
1

p · q

∫
l

D3 −D0 +D1 −D2 − 2k2 · p
D0D1D2D3

, (4.28)

where we have used qµ = −pµ+kµ1 +kµ2 . Now D0,1 in the numerator above can be dropped,

because they are suppressed by λ or λ2 in soft or collinear regions. Then, substituting this

result back to eq. (4.27) one gets

I
(0)
Box−c = − 1

2p · k2

∫
l

1

D0D1D3
− 1

2p · k1

∫
l

1

D0D1D2
+ DBox2[t1, u1]. (4.29)
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In this way we express the IR part of Box-c through two triangle integrals. As expected,

this expression is symmetric in k1, k2. In the above we have also defined the finite part of

this box integral as DBox2[t1, u1].

Similarly, one can show

I
(1)
Box−c

.
=

1

2p · k1

∫
l

1

D0D1D2
, I

(2)
Box−c

.
= − 1

2p · k1

∫
l

1

D0D1D2
− 1

4p · k1p · k2

∫
l

1

D0D1
.

(4.30)

With the same method, the extraction of IR divergence from the triangle diagrams fig-

ure 9(f) becomes easy, and the results are

I
(0)
Tri−f =

∫
l

1

l2(l + p)2[(l + k2)2 −m2]
=

∫
l

1

l2(l + p)2[(l + p− k2)2 −m2]
=

∫
l

1

D0D1D2
,

I
(1)
Tri−f =

∫
l

(l+/p+)

l2(l + p)2[(l + k2)2 −m2]

.
=

1

2p · k2

∫
l

1

D0D1
. (4.31)

The integrals with (l+)2 or (l+)3 do not appear in the amplitude, although they are di-

vergent. Other integrals are IR finite for this triangle diagram. By exchanging k1, k2 the

divergent part of figure 9(i) can be obtained.

With the obtained IR divergence, the amplitude from figure 9(a,b,c,f,i) can be ex-

pressed through four basic scalar integrals J01, J012, J013 and CTri1(s1). After a lengthy

calculation the result is put into a very neat form, which is proportional to tree level

amplitude! Besides, the self-energy corrections to external fermion lines also contain IR

divergence. Then, the complete IR divergent part of the amplitude is

Mµ(1)
α

∣∣∣
IR

= WIRMµ(0)
α ,

WIR = (Z2 − 1)− ig2(CA − 2CF )(2k1 · k2)CTri1(s1)

− ig2CA(2p · k1J013 + 2p · k2J012 + J01), (4.32)

with

J012 =

∫
l

1

D0D1D2
, J013 =

∫
l

1

D0D1D3
, J01 =

∫
l

1

D0D1
. (4.33)

This is one of our main results. The derivation of this result is independent of the po-

larizations of external gluon, thus this result indicates the IR divergence, including soft

and collinear ones, is spin independent. According to eq. (4.17), the IR divergence of hard

part is

H
µν(1)
αβ

∣∣∣
IR

= 2Re(WIR)H
µν(0)
αβ , (4.34)

where the factor 2 indicates the contribution from conjugated diagrams.

Besides IR divergence, the hard part also contains UV divergence, which is subtracted

by the counter terms of lagrangian. After the subtraction of UV divergence, the hard part

gives a µ dependence, with µ the renormalization scale. We will separate the µ dependence

in the following.

Notice that the electro-magnetic current jµ in hadronic tensor is conserved, so, the

UV divergence from vertex correction is cancelled by self-energy correction to fermions.
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This means the UV divergences of figure 9(e,h) are cancelled by figure 9(j,k). So, the sum

of these four diagrams does not generate µ dependence. Apart from the µ dependence in

wave function renormalization constant for fermions, i.e., Z2, the remaining µ dependence

can only come from figure 9(d,f,g,i). The UV divergence of these diagrams reads

Mµ
α|d+g

.
= −CA − 2CF

2

αs(4πµ
2/Q2)ε/2

4π
Γ(
εUV

2
)Mµ(0)

α ,

Mµ
α|f+i

.
=

3CA
2

αs(4πµ
2/Q2)ε/2

4π
Γ(
εUV

2
)Mµ(0)

α . (4.35)

With the µ dependence from Z2, the total µ-dependence of the amplitude is

Mµ(1)
α =

[
−CA − 2CF

2
+

3CA
2
− CF

]
αs
4π

ln
µ2

Q2
Mµ(0)

α + · · · , (4.36)

where · · · represents µ independent part.

