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Abstract: Back-to-back dijet cross-sections in deeply inelastic scattering (DIS) at small
xBj are suppressed by many-body multiple scattering and screening effects arising from
gluon saturation at high parton densities. They are similarly sensitive in these kinematics
to large Sudakov logarithms from soft gluon radiation. Uncovering novel physics in this
DIS channel therefore requires understanding the interplay of the two phenomena. In this
work, we compute the small xBj inclusive dijet DIS cross-section in back-to-back kinematics
at next-to-leading order (NLO) in the Color Glass Condensate effective field theory (CGC
EFT). Our result includes, for the first time, all real and virtual NLO contributions to the
impact factor. These include all Sudakov double and single logarithm contributions, as well
as all other finite O(αs) terms that contribute at this order. We demonstrate explicitly
that resummations of small x and Sudakov logarithms can be performed simultaneously
in the CGC EFT. This requires that the JIMWLK kernel for small x evolution of the
Weizsäcker-Williams (WW) gluon distribution satisfies a kinematic constraint imposed
by lifetime ordering of successive gluon emissions; the corresponding modifications to the
kernel, corresponding to resummations of large double transverse logarithms, are precisely
of the type required to stabilize JIMWLK evolution beyond leading logarithmicaccuracy.
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We compute the azimuthal harmonics of the NLO back-to-back distributions and show their
sensitivity to both the unpolarized and linearly polarized WW gluon distributions. Finally,
we discuss how TMD factorization is broken by an emergent saturation scale at small x.
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1 Introduction

The phenomenon of gluon saturation [2, 3] refers to the many-body screening and recom-
bination of gluons that contribute to significantly tame the growth of gluon distributions
inside hadron wavefunctions at high energies. It is characterized by an emergent semi-hard
saturation scale Qs(x) � ΛQCD, which grows with increasing energy (or decreasing x).
The discovery and characterization of gluon saturation in high energy deeply inelastic
electron-proton or electron-nucleus scatterings is one the principal goals of the future
Electron-Ion-Collider (EIC) [4–6].

In this regard, the inclusive production of a dijet (or dihadron) pair in deep-inelastic scat-
tering (DIS) is of great phenomenological interest, especially when the two jets are produced
with nearly back-to-back transverse momenta. Motivated by experimental signatures [7–10]
and phenomenological studies [11–15] of two-particle correlations in hadronic collisions,
the observation of the suppression of the back-to-back peak in dijet/dihadron azimuthal
correlations at sufficiently low Bjorken xBj is seen as promising signature of gluon saturation
at the EIC [16]. A further motivation for this back-to-back dijet/dihadron measurement
is its potential sensitivity to the unpolarized and linearly polarized Weizsäcker-Williams
transverse momentum dependent (TMD) gluon distributions [17–19].

In addition to the many-body multiple scattering and screening of saturated gluons
in the target, there is an additional source of suppression for the back-to-back dijet cross-
section. This is a purely vacuum-like effect induced by multiple soft gluon radiation that
suppresses the formation of a strictly back-to-back pair of jets. This is the well-known
Sudakov effect and its contribution is enhanced to all orders n ≥ 1 in perturbative QCD
by large double and single transverse logarithms, ∼ αns ln2n(P⊥/q⊥) and ∼ αns lnn(P⊥/q⊥)
respectively, of the ratio between the mean transverse momentum P⊥ of the dijet pair
and the “soft” scale associated with the momentum imbalance q⊥ of the pair [20]. The
resummation and exponentiation of such logarithms into a Sudakov form factor is an
essential feature of the Collins-Soper-Sterman (CSS) TMD formalism [21–23].

Leading order studies of the inclusive dijet cross-section in the Regge limit of DIS,
including Sudakov effects at double logarithmic accuracy, have been performed in [16, 24, 25],
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showing the significant impact of Sudakov suppression on the dijet azimuthal correlations.
Therefore any conclusions regarding the effect of gluon saturation on inclusive dijet produc-
tion in DIS for back-to-back kinematics depends on the quantitative understanding of the
interplay between both of these phenomena, gluon saturation and the Sudakov effect, in
the small x regime of QCD.

We will address here this longstanding problem within the framework of the Color
Glass Condensate (CGC) effective field theory [26–31]. In the CGC, the coherent multiple
scatterings of a high energy colored parton with the dense gluon fields of the hadron
target are described by “shockwave” propagators containing momentum-dependent effective
vertices that are proportional to the Fourier transforms of the spatial distribution of lightlike
Wilson lines in the strong background fields (of O(1/g), where g is the QCD coupling)
corresponding to saturated gluons in the nuclear target. Using standard perturbative QCD
Feynman diagram techniques in the CGC EFT, we performed in [1] the first complete NLO
computation of inclusive dijet production in DIS at small x. We demonstrated that the dijet
cross-section is infrared and collinear finite, and can be factorized at NLO into a convolution
between a perturbatively calculable impact factor and nonperturbative expectation values
of correlators of lightlike Wilson lines (which are dubbed “color correlators” throughout
this paper). The rapidity or “slow gluon” divergence1 in the calculation is absorbed in
the renormalization of these color correlators; the resulting renormalization group (RG)
equations to leading logarithm accuracy (resumming all powers of αs Y , where Y ∼ ln(1/x)
is the rapidity separation between the projectile and the target), are shown explicitly to
be the B-JIMWLK evolution equations [32–38]. We note that, for large Nc and large
mass number A, the 2-point dipole correlator in the B-JIMWLK hierarchy is the BK
equation [32, 39]. This nonlinear equation, in turn, reduces to the BFKL equation in the
dilute limit of low parton densities [40, 41].

The NLO impact factor is therefore constructed to be free of the logarithms corre-
sponding to the slow rapidity divergences. Further, the expression for the impact factor
is process-dependent in contrast to the evolution of the color correlators which should
be universal. This rapidity factorization [42] has been shown for a number of processes
at the stated leading logarithmic accuracy [43–56]. Thus far it has been demonstrated
explicitly to hold at next-to-leading-logarithmic accuracy in x only for the fully inclusive
DIS cross-section [42, 57]. We note that the NLO BK/JIMWLK Hamiltonian has been
derived and discussed at length in [58–62].

The Sudakov logarithms are part of the NLO impact factor that provide large contri-
butions in back-to-back kinematics. They can therefore be extracted from the NLO impact
factor for fully inclusive dijets that we computed in [1]. This is however not easy to do “by
inspection” due to the considerable complexity of the NLO expressions. However, as we
will discuss at length, one can reorganize the NLO impact factor results into three blocks
of terms. One of these, in the back-to-back-limit, reduces to double and single Sudakov

1Slow refers to the gluon carrying a small longitudinal momentum fraction relative to projectile’s (photon)
large momentum component while “soft” in our context will correspond to all of the gluon momenta
being small.
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logarithms plus finite O(αs) pieces; another reduces to just single Sudakov log and finite
pieces. The final block only contains finite O(αs) pieces.

The subsequent extraction, and further manipulation, of the double Sudakov logarithms
leads, at first sight, to a surprising result: the coefficient of this contribution has the wrong
sign, corresponding to a Sudakov enhancement rather than the suppression required on
physical grounds. The recovery of the correct sign follows from a nontrivial interplay between
the soft gluon radiation contributing to the Sudakov effect with the slow gluon emission
contributing to small x evolution. These are separated by a rapidity factorization scale Yf
such that αsYf � 1 terms “above the cut” contribute to the impact factor and αsYf ≥ 1
terms contribute below this cutoff to the RG evolution. We find that the underlying
reason for the wrong sign is the inclusion in the slow gluon RG evolution a piece of the
gluon phase-space that properly belongs to the impact factor. This is seen by imposing a
physical kinematic constraint on the slow gluon phase-space that enforces both lightcone
momentum and lifetime ordering of the successive gluon emissions described by B-JIMWLK
evolution. Our observations in this regard, and the fact that a kinematically constrained
B-JIMWLK evolution of the color correlators is required to recover the correct sign for
Sudakov suppression, are in line with those noted recently in the context of inclusive dijet
photoproduction at small x [54].

This feature of RG evolution is reminiscent of the fully inclusive DIS cross-section
at small x, and could have therefore been anticipated. For the fully inclusive DIS case,
the corresponding large double transverse logarithms are the DGLAP double collinear
logarithms in the squared momentum transfer; these are not correctly accounted for by
BFKL or BK evolution in the projectile’s rapidity. The solution to this problem [63–69] is
very similar to the Sudakov problem discussed here: one can either modify the BFKL/BK
kernel in order to impose lifetime ordering in addition to the projectile’s rapidity ordering,
or use directly the target rapidity as the evolution variable (“the correct choice of the
energy scale” in the terminology of [63]). However in the latter case, it is difficult to
consistently combine the small x RG evolution with the impact factor, since the latter is
more conveniently calculated in the dipole frame.

We will compute here the coefficients of the double and single Sudakov logarithms at
finite Nc for both longitudinally and transversely polarized virtual photons. We recover
the results provided in [20, 54] for the double Sudakov logarithms. For the finite Nc single
Sudakov logarithm terms, we recover the single log contributions computed in [70, 71] and
additionally, a single log term whose coefficient is sensitive to the rapidity factorization scale
Yf . The presence of this scale further illustrates the interplay between the Sudakov and small
x resummation; this is a novel feature of Sudakov resummation at small x going beyond
CSS resummation. A further difference of the CGC EFT with the collinear factorization
framework is the absence of a term in the Sudakov form factor proportional to the coefficient
of the QCD β-function [72, 73]. The absence of this term has been discussed previously
in [74, 75]; while we agree with [74] that such a contribution does not exist in general Regge
asymptotics, we argue that it can be recovered in a collinear limit of the CGC EFT.

Not least, we provide complete expressions for the finite (non-logarithmically enhanced)
terms in back-to-back kinematics, which are pure αs corrections. Expressing our results
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in terms of the azimuthal harmonics of back-to-back cross-section,2 we observe that these
are of two kinds. One sort, we will discuss first, are the terms that do not break leading
order TMD factorization albeit, as we show, this requires the introduction of additional
perturbative hard factors at NLO. For such terms, we show that the azimuthally averaged
cross-section is not only sensitive to the unpolarized WW gluon TMD, but to its linearly
polarized component as well. This contribution is phenomenologically important since
the linearly polarized gluon distribution is large in the small x regime; our computation
captures all the O(αs) contributions that are sensitive to both the unpolarized and linearly
polarized WW and gluon TMDs.

Similarly, the 〈cos(2φ)〉 anisotropy becomes sensitive to the unpolarized WW gluon
TMD in addition to the linearly polarized WW gluon TMD. One such contribution was
computed in [70, 71]; we recover this contribution (up to differences in 1/N2

c relative factors).
However we show that in addition there are several other contributions, not computed
previously, that are proportional to the linearly polarized WW gluon TMD and contribute
with equal magnitude to this 〈cos(2φ)〉 anisotropy.

The other sort of contributions result in the breaking of TMD factorization at NLO.
We argue that TMD factorization holds if and only if the saturation scale is the smallest
perturbative scale of the problem as compared to q⊥ and P⊥: Qs � q⊥ � P⊥. Beyond
this very specific kinematic regime, when Qs becomes comparable to q⊥ � P⊥, TMD
factorization is violated at NLO due to the increasing importance of higher twist corrections.

The paper is organized as follows. In section 2, we provide a brief outline of the CGC
EFT and discuss the leading order inclusive dijet cross-section in back-to-back kinematics.
The notations and conventions that we will use in the following sections are also introduced
here. In section 3, we provide the expression for the full NLO inclusive dijet cross-section
in DIS previously computed in [1]. As noted earlier, we reorganize the various terms in the
NLO impact factor in a manner that will simplify the extraction of Sudakov logarithms in
back-to-back dijet kinematics. Section 4 is dedicated to the computation of the back-to-back
limit of the NLO impact factor. We identify the double and single Sudakov logarithms and
discuss their relations with the small x or rapidity logarithms that are resummed by the
B-JIMWLK evolution equation. Finally, the last section is dedicated to the computation
of the pure αs corrections which are not power suppressed in q⊥/P⊥ and to the complete
O(αs) computation of the unpolarized and linearly polarized WW gluon TMDs. Our final
results for the zeroth and second harmonics of the back-to-back cross-section are given in
eqs. (5.23) and (5.27).

This paper is supplemented by appendices that provide details of the computations
for the interested reader. The notations and conventions employed in this work are
summarized in appendix A. Appendix B details the calculation of the various terms in the
decomposition of the NLO impact factor presented in section 3 of the main text for the
case of a longitudinally polarized virtual photon. The expressions for transversely polarized
photons are given in appendix C. In appendix D, we provide the NLO impact factor for
inclusive dijet production with jets defined using generalized kt algorithms. High harmonics

2These correspond to the cos(nφ) averaged cross-sections, where φ is the relative angle between P⊥ and q⊥.
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(n ≥ 4) induced by soft gluons in the Fourier decomposition of the azimuthal dependence of
the inclusive dijet cross-section are calculated in appendix E. Finally, appendix F gathers
useful integral identities relevant to the computation of the back-to-back limit of our NLO
impact factor.

2 Leading order cross-section in back-to-back kinematics

In this section, we will derive from the CGC effective field theory the back-to-back limit of
the leading order inclusive dijet cross-section in DIS at small Bjorken xBj. In particular, we
recover the transverse momentum dependent factorization formula involving the Weizsäcker-
Williams gluon distribution, first derived in [18].

2.1 Overview of the CGC effective field theory

In the CGC effective field theory, the small x gluons with high occupancy number are
represented by a classical color field Aµcl. The classical field is generated by the large-x
degrees of freedom of the target nucleus A, which are treated as stochastic color sources
with color charge density ρaA. The sources ρaA and field Aµcl are related by the Yang-Mills
equations [Dµ, F

µν ] = Jν , where

Jµ(x−,x⊥) = δµ+ρA(x−,x⊥) , (2.1)

the 4-current associated with the large-x sources. Since the target is fast moving along the
plus lightcone direction, the current does not depend on x+. The solution to the Yang-Mills
equations is3

Aµcl(x) = δµ+α(x−,x⊥) , ∇2
⊥α(x−,x⊥) = −ρA(x−,x⊥) , (2.2)

in lightcone gauge A− = 0.
In the CGC, the eikonal scattering of a high energy parton moving along the minus

lightcone direction in the background field of the small x gluons is described by a lightlike
Wilson line. For a fast moving quark propagating in the small x background field, one
defines the Wilson line in the fundamental representation as

Vij(x⊥) = P exp
(
ig

∫ ∞
−∞

dz−A+,a
cl (z−,x⊥)taij

)
, (2.3)

which physically corresponds to its color rotation. Here, ta are the generators of SU(3) in
the fundamental representation. The Wilson line resums to all orders multiple scatterings
between the quark and the small x gluons in the target, and ensures that the cross-section
satisfies unitarity in the high-energy limit. Analogously, the propagation of a gluon will
characterized by a Wilson line in the adjoint representation.

A generic observable O, such as a cross-section, in the CGC effective field theory
therefore depends on products of Wilson lines, and consequently, on the background field
Aµcl[ρa] for a given large x color charge configuration ρA. This color charge configuration is

3The solution in eq. (2.2) also satisfies the Lorenz gauge condition ∂µAµcl = 0.
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drawn from a stochastic gauge invariant distribution WY [ρA] defined at the rapidity scale
Y = ln(z) for a given typical z fraction of the projectile q− momentum probed by the
observable O. A more precise specification of this scale is discussed in section 3.3 when
we address the leading logarithmic high energy evolution induced by quantum corrections.
Ultimately, any observable needs to be averaged over these color charge configurations:

〈O〉Y =
∫
D[ρA]WY [ρA]O[ρA] . (2.4)

This classical CGC average represents the fact that the large x color sources are frozen on
the time scales of the small x gauge field dynamics.

2.2 Full CGC result

We now provide the formula for the inclusive dijet cross-section within the CGC effective
field theory. We work in the dipole frame in which the incoming photon γ?λ with virtuality
squared Q2 has a large q− component and zero transverse momentum, while the target
proton or nucleus has a large P+ component:

qµ = (−Q2/(2q−), q−,0⊥) , Pµ = (P+,M2/(2P+),0⊥) . (2.5)

The polarization of the photon is denoted by λ, with λ = 0 for a longitudinally polarized
photon and λ = ±1 for a transversely polarized photon.

At leading order, the virtual photon splits into a quark-antiquark pair that subsequently
interacts with the small x gluons of the target before fragmenting into two jets. The 4-
momenta of the quark and antiquark are denoted respectively by kµ1 and kµ2 and the
longitudinal momentum fractions with respect to the virtual photon are z1 = k−1 /q

− and
z2 = k−2 /q

−.
The fully differential leading order cross-section for inclusive production of two jets can

be written in the compact form4

dσγ?λ+A→qq̄+X

d2k1⊥d2k2⊥dη1dη2

∣∣∣∣∣
LO

=
αeme

2
fNcδ

(2)
z

(2π)6

∫
d8X⊥e

−ik1⊥·(x⊥−x′⊥)e−ik2⊥·(y⊥−y′⊥)

× ΞLO(x⊥,y⊥;x′⊥,y′⊥)RλLO(rxy, rx′y′) . (2.6)

In this expression, αem is the electromagnetic fine structure constant, e2
f is the sum of the

squares of the light quark fractional charges, and δ(2)
z = δ(1−z1−z2) is an overall longitudinal

momentum conserving delta function. The cross-section is provided in coordinate space
with an 8 dimensional integral, whose differential measure is represented as

d8X⊥ = d2x⊥d2x′⊥d2y⊥d2y′⊥ , (2.7)

with x⊥ (y⊥) the transverse coordinate at which the quark (antiquark) crosses the shockwave
in the amplitude (and similarly with prime coordinates for the complex conjugate amplitude).
We also denote differences of transverse spatial coordinates as

rxy ≡ x⊥ − y⊥ . (2.8)
4For a detailed derivation see e.g. section 2 in [1].
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In eq. (2.6), the integrand is factorized into a perturbative factor RλLO corresponding
to the QED splitting of the virtual photon into the quark-antiquark pair and the color
correlator ΞLO describing the interaction of the pair with the small x gluons of the target.
The perturbative factors are

RL
LO(rxy, rx′y′) = 8z3

1z
3
2Q

2K0(Q̄rxy)K0(Q̄rx′y′) , (2.9)

RT
LO(rxy, rx′y′) = 2z1z2

[
z2

1 + z2
2

] rxy · rx′y′
rxyrx′y′

Q̄2K1(Q̄rxy)K1(Q̄rx′y′) , (2.10)

respectively, for longitudinally and transversely polarized virtual photons. The effective
virtuality Q̄ is defined to be Q̄2 = z1z2Q

2. We note Kn(x) is the modified Bessel function
of second kind and order n.

The color correlator is a CGC average of the product of Wilson lines at some projectile
rapidity scale Y :

ΞLO(x⊥,y⊥;x′⊥,y′⊥) = 1
Nc

〈
Tr
[(
V (x⊥)V †(y⊥)− 1

) (
V (y′⊥)V †(x′⊥)− 1

)]〉
Y

(2.11)

=
〈
Qxy,y′x′ −Dxy −Dy′x′ + 1

〉
Y , (2.12)

where the dipole D and quadrupole Q operators are defined as

Dxy = 1
Nc

Tr
(
V (x⊥)V †(y⊥)

)
, (2.13)

Qxy,y′x′ = 1
Nc

Tr
(
V (x⊥)V †(y⊥)V (y′⊥)V †(x′⊥)

)
. (2.14)

The rapidity Y at which one evaluates the weight functional WY [ρA] in the CGC average is
arbitrary at leading order.5 The appropriate choice of Y at higher orders will be addressed
at length in section 3.3.

2.3 Correlation limit: TMD factorization

We turn now to a discussion of the leading order inclusive dijet cross-section in back-to-back
kinematics, and its relation with the so-called “correlation limit” [17, 18] of the “all-twist”
cross-section provided by the CGC formula eq. (2.6). This correlation limit, defined precisely
in the following, admits a TMD-like factorization involving the Weizsäcker-Williams (WW)
gluon distribution.

2.3.1 Back-to-back kinematics

To define back-to-back kinematics, we introduce as usual the momentum imbalance q⊥ and
the relative transverse momentum P⊥ by

q⊥ = k1⊥ + k2⊥ , (2.15)
P⊥ = z2k1⊥ − z1k2⊥ . (2.16)

5In phenomenological applications, one typically chooses Y = ln(1/xg), where xg is the typical momentum
fraction transferred from the target to the projectile (see for example [16, 25]).
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The back-to-back limit is defined by |q⊥| � |P⊥|. In order to study this limit at leading
order, it is convenient to introduce the transverse coordinates conjugate to P⊥ and q⊥ in
the integral (2.6):

u⊥ = x⊥ − y⊥ , (2.17)
b⊥ = z1x⊥ + z2y⊥ . (2.18)

The measure d8X⊥ is invariant under the change of variable (x⊥,y⊥)→ (u⊥, b⊥); the dijet
cross-section can therefore be expressed as

dσγ?λ+A→qq̄+X

d2P⊥d2q⊥dη1dη2

∣∣∣∣∣
LO

=
αeme

2
fNcδ

(2)
z

(2π)6

∫
d8X̃⊥e

−iP⊥·ruu′e−iq⊥·rbb′RλLO(u⊥,u′⊥)

× ΞLO(b⊥ + z2u⊥, b⊥ − z1u⊥; b′⊥ + z2u
′
⊥, b

′
⊥ − z1u

′
⊥) , (2.19)

with
d8X̃⊥ = d2u⊥d2u′⊥d2b⊥d2b′⊥ . (2.20)

2.3.2 Correlation limit in back-to-back kinematics

We will now aim to find the leading term in an expansion in powers of q⊥/P⊥ in eq. (2.19).
In coordinate space, the standard way to obtain this limit is to work in the “correlation”
limit |u⊥| � |b⊥|, |u′⊥| � |b

′
⊥| inside the integral over these transverse variables, and

expand the color correlator up to order u⊥u′⊥. The mathematical justification for this
procedure comes from the fact that u⊥ and P⊥ are conjugate variables, as are b⊥ and q⊥,
through the phases in eq. (2.19), and therefore |u⊥| ∼ 1/|P⊥| � |b⊥| ∼ 1/|q⊥|.

This correlation limit is known to correctly account for the leading (non power sup-
pressed) term in the q⊥/P⊥ expansion and all twists in Qs/q⊥, but fails to capture “genuine”
higher twist corrections to all orders in Qs/P⊥ as well as sub-leading “kinematic” twist cor-
rection of to all orders in q⊥/P⊥ [76–81]. Such kinematic twists can be incorporated using the
ITMD framework [82–84], which at LO interpolates between the TMD factorization regime
(Qs ∼ q⊥ � P⊥) [85, 86] and the high-energy factorization regime (Qs � q⊥ ∼ P⊥) [87–90].
In this paper, we will focus on the leading term in q⊥/P⊥ while including all twists in Qs/q⊥,
namely the TMD region. We leave for future work the interesting problems of extending the
ITMD framework to NLO, and comparisons with the high-energy factorization framework.6

To expand ΞLO to lowest order in u⊥ and u′⊥, it is convenient to start with its definition
in eq. (2.11); expanding the pair of Wilson lines,7 we first notice that

V (x⊥)V †(y⊥)− 1 = ui⊥V (b⊥)∂iV †(b⊥) +O(u2
⊥) , (2.21)

so that

ΞLO(x⊥,y⊥;x′⊥,y′⊥) ≈ ui⊥u
′j
⊥ ×

1
Nc

〈
Tr
[
V (b⊥)

(
∂iV †(b⊥)

) (
∂jV (b′⊥)

)
V †(b′⊥)

]〉
Y
.

(2.22)
6For recent studies within the high-energy factorization framework at NLO see e.g. [75, 91–94].
7We expand the Wilson lines as V (b⊥) − z1u

i
⊥∂

iV (b⊥) + O(u2
⊥), where the minus sign comes from

the metric. Furthermore, we also employ
(
∂iV (b⊥)

)
V †(b⊥) = −V (b⊥)∂iV †(b⊥), which follows from the

unitarity of Wilson lines.
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As shown in [18] (see also appendix F in [80]), the operator appearing in this expression is
nothing but the operator definition of the Weizsäcker-Williams gluon TMD distribution [95,
96]. We define this TMD distribution at small x as

GijY (q⊥) =
∫ d2b⊥d2b′⊥

(2π)4 e−iq⊥·(b⊥−b
′
⊥)ĜijY (b⊥, b′⊥) , (2.23)

where

ĜijY (b⊥, b′⊥) ≡ −2
αs

〈
Tr
[
V (b⊥)

(
∂iV †(b⊥)

)
V (b′⊥)

(
∂jV †(b′⊥)

)]〉
Y
. (2.24)

At small x, the WW gluon TMD implicitly depends on the saturation scale8 Qs, and resums
all powers in Qs/q⊥.

Employing the expansion in eq. (2.22) to the all twist result in eq. (2.19), one finds the
following factorized form for the leading term q⊥/P⊥ (while including all twists in Qs/q⊥)
of the differential cross-section in the back-to-back kinematics

dσγ?λ+A→qq̄+X

d2P⊥d2q⊥dη1dη2

∣∣∣∣∣
LO

= αeme
2
fαsδ

(2)
z H

λ,ij
LO (P⊥)×GijY (q⊥)+O

(
q⊥
P⊥

)
+O

(
Qs
P⊥

)
, (2.25)

with the leading order hard factor Hλ,ijLO (P⊥) defined as

Hλ,ijLO (P⊥) = 1
2

∫ d2u⊥
(2π)

d2u′⊥
(2π) e

−iP⊥·ruu′ui⊥u
′j
⊥R

λ
LO(u⊥,u′⊥) . (2.26)

Note that the definition of the WW gluon TMD in eq. (2.24) has a 1/αs prefactor cor-
responding to the high occupancy of WW gluons. As a result, the TMD factorized LO
expression in eq. (2.25) is of order αemαs.

To proceed further, it is customary to decompose the WW gluon TMD into a trace
and a traceless part, defining respectively the unpolarized9 WW gluon TMD G0

Y (q⊥) and
the linearly polarized one h0

Y (q⊥) as

GijY (q⊥) = 1
2δ

ijG0
Y (q⊥) + 1

2

[
2qi⊥q

j
⊥

q2
⊥
− δij

]
h0
Y (q⊥) . (2.27)

The computation of the hard factor for the linearly polarized WW gluon TMD involves the
azimuthal angle φ between P⊥ and q⊥. One can then perform the integrals in eq. (2.26)

8For discussions on the geometrical scaling of the WW distribution with the saturation scale, we refer
the reader to [97–99].

9As alluded to earlier, the conventional (unpolarized) WW distribution is the classical non-Abelian gluon
distribution in A+ = 0 lightcone gauge in the CGC EFT [33, 95, 96]. For the computation of the linearly
polarized WW distribution, see [19].
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analytically for both longitudinally and transversely polarized photons:

dσγ?L+A→qq̄+X

d2P⊥d2q⊥dη1dη2

∣∣∣∣∣
LO

= αeme
2
fαsδ

(2)
z ×

8(z1z2)3Q2P 2
⊥

(P 2
⊥ + Q̄2)4

×
[
G0
Y (q⊥) + cos(2φ)h0

Y (q⊥)
]
, (2.28)

dσγ?T+A→qq̄+X

d2P⊥d2q⊥dη1dη2

∣∣∣∣∣
LO

= αeme
2
fαsδ

(2)
z × z1z2(z2

1 + z2
2) P 4

⊥ + Q̄4

(P 2
⊥ + Q̄2)4

×
[
G0
Y (q⊥)− 2Q̄2P 2

⊥
P 4
⊥ + Q̄4 cos(2φ)h0

Y (q⊥)
]
. (2.29)

For later convenience, we also define the trace component of the hard factor as

H0,λ
LO(P⊥) ≡ 1

2H
λ,ii
LO (P⊥) =


8(z1z2)3Q2P 2

⊥
(P 2
⊥+Q̄2)4 for λ = L

z1z2(z2
1 + z2

2) P 4
⊥+Q̄4

(P 2
⊥+Q̄2)4 for λ = T .

(2.30)

Averaging over the azimuthal angle of P⊥ in eqs. (2.28) and (2.29), one sees that the terms
proportional to h0 cancel, meaning that the azimuthally averaged dijet cross-section does
not depend on the linearly polarized WW gluon TMD. This distribution has however an
imprint on the 〈cos(2φ)〉 anisotropy already at leading order. We will discuss the effects of
NLO corrections and soft gluon radiation on these expressions in section 4.

3 Update on NLO results for inclusive dijet production in DIS

In this section, we will summarize the principal results of the NLO computation of the
inclusive dijet cross-section in DIS presented in [1]. We will also take the opportunity to
update our results, correcting minor typos and elaborating on our analysis of the real NLO
impact factor following the recent study of dijet production in the photoproduction limit [54].
We will present in the main text the cross-section for longitudinally polarized virtual photons,
with the transversely polarized NLO cross-section provided in the appendix C.

3.1 Jet definition and small-R approximation

In order to obtain an infrared and collinear safe cross-section, one needs to define the final
state in terms of jets rather than partons. We will employ the jet definition introduced
in [100], as used in previous NLO studies of the jet cross-section at small x [1, 46, 49, 50].
This algorithm is in fact equivalent to the so called cone-jet algorithm [101, 102]. For a three-
parton final state, one first assigns to any pair of particles labeled i and k a four-momentum
pµJ using the standard E-scheme [103, 104]:

pµJ = pµi + pµk . (3.1)

If the distances in the rapidity-azimuth plane between pµi and pµJ and between pµk and pµJ are
both smaller than the jet radius parameter R, then the two partons i and k are combined
into a single jet with four-momentum pµJ :

∆φ2
iJ + ∆Y 2

iJ ≤ R2 and ∆φ2
kJ + ∆Y 2

kJ ≤ R2 , (3.2)
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with ∆φiJ and ∆YiJ the difference of azimuth and rapidity between the parton i and the
jet J in the laboratory frame.

In the small R limit, this condition can be more conveniently written in terms of the
collinearity variable Cik⊥ defined as

Cik⊥ = zi
zJ
pk⊥ −

zk
zJ
pi⊥ , (3.3)

where zJ = p−J /q
− is the jet longitudinal momentum fraction. One can then show that

eq. (3.2) is equivalent to

C2
ik⊥ ≤ R2p2

Jmin
(
z2
i

z2
J

,
z2
k

z2
J

)
, (3.4)

up to powers of R suppressed terms [46, 50, 105]. We will use this jet definition throughout
this paper, following our NLO computation in [1].

However one may wish to consider alternative jet algorithms that are more commonly
used nowadays such as the sequential recombination algorithms from the generalized kt
family [106, 107]. Two well-known examples are the C/A [108, 109] and anti-kt [110]
algorithms. In the small R approximation, the corresponding criterion in terms of the
collinearity variable is [105, 111, 112]

C2
ik⊥ ≤ R2p2

J

z2
i z

2
k

z4
J

, (3.5)

with the same E recombination scheme. In the narrow jet approximation, this criterion
works for all jet algorithms in the generalized kt family [111, 113]. For instance, this
condition is the one used in [54] as a proxy for the C/A algorithm and in [56] as the small
R limit of the more widely used anti-kt jet algorithm.

In the small R limit, all of these jet definitions are equivalent up to finite terms in αs
in the NLO impact factor. We provide in appendix D the corresponding expression for the
finite terms for all jet definitions in the generalized kt family. Note that this calculation also
demonstrates the equivalence between the criterion eq. (3.2) and the cone-jet algorithm
within the narrow jet approximation.

3.2 NLO cross-section

We shall now discuss the NLO impact factor for inclusive dijet production in DIS at small x.
The purpose of this subsection is two-fold: (i) we summarize the main results of [1], (ii)
we reorganize the different contributions to the NLO impact factor such that it will be
simpler to extract the terms that will be enhanced by large Sudakov-like logarithms in the
back-to-back limit. For the reader interested in the final result of this subsection, the relevant
formula is eq. (3.6), with individual terms specified by eqs. (3.8), (3.9), (3.12) and (3.13).
To avoid lengthy expressions, eq. (3.13) is further decomposed into eqs. (3.14), (3.15), (3.17)
for the virtual component and eqs. (3.21), (3.22), (3.23) for the real component.

The Feynman diagrams corresponding to the real and virtual amplitudes are shown10

in figure 1. This figure does not display the diagrams that can be obtained from quark-
antiquark interchange. We denote these diagrams using the same labels but with an

10In addition to these diagrams, there is a diagram corresponding to a one loop correction to the classical
shock wave background field. This one loop contribution has a piece that is enhanced by logarithms in x
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�⇤

R1

�⇤

R2

�⇤

SE1

�⇤

SE2

�⇤

SE3

�⇤

V1

�⇤

V2

�⇤

V3

Figure 1. Feynman diagrams that appear in the production of dijets at NLO. Top: real gluon
emission diagrams. Middle: self energy diagrams. Bottom: vertex correction diagrams. Diagrams
obtained from q ↔ q̄ interchange are not shown, and are labeled with an additional prime index,
for example, R2 → R′2. Only the diagrams in which the gluon does not scatter off the shockwave
contribute to the Sudakov double and single logarithms.

additional prime index. (For instance, diagram R′2 corresponds to a real gluon emission
from the antiquark after it scatters off the shockwave.) These diagrams were computed
explicitly in [1]. The calculations were performed using dimensional regularization in the
transverse plane d = 2→ d = 2− ε,11 and cut-off regularization along the minus lightcone
direction with the cut-off scale Λ−. The final result of [1] (summarized in section 8 of
that paper, specifically in eqs. (8.1) to (8.9)) is essentially decomposed into three terms
(cf. eq. (8.1) in [1]). The first term (labeled “IRC,i.f.” in [1]) comes from the cancellation
between the UV divergent component of SE1, the UV divergent diagrams SE2, SE3 and V2
and the in-cone divergent contributions from R2 × R2 and R′2 × R′2. The two other terms
come from the other real and virtual finite diagrams (including the finite contribution from
the self-energy SE1). This decomposition was sufficient in order to prove the UV and IR
finiteness of the NLO cross-section, as well as the factorization of rapidity divergences.12

which is absorbed in the rapidity evolution of the cross-section, as we will discuss later in this section. The
finite piece, which we shall also discuss further in section 5, contains the one loop β-function; its role is
therefore to replace the fixed QCD coupling by the running coupling [114]. The scale of the running coupling
for this process can however only be set at two loop order, which is part of the NNLO impact factor.

11We note that other works follow the convention d = 2→ d = 2− 2ε, which can be obtained from our
results by simply ε→ 2ε.

12In the Regge limit, rapidity divergences occur since we work with Wilson lines on the lightcone. We
regularize such divergence by introducing a longitudinal momentum cut-off Λ−, hence the divergence will be
traded by a large logarithm ln(Λ−). Throughout this manuscript, we will use the terms rapidity divergence
and large rapidity logarithms interchangeably.
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ΞLO(x⊥,y⊥;x′⊥,y′⊥) 〈1−Dxy −Dy′x′ +Qxy,y′x′〉
ΞNLO,1(x⊥,y⊥, z⊥;x′⊥,y′⊥) Nc

2 〈1−Dy′x′ +Qzy,y′x′Dxz −DxzDzy〉 − 1
2NcΞLO

ΞNLO,2(x⊥,y⊥, z⊥;x′⊥,y′⊥) Nc
2 〈1−Dy′x′ +Qxz,y′x′Dzy −DxzDzy〉 − 1

2NcΞLO

ΞNLO,3(x⊥,y⊥;x′⊥,y′⊥) Nc
2 〈1−Dxy −Dy′x′ +DxyDy′x′〉 − 1

2NcΞLO

ΞNLO,4(x⊥,y⊥, z⊥;x′⊥,y′⊥, z′⊥) Nc
2 〈1−DxzDzy −Dy′zDzx′ +Qxz,z′x′Qy′z′,zy〉 − 1

2NcΞLO

Table 1. Color correlators contributing to the next-to-leading order cross-section.

That said, in view of isolating the dominant contributions of the NLO impact factor
in the back-to-back limit (the large Sudakov logarithms), it will prove more convenient to
decompose the NLO cross-section in a different way, as

dσNLO =
(
dσR2×R2,sud2 + dσR2×R′2,sud2 + R2 ↔ R′2

)
+ dσsud1

+ dσR,no−sud + dσV,no−sud + ln
(
k−f
Λ−

)
HLL ⊗ dσLO , (3.6)

where we abbreviate

dσX ≡
dσγ?λ+A→dijet+X

d2k1⊥d2k2⊥dη1dη2

∣∣∣∣∣
X
. (3.7)

For obvious reasons, we now label the four-momenta of the two jets using the same kµ1 and
kµ2 labels as for the quark-antiquark pair.

The last term in eq. (3.6) corresponds to the rapidity divergence of the NLO cross-
section that will be addressed in the next subsection 3.3. It is proportional to ln(k−f /Λ−)
where Λ− is our longitudinal momentum cut-off that regulates the rapidity divergence and
k−f is an arbitrary rapidity factorization scale (similar in spirit to the transverse momentum
scale µR in collinear factorization). Even though it is not manifest in eq. (3.6), each term
in the decomposition eq. (3.6) depends on k−f , so that the full (Λ− regulator dependent)
NLO result given by eq. (3.6) is independent of k−f . In turn, the NLO impact factor defined
by dσNLO minus the ln(k−f /Λ−) term in eq. (3.6) is factorization scale dependent. We
emphasize that when one adds all the terms in eq. (3.6), except for the rapidity divergence
proportional to ln(k−f /Λ−), one gets exactly the same result as eq. (8.1) in [1].

As explained in section 3.3, the remaining logarithmic dependence in the rapidity
cut-off Λ− that appears in (3.6) is absorbed by renormalizing the operator ΞLO in the
leading order cross-section. The k−f dependence of the latter is then given by the JIMWLK
evolution equation.

A detailed derivation of this decomposition from the full NLO computation performed
in [1] is provided in appendix B. The meaning of each term in eq. (3.6) can be summarized
briefly as follows. The terms labeled by sud2 are the contributions which contain Sudakov
double logarithms, Sudakov single logarithms, as well as terms with no such logs in the
back-to-back limit. The double logarithms give the dominant contributions to the NLO
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impact factor in the back-to-back limit, where P⊥ � q⊥. Their expressions are

dσR2×R2,sud2 =
αeme

2
fNcδ

(2)
z

(2π)6

∫
d8X⊥e

−ik1⊥·rxx′−ik2⊥·ryy′RλLO(rxy, rx′y′)

× CFΞLO(x⊥,y⊥;x′⊥,y′⊥)× αs
π

∫ 1

0

dξ
ξ

[
1− e−iξk1⊥·rxx′

]
ln
(
k1⊥

2r2
xx′R

2ξ2

c2
0

)
, (3.8)

dσR2×R′2,sud2 =
αeme

2
fNcδ

(2)
z

(2π)6

∫
d8X⊥e

−ik1⊥·rxx′−ik2⊥·ryy′RλLO(rxy, rx′y′)

× ΞNLO,3(x⊥,y⊥;x′⊥,y′⊥)× (−αs)
π

∫ 1

0

dξ
ξ

[
1− e−iξk1⊥·rxy′

]
ln
(
P 2
⊥r

2
xy′ξ

2

z2
2c

2
0

)
, (3.9)

with the NLO, 3 color correlator defined by

ΞNLO,3(x⊥,y⊥;x′⊥,y′⊥) = Nc

2
〈
1−Dxy −Dy′x′ +DxyDy′x′

〉
− 1

2Nc
ΞLO(x⊥,y⊥;x′⊥,y′⊥) ,

(3.10)

and the constant
c0 = 2e−γE , (3.11)

where γE is the Euler-Mascheroni constant.
The R′2 ×R′2 and R′2 ×R2 “sud2” cross-sections can be obtained from eq. (3.8)–(3.9)

using quark-antiquark interchange. As suggested by our notations, these terms mainly
come from the product of diagrams R2 ×R2, R′2 ×R′2 or the interference diagrams R2 ×R′2,
R′2 × R2 (cf. figure 1). Indeed, among the real amplitudes, only the amplitudes R2 and R′2
have a soft gluon divergence since in the soft gluon limit, the internal quark (or antiquark
in the case of the amplitude R′2) propagator goes on-shell. This is a generic consequence of
soft gluon factorization in QCD at the amplitude level, which holds in our calculation as
can been explicitly checked from the expressions for the amplitude R2 and R′2 provided in
appendix B. See also [46, 50].

As shown in appendix B, in our calculation with a rapidity cut-off regulator, the soft
divergence appears as a ln2(Λ−) divergence which cancels at the cross-section level once
virtual corrections are included for IRC safe jet definitions. The finite leftover term depends
logarithmically on the ratio between P⊥/q⊥ in back-to-back kinematics, and therefore blows
up when P⊥ � q⊥.

The term labeled “sud1” contains single Sudakov-type logarithms in addition to Sudakov-
free terms. It is given by

dσsud1 =
αeme

2
fNcδ

(2)
z

(2π)6

∫
d8X⊥e

−ik1⊥·rxx′−ik2⊥·ryy′RλLO(rxy, rx′y′)×
αs
π

×
{
CFΞLO(x⊥,y⊥;x′⊥,y′⊥)

[
ln
(
zf
z1

)
ln
(

r2
xx′

|rxy||rx′y′ |

)
+ ln

(
zf
z2

)
ln
(

r2
yy′

|rxy||rx′y′ |

)]

+ ΞNLO,3(x⊥,y⊥;x′⊥,y′⊥)
[
ln
(
z1
zf

)
ln
(

r2
xy′

|rxy||rx′y′ |

)
+ ln

(
z2
zf

)
ln
(

r2
yx′

|rxy||rx′y′ |

)]}
.

(3.12)
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As manifest from this expression, it depends on the leading order and NLO3 color correlators.
This term comes from the leftovers from our rapidity divergence subtraction scheme and is
due to the nontrivial interplay between slow (aka “small x”) gluons and soft gluons. This
is why it depends on zf = k−f /q

−, where the scale k−f is a longitudinal factorization scale
used to isolate the leading logarithmic rapidity divergence. We will comment further on
these points in the next section.

Another advantage of the decomposition in eq. (3.6) is that the terms labeled sud2 and
sud1 depend on the polarization of the virtual photon only through the λ dependence of
the leading order perturbative factors RλLO. This factorization implies that the Sudakov
logarithms are universal with respect to the polarization of the virtual photon.

In eq. (3.6), the terms labeled “no − sud” do not contain any Sudakov logarithm as
P⊥/q⊥ →∞. For compactness, they are further decomposed according the color correlator
upon which they depend:

dσR/V,no−sud ≡ dσR/V,no−sud,LO + dσR/V,no−sud,NLO3 + dσR/V,no−sud,other . (3.13)

The term dσV,no−sud,LO depends on the polarization of the virtual photon through the hard
factor RλLO, and it reads

dσV,no−sud,LO (3.14)

=
αeme

2
fNcδ

(2)
z

(2π)6

∫
d8X⊥e

−ik1⊥·rxx′−ik2⊥·ryy′RλLO(rxy,rx′y′)ΞLO(x⊥,y⊥;x′⊥,y′⊥)

× αsCF
π

{
−3

4 ln
(
k1⊥

2k2⊥
2r2
xyr

2
x′y′

c4
0

)
−3 ln(R)+ 1

2 ln2
(
z1
z2

)
+ 11

2 +3ln(2)− π
2

2

}
.

Even though this term does not contain a Sudakov logarithm in the back-to-back limit, it
is enhanced by a logarithm of the jet radius from the −3/2 ln(R2) term inside the curly
bracket. This factor of −3/2 has a physical origin: it corresponds to the finite part of the
z-integrated DGLAP quark splitting function associated with hard collinear gluon emissions
from the quark and the antiquark. The all order resummation of such logarithms for small
jet radii can be performed systematically along the lines of [105, 115] using a DGLAP-like
evolution equation. The study of the interplay between the ln(R), ln(1/xBj) and Sudakov
resummations is beyond the scope of the present paper.

All the other terms in eq. (3.13) depend on the polarization of the virtual photon in a
more complicated way. We provide here the expressions for longitudinally polarized photons,
and the formulas for transversely polarized photons are given in appendix C. We have for
the virtual “no-sud” term proportional to ΞNLO,3:

dσλ=L
V,no−sud,NLO3 =

αeme
2
fNcδ

(2)
z

(2π)6

∫
d3X⊥e

−ik1⊥·rxx′−ik2⊥ryy′8z3
1z

3
2Q

2K0(Q̄rx′y′)

× αs
π

∫ z1

0

dzg
zg

{
K0(Q̄V3rxy)

[(
1− zg

z1

)2 (
1 + zg

z2

)
(1 + zg)ei(P⊥+zgq⊥)·rxyK0(−i∆V3rxy)

−
(

1− zg
2z1

+ zg
2z2
−

z2
g

2z1z2

)
e
i
zg
z1
k1⊥·rxyJ�

(
rxy,

(
1− zg

z1

)
P⊥,∆V3

)]

+K0(Q̄rxy) ln
(
zgP⊥rxy
c0z1z2

)
+ (1↔ 2)

}
ΞNLO,3(x⊥,y⊥;x′⊥,y′⊥) + c.c. , (3.15)
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with Q̄2
V3 = z1z2(1 − zg/z1)(1 + zg/z2)Q2 and ∆2

V3 = (1 − zg/z1)(1 + zg/z2)P 2
⊥ and the

function J�, defined as

J�(r⊥,K⊥,∆) =
∫ d2l⊥

(2π)
2l⊥ ·K⊥ eil⊥·r⊥

l2⊥ [(l⊥ −K⊥)2 −∆2 − iε]
. (3.16)

This integral can be computed using the Schwinger parametrization; we refer the reader
to appendix J in [1] for an expression for this integral that is suitable for numerical
evaluation. The term proportional to ln(zgP⊥rxy/(c0z1z2)) in eq. (3.15) ensures that the
zg integral is finite by subtracting the zg → 0 singularity. We shall also use the notation
(1 ↔ 2) as a shorthand for quark-antiquark interchange which amounts to switch the
four-momenta k1 ↔ k2 of the “quark-jet” and the “antiquark jet”, switch the transverse
coordinates x⊥ ↔ y⊥ (x′⊥ ↔ y′⊥), and take the complex conjugate of the corresponding
color correlator.

The term labeled “no-sud, other” reads13

dσλ=L
V,no−sud,other =

αeme
2
fNcδ

(2)
z

(2π)6

∫
d8X⊥e

−ik1⊥·rxx′−ik2⊥ryy′8z3
1z

3
2Q

2K0(Q̄rx′y′)
∫ z1

0

dzg
zg

× αs
π

∫ d2z⊥
π

{
1
r2
zx

[(
1− zg

z1
+
z2
g

2z2
1

)
e
−i zg

z1
k1⊥·rzxK0(QXV )−Θ(zf −zg)K0(Q̄rxy)

]
ΞNLO,1

− 1
r2
zx

(1− zg
z1

+
z2
g

2z2
1

)
e
− r2

zx
r2
xye

γE K0(Q̄rxy)−Θ(zf −zg)e
− r2

zx
r2
xye

γE K0(Q̄rxy)

CFΞLO

− rzx ·rzy
r2
zxr

2
zy

[(
1− zg

z1

)(
1+ zg

z2

)(
1− zg

2z1
− zg

2(z2 +zg)

)
e
−i zg

z1
k1⊥·rzxK0(QXV )

−Θ(zf −zg)K0(Q̄rxy)
]
ΞNLO,1 +(1↔ 2)

}
+c.c. . (3.17)

This equation involves two additional color correlators labeled ΞNLO,1 and ΞNLO,2 (in the
(1↔ 2) interchange term) given by

ΞNLO,1(x⊥,y⊥, z⊥;x′⊥,y′⊥) = Nc

2
〈
1−Dy′x′ +Qzy,y′x′Dxz −DxzDzy

〉
Y0

− 1
2Nc

ΞLO(x⊥,y⊥;x′⊥,y′⊥) , (3.18)

ΞNLO,2(x⊥,y⊥, z⊥;x′⊥,y′⊥) = Nc

2
〈
1−Dy′x′ +Qxz,y′x′Dzy −DxzDzy

〉
Y0

− 1
2Nc

ΞLO(x⊥,y⊥;x′⊥,y′⊥) , (3.19)

13Note that CFΞLO also appears in dσV,other as the UV regulator of the self-energy crossing the SW. For
this reason, it does not make sense to isolate this contribution from the SE1 diagram which has the color
structure NLO, 1.
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as well as the qq̄g effective dipole size XV defined as

X2
V = z2(z1 − zg)r2

xy + zg(z1 − zg)r2
zx + z2zgr

2
zy . (3.20)

It is also infrared finite, and has no rapidity divergence. Indeed, the leading logarithmic
1/zg divergence is systematically subtracted thanks to the Θ-function Θ(zf − zg). This
concludes our summary of the virtual cross-section contributing at most finite αs corrections
in the back-to-back limit.