With renormalization scale separated explicitly, the hard part can be written as

H
µν(1)
αβ = Hµν

1αβ +Hµν
2αβ +Hµν

3αβ , (4.37)

with

Hµν
1αβ = 2Re(WIR)H

µν(0)
αβ

∣∣∣
µ2=Q2

,

Hµν
2αβ =

(
H
µν(1)
αβ − 2Re(WIR)H

µν(0)
αβ

)
µ2=Q2

,

Hµν
3αβ = 2

αs
4π
CA ln

µ2

Q2
H
µν(0)
αβ , (4.38)

where we have chosen the reference scale of µ2 as Q2 so that H3 is definite. These three

parts make the structure of one-loop virtual correction to hadronic tensor clear.

At last, it should be pointed out that only in pole mass scheme, the µ dependence of

figure 9(j,k) is proportional to tree level amplitude. In pole mass scheme the mass counter

term in lagrangian is chosen so that renormalized fermion self-energy ΣR(/̃p,m) = 0 when

/̃p = m. Then the renormalized self-energy is written as

ΣR

(
/̃p,m

)
= −αs

4π
CF ln

µ2

Q2

(
/̃p−m

)
+
αs
4π
CF

(
/̃pBv

(−p̃2

m2
,
Q2

m2

)
+mBm

(−p̃2

m2
,
Q2

m2

))
,

(4.39)

with

Bv(z, τ) =

∫ 1

0
dxx ln(xz + 1)− ln τ =

(2− z)z − 2(1− z2) ln(1 + z)

4z2
− ln τ,

Bm(z, τ) = −2− 4

∫ 1

0
dx ln(xz + 1) + ln τ = 2− 4(1 + z)

z
ln(1 + z) + ln τ. (4.40)

From the structure of self-energy correction, ln µ part is proportional to tree diagrams. As

stated before this µ dependence is cancelled by that of figure 9(e,h). This is an advantage

of pole mass scheme.
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4.3 Subtraction and finite hard coefficients

According to our subtraction scheme in eq. (4.6) and results in eq. (4.14), (4.15), (4.16),

(4.34), the finite hard coefficient is given by

H
µν(1)
αβ

∣∣∣
finite

= H
µν(1)
αβ − 2Re[WΦ +WSQ +WS ]H

µν(0)
αβ

= 2Re

[(
WIR + CF

αs
4π

ln
µ2

Q2
− CA

αs
4π

ln
µ2

Q2

)
−WΦ −WSQ −WS

]
H
µν(0)
αβ

+Hµν
3αβ +Hµν

2αβ , (4.41)

where we have used the fact

WIR|µ2=Q2 = WIR + CF
αs
4π

ln
µ2

Q2
− CA

αs
4π

ln
µ2

Q2
, (4.42)

and the lnµ2 is from Z2 and J01.

The explicit expression of IR divergent scalar loop integrals are calculated by standard

Feynman parametrization. One can also find general expressions in e.g. [27, 28] and then

continue the result into DIS region. Generally, the result in DIS region is very simple. For

completeness we list the result of these integrals here as

CTri1(s1) = − i

16π2
Rε

1

s12ρ12

{
−2

ε
ln c12 +

(
1− ln

Q2

s12

)
ln c12 +

1

2
ln2 c12

+2 ln ρ12 ln c12 +
2π2

3
+ 2Li2(c12)

}
, Rε =

(4πµ2/Q2)ε/2

Γ(2− ε/2)
, (4.43)

and

J013 =
i

16π2
Rε

1

Q2y13

2

ε2

[
1− ε

2
+
ε

2
ln

rb
y2

13

+
ε2

2

(
−1

2
ln

rb
y2

13

+
1

4
ln2 rb

y2
13

+
π2

12
+Li2

(
rb + y13

rb

))]
,

J012 = J013|y13→y23 ,

J01 =
i

16π2

(
2

εUV
− 2

εIR

)
, (4.44)

where

s12 = (k1 + k2)2, ρ12 =

√
1− 4m2

s12
, c12 = ln

1− ρ12

1 + ρ12
, (4.45)

and

y13 =
2p · k1

q2
, y23 =

2p · k2

q2
, y12 = −2k1 · k2

q2
, rb = −m

2

q2
. (4.46)

In DIS region, y13, y23 < 0 and y12, rb > 0. In these integrals we have ignored all absorp-

tive parts.
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With these integrals, the explicit WIR can be obtained as

WIR = (Z2 − 1)− (CA − 2CF )
αs
4π
Rε

1 + ρ2
12

2ρ12

{
−2

ε
ln c12 +

(
1− ln

Q2

s12

)
ln c12 +

1

2
ln2 c12

+2 ln ρ12 ln c12 +
2π2

3
+ 2Li2(c12)