We turn now to the “no-sud” real cross-section. Since this cross-section depends on the
selection cuts imposed on the final state to define the dijet cross-section, we will provide the
formula for the qq̄g “no-sud” cross-section and leave the integration over the three-body
phase-space (according to the dijet selection) for a future numerical study of the NLO
impact factor. We emphasize nevertheless that the “no-sud” qq̄g cross-section that we
present in this section is free of any divergence, as well as large back-to-back logarithms,
for all kinematic regions of the final state.

dσγ
?
L+A→qq̄g+X

R,no−sud,LO =
αeme

2
fNc

(2π)8

∫
d8X⊥e

−ik1⊥·rxx′−ik2⊥·ryy′ (4αsCF )ΞLO(x⊥,y⊥;x′⊥,y′⊥)

× e−ikg⊥·rxx′(
kg⊥ − zg

z1
k1⊥

)2

{
8z1z

3
2(1− z2)2Q2

(
1 + zg

z1
+

z2
g

2z2
1

)
K0(Q̄R2rxy)K0(Q̄R2rx′y′)δ(3)

z

−RL
LO(rxy, rx′y′)Θ(z1 − zg)δ(2)

z

}
+ (1↔ 2) , (3.21)

with δ(3)
z = δ(1−z1−z2−zg) and Q̄2

R2 = z2(1−z2)Q2. To get the inclusive dijet cross-section,
one should ensure that the phase-space integration excludes the domain in which the quark
and the gluon lie inside the same jet, since this contribution has already been included in
dσV,no−sud,LO. The “no-sud” component of R2 × R′2 is given by

dσγ
?
L+A→qq̄g+X

R,no−sud,NLO3
=
αeme

2
fNc

(2π)8

∫
d2X⊥e

−ik1⊥·rxx′−ik2⊥·ryy′ (−4αs)ΞNLO,3(x⊥,y⊥;x′⊥,y′⊥)

× e
−i zg

z1
k1⊥·rxy′

l2⊥

{
8z2

1z
2
2(1− z2)(1− z1)Q2K0(Q̄R2rxy)K0(Q̄R2′rx′y′)

[
1 + zg

2z1
+ zg

2z2

]

×e−il⊥·rxy′ l⊥ · (l⊥ +K⊥)
(l⊥ +K⊥)2 δ(3)

z −RL
LO(rxy, rx′y′)Θ

(
c2

0
r2
xy′
≥ l2⊥ ≥K2

⊥

)
Θ(z1 − zg)δ(2)

z

}
+ (1↔ 2) , (3.22)

with l⊥ = kg⊥ − zg/z1k1⊥ and K⊥ = zg/(z1z2)P⊥. We will demonstrate in section 5
that eqs. (3.21) and (3.22) are power suppressed in the back-to-back limit. The real term
without Sudakov logarithms, independent of ΞLO and ΞNLO,3, coming from real diagrams
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in which the gluon crosses the shockwave reads14

dσγ
?
L+A→qq̄g+X

R,no−sud,other = αeme
2
fNcδ

(3)
z

(2π)8

∫
d8X⊥e

−ik1⊥·rxx′−ik2⊥·ryy′8z3
1z

3
2Q

2
∫

d2z⊥
π

d2z′⊥
π

e−ikg⊥·rzz′

αs

{
−rzx ·rz′x′

r2
zxr2

z′x′
K0(QXR)K0(Q̄R2rw′y′)

(
1+ zg

z1
+ z2

g

2z2
1

)
ΞNLO,1(x⊥,y⊥,z⊥;w′⊥,y′⊥)

+ rzy ·rz′x′

r2
zyr2

z′x′
K0(QXR)K0(Q̄R2′rw′y′)

(
1+ zg

2z1
+ zg

2z2

)
ΞNLO,1(x⊥,y⊥,z⊥;w′⊥,y′⊥)

+ 1
2
rzx ·rz′x′

r2
zxr2

z′x′
K0(QXR)K0(QX ′R)

(
1+ zg

z1
+ z2

g

2z2
1

)
ΞNLO,4(x⊥,y⊥,z⊥;x′⊥,y′⊥,z′⊥)

− 1
2
rzy ·rz′x′

r2
zyr2

z′x′
K0(QXR)K0(QX ′R)

(
1+ zg

2z1
+ zg

2z2

)
ΞNLO,4(x⊥,y⊥,z⊥;x′⊥,y′⊥,z′⊥)

+(1↔ 2)+c.c.
}
− αeme

2
fNcδ

(2)
z

(2π)8 αsΘ(zf−zg)×“slow” . (3.23)

The subtraction term labeled “slow” is given by the zg → 0 limit of the formula; the gluon
integrated cross-section is therefore finite when the Λ− regulator goes to 0. The associated
counterterm is moved into the ln(k−f /Λ−) component of the full cross-section in eq. (3.6).
In eq. (3.23), one encounters the color correlator ΞNLO,4 defined by

ΞNLO,4(x⊥,y⊥, z⊥;x′⊥,y′⊥, z′⊥) = Nc

2
〈
Qz′x′;xzQzy;y′z′ −DxzDzy −Dy′z′Dz′x′ + 1

〉
Y0

− 1
2Nc

ΞLO(x⊥,y⊥;x′⊥,y′⊥) , (3.24)

as well as the variables

X2
R = z1z2r

2
xy + z1zgr

2
zx + z2zgr

2
zy , (3.25)

w⊥ = (z1x⊥ + zgz⊥)/(z1 + zg) . (3.26)

This concludes our discussion of the terms displayed in the decomposition eq. (3.6) of the
inclusive dijet cross-section at NLO.

3.3 JIMWLK factorization at leading logarithmic accuracy

In this section, we shall discuss the rapidity divergent term in the full NLO cross-section
given in eq. (3.6), and the associated rapidity factorization which leads to the JIMWLK
evolution equation. This rapidity divergent term is proportional to ln(zf/z0) = ln(k−f /Λ−)
and can be extracted diagram-by-diagram or color structure-by-color structure. For instance,
the rapidity divergent term associated with ΞLO and ΞNLO,3 is given by eq. (3.12) with the
replacement z1, z2 → z0 and an overall minus sign. (See for instance the discussion leading
up to eq. (B.26) and eq. (B.32) in appendix B.)

In order to illustrate how the terms proportional to ln(zf/z0) in the NLO cross-section
combine to give the leading logarithmic evolution of the leading order color structure, let us
focus on the rapidity divergence associated with the LO color structure. Using the identity

1
π

∫
d2z⊥

[
rzx · rzx′
r2
zxr

2
zx′
− rzx · rzy
r2
zxr

2
zy

]
= ln

(
r2
xy

r2
xx′

)
, (3.27)

14The prefactors of 1/2 in the third and fourth terms in the brackets in eq. (3.23) are introduced to avoid
overcounting due to quark-antiquark interchange and complex conjugation.

– 18 –



J
H
E
P
1
1
(
2
0
2
2
)
1
6
9

in eq. (3.12) (with again z1, z2 → z0 and an overall minus sign) to reconstruct JIMWLK
kernels, one can write the slow divergence associated with the LO color structure as

dσLO,slow =
αeme

2
fNcδ

(2)
z

(2π)6

∫
d8X⊥RλLO(rxy,rx′y′)e−ik1⊥·rxx′−ik2⊥·ryy′ αsCF

π2 ln
(
k−f
Λ−

)

×
∫

d2z⊥

[
rzx ·rzx′
r2
zxr

2
zx′
− rzx ·rzy
r2
zxr

2
zy

+ rzy ·rzy
′

r2
zyr

2
zy′
−
rzx′ ·rzy′
r2
zx′rzy′

]
ΞLO(x⊥,y⊥;x′⊥,y′⊥) ,

(3.28)

and similarly for dσNLO3,slow for the leading logarithmic rapidity divergence associated with
the color structure ΞNLO,3. For the other color correlators which depend explicitly on z⊥,
the kernel is already manifest in the subtracted terms in eq. (3.23) and eq. (3.17), which
must now be added here with the other rapidity divergent contributions. As shown in [1],
combining all the ln(zf/z0) divergent components of the diagrams together, one finds that
the rapidity divergence reads as

dσslow =
αeme

2
fNcδ

(2)
z

(2π)6 ln
(
k−f
Λ−

)
αsNc

4π2

∫
d8X⊥e

−ik1⊥·rxx′−ik2⊥·ryy′RλLO(rxy,rx′y′)

×
〈∫

d2z⊥

{
r2
xy

r2
zxr

2
zy

(2Dxy−2DxzDzy+DzyQy′x′,xz+DxzQy′x′,zy−Qxy,y′x′−DxyDy′x′)

+
r2
x′y′

r2
zx′r

2
zy′

(2Dy′x′−2Dy′zDzx′+Dzx′Qxy,y′z+Dy′zQxy,zx′−Qxy,y′x′−DxyDy′x′)

+ r2
xx′

r2
zxr

2
zx′

(Dzx′Qxy,y′z+DxzQy′x′,zy−Qxy,y′x′−Dxx′Dy′y)

+
r2
yy′

r2
zyr

2
zy′

(Dy′zQxy,zx′+DzyQy′x′,xz−Qxy,y′x′−Dxx′Dy′y)

+
r2
xy′

r2
zxr

2
zy′

(Dxx′Dy′y+DxyDy′x′−Dzx′Qxy,y′z−DzyQy′x′,xz)

+
r2
x′y

r2
zx′r

2
zy

(Dxx′Dy′y+DxyDy′x′−Dy′zQxy,zx′−DxzQy′x′,zy)
}〉

Y

. (3.29)

Remarkably, as shown in [97], the full structure of these color correlators can be recovered
by the action of the leading log JIMWLK Hamiltonian

HLL ≡
1
2

∫
d2u⊥d2v⊥

δ

δA+,a
cl (u⊥)

ηab(u⊥,v⊥) δ

δA+,b
cl (v⊥)

, (3.30)

on the leading order dijet cross-section, or more precisely, on the leading order color structure
ΞLO, since it is the only object which depends on Acl. The η kernel15 in the Hamiltonian is

15This kernel corresponds to the ln(1/x) enhanced piece of the one loop correction to the classical
shockwave background field that we discussed previously in section 2.
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defined to be

ηab(u⊥,v⊥) = 1
π

∫ d2z⊥
(2π)2

(u⊥ − z⊥)(v⊥ − z⊥)
(u⊥ − z⊥)2(v⊥ − z⊥)2

× [1 + U †(u⊥)U(v⊥)− U †(u⊥)U(z⊥)− U †(z⊥)U(v⊥)]ab , (3.31)

where the U are adjoint lightlike Wilson line counterparts of the fundamental V ’s we have
been working with thus far.

One can therefore write

dσslow = ln
(
k−f
Λ−

)
HLL ⊗ dσLO , (3.32)

completing our discussion of eq. (3.6).
How one addresses the logarithmic dependence on the cut-off Λ− in the NLO dijet

cross-section is similar to the treatment of logarithmic collinear divergences in standard
collinear factorization, where they are absorbed into nonperturbative parton distribution
functions (PDFs). Likewise, as noted in section 2.2, the color correlator ΞLO at the scale Y0
(= ln(z0)) is nonperturbative, and model dependent, and the value of Y0 itself is arbitrary
at leading order. This nonperturbative color correlator Ξ(0)

LO at the scale Y0 absorbs the
logarithmic divergence when Λ− → 0, allowing us to define the color correlator at the
factorization scale Yf = ln(zf ) as

ΞLO(X⊥|Yf ) = Ξ(0)
LO(X⊥|Y0) +HLL ⊗ Ξ(0)

LO(X⊥) ln
(
zf
z0

)
+O(α2

s) . (3.33)

We have used here the short form notation

X⊥ = (x⊥,y⊥;x′⊥,y′⊥) ,

to represent all the transverse coordinates.
The requirement that the NLO cross-section be independent of the factorization

scale zf at leading logarithmic accuracy in the rapidity evolution generates the JIMWLK
renormalization group (RG) equation:

∂ΞLO(X⊥|Yf )
∂Yf

= HLL ⊗ ΞLO(X⊥|Yf ) . (3.34)

More generally, this RG procedure applies to the expectation value of any operator
averaged over the CGC weight functional, and the previous equation can be written in the
more general form

∂WLL
Yf

[ρA]
∂Yf

= HLLW
LL
Yf

[ρA] , (3.35)

which can be interpreted as the renormalization, induced by small x evolution, of the
nonperturbative weight functional specifying the distribution of color sources ρA in the
gluon saturation regime.
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Thus at leading logarithmic accuracy in x, the full LO+NLO inclusive DIS dijet
cross-section in the CGC EFT can be expressed as

dσLO+NLO =
∫
D[ρA]WLL

Yf
[ρA] (dσLO + αsdσNLO,i.f.) , (3.36)

with the NLO impact factor defined as the finite O(αs) term after factorization of the
rapidity divergence:16

αsdσNLO,i.f. ≡
(
dσR2×R2,sud2 +dσR2×R′2,sud2 +R2↔R′2

)
+dσsud1 +dσR,no−sud +dσV,no−sud .

(3.37)
Typical choices [47, 54, 68] for Yf in eq. (3.36) are Yf = ln(min(z1, z2)) or ln(z1z2), with the
only requirement that αs ln(z1/zf ), αs ln(z2/zf )� 1, ensuring the remaining logarithms in
the impact factor are pure O(αs) corrections. With this imposed, the sensitivity of the
cross-section to the choice Yf is parametrically of higher order in αs and can be used to
gauge the theoretical uncertainties of our result.

Assuming that rapidity factorization holds at next-to-leading logarithmic accuracy,
eq. (3.36) can be promoted to NLL accuracy using the available NLL JIMWLK evolution
equation and the resulting resummed WNLL

Yf
weight function [116, 117].

Finally, we comment on the initial conditions to the evolution equation eq. (3.35). A
physically motivated model of the nonperturbative distribution of color sources at small x
is the McLerran-Venugopalan (MV) model [95, 96], which has a robust justification for very
large nuclei.17

In practice, one solves eq. (3.34) up to Yf using the MV model or a different initial
nonperturbative distribution at the rapidity scale Y0 = ln(z0). The minus momentum
fraction z0 can be related to a fractional plus momentum of the target x0P

+ (with x0 � 1),
by noting that for real gluon emission from the projectile dipole, the on-shell condition
gives 2k+

g k
−
g = kg⊥

2. The condition k+
g ≤ x0P

+ then gives

k−g = kg⊥
2

2k+
g
≥ Q2

0
2x0P+ =⇒ zg ≥ z0 = Q2

0
Q2

xBj
x0

(3.38)

where we have used 2q−P+ = Q2/xBj and assumed that the transverse momentum of the
gluon is larger than a fixed transverse scale Q0 of order of ΛQCD for a proton or the initial
saturation momentum of a large nucleus provided that x0 is small enough.18 Eq. (3.38)
provides the typical value for the initial scale Y0 = ln(z0) of the rapidity evolution, which
accounts for the xBj dependence of the cross-section.

We now turn to discussing the further improvement in computational accuracy of
the back-to-back dijet cross-section at this order that results from the identification and
resummation of large Sudakov logarithms.

16Note that the various color correlators entering inside dσLO and dσNLO,i.f. should be defined without
the 〈[. . .]〉Y CGC average since this is then performed explicitly in eq. (3.36).

17An alternative approach to determine the initial conditions for smaller nuclei and at larger values of x
has been followed in [118, 119], where the two-point, three-point and four-point function of color charge
correlators is determined perturbatively from the lightcone wave-functions of its valence quarks.

18A typical choice in small x studies is x0 = 0.01, corresponding to a value where logarithms in x0 are
large enough to ensure αS ln(1/x0) ∼ O(1).
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4 Sudakov logarithms in back-to-back kinematics at NLO

In the previous section, we provided a detailed update on our results in [1] for the NLO dijet
impact factor. Our purpose was two-fold: firstly, we corrected typos. Secondly, we wrote
the impact factor in a manner that makes it easier to extract the large Sudakov logarithms
that appear in the back-to-back limit of the full NLO inclusive dijet cross-section.

In this section, we turn to the principal focus of this paper, the NLO inclusive dijet
cross-section in DIS at small x in the back-to-back limit. We will compute, for finite Nc,
the large double and single Sudakov logarithms

αs ln2
(
P⊥
q⊥

)
, αs ln

(
P⊥
q⊥

)
, (4.1)

that arise when P⊥ � q⊥ in the NLO impact factor. These contributions are the dominant
ones in the back-to-back limit of the impact factor and are particularly important in order
to address the relative importance of saturation effects and soft gluon radiation in the
suppression of the back-to-back peak in dijet azimuthal correlations.

This section is divided into four subsections. We will first discuss the state-of-the-art
literature on the back-to-back limit of inclusive dijet production at NLO at small x. We
will then present our computation of the Sudakov logarithms. Somewhat surprisingly, we
first find that the coefficient of the double logarithm is positive, which is at odds with
the physical expectation of Sudakov suppression which would give the opposite sign. We
trace the root of the problem to the proper treatment of the BFKL kernel generating the
leading logarithmic evolution in x of the WW gluon TMD, when one imposes k−g and k+

g

ordering [68, 69, 120, 121], as required in the back-to-back kinematics. Without proper scale
choice, the BFKL equation describing the leading twist (in inverse powers of Q2) energy
evolution, to leading logarithmic accuracy in x in perturbative QCD, generates large double
transverse logarithms; this problem becomes manifest in the unphysical behavior of next-to-
leading-log (NLL) BFKL evolution [122, 123]. However the BFKL kernel can be modified
so as to resum such large double logs, leading to a NLL kernel that is significantly more
stable [63, 65, 66]. Likewise, the positive Sudakov contribution originates from improper
scale choice in small x evolution; this becomes manifest already at leading log on account
of the presence of a hard scale in back-to-back kinematics. We will discuss in section 4.3
the interplay of the collinear improvement of the rapidity evolution of the WW TMD with
Sudakov effects. Lastly, we discuss our results for Sudakov logarithms at NLO and comment
on their resummation in the TMD formalism at small x.

4.1 Sudakov state-of-the-art at small x

We begin by reviewing the state of the art on the back-to-back limit of inclusive dijet
production in DIS at small Bjorken x. The Sudakov double logarithms in these kinematics
were first obtained in [20]; their derivation was based on the similarities with the problem of
Higgs boson production in proton-nucleus collisions in the limit of large ratio M2/k2

⊥ where
M and k⊥ are the mass and the transverse momentum of the Higgs boson, respectively.
For the dijet case, the authors found that the NLO cross section up to the leading double
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Sudakov logarithm takes the form

∫ dφ
2π

dσγ?λ+A→dijet+X

d2P⊥d2q⊥dη1dη2

∣∣∣∣∣
NLO

= αeme
2
fαsδ

(2)
z H

0,λ
LO(P⊥)×

∫ d2b⊥d2b′⊥
(2π)4 e−iq⊥·rbb′

×
[
1− αsNc

4π ln2
(
P 2
⊥r

2
bb′

c2
0

)
+O (αs ln)

]
Ĝ0
Y (b⊥,b′⊥) , (4.2)

where the O(αs ln) term contains the sub-leading single logarithmic corrections ∝
αs ln(P 2

⊥r
2
bb′) as well as the finite terms ∝ αs. With reference to our previous discus-

sion in section 2.3.2, note that this is the cross-section averaged over the azimuthal angle
of P⊥ w.r.t. q⊥, which explains why only the unpolarized WW gluon TMD appears. The
derivation of this result is performed starting from the TMD factorization framework in the
back-to-back limit.

In our approach, we begin with general kinematics and do not a priori assume TMD
factorization at NLO. We find that the manner in which infrared divergences cancel between
real and virtual diagrams in our case differs from the approach in [20]. In particular, we
do not find that the virtual diagrams V1 and SE1 (in which the virtual gluon crosses
the shockwave) contribute to the Sudakov logarithms via the cancellation of infrared
divergences. In our calculation, the soft infrared divergences cancel separately among
the virtual (between diagrams SE2,V2 and the UV singular component of SE1) and real
corrections (between in-cone and out-cone contributions) for the diagrams proportional to
the leading order color correlator (the leading Nc contribution in the terminology of [20]). For
the diagrams proportional to ΞNLO,3 (the 1/Nc suppressed terms in the terminology of [20]),
the cancellation occurs between the virtual diagram V3× LO and the real diagram R2×R′2.
We refer the reader to appendix B for more details on the mechanism of cancellations in
our computation.

In this respect, our approach is closer to the recent study in [54], which addresses
the back-to-back limit of inclusive dijet photoproduction at small x. We reach similar
conclusions as the authors of this paper, namely the importance of the interplay between
the need to go beyond leading logarithmic JIMWLK factorization with the imposition of
kinematic constraints on the rapidity evolution that are necessary to recover the correct
structure of the Sudakov double logarithm. We however go beyond [54] by computing a more
general process (their results in the photoproduction limit are obtained from the Q2 → 0
limit of our γ?T → dijet + X cross-section) which allows us to compute the back-to-back
results for both transversely and longitudinally polarized virtual photons. We also go
beyond their large Nc results by obtaining not only the Sudakov double logarithm at finite
Nc but the single logarithms as well, in the small R approximation. In the more general
kinematics that we consider, we are further able to compute19 the Sudakov logarithms
associated with the linearly polarized WW gluon TMD h0

Y (q⊥).

19These contributions vanish in the photoproduction limit (at leading order) because of the Q̄ factor in
front of the cos(2φ) asymmetry in eq. (2.29).
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4.2 Correlation limit of the NLO impact factor

In this section, we will compute the back-to-back limit |P⊥| � |q⊥| of the NLO impact
factor αsdσNLO,i.f. given by the sum of the terms(

dσR2×R2,sud2 + dσR2×R′2,sud2 + R2 ↔ R′2
)

+ dσsud1 + dσR,no−sud + dσV,no−sud . (4.3)

Since we anticipate the Sudakov logarithms to be proportional to the LO operator GijY ,
we will focus on the terms which are proportional to the color correlators ΞLO and ΞNLO,3
since these are the only correlators which reduce to the WW gluon distribution in the
correlation limit (without further assumptions). We will now proceed by first computing the
contributions in the impact factor coming from the “sud2” term in eq. (4.3) and subsequently
the “sud1” term.

4.2.1 Calculation of the Sudakov double logarithms

Contributions depending on ΞLO. We first take the back-to-back limit of the term
labeled dσR2×R2,sud2 in our NLO impact factor. The color structure of this contribution is
proportional to ΞLO.

In the aforementioned term, we perform the change of variables

(k1⊥,k2⊥)→ (P⊥, q⊥) ; (x⊥,y⊥)→ (u⊥, b⊥)

in the integrands, and then take the correlation limit, to extract the leading term in powers
of then q⊥/P⊥ expansion of the cross-section. We neglect corrections of order Qs/P⊥ as well.

In particular, we have already seen that to leading power in q⊥/P⊥, one can approximate

ΞLO(x⊥,y⊥;x′⊥,y′⊥) ≈ αs
2Nc

ui⊥u
′j
⊥ × Ĝ

ij
Yf

(b⊥, b′⊥) , (4.4)

ĜijYf (b⊥, b′⊥) = −2
αs

〈
Tr
(
V (b⊥)∂iV †(b⊥)V (b′⊥)∂jV †(b′⊥)

)〉
Yf
, (4.5)

inside the NLO impact factor. The color correlator is evaluated at the rapidity factorization
scale Yf = ln(zf ) following our discussion in section 3.3. Finally, one can replace k1⊥ by
P⊥, k2⊥ by −P⊥, and rxx′ , ryy′ by rbb′ in the back-to-back limit.

After these manipulations, we obtain for the so-called “sud2” contribution:

dσR2×R2,sud2 = αemαse
2
fδ

(2)
z H

λ,ij
LO (P⊥)

∫ d2b⊥d2b′⊥
(2π)4 e−iq⊥·rbb′ ĜijYf (b⊥, b′⊥) (4.6)

× αsCF
π

∫ 1

0

dξ
ξ

[
1− e−iξP⊥·rbb′

]
ln
(
P 2
⊥r

2
bb′R

2ξ2

c2
0

)
+O

(
R2,

q⊥
P⊥

,
Qs
P⊥

)
.

For simplicity, we shall drop from now on the order of magnitude of the neglected terms
but one should keep in mind that these expressions neglect powers of R, powers of q⊥/P⊥
and powers of Qs/P⊥.

To proceed further, it is convenient to simplify the tensor structure of this expression.
Firstly due to translational invariance, Ĝij only depends on rbb′ = b⊥ − b′⊥ and does not
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depend on the impact parameter s⊥ = 1
2(b⊥ + b′⊥). One can then write, with S⊥ denoting

the transverse area of the target,∫ d2b⊥d2b′⊥
(2π)4 e−iq⊥·rbb′ ĜijYf (b⊥, b′⊥) = S⊥

∫ d2rbb′

(2π)4 e
−iq⊥·rbb′ ĜijYf (rbb′) , (4.7)

and decompose the gluon distribution ĜijYf (rbb′) into trace and traceless components,

ĜijYf (rbb′) = 1
2δ

ijĜ0
Yf

(rbb′) + 1
2

(
2ribb′r

j
bb′

r2
bb′

− δij
)
ĥ0
Yf

(rbb′) . (4.8)

One should keep in mind that the unpolarized and linearly polarized WW gluon distributions
in b⊥-space depend only on the modulus of rbb′ . Note also that Ĝ0(rbb′) and ĥ0(rbb′) are the
Fourier transforms of their momentum space counterparts G0(q⊥) and h0(q⊥) (discussed
previously in section 2.3.2), respectively,

G0
Y (q⊥) = S⊥

(2π)2

∫ d2rbb′

(2π)2 e
−iq⊥·rbb′ Ĝ0

Y (rbb′) , (4.9)

h0
Y (q⊥) = S⊥

(2π)2

∫ d2rbb′

(2π)2 e
−iq⊥·rbb′ cos (2θ) ĥ0

Y (rbb′) , (4.10)

with θ the angle between q⊥ and rbb′ .
It is then straightforward to obtain the NLO corrections from the “sud2” term, for

both the unpolarized and linearly polarized WW gluon TMDs:

dσλ=L
R2×R2,sud2 = αemαse

2
fδ

(2)
z H

0,λ=L
LO (P⊥)

∫ d2rbb′

(2π)4 e
−iq⊥·rbb′

[
Ĝ0
Yf

(rbb′) + cos(2φ̂)ĥ0
Yf

(rbb′)
]

× αsCF
π

∫ 1

0

dξ
ξ

[
1− e−iξ|P⊥||rbb′ | cos(φ̂)

]
ln
(
P 2
⊥r

2
bb′R

2ξ2

c2
0

)
, (4.11)

where φ̂ is the azimuthal angle between P⊥ and rbb′ . (We absorbed here the target area
S⊥ in the TMD distributions.) In order to simplify the φ̂ dependence of this expression, we
shall expand the azimuthal dependence of the cross-section into its Fourier harmonics:

dσγ?λ+A→dijet+X

d2P⊥d2q⊥dη1dη2
= dσ(0),λ(P⊥, q⊥, η1, η2) + 2

∞∑
n=1

dσ(n),λ(P⊥, q⊥, η1, η2) cos(nφ) , (4.12)

with φ the azimuthal angle between P⊥ and q⊥. Because of the φ↔ −φ symmetry, only
cosine terms appear in the Fourier decomposition. Furthermore, due to quark anti-quark
symmetry, the odd harmonics in the Fourier expansion vanish identically.20

To illustrate the emergence of Sudakov type logarithms, and the interplay between the
contributions to the azimuthal anisotropy due to the linearized WW TMD, and that due
to soft gluon radiation, we compute the first nonvanishing dσ(0),L and dσ(2),L coefficients

20Recall that under quark anti-quark interchange, k1⊥ ↔ k2⊥ and z1 ↔ z2; thus P⊥ → −P⊥ and
q⊥ → q⊥ (or equivalently φ→ φ+ π).
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for a longitudinally polarized virtual photon. The former is simply the inclusive dijet
cross-section averaged over the azimuthal angle of P⊥ w.r.t. q⊥:

dσ(0),λ = 1
2π

∫ 2π

0
dφ dσγ?λ+A→dijet+X

d2P⊥d2q⊥dη1dη2
, (4.13)

while the latter is the 〈cos(2φ)〉 anisotropy (related to the familiar v2 coefficient in heavy-ion
physics through v2 = dσ(2)/dσ(0)):

dσ(2),λ = 1
2π

∫ 2π

0
dφ dσγ?λ+A→dijet+X

d2P⊥d2q⊥dη1dη2
cos(2φ) . (4.14)

Higher 〈cos(nφ)〉 harmonics are defined similarly to dσ(2) with the replacement cos(2φ)→
cos(nφ). Using eq. (4.11) and the Jacobi-Anger identity

eiz cos(x) = J0(z) + 2
∞∑
n=1

inJn(z) cos(nx) , (4.15)

to decompose the phase e−iξ|P⊥||rbb′ | cos(φ̂) into cosine harmonics, one obtains the following
expression for the cross-section averaged over φ:

dσ(0),λ=L
R2×R2,sud2 = αemαse

2
fδ

(2)
z H

0,λ=L
LO (P⊥)

× αsCF
π

∫ d2rbb′

(2π)4 e
−iq⊥·rbb′

{
Ĝ0
Yf

(rbb′)
∫ 1

0

dξ
ξ

[1− J0 (ξ|P⊥||rbb′ |)] ln
(
P 2
⊥r

2
bb′R

2ξ2

c2
0

)

+ ĥ0
Yf

(rbb′)
∫ 1

0

dξ
ξ
J2 (ξ|P⊥||rbb′ |) ln

(
P 2
⊥r

2
bb′R

2ξ2

c2
0

)}
, (4.16)

while the 〈cos(2φ)〉 anisotropy reads

dσ(2),λ=L
R2×R2,sud2 = αemαse

2
fδ

(2)
z H

0,λ=L
LO (P⊥)

× αsCF
π

∫ d2rbb′

(2π)4 e
−iq⊥·rbb′ cos(2θ)

{
Ĝ0
Yf

(rbb′)
∫ 1

0

dξ
ξ
J2 (ξ|P⊥||rbb′ |) ln

(
P 2
⊥r

2
bb′R

2ξ2

c2
0

)}

+ 1
2 ĥ

0
Yf

(rbb′)
∫ 1

0

dξ
ξ

[1−J0(ξ|P⊥||rbb′ |)−J4(ξ|P⊥||rbb′ |)] ln
(
P 2
⊥r

2
bb′R

2ξ2

c2
0

)}
, (4.17)

where we recall that θ is the angle between q⊥ and rbb′ .
Before computing the ξ integral, we note that the 〈cos(2φ)〉 anisotropy is sensitive to

the unpolarized gluon distribution as a consequence of the azimuthal anisotropy generated
by soft gluon radiation. This feature was discussed previously in the collinear and TMD
factorization framework [70, 71]. Higher order even harmonics can be computed in a similar
fashion; this is worked out in appendix E.

It is easy to understand how the convergent ξ integrals in eqs. (4.16)–(4.17) give rise
to large Sudakov logarithms ∝ ln(|P⊥||rbb′ |) when |P⊥| � 1/|rbb′ |; since rbb′ and q⊥ are
conjugate to each other, such logarithms are of the type ln(P⊥/q⊥). The Bessel functions
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decay typically for ξ > 1/(|P⊥||rbb′ |). To extract the logarithmic terms, it suffices to
approximate

1− J0(ξ|P⊥||rbb′ |) ≈ Θ
(
ξ − c0
|P⊥||rbb′ |

)
. (4.18)

Therefore when |P⊥||rbb′ | becomes large, the integral over ξ becomes strongly sensitive
to the logarithmic singularity in ξ = 0, giving contributions of order ln2(|P⊥||rbb′ |) and
ln(|P⊥||rbb′ |). Using the identities in appendix F, one can perform explicitly all these ξ
integrals up to corrections of order q⊥/P⊥. Our final results are then

dσ(0),λ=L
R2×R2,sud2 = αemαse

2
fδ

(2)
z H

0,λ=L
LO (P⊥)

× αsCF
π

∫ d2rbb′

(2π)4 e
−iq⊥·rbb′

{
Ĝ0
Yf

(rbb′)
[

1
4 ln2

(
P 2
⊥r

2
bb′

c2
0

)
+ ln(R) ln

(
P 2
⊥r

2
bb′

c2
0

)]

+ĥ0
Yf

(rbb′)
[1

2 + ln(R)
]}

, (4.19)

dσ(2),λ=L
R2×R2,sud2 = αemαse

2
fδ

(2)
z H

0,λ=L
LO (P⊥)

× αsCF
π

∫ d2rbb′

(2π)4 e
−iq⊥·rbb′ cos(2θ)

2

{
ĥ0
Yf

(rbb′)
[

1
4 ln2

(
P 2
⊥r

2
bb′

c2
0

)
+ ln(R) ln

(
P 2
⊥r

2
bb′

c2
0

)

−5
8 −

1
2 ln(R)

]
+ Ĝ0

Yf
(rbb′) [1 + 2 ln(R)]

}
. (4.20)

It is useful to compare our results with those given in [71] for the azimuthally symmetric
term dσ(0) and the 〈cos(2φ)〉 anisotropy. Firstly, unlike the LO result, we observe21 that at
NLO the azimuthally averaged cross-section is sensitive to the linearly polarized WW gluon
TMD ĥ0. Physically, this term comes from the azimuthal anisotropy induced by soft gluon
radiation, combined with the anisotropy induced by the gluon distribution itself. Secondly,
for the same reason, we have a pure αs contribution proportional to −5/8− 1/2 ln(R) that
multiplies the linearly polarized TMD ĥ0 in the 〈cos(2φ)〉 anisotropy. This term is not given
in [71]; it is parametrically of the same order as the one proportional to the unpolarized
TMD Ĝ0.

This concludes our calculation of dσR2×R2,sud2 in the back-to-back limit. We observed
the emergence of large Sudakov double and single logarithms from the “sud2” terms in
the fully inclusive NLO cross-section computed in the previous section. The contribution
dσR′2×R′2 can be obtained using quark-antiquark interchange, and therefore gives exactly
the same results as eqs. (4.19)–(4.20).

Contributions depending on ΞNLO,3. In the previous paragraph, we computed the
back-to-back limit of the “sud2” term in the NLO impact factor which is proportional to
the LO color correlator ΞLO. We found that some of these terms develop large logarithms
of the form ln(|P⊥||rbb′ |) when P⊥/q⊥ →∞. We will show now that similar features occur
for the terms in the cross-section proportional to the color correlator ΞNLO,3, that arise
from the interference diagram R2 × R′2 or the virtual graph V3 × LO.

21An analogous observation was made in [124] within the TMD factorization formalism when supplemented
by angular dependent soft functions.
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It is important to note that this color correlator also naturally reduces to the WW
gluon TMD in the correlation limit. To see this, we first express the color correlator as

ΞNLO,3(x⊥,y⊥;x′⊥,y′⊥) = 1
Nc

〈
Tr
[
taV (x⊥)V †(y⊥)ta − CF1

] [
V (y′⊥)V †(x′⊥)− 1

]〉
Yf
.

(4.21)
Using the expansion eq. (2.21), and the Fierz identity, one gets to leading power in u⊥ and
u′⊥:

ΞNLO,3(x⊥,y⊥;x′⊥,y′⊥) = 1
2u

i
⊥u
′j
⊥

1
Nc

〈
Tr
[
V (b⊥)∂iV †(b⊥)

]
Tr
[(
∂jV (b′⊥)

)
V †(b′⊥)

]〉
Yf

− 1
2u

i
⊥u
′j
⊥

1
N2
c

〈
Tr
[(
∂iV

†(b⊥)
)
V (b′⊥)

(
∂jV

†(b′⊥)
)
V (b⊥)

]〉
Yf
.

(4.22)

Due to unitarity of the Wilson lines one has Tr[V (b⊥)∂iV †(b⊥)] = 0, we see that this
color correlator reduces to the WW gluon TMD in the correlation limit with a −1/(2N2

c )
prefactor,

ΞNLO,3(x⊥,y⊥;x′⊥,y′⊥) ≈ − αs
4N2

c

ui⊥u
′j
⊥ × Ĝ

ij
Yf

(b⊥, b′⊥) . (4.23)

The calculation of the P⊥/q⊥ → ∞ limit of dσR2×R′2,sud2 is then similar to the one of
dσR2×R2,sud2. Using eq. (3.9) and eq. (4.23), as well as the standard change of variable from
(k1⊥,k2⊥) to (P⊥, q⊥), we get

dσR2×R′2,sud2 = αemαse
2
fδ

(2)
z H

λ,ij
LO (P⊥)

∫ d2b⊥d2b′⊥
(2π)4 e−iq⊥·rbb′ ĜijYf (b⊥, b′⊥)

× αs
2πNc

∫ 1

0

dξ
ξ

[
1− e−iξP⊥·rbb′

]
ln
(
P 2
⊥r

2
bb′ξ

2

z2
2c

2
0

)
, (4.24)

where we have also used rxy′ ' rbb′ in the correlation limit. Decomposing the WW gluon
TMD ĜijYf and the azimuthal dependence of the cross-section in Fourier modes, as done
in the previous paragraph on ΞLO contributions, we find that the azimuthally averaged
cross-section and the 〈cos(2φ)〉 anisotropy read

dσ(0),λ=L
R2×R′2,sud2 = αemαse

2
fδ

(2)
z H

0,λ=L
LO (P⊥)

× αs
2πNc

∫ d2rbb′

(2π)4 e
−iq⊥·rbb′

{
Ĝ0
Yf

(rbb′)
[

1
4 ln2

(
P 2
⊥r

2
bb′

c2
0

)
− ln(z2) ln

(
P 2
⊥r

2
bb′

c2
0

)]

+ĥ0
Yf

(rbb′)
[1

2 − ln(z2)
]}

, (4.25)

dσ(2),λ=L
R2×R′2,sud2 = αemαse

2
fδ

(2)
z H

0,λ=L
LO (P⊥)

× αs
2πNc

∫ d2rbb′

(2π)4 e
−iq⊥·rbb′ cos(2θ)

2

{
ĥ0
Yf

(rbb′)
[

1
4 ln2

(
P 2
⊥r

2
bb′

c2
0

)
− ln(z2) ln

(
P 2
⊥r

2
bb′

c2
0

)

−5
8 + 1

2 ln(z2)
]

+ Ĝ0
Yf

(rbb′) [1− 2 ln(z2)]
}
. (4.26)
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These results are very similar to eqs. (4.19) and (4.20) modulo the replacement CF → 1/(2Nc)
coming from the color correlator ΞNLO,3 and ln(R)→ − ln(z2) coming from the ξ integral
itself. The contribution from the diagram R′2 × R2 can be obtained by replacing z2 → z1 in
these expressions.

4.2.2 Calculation of the Sudakov single logarithms

The computation of the back-to-back limit of dσR2×R2,sud2 and dσR2×R′2,sud2 in the previous
subsection is sufficient to get the double Sudakov logarithms, with the full Nc depen-
dence of the coefficient of the double logarithm. The expressions eqs. (4.19), (4.25) and
eqs. (4.20), (4.26) also have single Sudakov logarithms. In order to collect all such single
logarithmic terms, we need to examine the other term in the NLO impact factor labeled
dσsud1. We shall demonstrate that this term gives rise to the required single Sudakov
logarithms (plus finite pieces) in the back-to-back limit, as claimed in section 3.

Making the replacements discussed in the introduction to subsection 4.2.1 in eq. (3.12)
and using the correlation limit of ΞLO and ΞNLO,3, one gets

dσsud1 =
αemαse

2
fδ

(2)
z

2(2π)6

∫
d8X̃⊥e

−iP⊥·ruu′−iq⊥·rbb′ui⊥u
′j
⊥R

λ
LO(u⊥,u′⊥)ĜijYf (q⊥, q′⊥)

× αsNc

2π

{
− ln

(
z1
zf

)
ln
(

r2
bb′

|u⊥||u′⊥|

)
− ln

(
z2
zf

)
ln
(

r2
bb′

|u⊥||u′⊥|

)}
. (4.27)

From the phase factor, we have |P⊥| ∼ |u⊥| ∼ |u′⊥|, indicating that the single logarithms
inside the curly bracket are Sudakov-like. We then decompose

ln
(

r2
bb′

|u⊥||u′⊥|

)
= ln

(
P 2
⊥r

2
bb′

c2
0

)
+ ln(c2

0)− 1
2 ln

(
P 4
⊥u

2
⊥u
′2
⊥

)
. (4.28)

By examining carefully the resulting expression, we notice that it cannot be cast into the
same factorized form as the LO cross-section or the back-to-back contributions computed
in the previous paragraph. This is due to the ln(P 4

⊥u
2
⊥u
′2
⊥) term coming from the equation

above. This is remedied by introducing another hard factor Hλ,ijNLO,1,

Hλ,ijNLO,1(P⊥) ≡ 1
2

∫ d2u⊥
(2π)

∫ d2u′⊥
(2π) e

−iP⊥·ruu′ui⊥u
′j
⊥R

λ
LO(u⊥,u′⊥) ln(P 4

⊥u
2
⊥u
′2
⊥) . (4.29)

Since we are interested here in Sudakov-like logarithms in various contributions to the
cross-section, we will leave the evaluation of this hard factor to section 5, where we discuss
TMD factorization at NLO. For the moment, using the formal expression for the new hard
factor, we can rewrite eq. (4.27) as

dσsud1 = αemαse
2
fδ

(2)
z H

λ,ij
LO (P⊥)× αsNc

2π

∫ d2rbb′

(2π)4 e
−iq⊥·rbb′ ĜijYf (rbb′)

×
{

ln
(
z2
f

z1z2

)
ln
(
P 2
⊥r

2
bb′

c2
0

)
+ ln

(
z2
f

z1z2

)
ln(c2

0)
}

+ αemαse
2
fδ

(2)
z H

λ,ij
NLO,1(P⊥)× αsNc

4π ln
(
z1z2
z2
f

)∫ d2rbb′

(2π)4 e
−iq⊥·rbb′ ĜijYf (rbb′) ,

(4.30)
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which is our final result for the back-to-back limit of dσsud1. This expression contains a
single Sudakov logarithm of the form

αsNc

2π ln
(
z2
f

z1z2

)
ln
(
P 2
⊥r

2
bb′

c2
0

)
. (4.31)

The dependence of the coefficient of the Sudakov logarithm upon the rapidity factorization
scale zf is intriguing and will be further discussed in section 4.3. The single Sudakov
logarithm eq. (4.30) and those computed in the previous section and included in dσsud2 are
the main results of this section.

4.2.3 Summary and discussion

We are now ready to combine together eqs. (4.19), (4.25) and (4.30), for the azimuthally
averaged cross-section and eqs. (4.20), (4.26) and (4.30) for the 〈cos(2φ)〉 anisotropy. We
shall here focus on the Sudakov logarithms and systematically discard the finite terms of
order O(αs). The final result that includes these finite terms will be presented in section 4.4.

For the azimuthally averaged cross-section (dσ(0) in the Fourier decomposition) we find

dσ(0),λ=L = αemαse
2
fδ

(2)
z H

0,λ=L
LO (P⊥)

∫ d2rbb′

(2π)4 e
−iq⊥·rbb′

{
1 + αsNc

4π ln2
(
P 2
⊥r

2
bb′

c2
0

)

− αs
π

[
CF ln

( 1
z1z2R2

)
−Nc ln

(
zf
z1z2

)]
ln
(
P 2
⊥r

2
bb′

c2
0

)}
Ĝ0
Yf

(rbb′) +O(αs) ,

(4.32)

and for the 〈cos(2φ)〉 anisotropy,

dσ(2),λ=L = αemαse
2
fδ

(2)
z H

0,λ=L
LO (P⊥)

∫ d2rbb′

(2π)4 e
−iq⊥·rbb′ cos(2θ)

2

{
1 + αsNc

4π ln2
(
P 2
⊥r

2
bb′

c2
0

)

− αs
π

[
CF ln

( 1
z1z2R2

)
−Nc ln

(
zf
z1z2

)]
ln
(
P 2
⊥r

2
bb′

c2
0

)}
ĥ0
Yf

(rbb′) +O(αs) .

(4.33)

Note that in these expressions, we have added the small x evolved LO result; this gives
the “1′′ term in the curly brackets. One further notices that the coefficients of the double
and single Sudakov logarithms are the same for the unpolarized and linearly polarized WW
gluon distributions. In the resummation (à la Collins-Soper) we will discuss in section 4.4,
this means that the all order resummation of soft gluon logarithms in the NLO impact
factor is identical for both TMD distributions (Ĝ0 and ĥ0) in coordinate space.

Comparing the result in eq. (4.32) with eq. (4.2) derived previously in [20], the reader
will observe that the coefficient of our double logarithmic term has the opposite sign relative
to the Sudakov double log in [20]. This is obviously unphysical: one expects soft gluon
radiation to reduce the cross-section in the back-to-back limit since emitted soft gluons
contribute to a transverse momentum imbalance kg⊥ ∼ q⊥. The wrong sign is due to a
missing soft contribution in eq. (3.6) for dσNLO that was absorbed (due to a particular choice
of the rapidity factorization scale) in the term corresponding to JIMWLK leading logarithmic
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rapidity evolution. We shall see in the next subsection that, by putting a constraint on this
leading logarithmic evolution to exclude the soft gluon phase-space, one recovers the correct
Sudakov double logarithm. With this new evolution, the LO term in eqs. (4.32) and (4.33)
will be shifted by a correction of order αs, namely Ĝ0

Yf
→ Ĝ0

Yf
−#αs ln2(P 2

⊥rbb′)G0
Yf

that
changes the sign of the Sudakov double logarithm. The interplay between the “slow” gluon
and soft gluon regimes is also manifest in the dependence of the term proportional to Nc

where one observes that the coefficient of the single Sudakov logarithm is sensitive to the
rapidity factorization scale zf .

Before turning to a detailed discussion of the kinematic improvement of JIMWLK
leading logarithmic evolution, we should note that the coefficient of the single Sudakov
logarithm which is proportional to CF ,

− αs
π

[
CF ln

( 1
z1z2R2

)
+O(R2)

]
, (4.34)

can be reexpressed in terms of the rapidity difference between the two jets ∆η12, given by

∆η12 = 1
2 ln

(
z2

1k2⊥
2

z2
2k1⊥

2

)
≈ 1

2 ln
(
z2

1
z2

2

)
, (4.35)

where the second equality holds in the back-to-back limit. Employing the identity

− ln(z1z2) = ln(2(1 + cosh(∆η12))) , (4.36)

eq. (4.34) can be written as

− αsCF
π

ln
(2(1 + cosh(∆η12))

R2

)
, (4.37)

in agreement with [71].

4.3 Sudakov suppression from slow gluons and kinematically improved rapid-
ity evolution

It is well-known that “naive” BFKL factorization and evolution in Yg = ln(k−g /q−) in fully
inclusive DIS does not reproduce the standard collinear (or DGLAP [125–127]) regime; recall
that in the latter the transverse momenta along the evolution are strongly ordered from the
large virtuality of the photon down to the typical transverse scale Q0 & ΛQCD of the target
Q2 � k2

g⊥,1 � . . .� Q2
0 with the k+

g,i of the same order [63–69, 128]. As noted previously,
this failure, and its likely resolution, is well documented in the small x literature. When
using the NLL BK or BFKL equation with Y evolution, large double collinear logarithms in
the NLL kernel spoil the convergence of the resummation and lead to instabilities impacting
the predictive power of the small x resummation program beyond leading logarithmic
accuracy [63, 65, 66]. These problems are cured by employing an improved LL evolution
equation in Y , resumming to all orders the large double collinear logarithms.

We will demonstrate in this section that a similar improvement in the LL evolution
kernel of the WW gluon TMD — namely, an additional constraint that enforces lifetime
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ordering of successive emissions — solves the positive Sudakov sign problem we noted
in the previous subsection. This observation was also arrived at independently recently
in [54]. Thus strikingly, a generic problem with BFKL evolution becomes manifest already
at leading log for back-to-back jet final states, with its resolution via the resummed kernel
proving essential for recovering the physical result of Sudakov suppression.

The nontrivial interplay between rapidity evolution and Sudakov logarithms can be
appreciated by realizing that in the decomposition of the cross-section in eq. (3.6), we
separated the contribution from the eikonal factor due to soft gluon emission into several
pieces, namely, in the “sud2”, “sud1”, and leading log HLL terms contributing to JIMWLK
small x evolution. This suggests that there is a soft gluon contribution hidden in the leading
rapidity log term that needs to be extracted in order to obtain the Sudakov contribution
with the right sign; we will now detail how a robust separation between soft and slow gluons
is achieved in practice.

4.3.1 Lifetime ordering from the NLO impact factor

When isolating the logarithmic rapidity divergence in the NLO cross-section, given by

ln
(
k−f
Λ−

)
HLL ⊗ dσLO , (4.38)

we set zg = 0 everywhere except in the 1/zg divergence piece. While this procedure gives
the correct leading logarithmic divergence, we will now demonstrate that it overestimates
the phase-space associated with slow gluons. The discussion below is similar to that for the
fully inclusive DIS cross-section [68], but the ensuing constraint turns out to be different. To
see this, let us consider the “no-sud, other” terms in the impact factors dσR,no−sud,other and
dσV,no−sud,other given by eqs. (3.23) and (3.17). These terms have an explicit z⊥ integration
— where z⊥ is the transverse coordinate of the gluon crossing the shockwave — and the
NLO wavefunctions involve modified Bessel functions of the form

K0(QXR) , K0(QXV) , (4.39)

with

X2
R = z1z2r

2
xy + z1zgr

2
zx + z2zgr

2
zy , (4.40)

X2
V = z2(z1 − zg)r2

xy + zg(z1 − zg)r2
zx + z2zgr

2
zy . (4.41)

To obtain the slow gluon limit, we set zg = 0 in XR/V to recover the LO wavefunction
K0(Q̄rxy). However since z⊥ is integrated over, then, regardless of how small zg is, there
is always a domain in which the large transverse sizes |rzy| or |rzx| compensate for the
smallness of zg [68].

To derive the criterion for which the slow gluon limit is valid, let us simplify the
expression for XR and XV in the back-to-back limit:

X2
R ≈ X2

V ≈ z1z2u
2
⊥ + zgr

2
zb . (4.42)
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When zgr2
zb � z1z2u

2
⊥, one cannot approximate K0(QXR/V) by K0(Q̄u⊥) anymore. Thus

zgr
2
zb ≤ z1z2u

2
⊥ , (4.43)

in the slow gluon divergent term. This excludes then phase-space in the z⊥ integrals which,
if also subtracted, would lead to the oversubtraction of the rapidity divergent phase-space
we alluded to.

It is enlightening to understand physically the impact of this constraint zgr2
zb ≤ z1z2u

2
⊥

on rapidity evolution. Parametrically, u2
⊥ ∼ 1/Q2 and r2

zb ∼ 1/kg⊥2, with kg⊥ the
transverse momentum of slow gluons. Hence the constraint is equivalent to

zg

kg⊥
2 ≤

z1z2
Q2 ⇐⇒

1
k+
g
≤ z1z2

2q−

Q2 . (4.44)

Since 1/k+
g is the lifetime of the gluon fluctuation, one sees that the constraint amounts to

imposing (z1 and z2 being O(1) numbers in this context) an ordering of lifetimes in the
evolution of the projectile: 1/q+ � 1/k+

g .
Note that our argument applied specifically only to the diagrams in which the gluon

scatters off the shockwave. However in order to obtain a consistent evolution equation with
a probabilistic interpretation, the lifetime ordering constraint needs to be imposed for all
diagrams, or in other words, at the level of the LL kernel itself. As we shall see now, this
constraint is crucial in order to recover the correct Sudakov logarithm, since the diagrams
in which the additional gluon does not scatter off the shockwave are those which contribute
to the Sudakov double logarithm.