}
− CA

αs
4π
Rε

{
4

ε2
− 2

ε
+

2

ε
ln

rb
y13y23

− ln
rb

y13y23

+
π2

6
+

1

4
ln2 rb

y2
13

+
1

4
ln2 rb

y2
23

+ Li2

(
rb + y13

rb

)
+ Li2

(
rb + y23

rb

)}
+ CA

αs
4π

(
2

εUV
− 2

εIR

)
. (4.47)

The expression of WΦ has been given by eq. (4.14), then we have

WIR −WΦ =
(
Z2 − Z1/2

v

)
− (CA − 2CF )

αs
4π
Rε

1 + ρ2
12

2ρ12

{
−2

ε
ln c12 +

(
1− ln

Q2

s12

)
ln c12

+
1

2
ln2 c12 + 2 ln ρ12 ln c12 +

2π2

3
+ 2Li2(c12)

}
− CA

αs
4π
Rε

{(
2

ε
− 1

)
ln

(v · ṽ)2

v2v1 · ṽv2 · ṽ
− π2

6
+

1

4
ln2 rb

y2
13

+
1

4
ln2 rb

y2
23

− 1

2
ln2 Q

2

ζ2

+Li2

(
rb + y13

rb

)
+ Li2

(
rb + y23

rb

)}
. (4.48)

It can be seen the IR divergence from hard part cannot be subtracted by the correction to

gluon TMDPDF alone. The TMD formula without soft factors must be wrong. At one-loop

level, the two soft factors have been calculated in eq. (4.15) and eq. (4.16). We have

WSQ +WS =
(√

Zv1Zv2Zṽ −
√
ZvZṽ

)
− αs

4π

(
1

εUV
− 1

εIR

)[
2CA ln

v2v1 · ṽv2 · ṽ
(v · ṽ)2

+ (CA − 2CF )
1 + ρ2

12

ρ12
ln

1− ρ12

1 + ρ12

]
.

(4.49)

Now it is very clear that the difference between WIR−WΦ and WSQ+WS is IR finite, i.e.,

(WIR −WΦ)− (WSQ +WS)

= − αs
4π
CF (4 + 3 ln

µ2

m2
)

− (CA − 2CF )
αs
4π

1 + ρ2
12

2ρ12

{
− ln

µ2

Q2
ln c12 +

(
1− ln

Q2

s12

)
ln c12 +

1

2
ln2 c12

+2 ln ρ12 ln c12 +
2π2

3
+ 2Li2(c12)

}
− CA

αs
4π

{(
ln
µ2

Q2
− 1

)
ln

(v · ṽ)2

v2v1 · ṽv2 · ṽ
− π2

6
+

1

4
ln2 rb

y2
13

+
1

4
ln2 rb

y2
23

− 1

2
ln2 Q

2

ζ2

+Li2

(
rb + y13

rb

)
+ Li2

(
rb + y23

rb

)}
, (4.50)
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In this result, the UV counter terms for gluon TMDPDF and soft factors have been added

and the scale µ is for UV renormalization. In eq. (4.50) the first line in the equality is

given by wave function renormalization, that is,

(WIR −WΦ)− (WSQ +WS) ⊃ Z2 −
√
Zv1Zv2 . (4.51)

After UV divergences are removed the wave function renormalization constants are

Z2 = 1− αs
4π
CF ln

µ2

Q2
− αs

2π
CF

(
2

εIR
− γE + 2 + ln 4π +

3

2
ln
Q2

m2
+ ln

µ2
IR

Q2

)
,

Zv1 = Zv2 = 1 +
αs
2π
CF

(
2

εUV
− 2

εIR

)
+ c.t.

= −αs
2π
CF

(
2

εIR
− γE + ln

4πµ2
IR

µ2

)
. (4.52)

So,

Z2 −
√
Zv1Zv2 = −αs

4π
CF

(
4 + 3 ln

µ2

m2

)
. (4.53)

Now, substituting eq. (4.50) into eq. (4.41), the finite hard coefficient is

Hµν(1)
ρτ

∣∣∣
finite

= WfH
µν(0)
ρτ +Hµν

2ρτ ,

Wf = 2

{
αs
4π

ln
µ2

Q2

[
−CA ln

(v · ṽ)2

v2ṽ · v1ṽ · v2
− 2CF

+(CA − 2CF )

(
1 + ρ2

12

2ρ12
ln

1− ρ12

1 + ρ12

)]
+ (WIR −WΦ −WSQ −WS)µ2=Q2

}
=
αs
2π

ln
µ2

Q2

[
−CA ln

(v · ṽ)2

v2ṽ · v1ṽ · v2
− 2CF + (CA−2CF )

(
1 + ρ2

12

2ρ12
ln

1− ρ12

1 + ρ12

)]
− (CA − 2CF )