4.3.2 Improved rapidity evolution of the Weizsäcker-Williams TMD gluon
distribution

The basic idea of collinearly improved BK or BFKL evolution in the rapidity of the projectile
Y is to modify the kernel in order to impose 1/k+ ordering for successive gluon emissions
in the ladder.22 Unfortunately, the collinearly improved JIMWLK evolution equation is
available23 only in Langevin form [131]. Nevertheless, in the back-to-back limit, the problem
simplifies considerably since one can focus on the evolution of the WW gluon TMD alone,
as we shall discuss. In this sense, our approach differs from the computation in [54] where
the authors implement the kinematic constraint at the level of the JIMWLK kernels written
in momentum space. While their method works for the color correlators which do not
depend on z⊥ (ΞLO and ΞNLO,3 in our notations), it is not obvious how to generalize this
implementation to the other correlators.

We will address here the evolution equation for the WW gluon distribution in coordinate
space, where it is natural to implement the kinematic constraint [68]. Taking the back-to-
back limit of eq. (3.29), the unconstrained (or “naive”) rapidity evolution equation for the

22For recent discussions of the matching between DGLAP and small x evolution at the operator level, and
the connection with lifetime ordering in this context, see [129, 130].

23Since the evolution becomes nonlocal in rapidity, there is no Hamiltonian formulation of this equation.
Further,its Langevin formulation is not suitable when the various transverse sizes in the correlators are very
different from each other, as is the case in the back-to-back limit since u2

⊥ � r2
bb′ .
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WW gluon TMD in integral form reads

ĜijYf (b⊥, b′⊥) = ĜijY0
+ αsNc

2π2

∫ Yf

Y0
dY

∫
d2z⊥

{
− r2

bb′

r2
zbr

2
zb′
ĜijY (b⊥, b′⊥) + other correlators

}
.

(4.45)

The full expression specifying the other correlators (the evolution of the WW gluon TMD
is not closed) can be found in [97]. Only the terms specified in eq. (4.45) will be important
for this discussion since we already know24 that the Sudakov logarithms accompany the
WW gluon TMD.

Let us now implement the kinematic constraint from lifetime ordering. In addition
to the k−g ordering k−g ≤ k−f , one also imposes k+

g ≥ k+
f with the plus factorization scale

related to the minus one through the relation

2k+
f k
−
f ≡ Q

2
f . (4.46)

From eq. (4.44), and the condition k−f ∼ z1z2q
− (which ensures that αs ln(z1,2/zf ) � 1

in the NLO impact factor), we have Q2
f ∼ Q2 ∼ P 2

⊥. In coordinate space, the condition
1/k+

g ≤ 1/k+
f can be rewritten as

k−g min(r2
zb, r

2
zb′) ≤

k−f
Q2
f

, (4.47)

since as discussed above, kg⊥2 ∼ 1/r2
zb ∼ 1/r2

zb′ ; the function min(r2
zb, r

2
zb′) is a convenient

choice which symmetrizes the role of b⊥ and b′⊥. The kinematically improved rapidity
evolution of ĜijYf then reads

ĜijYf = ĜijY0
− αsNc

2π2

∫ Yf

Y0
dY

∫
d2z⊥Θ

(
Yf − Y − ln(min(r2

zb, r
2
zb′)Q2

f )
) r2

bb′

r2
zbr

2
zb′
ĜijY + . . . ,

(4.48)

where, for simplicity, we omitted the argument of ĜijY (b⊥, b′⊥) as well as the other correlators
which depend on z⊥. It is important to realize that, contrary to the collinearly improved
BK/BFKL equation which has the additional constraint

∼ Θ
(
Yf − Y − ln(min(r2

zb, r
2
zb′)/r2

bb′)
)
, (4.49)

for the evolution of the dipole operator 〈Tr[U(b⊥)U †(b′⊥)]〉Y , the kinematic constraint in
the case of the evolution of the WW gluon distribution involves the “external” kinematic
variable Q2

f ∼ P
2
⊥ ∼ 1/r2

xy, and not 1/rbb′ . This is a priori not obvious since it is well
known that in the dilute limit, the unconstrained rapidity evolution of the WW TMD
follows the BFKL equation [97, 98]. It implies therefore that, after kinematic improvement,

24The Ĝij dependent term in eq. (4.45) can be obtained in a straightforward way from eq. (3.28) by
taking the correlation limit of the slow gluon divergence proportional to ΞLO and ΞNLO,3 labeled dσLO,LL

and dσNLO3,LL (cf. eqs. (B.26)–(B.32)).
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the dilute limit of the WW rapidity evolution is not given by the kinematically improved
BFKL equation.

Using this kinematically improved evolution amounts to subtracting off the term

− αsNc

2π2 GijYf (b⊥, b′⊥)
∫ zf

z0

dzg
zg

∫
d2z⊥Θ

(
min(r2

zb, r
2
zb′)Q2

f −
zf
zg

)
r2
bb′

r2
zbr

2
zb′
, (4.50)

from the naive LL evolution and adding it to the NLO impact factor. This integral (in the
limit z0 → 0, as the integral is convergent) is computed in detail in appendix F, where we
demonstrate that eq. (4.50) is equal to

− αsNc

2π ln2
(
Q2
fr

2
bb′

)
GijYf (b⊥, b′⊥) +O

(
1

r2
bb′Q

2
f

)
. (4.51)

Since Q2
f ∼ P

2
⊥, this is a Sudakov-like logarithm. It is convenient to break the expression

above into three pieces

−αsNc

2π ln2
(
P 2
⊥r

2
bb′

c2
0

)
GijYf (b⊥, b′⊥)︸ ︷︷ ︸

Sudakov double log.

−αsNc

π
ln
(
Q2
fc

2
0

P 2
⊥

)
ln
(
P 2
⊥r

2
bb′

c2
0

)
GijYf (b⊥, b′⊥)︸ ︷︷ ︸

Sudakov single log.

−αsNc

2π ln2
(
Q2
fc

2
0

P 2
⊥

)
︸ ︷︷ ︸

finite

+O
(

1
r2
bb′Q

2
f

)
. (4.52)

We have thus achieved our goal of extracting the Sudakov double logarithm hidden
in the naive leading logarithmic evolution. In particular, we agree with the result of [54],
provided the scale Qf is chosen equal to P⊥/c0. The presence of c0 in their calculation
comes from the particular implementation of the kinematic constraint in the momentum
representation of the kernel r2

bb′/(r2
zbr

2
zb′) that cannot be easily generalized to the other

terms in eq. (4.48). In any case, since the factorization scale k+
f is arbitrary, we have the

freedom to make such a choice or any other as long as Qf is parametrically of order P⊥.
In general, two different prescriptions for Qf change the coefficient of the single Sudakov
logarithm. Since we compute this coefficient as well, we shall use Qf instead of making a
particular choice for the factorization scale that would then correspond to a specific value
for the coefficient.

4.4 Summary of results for Sudakov resummation

We can now combine the Sudakov logarithms from the impact factor given by eqs. (4.32)–
(4.33) with the Sudakov logarithm extracted from the constrained LL rapidity evolution
given by eq. (4.52). The latter being proportional to Ĝij , the decomposition into Fourier
harmonics is trivial (and no higher harmonics than n = 0, 2 are generated by the kinematic
improvement). Our final result for the Sudakov double and single logarithms is

dσ(0),λ=L = αemαse
2
fδ

(2)
z

8(z1z2)3Q2P 2
⊥

(P 2
⊥+Q̄2)4

∫
d2rbb′

(2π)4 e
−iq⊥·rbb′ Ĝ0

Yf
(rbb′)

{
1− αsNc

4π ln2
(
P 2
⊥r

2
bb′

c2
0

)
− αs

π

[
CF ln

( 1
z1z2R2

)
−Nc ln

(
zfP

2
⊥

z1z2c2
0Q

2
f

)]
ln
(
P 2
⊥r

2
bb′

c2
0

)}
+O(αs) , (4.53)
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and similarly for the 〈cos(2φ)〉 anisotropy with the replacement Ĝ0 → 1
2 cos(2θ)ĥ0. It is

crucial to note that in eq. (4.53), in contrast to eqs. (4.32), (4.33), the Yf dependence of
the TMDs Ĝij is given by the kinematically constrained rapidity evolution in eq. (4.48).
After this modification, the coefficient of the double logarithm is negative as it should be.

In particular, in comparison to the discussion in [20], we emphasize that the separation
between the Sudakov “soft” logarithms and the rapidity (or “slow”) logarithms is manifest in
the projectile rapidity variable provided that one improves the leading logarithmic rapidity
evolution. This separation is not clear at single logarithmic accuracy for the Sudakov
contribution since we observe a factorization scheme (zf , Qf ) dependence of the coefficient
of the single logarithm in eq. (4.53). There is a particular choice of the factorization
scale k+

f for which the (factorization scheme dependent) coefficient vanishes. In terms of
xf = k+

f /P
+, it is given by

xf = Q2

c2
0P

2
⊥

x1x2
xBj

, (4.54)

where x1 = k+
1 /P

+ ∼ xBj and x2 = k+
2 /P

+ ∼ xBj. The fact that the condition can
be written in terms of k+

f suggests that an evolution in terms of the target rapidity
ηg = ln(k+

g /P
+) would be more natural. However as alluded to above, such an evolution

complicates the separation between evolution and the impact factor, which is naturally
computed from the projectile side in the dipole picture of DIS. For such an evolution in
Y , the choices k−f = (k−1 k

−
2 )/q− and Qf = P⊥/c0 in the kinematically constrained rapidity

evolution enable one to cancel this single logarithmic coefficient.
The resummation of the Sudakov logarithms in TMD factorization relies on the Collins-

Soper formalism [21, 22]. It amounts to an exponentiation of these dominant soft contribu-
tions convoluted with the WW gluon TMD. This exponentiation property has also been
derived at double logarithmic accuracy from the study of the WW gluon TMD from low to
moderate x in [132]. Since we have shown that the Sudakov logarithms are the same for
the unpolarized and linearly polarized WW TMDs, this exponentiation can be written as
ĜijYf (rbb′)→ ĜijYf (rbb′)S(P 2

⊥, r
2
bb′) with

S(P 2
⊥, r

2
bb′) = exp

(
−
∫ P 2

⊥

c2
0/r

2
bb′

dµ2

µ2
αs(µ2)Nc

π

[
1
2 ln

(
P 2
⊥
µ2

)
+ CF
Nc

s0 − sf

])
, (4.55)

where the factorization scheme independent single log coefficient s0 reads

s0 = ln
(2(1 + cosh(∆η12))

R2

)
+O(R2) , (4.56)

and the factorization scheme dependent one reads

sf = ln
(

P 2
⊥xBj

z1z2Q2c2
0xf

)
. (4.57)

Finally, we included in eq. (4.55) the running of the strong coupling constant at the scale µ2.
As explained in footnote 10, our calculation accounts for the one-loop running of the strong
coupling, but the choice of the scale for the running can only be addressed at two-loop
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order. For back-to-back kinematics, one expects that a two-loop computation would favor
the natural choice µ2 = P 2

⊥ since P⊥ is the hardest scale in this problem. Expanding αs(µ2)
in power of αs(P 2

⊥), one gets

αs(µ2) ' αs(P 2
⊥)
(

1− αs(P 2
⊥)β0 ln

(
µ2

P 2
⊥

)
+O(α2

s)
)
, (4.58)

with β0 = (11CA − 4nfTR)/(12π). This shows that the scale of the running coupling would
be fixed by computing the two-loop impact factor, as the logarithmic scale dependence
ln(µ2/P 2

⊥) enters at order α2
s(P 2
⊥).

The running of the coupling resums in the argument of the exponential both leading
Sudakov logarithms of the form αns lnn+1(P 2

⊥r
2
bb′) and next-to-leading logarithms of the

form αns lnn(P 2
⊥r

2
bb′), to all orders n. This can be checked by doing the integral over µ2 in

eq. (4.55) for the first few terms in the αs(µ2) expansion given by eq. (4.58). At order α2
s,

this gives a contribution of the form

α2
s(P 2

⊥)Nc

π
× β0

[
1
6 ln3

(
P 2
⊥r

2
bb′

c2
0

)
+
(
CF
Nc

s0 − sf
) 1

2 ln2
(
P 2
⊥r

2
bb′

c2
0

)]
, (4.59)

and so forth for the higher orders terms, demonstrating the resummation structure alluded
above. Hence, to control all the next-to-leading logarithms, a 2-loop running coupling
should be employed. Note that the integration of µ in eq. (4.55) with a one-loop or two-loop
running coupling can be done analytically (see e.g. [113, 133]).

Comparing our Sudakov derivation with those in the non-Abelian exponentiation
framework of [72, 73] and those [71, 134–136] derived within the equivalent Collins-Soper-
Sterman (CSS) formalism [21–23], we notice two significant differences. Firstly, as already
outlined, the coefficient of the single logarithm is dependent on the factorization scheme for
the rapidity factorization. This result is new. Secondly, there is no contribution proportional
to the finite part of the gluon DGLAP splitting function (which is equal to πβ0/CA) in the
coefficient of the Sudakov single logarithm.

The reason for this absence has been discussed in the literature. In [74] it is argued
that this term is not there because it is presumed that the running of the coupling is treated
differently in the CGC EFT than in the collinear factorization formalism and that the
running of the coupling only appears at NLO in the BK evolution. In [75], it is argued
that such a contribution is not present in the CGC framework but present in Lipatov’s
reggeon field theory framework [137]. However as observed in footnote 10, and shown
previously in [114], the running coupling appears in an one-loop “polarization diagram”
correction to the classical shockwave field. The x-dependent piece of the corresponding
diagram is absorbed in JIMWLK evolution; its x-independent piece running coupling is
part of the NLO impact factor. In this systematic power counting, one sees indeed that the
running of the coupling in JIMWLK evolution appears at O(α2

s ln(x)). This follows from
the combination of the x-independent piece with O(αs ln(x)) contributions in the two-loop
diagrams contributing to the NLO JIMWLK kernel.

As we will discuss further in the section 5.2, the β0-dependent term should be there
in the CGC EFT at one loop and can be recovered by respectively taking “dilute” and
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collinear limits in this framework-leading to a smooth matching to the collinear results. It
is not robust beyond these particular limits which explains why it is not seen in the general
expression for Sudakov resummed contributions to the NLO impact factor at small x.

5 TMD factorization at NLO from the CGC formalism

In this section, we shall compute some of the pure (not enhanced by large Sudakov logs) αs
corrections in the back-to-back limit. We shall also explore the existence of a TMD-like
factorization at NLO in the small x CGC formalism. This factorization is obvious for all
the terms in the impact factor that are proportional to ΞLO and ΞNLO,3; these naturally
reduce to the WW gluon TMD in the correlation limit. For the other terms, it is not a
priori clear if they reduce to the WW gluon TMD.

In the first subsection, we will calculate all the finite αs corrections in the back-to-back
limit that are proportional to the WW gluon TMD. We will obtain a simple expression for
the factorized cross-section with all finite terms in αs. This expression depends on two new
“hard factors” that differ from Hλ,ijLO (P⊥).

In the second subsection, we will discuss the other terms in the impact factor which
involve more complicated color correlators that arise from the emitted gluon crossing the
shockwave. We will argue that these terms break TMD factorization at NLO in the back-
to-back limit. In the dilute limit, where one assumes that Qs � q⊥ � P⊥, one recovers
TMD factorization as expected.

5.1 Contributions proportional to the Weizsäcker-Williams gluon TMD

We shall first address the back-to-back limit of the terms in the impact factor that we
did not discuss in the previous section, namely dσR,no−sud and dσV,no−sud; as the labels
imply, they do not contain Sudakov logs. In these terms, we will focus in particular on the
contributions which are proportional to ΞLO and ΞNLO,3 since, once again, those correlators
simply give the WW gluon TMD for back-to-back kinematics.

Real contributions without Sudakov enhancement. In the unintegrated real cross-
section dσR,no−sud defined by eq. (3.13), the term proportional to ΞLO is dσR,no−sud,LO,
given by the expression in eq. (3.21). It can be written in the back-to-back limit as

dσγ
?
L+A→qq̄g+X

R,no−sud,LO =
αemαse

2
f

2(2π)8

∫
d8X̃⊥e

−iP⊥·ruu′−iq⊥·rbb′ui⊥u
′j
⊥Ĝ

ij
Yf

(rbb′)
e−ikg⊥·rbb′(

kg⊥ − zg
z1
P⊥

)2

× 4αsCF

{
8z1z

3
2(1− z2)2Q2

(
1 + zg

z1
+

z2
g

2z2
1

)
K0(Q̄R2u⊥)K0(Q̄R2u

′
⊥)δ(3)

z

−RL
LO(u⊥,u′⊥)Θ(z1 − zg)δ(2)

z

}
. (5.1)

The primary purpose of our discussion here is to explain why, despite being proportional
to ΞLO, this contribution contains neither Sudakov logarithms nor any finite αs terms. It
contributes a power suppressed correction in the limit P⊥ � q⊥.
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As mentioned in subsection 3.2, the gluon phase-space integration depends on the
experimental definition of the dijet cross-section. Since our aim is to show that this regular
term is finite and even power suppressed, we shall follow a drastic path and integrate over
the full gluon phase-space without taking into account configurations for which one of the
tagged jets is the gluon, in which case one should integrate over the quark or antiquark
phase-space. Even though the resulting cross-section is not IRC safe and not accessible
experimentally (since experiments would have to tag the quark and the antiquark in the
final state), the result of this exercise should suffice to convince ourselves that the “no-sud”
R2 ×R2 term does not contain any large Sudakov logarithms, nor finite O(αs) terms in the
limit q⊥/P⊥ → 0.

The only kg⊥ dependence is inside the prefactor of the curly bracket. Integrating this
factor over kg⊥, for a gluon outside the quark-jet cone, we get∫ d2kg⊥

(2π)2
e−ikg⊥·rbb′

(kg⊥ − ξP⊥)2 Θ
(
C2
qg⊥ −R2P 2

⊥min(1, ξ2)
)

=− 1
4πe

−iξP⊥·rbb′ ln
(
P 2
⊥r

2
bb′R

2ξ2

c2
0

)
+O(R2) , (5.2)

with ξ = zg/z1. Integrating over z2 to get rid of the delta-functions in eq. (5.1), we can
express the gluon-integrated “no-sud” R2 × R2 cross-section as

dσγ
?
L+A→dijet+X

R,no−sud,LO = −
αemαse

2
f

2(2π)6

∫
d8X̃⊥e

−iP⊥·ruu′−iq⊥·rbb′ui⊥u
′j
⊥Ĝ

ij
Yf

(rbb′)

× αsCF
π

∫ 1

0

dξ
ξ
e−iξP⊥·rbb′

{
INLO(ξ, z1,u⊥,u

′
⊥)− ILO(z1,u⊥u

′
⊥)
}

ln
(
P 2
⊥r

2
bb′R

2ξ2

c2
0

)
,

(5.3)

where we introduced the notation ILO/NLO for the terms in the integrand inside the curly
bracket in eq. (5.1), with the important property (for all z1, u⊥ and u′⊥),

lim
ξ→0
INLO(ξ, z1,u⊥,u

′
⊥) = ILO(z1,u⊥,u

′
⊥) . (5.4)

After the change of variable ξ̃ = ξ|P⊥||rbb′ |, the above integral transforms into∫ ∞
0

dξ̃
ξ̃
e
−iξ̃

P⊥·rbb′
|P⊥||rbb′ |

{
INLO

(
ξ̃

|P⊥||rbb′ |
, z1,u⊥,u

′
⊥

)
− ILO(z1,u⊥u

′
⊥)
}

ln
(
ξ̃2R2

c2
0

)
.

(5.5)
Both ILO and INLO contain step functions that constrain the longitudinal momentum
fraction zg (or ξ) of the gluon. Because the phase suppresses this expression for ξ̃ & 1,
in the limit P⊥/q⊥ → ∞ (or equivalently P⊥|rbb′ | → ∞) the integral vanishes thanks to
the property eq. (5.4). This proves, as stated, that the real “no-Sud-LO” cross-section
associated with the regular component of diagram R2×R2 contributes as a power correction
in q⊥/P⊥ and can therefore be neglected in the back-to-back limit.

Exactly the same reasoning applies for the “no-sud” real contribution dσR,no−sud,NLO3

proportional to ΞNLO,3. In conclusion, the real cross-section dσR,no−sud,LO +dσR,no−sud,NLO3

vanishes in the back-to-back limit and does not receive any finite αs contribution. Physically,
it means that non-soft real gluon emissions are necessarily power suppressed.
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Virtual contributions without Sudakov enhancement. We now turn to the contri-
bution to virtual cross-section without Sudakov logs, and in particular the terms proportional
to ΞLO and ΞNLO,3 labeled dσV,no−sud,LO and dσV,no−sud,NLO3 . Taking the correlation limit
of eq. (3.14), it is straightforward to obtain

dσV,no−sud,LO = αemαse
2
fδ

(2)
z H

λ,ij
LO (P⊥)× αsCF

π

∫ d2rbb′

(2π)4 e
−iq⊥·rbb′ ĜijYf (rbb′)

×
{

3
2 ln(c2

0)−3 ln(R)+ 1
2 ln2

(
z1
z2

)
+ 11

2 +3ln(2)− π
2

2 +O(R2)
}

−αemαse
2
fδ

(2)
z H

λ,ij
NLO,1(P⊥)× αsCF2π × 3

2

∫ d2rbb′

(2π)4 e
−iq⊥·rbb′ ĜijYf (rbb′) ,

(5.6)

where the hard factor Hλ,ijNLO,1 was defined in eq. (4.29).
The virtual correction without Sudakov enhancement and proportional to ΞNLO,3 is

also finite and nonvanishing in the back-to-back limit. Taking the correlation limit of
dσV,no−sud,NLO3 , we find

dσV,no−sud,NLO3 = αemαse
2
fδ

(2)
z H

λ,ij
NLO,2(P⊥)×

( −αs
2πNc

)∫ d2rbb′

(2π)4 e
−iq⊥·rbb′ ĜijYf (rbb′) + c.c.

(5.7)

with the hard factor Hλ,ijNLO,2 defined as

Hλ=L,ij
NLO,2 (P⊥)≡ 1

2

∫ d2u⊥
(2π)

∫ d2u′⊥
(2π) e

−iP⊥·ruu′ui⊥u
′j
⊥R

λ
LO(u⊥,u′⊥)

×
∫ z1

0

dzg
zg

{
K0(Q̄V3u⊥)
K0(Q̄u⊥)

[(
1− zg

z1

)2(
1+ zg

z2

)
(1+zg)eiP⊥·u⊥K0(−i∆V3u⊥)

−
(

1− zg
z1

)(
1+ zg

z2

)(
1− zg

2z1
+ zg

2z2
− zg

2z1z2

)
e
i
zg
z1
P⊥·u⊥J�

(
u⊥,

(
1− zg

z1

)
P⊥,∆V3

)]
+ln

(
zgP⊥u⊥
c0z1z2

)}
+(1↔ 2) . (5.8)

Here Q̄2
V3 = z1z2(1 − zg/z1)(1 + zg/z2)Q2 and ∆2

V3 = (1 − zg/z1)(1 + zg/z2)P 2
⊥. The

expression for transversely polarized photons is given in appendix C (see eq. (C.7)).
The hard factor in eq. (5.8) cannot be computed analytically and should be evaluated

numerically to obtain the finite term in eq. (5.7).

5.2 TMD factorization breaking contributions

We now turn to the finite terms coming from more complex color correlators that do
not naturally collapse to the WW gluon distribution in the correlation limit. Let us
first consider the term proportional to ΞNLO,1 in the virtual cross-section dσV,no−sud,other
(without Sudakov logs) given by eq. (3.17). In contrast to the terms proportional to ΞLO
and ΞNLO,3 (that do not contain an integral over the transverse coordinate z⊥ of the gluon
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crossing the shockwave) this contribution has an explicit z⊥ integral and the phases that
control the coordinates conjugate to P⊥ and q⊥ are now

≈ e
−iP⊥·

(
u⊥+ zg

z1
rzb

)
−iq⊥·b⊥

. (5.9)

Therefore it is not clear whether the correlation limit corresponding to the expansion of the
color correlators in powers of u⊥ and u′⊥ best captures the contribution from this term in
back-to-back kinematics. In principle, instead of the expansion in powers of |u⊥| � |b⊥|,
one should expand for |u⊥ + zg/z1rzb| � |b⊥| [54].

On the other hand, since the rapidity evolution of the WW gluon TMD does not have
a closed form (even in the large Nc limit) and mixes under evolution with other operators,
there is no reason for our impact factor at small x in the back-to-back limit to depend on
the WW gluon TMD alone. From this argument, one can conclude that leading order TMD
factorization at small x is violated at NLO by terms in the impact factor proportional to
color correlators that do not collapse to the WW TMD.