αs
2π

1 + ρ2
12

2ρ12

[(
1− ln

Q2

s12

)
ln c12 +

1

2
ln2 c12

+2 ln ρ12 ln c12 +
2π2

3
+ 2Li2(c12)

]
− CA

αs
2π

[
−π

2

6
+

1

4
ln2 rb

y2
13

+
1

4
ln2 rb

y2
23

− 1

2
ln2 Q

2

ζ2

+Li2

(
rb + y13

rb

)
+ Li2

(
rb + y23

rb

)]
− αs

2π
CF

(
4 + 3 ln

Q2

m2

)
. (4.54)

Moreover, our decomposition for hard coefficient in eq. (3.3) is effective to all orders of αs
if only virtual correction is involved. So, Hµν

2αβ can still be projected into 10 scalar hard

coefficients H ij
2 as we done for H

µν(0)
αβ . There will be no other new tensor structure in

higher order correction. That is,

H
(1)ij
finite = WfH

(0)ij +H ij
2 , (4.55)

with the projection in eq. (3.3). Eq. (4.54), (4.55) is one of our main results. From the

derivation, WIR and WΦ are independent of the polarizations of parton or gluon, so, Wf
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is the same to all gluon TMDPDFs, including those defined by polarized hadron as given

in [1]. H2 depends on the polarizations of gluon, but it is IR finite and µ independent. The

finiteness of H2 is justified explicitly according to eq. (4.38). In our result, it is expressed

through some basic IR finite scalar loop integrals, including box integrals DBox1, 2, triangle

integrals CTri3, 4, 5 and various bubble integrals b0, Bv and Bm. These integrals are

illustrated in appendix.

In our result, the projected hard coefficients H ij
2 according to eq. (3.3) are given in a

mathematica file subted2.m. These results are very lengthy and cannot be shown here. In

subted2.m these projected hard coefficients are stored as a list{
ξ1H

11
2 , ξ2H

12
2 , ξ3H

21
2 , ξ4H

22
2 , ξ5H

33
2 , ξ6H

41
2 , ξ7H

42
2 , ξ8H

51
2 , ξ9H

52
2 , ξ10H

63
2

}
, (4.56)

with normalization factors

ξ1 =ξ2 =
1

g4
s

Q2|k1⊥|2,

ξ3 =ξ4 = ξ5 = − 1

g4
s

2Q|k1⊥|3,

ξ6 =ξ7 = ξ8 = ξ9 = ξ10 =
1

g4
s

2|k1⊥|4. (4.57)

All of these results are expressed through the invariants s1, t1, u1 and m appearing in tree

level result eq. (3.11). There are two color factors in the stored result, i.e.,

f(N1) = Tr
(
T aT bT aT b

)
=

1−N2
c

4Nc
, f(N2) = Tr

(
T aT aT bT b

)
=

(N2
c − 1)2

4Nc
. (4.58)

In the final part it is interesting to point out that our factorization formula eq. (4.4)

associated with the finite hard part given by eq. (4.54) is µ independent to order of α2
s.

This can be illustrated in the following. Because real correction is UV finite, µ dependence

is purely generated by virtual corrections. Then, the µ dependence of SQ(l⊥) and S̄(l⊥)

can be obtained from eq. (4.15) and eq. (4.16), respectively. They are

∂SQ(l⊥)

∂ lnµ2
=
αs
2π

[
2CF + CA − CA ln

4v1 · ṽv2 · ṽ
ṽ2

− (CA − 2CF )
1 + ρ2

12

2ρ12
ln

1− ρ12

1 + ρ12

]
SQ(l⊥),

∂S̄(l⊥)

∂ lnµ2
=
αs
2π
CA

[
−2 + ln

4(v · ṽ)2

v2ṽ2

]
S̄(l⊥). (4.59)

For gluon TMDPDF, additional self-energy correction to gluon with momentum p should

be added into virtual correction. Of course, this correction does not affect the finite hard

part, because it cancels the same gluon self-energy insertion in hard scattering for hadronic

tensor. The wave function renormalization constant in Feynman gauge is

ZG = 1− αs
4π

(
2

3
NF −

5

3
CA

)(
2

εUV
− γE + ln 4π

)
, (4.60)

in MS scheme. Then, from eq. (4.14) we have

∂

∂ lnµ2
Φαβ(x, p⊥) = −αs

4π

[
2

3
NF −

5

3
CA − 4CA

]
Φαβ(x, p⊥). (4.61)
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Recall that tree level hard coefficients are proportional to αs, which has a µ dependence