A typical example25 of such a color correlator is ΞNLO,1 defined by eq. (3.18). Employing
the brute force |u⊥| � |b⊥| (and |u′⊥| � |b

′
⊥|) correlation limit at leading order, this

operator simplifies to

ΞNLO,1(x⊥,y⊥, z⊥;x′⊥,y′⊥)

= u′j⊥ ×
1

2Nc

〈
Tr
[
V (b⊥)V †(z⊥)

]
Tr
[
V (z⊥)V †(b⊥)∂jV (b′⊥)V †(b′⊥)

]〉
+O(u2

⊥) , (5.10)

neglecting higher orders in O(|u⊥||u′⊥|) but without restrictions on the range of the
integrated variable z⊥. This new operator appears in the rapidity evolution of the WW
gluon TMD — it is one the terms not spelled out in eq. (4.45)). To understand how the
kernel of this operator in the rapidity evolution of the WW gluon TMD emerges from our
full NLO result, consider the leading logarithmic divergence in zg of the real and virtual
terms proportional to ΞNLO,1. One finds,26

dσNLO1,slow =
αeme

2
fNcδ

(2)
z

(2π)6

∫
d8X̃⊥e

−iP⊥·ruu′−iq⊥·rbb′u′j⊥R
L
LO(u⊥,u′⊥)

× αs
2πNc

∫ zf

z0

dzg
zg

∫ d2z⊥
π

[
r2
xy

r2
zxr

2
zy

−
r2
x′y

r2
zx′r

2
zy

+ r2
xx′

r2
zxr

2
zx′

]
×
〈

Tr(V (b⊥)V †(z⊥))Tr(V (z⊥)V †(b⊥)∂jV (b′⊥)V †(b′⊥))
〉
. (5.11)

Writing the transverse coordinates x⊥, y⊥ and x′⊥ in terms of u⊥, u′⊥, b⊥ and b′⊥, and
expanding to leading nontrivial order in u⊥ and u′⊥, the kernel in the square brackets
becomes

r2
xy

r2
zxr

2
zy

−
r2
x′y

r2
zx′r

2
zy

+ r2
xx′

r2
zxr

2
zx′

= 2 r2
bb′

r2
zbr

2
zb′

[
ribb′

r2
bb′

+ rizb
r2
zb

]
ui⊥ +O(u2

⊥) . (5.12)

25This discussion extends straightforwardly to the other z⊥ dependent color correlators.
26Table 3 in [1] spells out the kernels for the different color correlators.
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Thus the new NLO TMD distribution defined as

ĜjY,NLO1
(b⊥, b′⊥, z⊥) ≡ −2

αs

〈
Tr[V (b⊥)V †(z⊥)]Tr[V (z⊥)V †(b⊥)∂jV (b′⊥)V †(b′⊥)]

〉
Y
,

(5.13)

contributes to the rapidity evolution of the WW gluon TMD GijY (q⊥) with the kernel

− 1
Nc

r2
bb′

r2
zbr

2
zb′

[
ribb′

r2
bb′

+ rizb
r2
zb

]
, (5.14)

inside equation eq. (4.45) in agreement with the results of [97]. This result only relies on
the limit |u⊥| � |b⊥|, since no assumption is made on the magnitude of the integrated
transverse coordinate |z⊥| relative to either |u⊥| or |b⊥|.

If one further expands z⊥ around b⊥ in eq. (5.13) using

V (z⊥) = V (b⊥)− rizb∂iV (b⊥) +O(r2
zb) , (5.15)

with rzb = z⊥− b⊥, we find that the TMD defined by eq. (5.13) collapses to the WW gluon
TMD:

ĜjY,NLO1
(b⊥, b′⊥, z⊥) ≈ −Nc × rizbĜ

ij
Y (b⊥, b′⊥) . (5.16)

This is not surprising since the rapidity evolution of the WW gluon TMD becomes closed in
the dilute limit and reduces to the BFKL equation. The meaning of “dilute” can be made
precise from the regime of validity of eq. (5.15). Since parametrically kg⊥2 ∼ 1/r2

zb, and
since the derivative of V (b⊥) is typically of order Qs, the truncation of the Taylor series is
justified in the limit

Q2
s � kg⊥

2 . q2
⊥ , (5.17)

thereby quantifying the dilute limit.
This discussion sheds light on the kinematics for which TMD factorization is valid.

At leading order, it is known that “kinematic” and “genuine” power corrections break
TMD factorization beyond the kinematics P⊥ � max(q⊥, Qs). (Recall the discussion
in section 2.3.2.). At NLO, it is not sufficient to assume P⊥ � Qs in order to recover
factorization: one also needs to impose q⊥ � Qs. In back-to-back kinematics P⊥ � q⊥, one
should then distinguish three physical regimes depending on the magnitude of Qs:

P⊥ � q⊥ � Qs , (5.18)
P⊥ � Qs � q⊥ , (5.19)
Qs � P⊥ � q⊥ . (5.20)

In the dilute regime corresponding to eqs. (5.18), we expect TMD factorization with the
WW gluon TMD to hold;27 we leave for future work the evaluation of the terms proportional

27Indeed, a TMD factorization for inclusive dijet production in DIS was recently proposed in the Soft-
Collinear Effective Theory (SCET) [138, 139] framework albeit not at small x.
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Figure 2. (Left) Diagram (R′1 × R′1) for a real gluon emission crossing the shockwave both in the
amplitude and in the complex conjugate amplitude. (Right) Diagram from the one-loop correction
to the shock-wave “above the cut” (contributing to the NLO impact factor) times the leading order
amplitude. See discussion in the text.

to the nontrivial color correlators in the impact factor in this limit. In the correlation
regime given by eqs. (5.19), one cannot neglect the saturation corrections associated with
new gluon TMDs at NLO, and leading order factorization in terms of the WW gluon TMD
is violated. The evaluation of the cross-section requires one to solve the full nonlinear (and
non-closed form) evolution equation for the WW gluon TMD and in the computation of
the factorization breaking terms in the impact factor. Finally, in the saturation dominated
regime given by eqs. (5.20), as noted, factorization is violated already at leading order and
the expansion which enabled us to extract the WW gluon TMD from the leading order
correlator ΞLO is not allowed [80].

Our discussion also sheds light on the presence of an additional β0-dependent single
logarithmic contribution in eq. (4.55). In figure 2 (left), we show a cut real diagram
corresponding to a gluon crossing the shockwave in the amplitude and the complex conjugate
amplitude. Figure 2 (right) is the interference diagram contribution of the leading order dijet
in the amplitude and the one-loop correction to the shockwave in the complex conjugate
amplitude. This particular diagram is of order O(αs) and contributes to the running
coupling, as does a diagram involving a fermion loop that contributes at the same order.
Both figures 2 (left and right) contribute to the NLO impact factor. As we discussed
above, the left diagram does not contain the WW gluon TMD. However in the dilute limit,
these diagrams contain the contributions shown in figure 3 (left) and figure 3 (right). If
one further takes the collinear limit, these diagrams should contain the contributions that
provide the β0-dependent piece of the gluon splitting function that will then appear in
eq. (4.55). Away from this particular limit, there is no β0-dependent contribution. We note
that computations at tree level, have shown how one recovers the collinear limit in the CGC
EFT [140, 141]. We will leave a detailed discussion of the matching to collinear limits at
one-loop accuracy to future work.

5.3 Final results for back-to-back inclusive dijets

In this section we collect our final results including the Sudakov resummation, and gather all
the finite terms from the expressions in eqs. (4.19), (4.20) , (4.25) , (4.26) , (4.30) , (5.6) , (5.7)
and (4.52). We report here our final results for the azimuthally averaged cross-section and
the 〈cos(2φ)〉 anisotropy. The higher order harmonics are provided in appendix E. For the
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Figure 3. Diagrams appearing in the dilute limit of the respective contributions in figures 2.

convenience of the reader we recall the Sudakov factor introduced in eq. (4.55):

S(P 2
⊥, r

2
bb′) = exp

(
−
∫ P 2

⊥

c2
0/r

2
bb′

dµ2

µ2
αs(µ2)Nc

π

[
1
2 ln

(
P 2
⊥
µ2

)
+ CF
Nc

s0 − sf

])
, (5.21)

where the single log coefficients s0 and sf read

s0 = ln
(2(1 + cosh(∆η12))

R2

)
+O(R2) , sf = ln

(
P 2
⊥xBj

z1z2Q2c2
0xf

)
, (5.22)

and xf = Q2
fxBj/(Q2zf ).

Since the Sudakov logarithms are now included in the Sudakov exponentiation factor
S(P 2

⊥, r
2
bb′), we remove them from the impact factor. We obtain for the azimuthally

averaged cross-section, up to terms of order O(R2),

dσ(0),λ=L = αemαse
2
fδ

(2)
z H

0,λ=L
LO (P⊥)

∫ d2rbb′

(2π)4 e
−iq⊥·rbb′ Ĝ0

Yf
(rbb′)S(P 2

⊥, r
2
bb′)

×
{

1 + αsCF
π

[
3
2 ln(c2

0)− 3 ln(R) + 1
2 ln2

(
z2

1
z2

2

)
+ 11

2 + 3 ln(2)− π2

2

]

+ αsNc

2π

[
ln
(
z2
f

z1z2

)
ln(c2

0)− ln2
(
Q2
fc

2
0

P 2
⊥

)]}

+ αemαse
2
fδ

(2)
z H

0,λ=L
LO (P⊥)

∫ d2rbb′

(2π)4 e
−iq⊥·rbb′ ĥ0

Yf
(rbb′)S(P 2

⊥, r
2
bb′)

× αsNc

2π

{
1 + 2CF

Nc
ln(R2)− 1

N2
c

ln(z1z2)
}

+ αemαse
2
fδ

(2)
z

[1
2H

λ=L,ii
NLO,1(P⊥)

] ∫ d2rbb′

(2π)4 e
−iq⊥·rbb′ Ĝ0

Yf
(rbb′)S(P 2

⊥, r
2
bb′)

× αsNc

2π

[
1
2 ln

(
z1z2
z2
f

)
− 3CF

2Nc

]

+
{
αemαse

2
fδ

(2)
z

[1
2H

λ=L,ii
NLO,2(P⊥)

] ∫ d2rbb′

(2π)4 e
−iq⊥·rbb′ Ĝ0

Yf
(rbb′)S(P 2

⊥, r
2
bb′)

×
( −αs

2πNc

)
+ c.c.

}
+ dσ(0),λ=L

other , (5.23)
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where repeated indices are summed over. The first term, proportional to the LO hard factor
and unpolarized WW gluon TMD comes from the LO cross-section (the 1+ term without
αs suppression) and the part of dσV,no−sud,LO cross-section which is proportional to the
LO hard factor.28 It also displays a rapidity factorization scheme dependence through zf
and Qf .

While a full two-loop computation will certainly help to clarify the optimal value of
the zf , our study of the Sudakov form factor suggests that a natural physical choice for the
factorization scales zf and Qf is

zf = z1z2 , Qf = P⊥/c0 , (5.24)

so that the coefficient sf of the single Sudakov log cancels (cf. eqs. (5.21) and (5.22)) and
only the CF dependent single log s0, familiar from collinear factorization, remains. These
choices correspond to

xf = Q2

c2
0P

2
⊥

x1x2
xBj

, (5.25)

where x1 = k+
1 /P

+ ∼ xBj and x2 = k+
2 /P

+ ∼ xBj.

The sensitivity of our result to higher orders can then be studied by varying zf or xf
around this central value.

The second term, also proportional to the LO hard factor but depending on the linearly
polarized WW gluon TMD comes from the effect of final state soft gluon radiation. The two
terms proportional to HNLO,1 and HNLO,2 are pure αs corrections, and involve additional
NLO hard factors. Finally, the last term noted dσ(0),λ=L

other is defined as the correlation limit
of the azimuthally averaged terms in the full cross-section that depend on color correlators
that do not naturally collapse to the WW gluon TMD, namely:

dσ(0),λ=L
other ≡ lim

P⊥�q⊥

1
2π

∫ 2π

0
dφ

[
dσλ=L

R,no−sud,other + dσλ=L
V,no−sud,other

]
, (5.26)

with dσR,no−sud,other and dσV,no−sud,other given respectively by eqs. (3.23) and (3.17). We
have used the notation lim

P⊥�q⊥
as a shortcut for the correlation limit. This term has been

discussed in section 5.2.

28This last piece is dependent on the jet definition, see appendix D for more details.
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The finite terms for the 〈cos(2φ)〉 anisotropy are obtained in a similar fashion:

dσ(2),λ=L = αemαse
2
fδ

(2)
z H

0,λ=L
LO (P⊥)

∫ d2rbb′

(2π)4 e
−iq⊥·rbb′ cos(2θ)

2 ĥ0
Yf

(rbb′)S(P 2
⊥, r

2
bb′)

×
{

1 + αsCF
π

[
3
2 ln(c2

0)− 4 ln(R) + 1
2 ln2

(
z2

1
z2

2

)
+ 11

2 + 3 ln(2)− π2

2

]

+ αsNc

2π

[
−5

4 + ln
(
z2
f

z1z2

)
ln(c2

0)− ln2
(
Q2
fc

2
0

P 2
⊥

)]
+ αs

4πNc
ln(z1z2)

}

+ αemαse
2
fδ

(2)
z H

0,λ=L
LO (P⊥)

∫ d2rbb′

(2π)4 e
−iq⊥·rbb′ cos(2θ)

2 Ĝ0
Yf

(rbb′)S(P 2
⊥, r

2
bb′)

× αsNc

π

{
1 + 2CF

Nc
ln(R2)− 1

N2
c

ln(z1z2)
}

+ αemαse
2
fδ

(2)
z

[1
2H

λ=L,ii
NLO,1(P⊥)

] ∫ d2rbb′

(2π)4 e
−iq⊥·rbb′ cos(2θ)

2 ĥ0
Yf

(rbb′)S(P 2
⊥, r

2
bb′)

× αsNc

2π

[
1
2 ln

(
z1z2
z2
f

)
− 3CF

2Nc

]

+
{
αemαse

2
fδ

(2)
z

[1
2H

λ=L,ii
NLO,2(P⊥)

] ∫ d2rbb′

(2π)4 e
−iq⊥·rbb′ cos(2θ)

2 ĥ0
Yf

(rbb′)S(P 2
⊥, r

2
bb′)

×
( −αs

2πNc

)
+ c.c.

}
+ dσ(2),λ=L

other , (5.27)

where, as above, dσ(2),λ=L
other is defined by

dσ(2),λ=L
other ≡ lim

P⊥�q⊥

1
2π

∫ 2π

0
dφ cos(2φ)

[
dσλ=L

R,no−sud,other + dσλ=L
V,no−sud,other

]
, (5.28)

and correspond to the finite O(αs) terms proportional to color structures which are not
Weizsäcker-Williams like.

The first term in the curly brackets here is nearly identical to the azimuthally averaged
cross-section dσ(0); the only difference comes from the 〈cos(2φ)〉 anisotropy generated by
soft gluon radiation that also affects the contribution proportional to the linearly polarized
WW TMD ĥ0. In particular, the cone size dependence goes like ∝ −4 ln(R)ĥ0 compared
to ∝ −3 ln(R)Ĝ0 in dσ(0),λ=L. The second term is also interesting, as it corresponds to
a 〈cos(2φ)〉 anisotropy proportional to the unpolarized TMD Ĝ0 coming from final state
gluon radiation.

Eqs. (5.23) and (5.27) (as well as eq. (E.2) for the higher harmonics) together with
eq. (5.21) for the Sudakov form factor S(P 2

⊥, r
2
bb′) are the principal new results of this

paper. As noted earlier, some pieces of these results have been presented previously. The
contribution proportional to the unpolarized WW TMD Ĝ0 in the fourth and fifth lines
of the expression for the 〈cos(2φ)〉 anisotropy is also present and discussed in [71]. By
comparing our expression for the coefficient of this anisotropy

αsNc

π

[
1 + 2CF

Nc
ln(R2)− 1

N2
c

ln(z1z2)
]
, (5.29)
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with the value
αsNc

π

[
1 + 2CF

Nc
ln(R2) + 1

N2
c

(
z1
z2

ln(z1) + z2
z1

ln(z2)
)]

, (5.30)

obtained in [71], we find that the two expressions agree up to the 1/N2
c suppressed term.29

The rest of the contributions in eq. (5.27), which are of comparable magnitude to eq. (5.29),
are presented here for the first time.

We close this section by reminding the reader that we have not included corrections
of the form Qs/P⊥ which are not captured by the correlation limit. Thus our results are
valid in the regions shown in eqs. (5.18) and (5.19). For a more detailed discussion see
sections 2.3.2 and 5.2.

6 Conclusions

In [1], we computed the NLO impact factor for the fully inclusive DIS dijet cross-section
at small x in the Color Glass Condensate Effective Field Theory. These results were
updated and reorganized in this paper to ensure smooth extraction of the large Sudakov
double and single logarithms that appear in the impact factor in back-to-back kinematics.
While naively of O(αs), such logarithms can give O(1) contributions when the large dijet
transverse momentum P⊥ is much greater than the momentum imbalance q⊥ between the
jets. Though large, these contributions are known to be universal and can be exponentiated
to all orders in perturbation theory; they contribute to an overall Sudakov form factor that
suppresses the formation of inclusive dijets in the back-to-back limit. This suppression of
the cross-section complements the suppression arising from the many-body scattering and
screening effects that are especially large in the gluon saturation regime in large nuclei at
small x.

Employing the aforementioned reorganization of the NLO impact factor, we performed a
systematic study of the back-to-back limit of the inclusive dijet cross-section. We extracted,
for arbitrary Nc, all the Sudakov double and single logarithmic terms, as well as all the
finite O(αs) contributions that contribute at this NLO order to the cross-section. These
expressions depend nontrivially on unpolarized and linearly polarized Weizsäcker-Williams
gluon TMDs. Such terms at small x will therefore be essential for precision extraction of
novel gluon TMDs at the Electron-Ion Collider.

29Not only is the sign of this 1/N2
c term different but its behavior as well when the rapidity difference

∆η12 between the two jets becomes large. Specifically, if we substitute the relation between ∆η12 and
z1,2 given by eq. (4.35) into eq. (5.29), one observes that it goes to +∞ when ∆η12 � 1 as the single log
coefficient s0 given by eq. (4.56). In contrast, the 1/N2

c term in eq. (5.30) converges to 2αsCF ln(eR2)/π.
This difference between the two computations likely comes from the fact that [70, 71] assumes at the outset
momentum space factorization between the initial state distributions and the soft gluon eikonal factor, and
consequently, some kind of “factorization” of the anisotropies. Our computations of eqs. (4.6) and (4.24)
shows that the convolution is more complex. One might worry that the coefficient of the single Sudakov
logarithm eq. (4.56) and eq. (5.29) diverges as ∆η12 →∞, or equivalently, as z1 → 0 or z2 → 0. One should
however note that the factorization of the rapidity divergence in the NLO cross-section applies when z1, z2

are not small, typically much larger than z0 and of the order of the factorization scale zf . When z1,2 ∼ z0,
we are not in the small x regime anymore and our formalism breaks down.

– 47 –



J
H
E
P
1
1
(
2
0
2
2
)
1
6
9

Our principal results for the dijet differential cross-section in the back-to-back kinematics
are shown in section 5.3. The Sudakov form factor at single logarithmic accuracy is shown in
eq. (5.21). The zeroth and second azimuthal harmonics of the dijet differential cross-section
are presented in eqs. (5.23) and (5.27), and higher harmonics are presented in appendix E.
Our results are valid in the narrow jet cone approximation, and in the regions shown in
eqs. (5.18) and (5.19). A numerical study of the quantitative impact of these results is
underway and will be presented separately.

On a conceptual level, our work clarifies the nontrivial interplay between Sudakov
resummation and rapidity evolution. It provides a factorization scheme that allows for
the simultaneous resummation of the large logarithms of P⊥/q⊥ and the large rapidity (or
“small x”) logarithms. This factorization scheme follows from rapidity evolution of the
WW gluon TMD along the projectile (virtual photon) direction whose evolution kernel is
shown to be the leading order B-JIMWLK kernel. However as we showed explicitly, this
leading order kernel must be modified to satisfy a kinematic constraint that enforces lifetime
ordering of successive gluon emissions. This modified kernel is precisely that which resums
the large double transverse logs that are known to stabilize BFKL evolution beyond leading
logarithmic accuracy. Our results are therefore a nontrivial confirmation of the importance
of lifetime ordering in small x evolution even at leading logarithmic accuracy.

The resummation of Sudakov logarithms in the NLO impact factor is performed by an
exponentiation of the double and single logarithms following the Collins-Soper-Sterman
formalism. A novel feature is the dependence of the single log coefficients on the rapidity
factorization variable Yf . Whether such contributions also exponentiate at small x, is
an open question that can be addressed by exploring the matching of the CSS and CGC
formalism at larger x and Q2. A first step would be to compare our improved rapidity
evolution of the WW gluon TMD with the evolution equation derived in [132], which
accounts for the exponentiation of the Sudakov double logarithms in the soft regime.

Another observation in this direction regarding the Sudakov single logarithms is the
absence of a term proportional to the leading order coefficient β0 in the QCD β-function.
Such a term is obtained in the collinear factorization framework. We argued that this term
can be extracted in the dilute and collinear limit of the CGC EFT; it vanishes beyond this
limit and likely will therefore not contribute in the typical small x kinematics available
at colliders.

As noted, an important result of this study is the calculation of the finite αs corrections
that are not suppressed by powers q⊥/P⊥ in back-to-back kinematics. Conceptually, these
finite αs corrections are two types. The first of these is from terms that involve convolutions
with the unpolarized and linearly polarized WW gluon TMDs, thus do not break the TMD
factorization that holds at leading order. Specifically, such O(αs) corrections are from the
virtual diagrams where the gluon does not scatter off the shockwave. They also appear in
in-cone real gluon emission and in soft large angle radiation. In the latter case, we showed
that they can bring sizeable azimuthal anisotropies which are then convoluted with the
initial state anisotropy associated with the gluon TMD distributions.

The other type of finite terms at NLO appear in diagrams where the gluon scatters
off the shockwave. These terms break TMD factorization beyond leading order since new
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operators (distinct from the polarized and linearly polarized WW gluon TMDs) appear in
the correlation limit. They are associated with O(Qs/q⊥) corrections that are important
in Regge asymptotics. However if the saturation scale is smaller than the momentum
imbalance of the dijets (Qs � q⊥), we show that these higher order operators collapse to
the leading order gluon TMDs, restoring TMD factorization at NLO.

An important extension of our work is to perform it to two-loop accuracy, the state-
of-the-art for fully inclusive DIS in the CGC EFT. This would significantly expand the
demonstration of rapidity factorization to next-to-leading-log accuracy shown there. In
particular, it would provide a much deeper understanding of the role of kinematic constraints
in small x evolution and the interplay of this with Sudakov resummation. From a practical
standpoint, such a computation would help clarify the renormalization scale ambiguities in
the running coupling and in the choice of the rapidity factorization scale.

We can use the results derived in this manuscript for other related processes like dijet
production in the photo-production limit Q2 → 0 as in [54] and dihadron production in
DIS [142]. Such final states may be more easily accessible (albeit less precise) probes at the
EIC of the many-body dynamics of interest. We also note that it is feasible to extend our
results to the massive quark case [143, 144] and thereby study back-to-back heavy quark
pair-production in DIS. It is also interesting to study the consequences30 of kinematically
constrained small x evolution in semi-inclusive hadron/jet production in DIS [147–149].
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A Notations and conventions

We work in lightcone coordinates,

x+ = 1√
2

(
x0 + x3

)
, x− = 1√

2

(
x0 − x3

)
, (A.1)

with the transverse momenta components defined as in Minkowski space. Four-vectors are
defined as aµ = (a+, a−,a⊥), where a⊥ denote the two-dimensional transverse components.
The magnitude of the two-dimensional (Euclidean) vector a⊥ is denoted as a⊥ = |a⊥|.
Following these conventions, the scalar product of two four-vectors is aµbµ = a+b−+a−b+−
a⊥ ·b⊥. We use ai⊥ to denote the ith component of the two dimensional Euclidean vector a⊥.

30The interplay between the kinematic constraint and threshold resummation has been discussed in [53,
145, 146].
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We use the same convention for the gamma matrices γ+ and γ−, with the anti-
commutation relations satisfying

{γµ, γν} = 2gµν14 , (A.2)

where the only non-zero entries in the metric are g+− = g−+ = 1 and gij = −δij .
The CGC effective vertices for the eikonal interaction of the quark or gluon (moving

with large minus lightcone momentum component) with the background gauge field of the
classical small x gluons of the nucleus reads

T qσσ′,ij(l, l
′) = (2π)δ(l− − l′−)γ−σσ′ sgn(l−)

∫
d2z⊥e

−i(l⊥−l′⊥)·z⊥V
sgn(l−)
ij (z⊥) , (A.3)

T gµν,ab(l, l
′) = −(2π)δ(l− − l′−)(2l−)gµν sgn(l−)

∫
d2z⊥e

−i(l⊥−l′⊥)·z⊥U
sgn(l−)
ab (z⊥) , (A.4)

respectively, where l and l′ are the outgoing and incoming momenta of the quark/gluon. The
superscript sgn(l−) denotes the color matrix or its inverse V +1(z⊥) = V (z⊥) and V −1(z⊥) =
V †(z⊥). The lightlike Wilson lines in the fundamental and adjoint representations appearing
in the effective CGC vertices are given by the SU(3) matrices

Vij(z⊥) = P exp
(
ig

∫ ∞
−∞

dz−A+,c
cl (z−, z⊥)tcij

)
, (A.5)

Uab(z⊥) = P exp
(
ig

∫ ∞
−∞

dz−A+,c
cl (z−, z⊥)T cab

)
, (A.6)

where tcij and T cab are the generators of SU(3) in the fundamental and adjoint representations
respectively. The classical field A+

cl is in Lorenz gauge. Here P stands for path ordering
such that the operator at z = −∞ is in the rightmost position, while that at z = +∞ is in
the leftmost position.