∂αs
∂ lnµ2

= β(αs) = −α
2
s

4π

(
11

3
CA −

2

3
NF

)
. (4.62)

Now the hadronic tensor to O(α2
s) can be written as

Wµν ∝ αs
[
1 +

αs
2π

ln
µ2

Q2

(
−CA ln

(v · ṽ)2

v2ṽ · v1ṽ · v2
− 2CF

+ (CA − 2CF )
1 + ρ2

12

2ρ12
ln

1− ρ12

1 + ρ12

)
+ · · ·

]
Φαβ(x, p⊥)⊗ SQ(l1⊥)⊗ S̄(l2⊥), (4.63)

where · · · part is O(αs) and µ independent; ⊗ means the transverse momentum convolu-

tion. From this equation and evolution equations given above, one can check quickly

∂

∂ lnµ2
Wµν = 0 +O(α3

s). (4.64)

So, the factorization formula is µ independent to order α2
s. Notice that here we have used

the fact that pole mass of heavy quark is µ independent.

5 Azimuthal angle dependence

Now we have checked the corrected TMD formula for hadronic tensor, i.e., eq. (4.4) at

one-loop level, and the finite hard coefficients are given explicitly. One may think that the

azimuthal angle dependence about φq can be obtained by following the same procedure as

tree level formula. But unfortunately, SQ depends on v1⊥, which will change the tree level

φq dependence in a nonperturbative way after integration over the transverse momenta in

eq. (4.4). Physically, this change of φq dependence is caused by the multiple emissions of

soft gluons from final heavy quark pair. To proceed we have to integrate over φq, and it is

best to do this in coordinate space.

Define

Φ̃αβ(x, b⊥) =

∫
d2p⊥e

ib⊥·p⊥Φαβ(x, p⊥) = −gαβ⊥ G
(
x, b2⊥

)
−

2
(

2bα⊥b
β
⊥−b2⊥g

αβ
⊥

)
M2
p

∂2H⊥
(
x, b2⊥

)
∂
(
b2⊥
)2 ,

S̃Q(b⊥) =

∫
d2l⊥e

−ib⊥·l⊥SQ(l⊥),

S̃(b⊥) =

∫
d2l⊥e

−ib⊥·l⊥S̄(l⊥). (5.1)

Note that b2⊥ = b⊥ · b⊥ < 0. The formula eq. (4.4) becomes

Wµν =
xB

xQ2Mp (N2
c − 1)

δ(1− z1 − z2)Hµν
αβ

∫
d2b⊥
(2π)2

eiq⊥·b⊥Φ̃αβ(x, b⊥)S̃Q(b⊥)S̃
(
b2⊥
)
.

(5.2)
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O
�v1⊥

�b⊥

�q⊥

φq

φb

Figure 10. Azimuthal angles φb and φq in hadron frame.

Remember that in hadron frame, i.e., the rest frame of final heavy quark pair, ~v1⊥ is along

+X-axis, then all azimuthal angles are relative to ~v1⊥, as shown in figure 10.

Since Lµν does not depend on φq, it is convenient to integrate over φq in Wµν rather

than the cross section. Notice that due to scaling invariance of SQ(b⊥) under the transfor-

mation v1 → λ1v1, v2 → λ2v2, S̃Q depends on φb through

(b⊥ · v1)2

b2⊥v
2
1

= −|v1⊥|2 cos2 φb = −|v1⊥|2
cos 2φb + 1

2
. (5.3)

That is, S̃Q is a function of cos 2φb. So, S̃Q is unchanged under the transformation φb →
φb + π. Due to this fact we have∫ 2π

0
dφb cosnφbS̃

Q(b⊥) = (−1)n
∫ 2π

0
dφb cosnφbS̃

Q(b⊥),

∫ 2π

0
dφb sinnφbS̃

Q(b⊥) = 0.

(5.4)

This property of S̃Q is valuable in our following analysis. We choose to study three quan-

tities with φq integrated:∫
dφqW

µν =
xBδ(1− z1 − z2)

πxQ2Mp(N2
c − 1)

∫
db̂⊥b̂⊥S̃(b2⊥)J0(b̂⊥q̂⊥)

{
Aµνi Hi1G̃(x, b2⊥)S̃

(0)
Q

−Aµνi Hi2H̃
⊥(2)(x, b2⊥)S̃

(2)
Q

}
,∫

dφq cos(2φq)W
µν = − xBδ(1− z1 − z2)

πxQ2Mp(N2
c − 1)

∫
db̂⊥b̂⊥S̃(b2⊥)J2(b̂⊥q̂⊥)

{
Aµνi Hi1G̃(x, b2⊥)S̃

(2)
Q

−Aµνi Hi2H̃
⊥(2)(x, b2⊥)