B Reorganization and update to the NLO impact factor in ref. [1]

This appendix deals with the derivation of the three terms dσsud2, dσsud1 and dσno−sud in
the reorganization of the NLO impact factor shown in eq. (3.6). This reorganization makes
it easier to extract the large Sudakov logarithms that appear in back-to-back kinematics.
In sections B.1, B.2, B.3, we will provide explicit expressions, respectively, for each of the
stated terms. The derivation of the final term in eq. (3.6), corresponding to the JIMWLK
evolved leading order cross-section, was given in section 3.3.

We will work out in detail here the longitudinally polarized photon cross-section to
illustrate how one extracts the sud2 and sud1 terms. Since these terms depend only trivially
on the photon polarization, the computations go through analogously for transversely
polarized photons. Expressions for the finite terms for the transversely polarized photon
cross-section will be given in appendix C.

B.1 Derivation of dσsud2

The back-to-back limit of the inclusive dijet cross-section is strongly suppressed by large
logarithms corresponding to soft gluon radiation. The amplitude-level factorization of soft
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gluon emission comes from diagram R2 and R′2 only [50]. Indeed in these diagrams, since
the additional gluon emitted does not scatter off the shockwave, the quark or antiquark
emitting the gluon go on-shell as the four-momentum kµg of the gluon goes to zero. For this
reason, the relevant diagrams to extract the “sud2” terms are the diagrams R2 ×R2 and
R2 × R′2 at the cross-section level.

Diagram R2 × R2. Let us first recall the full expression for diagram R2 × R2 before
integrating over the phase-space of the gluon. In [1], we obtained for longitudinally polarized
photons,

dσγ
?
L+A→qq̄g+X

R2×R2 =
αeme

2
fNcδ

(3)
z

(2π)8

∫
d8X⊥e

−ik1⊥·rxx′−ik2⊥·ryy′ΞLO(x⊥,y⊥;x′⊥,y′⊥)

×αsCF

32z1z
3
2(1−z2)2Q2

(
1+ zg

z1
+
z2
g

2z2
1

)
K0(Q̄R2rxy)K0(Q̄R2rx′y′)

e−ikg⊥·rxx′(
kg⊥− zg

z1
k1⊥

)2

 ,

(B.1)

with δ(3)
z = δ(1−z1−z2−zg) and Q̄2

R2 = z2(1−z2)Q2. When taking the zg → 0 limit inside
the curly bracket, one notices that the expression reduces to the leading order perturbative
factor RL

LO except for the additional kg⊥ dependent factor:

4αsCF
(2π)2 ×

e−ikg⊥·rxx′(
kg⊥ − zg

z1
k1⊥

)2 . (B.2)

This expression must be treated with care, given that we aim at extracting the dominant
contributions of the NLO impact factor in the back-to-back limit. In this limit, |k1⊥| ∼ |P⊥|.
On the other hand, the momentum imbalance is driven by the soft gluon so the relevant kg⊥
phase-space corresponds to |kg⊥| ∼ |q⊥|. In this phase-space, kg⊥ and zg/z1k1⊥ ∼ zgP⊥
can be of the same order even for small zg and therefore, it is convenient to keep the zg
dependent term in the denominator.31

To address this point, one can decompose eq. (B.1) to extract the leading divergence in
the product zgk1⊥ inside the denominator as zg → 0:

dσγ
?
λ+A→qq̄g+X

R2×R2 = dσγ
?
λ+A→qq̄g+X

R2×R2,soft−div + dσγ
?
λ+A→qq̄g+X

R2×R2,sud2 + dσγ
?
λ+A→qq̄g+X

R2×R2,no−Sud , (B.3)

with

dσγ
?
λ+A→qq̄g+X

R2×R2,soft−div =
αeme

2
fNcδ

(2)
z

(2π)8

∫
d8X⊥e

−ik1⊥·rxx′−ik2⊥·ryy′RλLO(rxy, rx′y′)

× ΞLO(x⊥,y⊥;x′⊥,y′⊥)× 4αsCF
e−i(kg⊥−zg/z1k1⊥)·rxx′(
kg⊥ − zg

z1
k1⊥

)2 , (B.4)

31However, if one is only interested in the leading zg → 0 divergence, it is sufficient to set zg = 0 in
eq. (B.2).
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dσγ
?
λ+A→qq̄g+X

R2×R2,sud2 =
αeme

2
fNcδ

(2)
z

(2π)8

∫
d8X⊥e

−ik1⊥·rxx′−ik2⊥·ryy′RλLO(rxy, rx′y′)

× ΞLO(x⊥,y⊥;x′⊥,y′⊥)× 4αsCF
e−ikg⊥·rxx′

(
1− eizg/z1k1⊥·rxx′

)
(
kg⊥ − zg

z1
k1⊥

)2 .

(B.5)

We recall that the perturbative factors Rλ=L,T
LO are defined by eqs. (2.9) and (2.10). The

“no-Sud” piece in eq. (B.3) is the difference between the full result and the above two terms.
(This term has a more complex dependence on the polarization of the virtual photon —
see appendix C for the transverse photon case.) The exact expression will be provided in
section B.3. The divergent term above corresponds to the leading slow gluon divergence
that gives rise to the JIMWLK kernel but does not account correctly for the kg⊥ ∼ zgP⊥
phase-space relevant in the back-to-back limit. (Indeed, one can simply shift the transverse
momentum kg⊥ → kg⊥ − zg

z1
k1⊥ when performing the kg⊥ integral to remove the zg

z1
k1⊥

term.) The “sud2” term is given by the subtraction between the expression containing the
exact phase factor in eq. (B.2) and that of the “div” contribution, and corresponds precisely
to the kg⊥ ∼ zgP⊥ phase-space.

Equipped with this decomposition, we define the out-of cone leading divergence of the
R2 ×R2 diagram as the gluon phase-space integration of dσγ

?
λ+A→qq̄g+X

R2×R2,soft−div above with the
quark, antiquark and gluon forming three separated jets:

dσR2×R2,out,soft−div ≡
∫ z1

z0

dzg
zg

∫
d2kg⊥dσγ

?
λ+A→qq̄g+X

R2×R2,div Θ
(
C2
qg⊥ −R2k1⊥

2min
(

1,
z2
g

z2
1

))
,

(B.6)

where z0 = Λ−/q− is the longitudinal momentum fraction between the rapidity cut-off Λ−

and q−. The case where the quark and the gluon form a single jet (“in-cone” contribution)
will be addressed in the next section since it contributes to the “sud1” term in the NLO
impact factor.

In principle, momentum conservation of the minus lightcone momentum imposes
zg ≤ 1 − z1 ' z2. It turns out that the choice of the upper limit of the zg integral in
eq. (B.6) only affects the finite terms included in the “no-sud” component of the cross-section
associated with R2 × R2. Hence we have the freedom to choose the upper boundary of the
zg integral and it is convenient to choose z1 in order to avoid the complications introduced
by the min function in the out-of-cone jet condition discussed in section 3.1. It is then
straightforward to perform the phase-space integral and one gets:

dσR2×R2,out,soft−div =
αeme

2
fNcδ

(2)
z

(2π)6

∫
d8X⊥e

−ik1⊥·rxx′−ik2⊥·ryy′RλLO(rxy, rx′y′)

× ΞLO(x⊥,y⊥;x′⊥,y′⊥)× αsCF
π

{
ln2
(
z1
z0

)
− ln

(
z1
z0

)
ln
(
k1⊥

2r2
xx′R

2

c2
0

)
+O(R2)

}
,

(B.7)
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with c0 = 2e−γE . This expression displays a soft double logarithmic divergence in ln2(z0).
The cancellation of this soft divergence is addressed in the next sub-section: we will show
that it cancels with the in-cone soft gluon divergence, namely, the integral of “R2 × R2,
soft-div” cross-section over the in-cone gluon phase-space.

The “sud2” dijet component of the diagram R2×R2 can be defined in a straightforward
way from our discussion of R2 × R2 above as the integral over the out-of-cone gluon
phase-space of the “sud2” component of dσγ

?
L+A→qq̄g+X

R2×R2,sud2 :

dσR2×R2,sud2 ≡
∫ z1

0

dzg
zg

∫
d2kg⊥dσγ

?
λ+A→qq̄g+X

R2×R2,sud2 Θ
(
C2
qg⊥ −R2k1⊥

2min
(

1,
z2
g

z2
1

))
, (B.8)

in the small-R limit (up to powers of R2 suppressed terms). We emphasize that since the
leading rapidity divergence has already been subtracted (as seen from the decomposition in
eq. (B.3)), the integration over zg is convergent; therefore, no rapidity cut-off z0 = Λ−/q−

is needed.
The kg⊥ integration in eq. (B.8) can be performed explicitly in the small R limit using∫ d2Cqg⊥

(2π)2
e−iCqg⊥·∆

C2
qg⊥

Θ
(
C2
qg⊥ −R2k1⊥

2ξ2
)

= − 1
4π ln

(
k1⊥

2∆2R2ξ2

c2
0

)
+O(R2) , (B.9)

so that the soft R2 × R2 cross-section reads, with ξ = zg/z1,

dσR2×R2,sud2 =
αeme

2
fNcδ

(2)
z

(2π)6

∫
d8X⊥e

−ik1⊥·rxx′−ik2⊥·ryy′RλLO(rxy, rx′y′) (B.10)

× ΞLO(x⊥,y⊥;x′⊥,y′⊥)× αsCF
π

∫ 1

0

dξ
ξ

[
1− e−iξk1⊥·rxx′

]
ln
(
k1⊥

2r2
xx′R

2ξ2

c2
0

)
+O(R2) ,

up to powers of R2 suppressed terms. The expression for dσR′2×R′2,sud2 can be obtained by
quark-antiquark interchange, employing k1⊥ ↔ k2⊥, x⊥ ↔ y⊥ and x′⊥ ↔ y′⊥.

Diagram R2 ×R′2. The structure of the soft piece of the interference diagram R2 × R′2
is slightly more complicated. We remind the reader that the full expression for this diagram
in ref. [1] is

dσγ
?
L+A→qq̄g+X

R2×R2′ =
αeme

2
fNcδ

(3)
z

(2π)8

∫
d2X⊥e

−ik1⊥·rxx′−ik2⊥·ryy′ΞNLO,3(x⊥,y⊥;x′⊥,y′⊥)

×(−αs)32z3
1z

3
2(1−z2)(1−z1)Q2K0(Q̄R2rxy)K0(Q̄R2′rx′y′)

[
1+ zg

2z1
+ zg

2z2

]
×e−ikg⊥·rxy′ (z1kg⊥−zgk1⊥)·(z2kg⊥−zgk2⊥)

(z1kg⊥−zgk1⊥)2(z2kg⊥−zgk2⊥)2 , (B.11)

with Q̄2
R2′ = z1(1− z1)Q2 and the color correlator ΞNLO,3 defined by

ΞNLO,3(x⊥,y⊥;x′⊥,y′⊥) = Nc

2
〈
1−Dxy −Dy′x′ +DxyDy′x′

〉
− 1

2Nc
ΞLO(x⊥,y⊥;x′⊥,y′⊥) .

(B.12)
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As in the case of R2 × R2, we first extract the zg → 0 behavior, keeping terms of the form
zgk1⊥ or zgk2⊥. Since this diagram has no collinear divergence, the in-cone phase-space
is suppressed by at least one power of R2. One can therefore freely integrate over the full
gluon phase-space up to terms of order O(R2). The object we need to study is then

(−4αs)
∫ dzg

zg

∫ dkg⊥2

(2π)2 e
−ikg⊥·rxy′

(
kg⊥ − zg

z1
k1⊥

)
·
(
kg⊥ − zg

z2
k2⊥

)
(
kg⊥ − zg

z1
k1⊥

)2 (
kg⊥ − zg

z2
k2⊥

)2

= (−αs)
∫ dzg

zg
e
−i zg

z1
k1⊥·rxy′JR

(
rxy′ ,

zg
z1z2

P⊥

)
, (B.13)

where, as in [1], we introduced the function JR,

JR(r⊥,K⊥) ≡
∫ d2l⊥

(2π)2 e
−il⊥·r⊥ 4l⊥ · (l⊥ +K⊥)

l2⊥(l⊥ +K⊥)2 . (B.14)

This function is singular as K⊥ → 0, which is evidently the case when zg → 0. This
singularity was studied and extracted in [1], where we found that

JR(r⊥,K⊥) = 4
∫ d2l⊥

(2π)2
1
l2⊥

Θ
(
c2

0
r2
⊥
≥ l2⊥ ≥K2

⊥

)
− i+O(|K⊥|)

= − 1
π

[
ln
(
K2
⊥r

2
⊥

c2
0

)
+ iπ +O(|K⊥|)

]
. (B.15)

The iπ term is not important here since it cancels when we include the complex conjugate
diagram R′2 × R2.

Following along the lines of the decomposition in eq. (B.3) of the diagram R2 × R2, we
will likewise isolate three terms in the expression of R2 ×R′2 based on the observed singular
behavior:

dσγ
?
λ+A→qq̄g+X

R2×R2′ = dσγ
?
λ+A→qq̄g+X

R2×R2′,soft−div + dσγ
?
λ+A→qq̄g+X

R2×R2′,sud2 + dσγ
?
λ+A→qq̄g+X

R2×R2′,no−Sud , (B.16)

with the soft divergent and “sud2” terms defined respectively as

dσγ
?
λ+A→qq̄g+X

R2×R2′,soft−div≡
αeme

2
fNcδ

(2)
z

(2π)8

∫
d8X⊥e

−ik1⊥·rxx′−ik2⊥·ryy′RλLO(rxy,rx′y′)

×ΞNLO,3(x⊥,y⊥;x′⊥,y′⊥)×(−4αs)
1
l2⊥

Θ
(
c2

0
r2
xy′
≥ l2⊥≥

z2
gP

2
⊥

z2
1z

2
2

)
, (B.17)

dσγ
?
λ+A→qq̄g+X

R2×R2′,sud2 ≡
αeme

2
fNcδ

(2)
z

(2π)8

∫
d8X⊥e

−ik1⊥·rxx′−ik2⊥·ryy′RλLO(rxy,rx′y′)

×ΞNLO,3(x⊥,y⊥;x′⊥,y′⊥)×(−4αs)

(
e
−i zg

z1
k1⊥·rxy′−1

)
l2⊥

Θ
(
c2

0
r2
xy′
≥ l2⊥≥

z2
gP

2
⊥

z2
1z

2
2

)
, (B.18)

with l⊥ = kg⊥ − zg/z1k1⊥. The Θ-functions have been chosen to ensure that eq. (B.15) is
recovered once the transverse momentum of the gluon is integrated over. As previously, the
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“no-sud” contribution is defined as the full expression for R2 × R′2 minus the soft divergent
and “sud2” terms. As we observed in section 5, this term has neither divergences nor large
Sudakov logarithms in the back-to-back limit.

After integrating dσγ
?
λ+A→qq̄g+X

R2×R2′,soft−div over the full gluon phase-space,

dσR2×R′2,soft−div ≡
∫ z1

0

dzg
zg

∫
d2kg⊥dσγ

?
λ+A→qq̄g+X

R2×R2′,soft−div (B.19)

=
αeme

2
fNcδ

(2)
z

(2π)6

∫
d8X⊥e

−ik1⊥·rxx′−ik2⊥·ryy′RλLO(rxy, rx′y′)

× αs
π

∫ z1

z0

dzg
zg

[
2 ln

(
zg
z1z2

)
+ ln

(
P 2
⊥r

2
xy′

c2
0

)]
ΞNLO,3(x⊥,y⊥,x′⊥,y′⊥) ,

(B.20)

one gets double and single logarithmic divergences in ln(z0). As we showed in [1], the
double logarithms ln2(z0) will cancel with the virtual contribution V3 × LO, and the single
logarithms combine to give the JIMWLK kernel associated with the color correlator ΞNLO,3.
This is shown in detail in section B.2.

We will here focus on the “sud2” term and define dσR2×R′2,sud2. We use the same
definition as for R2 × R2:

dσR2×R′2,sud2 ≡
∫ z1

0

dzg
zg

∫
d2kg⊥ dσγ

?
λ+A→qq̄g+X

R2×R2′,sud2 Θ
(
C2
qg⊥ −R2k1⊥

2min
(

1,
z2
g

z2
1

))
,

(B.21)

but this time, since there is no collinear divergence, one can remove the out-of-cone condition
and integrate over the full phase-space of the gluon in the small-cone approximation. (To
account for the exact R dependence of the cross-section, the out-of-cone constraint must
still be imposed.) The upper limit of the zg integral is again arbitrary, and one can take
z1 in R2 × R′2 and z2 in R′2 × R2 in order to preserve the quark-antiquark symmetry. Any
other choice only affects the finite O(αs) term. Finally, one gets

dσR2×R′2,sud2 =
αeme

2
fNcδ

(2)
z

(2π)6

∫
d8X⊥e

−ik1⊥·rxx′−ik2⊥·ryy′RλLO(rxy, rx′y′)

× ΞNLO,3(x⊥,y⊥;x′⊥,y′⊥)× (−αs)
π

∫ 1

0

dξ
ξ

[
1− e−iξk1⊥·rxy′

]
ln
(
P 2
⊥r

2
xy′ξ

2

z2
2c

2
0

)
+O(R2) .

(B.22)

The back-to-back part of R′2 × R2 can be obtained from quark-antiquark interchange in
eq. (B.22). Eqs. (B.10) and (B.22) are the key results of this section.

B.2 Derivation of dσsud1

Before we compute the sud1 term in eq. (3.6) from which one can extract the single Sudakov
logarithm + finite terms in the back-to-back limit, we will first consider how the double
logarithmic divergence in ln2(z0) found in eq. (B.7) and in eq. (B.20) cancels out.
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Single logarithm from the “no-pole” term. The sum of all the virtual amplitudes
displayed figure 1 is infrared divergent, and this divergence manifests as a collinear single
1/ε pole in two transverse dimensions. This divergence was isolated in [1], and one obtains

dσIR×LO = αeme
2
fNcδ

(2)
z

(2π)6

∫
d8X⊥e

−ik1⊥·rxx′−ik2⊥·ryy′RλLO(rxy,rx′y′)

×ΞLO(x⊥,y⊥;x′⊥,y′⊥)× αsCF
2π

{(
ln
(
z1

z0

)
+ln

(
z2

z0

)
− 3

2

)(2
ε

+ln(eγEπµ2r2
xy)
)

+ 1
2 ln2

(
z2

z1

)
− π2

6 + 5
2−

1
2

}
, (B.23)

with dσIR×LO defined as the sum of the virtual contributions SE2×LO, SE3×LO, V2×LO
and the UV divergent component of SE1 × LO. The surviving pole in this expression
cancels in the IRC safe cross-section once combined with the collinear divergence of the
real cross-section.

Only the diagrams R2 ×R2 and R′2 ×R′2 are singular when the gluon is collinear to the
quark or the antiquark. Once the C/A algorithm (for example) is applied to the qq̄g final
state of these two diagrams, the in-cone contributions (where the quark or antiquark, and
the gluon, lie inside the same jet) develop another collinear 1/ε pole which exactly cancels
against the one in eq. (B.23). The in-cone R2 × R2 cross-section reads

dσR2×R2,in = dσLO×
αsCF
π

{(3
4− ln

(
z1
z0

)) 2
ε

+ln2(z1)− ln2(z0)− π
2

6

+
(

ln
(
z1
z0

)
− 3

4

)
ln
(
R2k1⊥

2

µ̃2z2
1

)
+ 1

4 + 3
2

(
1− ln

(
z1
2

))
+O(R2)

}
, (B.24)

and similarly for the R′2 × R′2 in-cone term. The MS momentum scale µ̃ is defined by
µ̃2 = 4πe−γEµ2. Importantly, in contrast to [1], we have not subtracted the rapidity
divergence yet.

Indeed in [1], we defined the “IRC safe” contribution to the inclusive dijet cross-section
as the sum respectively of the virtual and real terms, dσIR×LO, dσR2×R2,in and dσR′2×R′2,in
after subtracting the logarithmic rapidity divergence. We found further that this IRC term
has terms proportional to αs ln2(k−f /q−). Though these terms break the expected single
logarithmic factorization of rapidity divergences, these double logarithmic terms however
cancel once combined with the out-of-cone contributions from diagram R2×R2 and R′2×R′2,
again after subtraction of the rapidity divergence.

As noted in [54], one can also implement the jet algorithm first, and then combine the
in-cone contribution with the rapidity divergent contribution of the out-cone contribution
to see the cancellation of the ln2(z0) term appearing in eq. (B.24). We will adopt here
the same organizing principle as [54] to display our cross-section and include in the IRC
safe term the logarithmic divergent phase-space of the out-of-cone R2 ×R2 and R′2 ×R′2
diagrams. We will then have to subtract the leading logarithmic rapidity divergence which
belongs to the last term in eq. (3.6).

We can now combine the IR divergent piece of the virtual cross-section dσIR×LO
(eq. (B.23)), the in-cone contributions of diagrams R2 × R2 and R′2 × R′2 (eq. (B.24)), and

– 56 –



J
H
E
P
1
1
(
2
0
2
2
)
1
6
9

the out-of-cone soft divergent piece of R2×R2 and R′2×R′2 that was extracted and computed
in the previous subsection (see eq. (B.7)). These combine to give

dσIR×LO +dσLO×IR +dσR2×R2,in +dσR2×R2,out,soft−div.+(R2→R′2) =
αeme

2
fNcδ

(2)
z

(2π)6

∫
d8X⊥e

−ik1⊥·rxx′−ik2⊥·ryy′RλLO(rxy,rx′y′)ΞLO(x⊥,y⊥;x′⊥,y′⊥)

× αsCF
π

{
− ln

(
z1

z0

)
ln
(

r2
xx′

|rxy||rx′y′ |

)
− ln

(
z2

z0

)
ln
(

r2
yy′

|rxy||rx′y′ |

)
− 3

4 ln
(
k1⊥

2k2⊥
2r2
xyr

2
x′y′

c4
0

)
−3 ln(R)+ 1

2 ln2
(
z1

z2

)
+ 11

2 +3ln(2)− π2

2 +O(R2)
}
. (B.25)

This expression contains a rapidity divergence, which is isolated by introducing the factor-
ization scale k−f and zf = k−f /q

−:

dσLO,slow =
αeme

2
fNcδ

(2)
z

(2π)6

∫
d8X⊥e

−ik1⊥·rxx′−ik2⊥·ryy′RλLO(rxy, rx′y′)

× αsCF
π

ln
(
k−f
Λ−

)
ln
(
r2
xyr

2
x′y′

r2
xx′r

2
yy′

)
ΞLO(x⊥,y⊥;x′⊥,y′⊥) . (B.26)

This result is absorbed into the last term of eq. (3.6) building the JIMWLK kernel associated
with the color correlator ΞLO in the leading logarithmic rapidity evolution.

The expression resulting from the subtraction of the rapidity divergence in eq. (B.26)
from the sum in eq. (B.25) is given by32

dσno−pole = αeme
2
fNcδ

(2)
z

(2π)6

∫
d8X⊥e

−ik1⊥·rxx′−ik2⊥·ryy′RλLO(rxy,rx′y′)ΞLO(x⊥,y⊥;x′⊥,y′⊥)

× αsCF
π

{
− ln

(
z1

zf

)
ln
(

r2
xx′

|rxy||rx′y′ |

)
− ln

(
z2

zf

)
ln
(

r2
yy′

|rxy||rx′y′ |

)
− 3

4 ln
(
k1⊥

2k2⊥
2r2
xyr

2
x′y′

c4
0

)
−3 ln(R)+ 1

2 ln2
(
z1

z2

)
+ 11

2 +3ln(2)− π2

2 +O(R2)
}
. (B.27)

This is the principal update of our calculation of the NLO inclusive dijet cross-section subse-
quent to the results published in [1]. The constant terms in the last line of eq. (B.27) depend
on the jet algorithm; further, R2 and higher power terms are neglected in this computation.

We will see that dσno−pole contains a single Sudakov logarithm in the back-to-back limit
which arises from the first two terms inside the curly brackets. Indeed since parametrically
rxy ∼ rx′y′ ∼ 1/P⊥ and rxx′ ∼ ryy′ ∼ 1/q⊥, we can write the contribution from these two
terms as

dσno−pole,sud1

=
αeme

2
fNcδ

(2)
z

(2π)6

∫
d8X⊥e

−ik1⊥·rxx′−ik2⊥·ryy′RλLO(rxy, rx′y′)ΞLO(x⊥,y⊥;x′⊥,y′⊥)

× αsCF
π

{
− ln

(
z1
zf

)
ln
(

r2
xx′

|rxy||rx′y′ |

)
− ln

(
z2
zf

)
ln
(

r2
yy′

|rxy||rx′y′ |

)}
. (B.28)

32We use the label “no-pole” to remind the reader that this sum is performed to cancel the infrared 1/ε
poles between real and virtual NLO corrections.
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Single Sudakov logarithm from the diagram V3×LO. We turn now to the regular
contributions of the virtual cross-section computed in [1]. Amongst those, only V3 × LO
requires additional discussion; this is because its singularity structure is tied to that of
R2 × R′2. The full expression for V3 × LO is

dσV3×LO

=
αeme

2
fNcδ

(2)
z

(2π)6

∫
d8X⊥e

−ik1⊥·rxx′−ik2⊥·ryy′8z3
1z

3
2Q

2K0(Q̄rx′y′)K0(Q̄V3rxy)ΞNLO,3

× αs
π

∫ z1

0

dzg
zg

{[(
1− zg

z1

)2(
1+ zg

z2

)
(1+zg)ei(P⊥+zgq⊥)·rxyK0(−i∆V3rxy)

−
(

1− zg
2z1

+ zg
2z2
−

z2
g

2z1z2

)
e
i
zg
z1
k1⊥·rxyJ�

(
rxy,

(
1− zg

z1

)
P⊥,∆V3

)]
+(1↔ 2)

}
.