S̃
(0)
Q + 4S̃

(4)
Q

2

 ,

∫
dφq sin(2φq)W

µν =
xBδ(1− z1 − z2)

πxQ2Mp(N2
c − 1)

×

×
∫
db̂⊥b̂⊥S̃(b2⊥)J2(b̂⊥q̂⊥)

Aµνi Hi3H̃
⊥(2)(x, b2⊥)

S̃
(0)
Q − 4S̃

(4)
Q

2

 ,

(5.5)

where b̂⊥ = |b⊥| =
√
−b2⊥, q̂⊥ = |q⊥| =

√
−q2
⊥, and J0, J2 are 0-th and 2-th Bessel

functions. Aµνi are the basic tensors we introduced in the decomposition of leptonic tensor,

i.e., eq. (2.17). For simplicity, the quantity concerning H⊥ is reorganized into

H̃⊥(2)(x, b2⊥) =
−2b2⊥
M2
p

∂2

∂(b2⊥)2
H̃⊥(x, b2⊥). (5.6)
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Due to the integration over φq, φb now can be integrated. As a result, three integrated soft

factors are involved, i.e.,

S̃
(0)
Q =

∫ 2π

0
dφbS̃

Q(b⊥), S̃
(2)
Q =

∫ 2π

0
dφb cos(2φb)S̃

Q(b⊥), S̃
(4)
Q =

∫ 2π

0
dφb cos(4φb)S̃

Q(b⊥).

(5.7)

Generally, the quantities weighted by cos(nφq), sin(nφq) can be constructed, but more φb
integrated soft factors will be introduced. This may not help to extract H⊥.

From these weighted hadronic tensors, the corresponding cross sections can be ob-

tained. Define weighted cross section as

σ〈cosnφq〉 =

∫ 2π

0
dφq cos(nφq)

dσ

dψldydxBdy1dy2d2KTd2RT
. (5.8)

We have

σ〈1〉 =
yQ2

qα
2
emxBδ(1− z1 − z2)

64π4xQ4Mp(N2
c − 1)

∫
db̂⊥b̂⊥S̃J0

(
b̂⊥q̂⊥

){
G̃S̃

(0)
Q

[
H11

4(1− y)

y2

+H41
2(1 + (1− y)2)

y2
−H21

4
√

1− y(y − 2)

y2
cosφl +H51

4(1− y)

y2
cos(2φl)

]

− H̃⊥(2)S̃
(2)
Q

[
H12

4(1− y)

y2
+H42

2(1 + (1− y)2)

y2

−H22
4
√

1− y(y − 2)

y2
cosφl +H52

4(1− y)

y2
cos(2φl)

]}
, (5.9)

σ〈cos(2φq)〉 =−
yQ2

qα
2
emxBδ(1− z1 − z2)

64π4xQ4Mp(N2
c − 1)

∫
db̂⊥b̂⊥S̃J2

(
b̂⊥q̂⊥

){
G̃S̃

(2)
Q

[
H11

4(1− y)

y2

+H41
2(1 + (1− y)2)

y2
−H21

4
√

1− y(y − 2)

y2
cosφl +H51

4(1− y)

y2
cos(2φl)

]

− H̃⊥(2)
S̃

(0)
Q + S̃

(4)
Q

2

[
H12

4(1− y)

y2
+H42

2(1 + (1− y)2)

y2

−H22
4
√

1− y(y − 2)

y2
cosφl +H52

4(1− y)

y2
cos(2φl)

]}
, (5.10)

σ〈sin(2φq)〉 =
yQ2

qα
2
emxBδ(1− z1 − z2)

64π4xQ4Mp(N2
c − 1)

∫
db̂⊥b̂⊥S̃J2

(
b̂⊥q̂⊥

){

H̃⊥(2)
S̃

(0)
Q − S̃

(4)
Q

2

[
−H33

4
√

1− y(y − 2)

y2
sinφl +H63

4(1− y)

y2
sin(2φl)

]}
.

(5.11)

Here H ij = H(0)ij+H
(1)ij
finite, which are given in eq. (3.11), (4.55). These three weighted cross

sections are our main results. We can see clearly that σ〈1〉 also depends onH⊥ even if lepton

azimuthal angle φl is integrated over, due to nonzero S̃
(2)
Q . This feature is unexpected from
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tree level TMD formula eq. (3.1). In addition, the soft factor S̃Q is process independent

and can be absorbed into gluon distribution G̃ or H̃⊥, which results in so called subtracted

TMDPDF [21]. But S̃Q is process dependent and cannot be eliminated. Obviously, S̃Q is

similar to fragmentation functions in SIDIS. The difference is fragmentation functions can

be extracted from e+e− experiment, but S̃Q cannot be extracted in this way, because it

contains a gauge link related to initial gluon. The detailed knowledge of S̃Q is beyond the

scope of this paper, and we will try to study its effect on resummation in future.

6 Summary

In this paper we first derive the angular distributions of heavy quark pair back-to-back

production in SIDIS based on tree level TMD formula. Then we examine the one-loop

correction to this formula. At one-loop level a special soft factor for final heavy quarks

should be complemented. From our previous studies we have known that real correction

does not contribute to higher order hard coefficients. Therefore, we calculate only virtual

corrections to the hadronic tensor and various nonperturbative quantities in factorization

formula. Really we find the IR divergence in hadronic tensor can be absorbed by these

nonperturbative quantities. As a result, we give explicit form of finite hard part, including

renormalization scale dependence. Interestingly we find the IR divergent part of one-loop

amplitude for heavy quark pair production is proportional to the tree level amplitude and

can be expressed through standard triangle and bubble loop integrals. This feature ensures

the subtraction in polarized scatterings can also be done in the same formalism. In order

to present the azimuthal angle dependence about virtual photon, i.e., φq in hadron frame,

we project the hard part into ten scalar hard coefficients. However, at one-loop level, the

appearance of soft factor SQ affects the azimuthal angle dependence in a nonperturbative

way, which makes the explicit φq dependence at cross section level become unclear. In order

to extract some information about gluon TMDPDFs, especially about linearly polarized

gluon distribution H⊥, we construct three φq-weighted cross sections σ〈1〉, σ〈cos 2φq〉,
σ〈sin 2φq〉, which depend on only three integrated heavy quark soft factors S̃

(0),(2),(4)
Q . We

expect future experiments such as EIC [29] can give some constraints on these three soft

factors and gluon distribution H⊥. For TMD factorization, an important issue is the

resummation of relative transverse momentum of heavy quark pair in this process. But

due to the many hard scales in this process, e.g., Q2, R2
⊥, and the scales introduced by soft

factors like ζ2, 4v1 · ṽv2 · ṽ/ṽ2, the resummation will be nontrivial. We want to study this

issue in another paper. In appendix we present all involved IR finite loop integrals, which

are used to express the finite hard part H ij
2 .
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A IR finite scalar integrals

Following scalar integrals are used to express the finite result. These integrals can be

obtained from general results in [30] or references therein by proper continuation to DIS

region. Straightforward calculation is also easy. Most of the results appear very simple. All

of these functions may depend on s1, therefore s1 is suppressed in the arguments. DBox1,

DBox2 have been defined in eq. (4.22), (4.29). Their explicit expressions are

DBox1[t1, u1] =
−i

16π2

1

s12u1ρ12

[
−2 ln c12 ln

rb
−y23

+ 2 ln(−c) ln
ρ− ρ12

ρ+ ρ12
− ln2(−c)

+2 ln
ρ2 − 1

ρ2 − ρ2
12

ln c12 + 4Li2(−c12)− 2Li2

(c12

c

)
− 2Li2(cc12)

]
,

DBox2[t1u1, t1 + u1] =
−i

16π2

(Q2)−2

y13y23

[
2

3
π2 + ln2(−c) + ln2 y13

y23

+Li2

(
rb + y13

rb

)
+ Li2

(
rb + y23

rb

)]
, (A.1)

where ρ =
√

1− 4m2/q2 > 1, ρ12 =
√

1− 4m2/s12 and c = (1 − ρ)/(1 + ρ), c12 =

(1− ρ12)/(1 + ρ12).

IR finite triangle integrals are

CTri3(u1) =

∫
l

1

[l2 + iε][(l − k2)2 −m2 + iε][(l − k2 + p)2 −m2 + iε]
,

CTri4(t1, u1) =

∫
l

1

[l2 + iε][(l + p− k2)2 −m2 + iε][(l + k1)2 −m2 + iε]
,

CTri5(t1u1, t1 + u1) =

∫
l

1

[l2 −m2 + iε][(l + p)2 −m2 + iε][(l + p− k1 − k2)2 −m2 + iε]
.