(B.29)

The zg → 0 singularity structure of eq. (B.29) is given by [1]

dσV3×LO,soft−div +c.c.=
αeme

2
fNcδ

(2)
z

(2π)6

∫
d8X⊥e

−ik1⊥·rxx′−ik2⊥·ryy′RλLO(rxy,rx′y′)

× (−αs)
π

∫ z1

z0

dzg
zg

[
2 ln

(
zg
z1z2

)
+ln

(
P 2
⊥|rxy||rx′y′ |

c2
0

)]
ΞNLO,3(x⊥,y⊥,x′⊥,y′⊥)+(1↔ 2) .

(B.30)

This expression contains a double logarithmic ln2(z0) singularity which cancels against an
identical logarithmic singularity of the phase-space integral of dσγ

?
L+A→qq̄g+X

R2×R2′,div . Combining
eq. (B.30) with eq. (B.20) (and its R′2 × R2 mirror contribution), we find

(dσV3×LO,soft−div +c.c.)+dσR2×R′2,soft−div +dσR′2×R2,soft−div (B.31)

=
αeme

2
fNcδ

(2)
z

(2π)6

∫
d8X⊥e

−ik1⊥·rxx′−ik2⊥·ryy′RλLO(rxy,rx′y′)

× αs
π

{
ln
(
z1
z0

)
ln
(

r2
xy′

|rxy||rx′y′ |

)
+ln

(
z2
z0

)
ln
(

r2
yx′

|rxy||rx′y′ |

)}
ΞNLO,3(x⊥,y⊥;x′⊥,y′⊥) .

Introducing the factorization scale k−f to isolate the rapidity divergence, we get the contri-
bution building the JIMWLK kernel of the color correlator ΞNLO,3:

dσNLO3,slow =
αeme

2
fNcδ

(2)
z

(2π)6

∫
d8X⊥e

−ik1⊥·rxx′−ik2⊥·ryy′RλLO(rxy, rx′y′)

× αs
π

ln
(
k−f
Λ−

)
ln
(
r2
xy′r

2
yx′

r2
xyr

2
x′y′

)
ΞNLO,3(x⊥,y⊥;x′⊥,y′⊥) , (B.32)

with a finite leftover term leading to a single Sudakov logarithm in the back-to-back limit
given by

αs
π

{
ln
(
z1
zf

)
ln
(

r2
xy′

|rxy||rx′y′ |

)
+ ln

(
z2
zf

)
ln
(

r2
yx′

|rxy||rx′y′ |

)}
, (B.33)

which also leads to a single Sudakov in the back-to-back limit.
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The term “sud1” is then defined as the sum of the dσno−pole,sud1 (eq. (B.28)) and this
leftover piece:

dσsud1 =
αeme

2
fNcδ

(2)
z

(2π)6

∫
d8X⊥e

−ik1⊥·rxx′−ik2⊥·ryy′RλLO(rxy, rx′y′)×
αs
π

×
{
CFΞLO(x⊥,y⊥;x′⊥,y′⊥)

[
ln
(
zf
z1

)
ln
(

r2
xx′

|rxy||rx′y′ |

)
+ ln

(
zf
z2

)
ln
(

r2
yy′

|rxy||rx′y′ |

)]

+ ΞNLO,3(x⊥,y⊥;x′⊥,y′⊥)
[
ln
(
z1
zf

)
ln
(

r2
xy′

|rxy||rx′y′ |

)
+ ln

(
z2
zf

)
ln
(

r2
yx′

|rxy||rx′y′ |

)]}
.

(B.34)

The expression eq. (B.34) is our final result for the term in the NLO impact factor leading
to at most a single Sudakov logarithm in the back-to-back limit.

B.3 Derivation of dσno−sud

Finally, the “no-Sud” term groups together all O(αS) in the inclusive NLO impact factor
which do not give rise to Sudakov logarithms in the back-to-back limit. We again decompose
the virtual and real “no-Sud” terms depending on the color correlator that contributes:
either CFΞLO, ΞNLO,3 or any other correlators,

dσR/V,no−sud ≡ dσR/V,no−sud,LO + dσR/V,no−sud,NLO3 + dσR/V,no−sud,other . (B.35)

In the following two paragraphs, we will provide the results for the individual terms in this
expression.

Virtual finite terms. The virtual contribution without Sudakov enhancement in the
back-to-back limit gathers the leftover of dσno−pole, the finite part of dσV3 , as well as the
UV finite component of SE1 and diagram V1.

The left over of dσno−pole gives the term proportional to CFΞLO, with dependence on
the photon polarization entering through the leading order perturbative factor only:

dσV,no−sud,LO

=
αeme

2
fNcδ

(2)
z

(2π)6

∫
d8X⊥e

−ik1⊥·rxx′−ik2⊥·ryy′RλLO(rxy,rx′y′)ΞLO(x⊥,y⊥;x′⊥,y′⊥)

×αsCF
π

{
−3

4 ln
(
k1⊥

2k2⊥
2r2
xyr

2
x′y′

c4
0

)
−3ln(R)+ 1

2 ln2
(
z1
z2

)
+ 11

2 +3ln(2)−π
2

2 +O(R2)
}
.

(B.36)

The finite part of diagram V3 × LO (plus its complex conjugate) defines the cross-section
dσV,no−sud,NLO3

dσV,no−sud,NLO3 = (dσV3×LO − dσV3×LO,soft−div) + c.c , (B.37)

which for longitudinally polarized photons is given by eq. (3.15).
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Finally, the term involving other color correlators (namely ΞNLO,1 and ΞNLO,2) coming
from the UV finite part of SE1 × LO, and V1 × LO (plus their complex conjugates) defines

dσV,no−sud,other =
(

dσSE1×LO|UV−fin. + dσSE1′×LO|UV−fin. + dσV1×LO + dσV1′×LO

− dσSE1×LO,slow|UV−fin. − dσSE1′×LO,slow
∣∣
UV−fin.

−dσV1×LO,slow − dσV1′×LO,slow
)

+ c.c. , (B.38)

which for longitudinally polarized photons is given by eq. (3.17). The subscript “slow” refers
to the part of these contributions which is absorbed into the JIMWLK evolution and thus
must be subtracted from the impact factor.

The corresponding expressions for eqs. (B.37) and (B.38) for a transversely polarized
photon are given in appendix C.

Real finite terms. The sum of the “no-Sud” component of R2 × R2 (see eq. (B.3)) and
that of R′2 × R′2 defines

dσR,no−sud,LO = dσγ
?
λ+A→qq̄g+X

R2×R2,no−Sud + dσγ
?
λ+A→qq̄g+X

R2′×R2′,no−Sud , (B.39)

which expression for longitudinally polarized photon is given eq. (3.21).
Similarly, the sum of the regular “no-sud” component of R2 × R′2 (see eq. (B.16)) and

its complex conjugate defines

dσR,no−sud,NLO3 = dσγ
?
λ+A→qq̄g+X

R2′×R2,no−Sud + dσγ
?
λ+A→qq̄g+X

R2×R2′,no−Sud , (B.40)

which for longitudinally polarized photons leads to eq. (3.22). Note that the “no-sud”
R′2 × R′2 and R′2 × R2 contributions can easily be inferred from these two formulas from
quark-antiquark (or 1↔ 2 interchange).

Finally, the contribution from real diagrams in which the gluon crosses the shockwave
(in the amplitude, complex conjugate amplitude or both) gives eq. (3.23) for longitudinally
polarized photons. The corresponding expressions for transversely polarized photons are
given in appendix C.

C NLO cross-section for transversely polarized virtual photons

C.1 Virtual cross-section without Sudakov enhancement

The “no-sud” virtual cross-section for transversely polarized photons is decomposed into
three terms,

dσλ=T
V,no−sud = dσλ=T

V,no−sud,LO + dσλ=T
V,no−sud,NLO3 + dσλ=T

V,no−sud,other , (C.1)
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with dσλ=T
V,no−sud,LO given by eq. (3.14), and

dσλ=T
V,no−sud,other =

αeme
2
fNcδ

(2)
z

(2π)6

∫
d8X⊥e

−ik1⊥·rxx′−ik2⊥·ryy′ 2z2
1z

2
2
QK1(Q̄rx′y′)

rx′y′

× αs
π

{∫ z1

0

dzg
zg

∫ d2z⊥
π

{
e
−i zg

z1
k1⊥·rzx Q̄K1(QXV )

XV
ΞNLO,1

[
−zg(zg − z1)2z2

2z3
1

rzx · rx′y′
r2
zx

+ (z2
1 + z2

2)
(

1− zg
z1

+
z2
g

2z2
1

)
RSE · rx′y′

r2
zx

]
− (z2

1 + z2
2)e
− r2

zx
r2
xye

γE

(
1− zg

z1
+

z2
g

2z2
1

)
rxy · rx′y′
r2
zx

×QK1(Q̄rxy)CFΞLO − e
−i zg

z1
k1⊥·rzx Q̄K1(QXV )

XV
ΞNLO,1

[
zg(z1 − zg)
2(zg + z2)

rzx · rx′y′
r2
zx

+ [z1(z1 − zg) + z2(z2 + zg)]
(

1− zg
z1

)(
1 + zg

z2

)(
1− zg

2z1
− zg

2(z2 + zg)

)

×
(RV · rx′y′)(rzx · rzy)

r2
zxr

2
zy

+ zg(z1 − zg)(zg + z2 − z1)2

2z2
1z2

(RV × rx′y′)(rzx × rzy)
r2
zxr

2
zy

]}

+ (1↔ 2)
}

+ c.c.−
αeme

2
fNc

(2π)6 δ(2)
z Θ(zg − zf )× “slow” , (C.2)

where we introduce the two transverse vectors:

RSE = rxy + zg
z1
rzx , (C.3)

RV = rxy −
zg

z2 + zg
rzy . (C.4)

Finally, the second term in eq. (C.1) reads

dσλ=T
V,no−sud,NLO3 =

αeme
2
fNcδ

(2)
z

(2π)6

∫
d8X⊥e

−ik1⊥·rxx′−ik2⊥·ryy′ (2z1z2)Q̄K1(Q̄rx′y′)
rx′y′

× αs
π

{∫ z1

0

dzg
zg

Q̄V3K1(Q̄V3rxy)
rxy

ΞNLO,3(x⊥,y⊥;x′⊥,y′⊥)

×
[
[z1(z1−zg)+z2(z2 +zg)] (1+zg)

(
1− zg

z1

)
ei(P⊥+zgq⊥)·rxy(rxy ·rx′y′)K0(−i∆V3rxy)

− [z1(z1−zg)+z2(z2 +zg)]
(

1− zg
2z1

+ zg
2z2
−

z2
g

2z1z2

)
e
i
zg
z1
k1⊥·rxy(rxy ·rx′y′)

×J�
(
rxy,

(
1− zg

z1

)
P⊥,∆V3

)
− izg(zg+z2−z1)2

z1z2
e
i
zg
z1
k1⊥·rxy(rxy×rx′y′)J⊗

(
rxy,

(
1− zg

z1

)
P⊥,∆V3

)]

+[z2
1 +z2

2 ]rxy ·rx
′y′

rxy
Q̄K1(Q̄rxy) ln

(
zgP⊥rxy
c0z1z2

)
+(1↔ 2)

}
+c.c. , (C.5)

with the J⊗ function computed in [1] defined as

J⊗(r⊥,K⊥,∆) =
∫ d2l⊥

(2π)
(−i)l⊥ ×K⊥ eil⊥·r⊥

l2⊥ [(l⊥ −K⊥)2 −∆2 − iε]
. (C.6)
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The cross-section dσV,no−sud,NLO3 contributes to the hard factor Hλ=T,ij
NLO,2 , which can be

obtained by taking the correlation limit of eq. (C.5):

Hλ=T,ij
NLO,2 (P⊥) = 1

2

∫ d2u⊥
(2π)

∫ d2u′⊥
(2π) e

−iP⊥ruu′ ui⊥u
′j
⊥R

λ=T
LO (u⊥,u′⊥)

×
∫ z1

0

dzg
zg

{
Q̄V3K1(Q̄V3u⊥)
Q̄K1(Q̄u⊥)

×
[ [z1(z1−zg)+z2(z2+zg)]

[z2
1 +z2

2 ]
(1+zg)

(
1− zg

z1

)
eiP⊥·u⊥K0(−i∆V3u⊥)

− [z1(z1−zg)+z2(z2+zg)]
[z2

1 +z2
2 ]

(
1− zg

2z1
+ zg

2z2
−

z2
g

2z1z2

)
e
i
zg
z1
P⊥·u⊥J�

(
u⊥,

(
1− zg

z1

)
P⊥,∆V3

)

−izg(zg+z2−z1)2

z1z2(z2
1 +z2

2)
e
i
zg
z1
P⊥·u⊥ (u⊥×u′⊥)

u⊥ ·u′⊥
J⊗
(
u⊥,

(
1− zg

z1

)
P⊥,∆V3

)]

+ln
(
zgP⊥u⊥
c0z1z2

)}
+(1↔ 2) . (C.7)

C.2 Real cross-section without Sudakov enhancement

The real cross-section without Sudakov enhanced logarithms is decomposed in a similar
fashion:

dσλ=T
R,no−sud = dσλ=T

R,no−sud,LO + dσλ=T
R,no−sud,NLO3 + dσλ=T

R,no−sud,other , (C.8)
with

dσγ
∗
T+A→qq̄g+X

R,no−sud,LO =
αeme

2
fNc

(2π)8

∫
d8X⊥e

−ik1⊥·rxx′−ik2⊥·ryy′ (4αs)CFΞLO
e−ikg⊥·(x⊥−x′⊥)(
kg⊥ − zg

z1
k1⊥

)2

×
{

2z1z2Q̄
2
R2

[
z2

2 + (1− z2)2
](

1 + zg
z1

+
z2
g

2z2
1

)
rxy · rx′y′
rxyrx′y′

K1(Q̄R2rxy)K1(Q̄R2rx′y′)δ(3)
z

−RT
LO(rxy, rx′y′)Θ(z1 − zg)δ(2)

z

}
+ (1↔ 2) , (C.9)

and

dσγ
∗
T+A→qq̄g+X

R,no−sud,NLO3
=
αeme

2
fNc

(2π)8

∫
d8X⊥e

−ik1⊥·rxx′−ik2⊥·ryy′ (−4αs)ΞNLO,3
e
−i zg

z1
k1⊥·rxy′

l2⊥

×
{

2z1z2Q̄R2K1(Q̄R2rxy)Q̄R2′K1(Q̄R2′rx′y′)δ(3)
z

×
[
(z1 + z2 − 2z1z2)

(
1 + zg

2z1
+ zg

2z2

)
e−il⊥·rxy′

l⊥ · (l⊥ +K⊥)
(l⊥ +K⊥)2

rxy · rx′y′
rxyrx′y′

− zg
8z1z2

(z1 − z2)2e−il⊥·rxy′
l⊥ ×K⊥

(l⊥ +K⊥)2
rxy × rx′y′
rxyrx′y′

]

−RT
LO(rxy, rx′y′)Θ

(
c2

0
r2
xy′
≥ l2⊥ ≥K2

⊥

)
Θ(z1 − zg)δ(2)

z

}
+ (1↔ 2) . (C.10)

Finally, the term dσλ=T
R,no−sud,other is given by the sum of eq. (B8)-(B9)-(B10)-(B11) in [1].
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D Dependence of NLO impact factor on jet definitions

In this appendix, we provide the value of the NLO impact factor for jet algorithms in the
generalized kt family and in the small R limit (meaning, up to power of R2 suppressed
corrections).

The in-cone condition is given by eq. (3.5). In the small R limit, this constraint
only modifies the in-cone phase-space integral of diagram R2 × R2 and R′2 × R′2. We
define ∆σkt−alg. as the difference between the cross-section dσV,no−sud,LO computed using
generalized kt jet algorithms and the cross-section computed using the jet definition of
Ivanov & Papa [100]. We have, using eqs. (3.4)–(3.5) in eq. (B.1),

∆σkt−alg. = dσLO ×
αsCF
π

∫ z1

0
dzg

[
1
zg
− 1
z1

+ zg
2z2

1

]
ln
(

z2
g(z1 − zg)2

min(z2
g , (z1 − zg)2)z2

1

)
+ (1↔ 2)

= dσLO ×
αsCF
π

[
3− π2

3 − 3 ln(2)
]
. (D.1)

This result is valid up to power of R2 suppressed terms. Eq. (D.1) corresponds to the
difference between the in-cone gluon phase-space integral of the R2 × R2 and R′2 × R′2
contributions for the two jet definitions, which are manifest in the argument of the logarithm.
This result agrees with the calculations of NLO jet functions in SCET performed in [105, 111].

If one uses a jet algorithm from the generalized kt family to define the dijet cross-section,
one should add the term ∆σkt−alg. to the impact factor presented in this paper computed
using the Ivanov & Papa jet definition. Note that this NLO contribution completely
factorizes from the LO cross-section and is a finite αs correction that does not introduce
additional 〈cos(nφ)〉 anisotropies relative to that given by the LO cross-section.

E 〈cos(nφ)〉 anisotropies for n ≥ 4

In this appendix, we compute the finite terms in the 〈cos(nφ)〉 anisotropies for even n ≥ 4.
Only the soft terms labeled “sud2” in the NLO cross-section contribute to these anisotropies.
For a longitudinally polarized photon, one gets, using the Jacobi-Anger identity (eq. (4.15)),

dσ(n=2p),λ=L = αemαse
2
fδ

(2)
z H

0,λ=L
LO (P⊥)

∫ d2rbb′

(2π)4 e
−iq⊥·rbb′ αs

π
cos(nθ)

{
Ĝ0
Yf

(rbb′)

×
∫ 1

0

dξ
ξ

(−1)p+1Jn(ξ|P⊥||rbb′ |)
[
Nc ln

(
P 2
⊥r

2
bb′ξ

2

c2
0

)
+ 2CF ln(R2)− 1

Nc
ln(z1z2)

]

+ 1
2 ĥ

0
Yf

(rbb′)
∫ 1

0

dξ
ξ

(−1)p [Jn−2(ξ|P⊥||rbb′ |) + Jn+2(ξ|P⊥||rbb′ |)]

×
[
Nc ln

(
P 2
⊥r

2
bb′ξ

2

c2
0

)
+ 2CF ln(R2)− 1

Nc
ln(z1z2)

]}
. (E.1)
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In the limit P⊥/q⊥ →∞, the leading term in this expression reads

dσ(n=2p),λ=L = αemαse
2
fδ

(2)
z H

0,λ=L
LO (P⊥)

∫ d2rbb′

(2π)4 e
−iq⊥·rbb′ cos(nθ)

× αs
π

{
Ĝ0
Yf

(rbb′)
(−1)p+1

n

[
2Nc

(
H(p)− 1

n

)
+
(

2CF ln(R2)− 1
Nc

ln(z1z2)
)]

+ ĥ0
Yf

(rbb′)
(−1)p

n2−4

[
Nc

(
(n+2)H(p−1)+(n−2)H(p+1)− 2(n2 +4)

n2−4

)

+n
(

2CF ln(R2)− 1
Nc

ln(z1z2)
)]}

(E.2)

where we used the identities (given below) in appendix F, and H(p) is the pth harmonic
number defined by

H(p) =
p∑

k=1

1
k
. (E.3)

In the limit n→∞, using H(p) ∼ ln(p), one finds

dσ(n),λ=L ∼
n→∞

αemαse
2
fδ

(2)
z H

0,λ=L
LO (P⊥)

∫ d2rbb′

(2π)4 e
−iq⊥·rbb′ cos(nθ)

{
−Ĝ0

Yf
(rbb′)+ ĥ0

Yf
(rbb′)

}
× αsNc

π

2(−1)n/2 ln(n)
n

. (E.4)

Unlike the zeroth and second harmonic of the differential cross-section, we note that the
higher harmonics 〈cos(nφ)〉 with n ≥ 4 do not possess double or single Sudakov logarithms.
Furthermore, due to soft gluon radiation these harmonics are suppressed at large n, and
the Fourier series should converge rapidly.

F Useful integrals

F.1 Integrals with Bessel functions

For all a > 0, ∫ a

0

dξ
ξ

(1− J0(xξ)) = 1
2 ln

(
a2x2

c2
0

)
+O

(
x−3/2

)
, (F.1)

∫ a

0

dξ
ξ

(1− J0(xξ)) ln
(
x2ξ2

c2
0

)
= 1

4 ln2
(
a2x2

c2
0

)
+O

(
ln(x)x−3/2

)
. (F.2)

Recall c0 = 2e−γE , with γE the Euler-Mascheroni constant. For n ≥ 1 and all a > 0,

lim
x→∞

∫ a

0

dξ
ξ
Jn(xξ) = 1

n
, (F.3)

lim
x→∞

∫ a

0

dξ
ξ
Jn(xξ) ln

(
x2ξ2

c2
0

)
= 2
n2

[
nH

(
n

2

)
− 1

]
, (F.4)

where H(p) is the pth harmonic number defined in eq. (E.3), which can also be defined for
all real positive numbers in terms of the digamma function ψ(z) using the identity

H(p) = γE + ψ(p+ 1) . (F.5)
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F.2 Integral of the JIMWLK kernel with kinematic constraint

We will compute here the integral

I(X = |rbb′ |Q) =
∫ 1

0

dz
z

∫
d2z⊥

r2
bb′

r2
zbr

2
zb′

Θ
(
min

(
r2
zb, r

2
zb′

)
− 1
zQ2

)
. (F.6)

A priori, this integral depends on rbb′ and Q but we shall see that it is actually a function of
|rbb′ |Q only. This is expected from dimensional analysis since the integral is dimensionless.
After the change of variable u = |rzb|/|rbb′ |, using the identity

min(r2
zb, r

2
zb′) = r2

zb + r2
zb′ − |r2

zb − r2
zb′ |

2

= r2
bb′

2
(
1 + 2u2 − 2u cos(θ)− |1− 2u cos(θ)|

)
, (F.7)

in polar coordinates, and the symmetry of the integral, one can write I(X) more simply as,

I(X) = 2
∫ ∞

1/X

du
u

∫ 2π

0
dθ Θ(1− 2u cos(θ))

u2 − 2u cos(θ) + 1 ln
(
u2X2

)
. (F.8)

When u ≤ 1/2, one has 1 − 2u cos(θ) ≥ 0. Then, the u integral between 1/X and 1/2
contributes as (assuming X ≥ 2)

4π
∫ 1/2

1/X

du
u(1− u2) ln(u2X2) = π

[
ln2(X2)− 2 ln(3) ln(X2) + 4 ln

(3
2

)
ln(2)

−2Li2
(1

4

)
+ 2Li2

( 1
X2

)]
, (F.9)

where Li2 is the dilogarithmic function. For u ≥ 1/2, the integral is more complicated as
one needs to cut the θ integration at θ = arccos(1/(2u)) and θ = 2π − arccos(1/(2u)), and
use ∫ 2π−arccos(1/(2u))

arccos(1/(2u))

dθ
u2 − 2u cos(θ) + 1 = 4

u2 − 1 arctan
(
u− 1
u+ 1

√
2u+ 1
2u− 1

)
. (F.10)

After this rather tedious calculation, we end up with the expression,

I(X) = π

[
ln2(X2)− 2 ln(3) ln(X2) + 4 ln

(3
2

)
ln(2)− 2Li2

(1
4

)
+ 2Li2

( 1
X2

)]

+ 8
∫ ∞

1/2

du
u(u2 − 1) ln(u2X2) arctan

(
u− 1
1 + u

√
2u+ 1
2u− 1

)
. (F.11)

This formula can be simplified further using the identities

∫ ∞
1/2

du
u(u2 − 1) arctan

(
u− 1
1 + u

√
2u+ 1
2u− 1

)
= ln(3)π

4 , (F.12)

∫ ∞
1/2

du
u(u2 − 1) ln(u2) arctan

(
u− 1
1 + u

√
2u+ 1
2u− 1

)
= −π2

[
ln
(3

2

)
ln(2)− 1

2Li2
(1

4

)]
. (F.13)
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Our final expression for the kinematically constrained JIMWLK kernel I(X) is therefore
(for X ≥ 2),

I(X) = π

[
ln2(X2) + 2Li2

( 1
X2

)]
= π ln2(X2) +O

( 1
X2

)
, (F.14)

where we have taken the limit X →∞ in the second line.
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