(A.2)

In DIS region, the results of CTri3 and CTri5 appear very simple

CTri3(u1) = − i

16π2

1

u1

{
−π

2

6
+ Li2

(
rb + y23

rb

)}
,

CTri5(t1u1, t1 + u1) =
i

16π2

1

2(t1 + u1)

{
π2 + ln2(−c)− ln2 c12

}
. (A.3)

But that for CTri4 is a little complicated

CTri4(t1, u1) =
i

16π2

1

Q2(β1 − β2)

{
K(β1, β3) +K(β1, β4)−K(β2, β3)−K(β2, β4)

+
π2

2
+

1

2
ln2 β1−

1

2
ln2(−β2)−ln

−u1

Q2
ln
−β2(1−β1)

β1(1−β2)
+Li2(β1)−Li2(β2)

}
,

(A.4)

where

β1 =
1 + y23 +

√
(1 + y23)2 + 4rb
2

, β2 =
1 + y23 −

√
(1 + y23)2 + 4rb
2

, (A.5)
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and

β3 =
1 +
√

1 + 4rb
2

, β4 =
1−√1 + 4rb

2
. (A.6)

In DIS region, one can show β2 < β4 < 0 < β1 < 1 < β3. What is crucial is β1 < 1, which

ensures the functions in the result are real. That is,

K(β1, β3)
.
= ln(β3−1) ln

1−β1

β3−β1
−ln(β3−β1) ln

β1

β3−β1
− 7π2

6
+Li2

(
1−β3

β1−β3

)
+Li2

(
β1

β1−β3

)
,

K(β1, β4)
.
= ln(β1−β4) ln

1−β1

β1−β4
−ln(−β4) ln

β1

β1−β4
+
π2

6
−Li2

(
β1−1

β1−β4

)
−Li2

( −β4

β1−β4

)
,

K(β2, β3)
.
= ln(β3 − 1) ln

1− β1

β3 − β2
− lnβ3 ln

−β2

β3 − β2
+ Li2

(
β3 − 1

β3 − β2

)
− Li2

(
β3

β3 − β2

)
,

K(β2, β4)
.
= ln(1− β4) ln

1− β2

β4 − β2
− ln(−β4) ln

−β2

β4 − β2
+ Li2

(
1− β4

β2 − β4

)
− Li2

( −β2

β2 − β4

)
,

(A.7)

where all imaginary parts are dropped.

In addition, bubbles B0(p̃2,m2
1,m

2
2) also appear in final result. They are UV divergent

and thus µ dependent. According to our previous classification, the UV divergence in B0

functions are removed by MS-scheme, and the µ dependence or factor lnµ/Q is absorbed

into H3. Thus, following finite b0 functions are used to express H2:

b0
(
p̃2,m2

1,m
2
2

)
= B0

(
p̃2,m2

1,m
2
2

)
− i

16π2

(
2

ε
− γE + ln

4πµ2

Q2

)
. (A.8)

where

B0

(
p̃2,m2

1,m
2
2

)
=

∫
l

1[
l2 −m2

1 + iε
] [

(l + p̃)2 −m2
2 + iε

] . (A.9)

Besides, there are two special bubble integrals Bv, Bm by mass renormalization for fig-

ure 9(j,k). They have been given in eq. (4.40).

For completeness we also present the explicit expressions of b0(p̃2,m2
1,m

2
2) functions

here. In our case, the involved b0 functions can be divided into two classes: m1 = m2 = m

and m1 = 0 or m2 = 0. For the first class we have

b0
(
p̃2,m2,m2

)
=

i

16π2

(
2 + ln

Q2

m2
+ ω ln

ω − 1

ω + 1

)
, ω =

√
1− 4m2

p̃2 + iε
. (A.10)

Two special cases are involved in the result: p̃2 = s1 + 2m2 and p̃2 = q2 = −Q2. After

continuation the real parts of these two b0 functions are

b0
(
s1 + 2m2,m2,m2

)
=

i

16π2

(
2 + ln

Q2

m2
+ ω ln

1− ω
1 + ω

)
, ω =

√
1− 4m2

s1 + 2m2
,

b0
(
−Q2,m2,m2

)
=

i

16π2

(
2 + ln

Q2

m2
+ ω ln

ω − 1

ω + 1

)
, ω =

√
1 +

4m2

Q2
. (A.11)
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For the second class of b0 functions, one inner propagator is massless. The general result is

b0
(
p̃2, 0,m2

)
=

i

16π2

(
2 + ln

Q2

−p̃2 +m2
+
m2

p̃2
ln
−p̃2 +m2

m2

)
. (A.12)

There are three special cases in our calculation: 1)p̃2 = 0, 2)p̃2 = m2, 3)p̃2 < 0. By taking

proper limit the first two cases can be obtained

b0
(
0, 0,m2

)
=

i

16π2

(
1 + ln

Q2

m2

)
,

b0
(
m2, 0,m2

)
=

i

16π2

(
2 + ln

Q2

m2

)
. (A.13)

The last case is well-defined from the general expression. Specifically, p̃2 = m2 + t1 or

m2 + u1 in our calculation, and both are negative in DIS region.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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