
BACK TO BACKTRACKING:

CONTR.OLLING THE ATMS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Johan de Kleer

Intelligent Systems Laboratory

XEROX Palo Alto Research Center

3333 Coyote Hill Road

Palo Alto, California zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA94304

and

Brian C. Williams

M.I.T. Artificial Intelligence Laboratory

545 Technology Square

Cambridge, Massachusetts, 02139

ABSTRACT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The ATMS (A ssumption-Based Truth Maintenance Sys-

tern) provides a very general futility ior all types of default

reasoning. One of the principal advantages of the ATMS is

that cl11 of the possible (usually mutually inconsistent) solu-

tions or partial solutions are directly available to the prob-

lem solver. By exploiting this capability of the ATMS, the

problem solver can eficiently work on all solutions simulta-

neously and avoid the computational expense of backtrack-

ing. However, for some applications this ATMS capability

is more of a hindrance than a help and some form of back-

tracking is necessary. This paper first outlines some of the

reasons why backtracking is still necessary, and presents

a powerful backtracking algorithm which we have imple-

mented which backtracks more eficiently than other ap-

proaches.

for problems where only one of a number of the possible

solutions arc required. It achieves this efficiency by orga-

nixing the search to find a single specific solution first. By

combining them we get the advantages of both.

2. The ATMS

A TMS- based problem solver consists of two compo-

nents: an inference engine and the TMS. The inference

engine deduces new data from old (usually by the applica-

tion of rules, or consumers in ATMS terminology). Asso-

ciated with each consumer is a set of data, referred to as

the consumer’s antecedents. A consumer is invoked on its

antecedents when all of them are believed in the current

context. Every inference resulting from a consumer invoca-

tion is recorded as a justification using the TMS =and must

include the antecedents of the consumer. The TMS’s task

is to determine what data is believed in each context given

the justifications produced thus far in the problem-solving

effort.

1. Introduction

The complexity of a problem-solving task is a function

of both the number of rules executed and number of con-

texts considered in the search. Many techniques have been

developed to minimize this complexity For various types of

tasks. In this paper we show how two such approaches, the

ATMS and conventional dependency-directed backtrack-

ing (DDB), can be combined to produce a control strategy

more efficient than either.

An ATMS-controlled problem-solver tends to be more

efficient for problems where all the solutions are needed. It

achieves this efficiency by organizing the search to find the

most general inferences first. Thus, the number of rules ex-

ecuted and contexts examined are significantly reduced. A

DDB-controlled problem-solver tends to be more efficient

Justification-based TMS’s force the problem solver to

focus on a ;iingle consistent data base at a time. This has

many disadvantages (see [4,7]). The ATMS permits the

problem solver to operate simultaneously in several mutu-

ally inconsistent contexts. To achieve this, the ATMS aug-

ments the conventional TMS data structures in a several

of ways. I’he ATMS introduces the notion of a primitive

assvmption. Unlike other data, which are believed only if

belief in them can be justified, assumptions are believed

unless there is evidence to the contrary. By tracing back-

wards through supporting justifications for a datum the

ATMS identifies the set(s) of assumptions upon which the

datum ultimately depends. Such a set of assumptions is

910 / ENGINEERING

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

called an environment. Typically a datum can be derived

in a variety of ways and so a datum can follow from a va-

riety of environments. The complete set of environments

from a which a datum can be derived is called its label. The

set of data derivable from an environment is called its con-

text. Any environment from which false (-1) can be derived

is inconsistent and is called a nogooil. The ATMS data base

achieves its efficiency by (a) optimizing the representation

of nogoods, (b) exploiting the fact that if a datum follows

from an environment it follows in all the environment’s su-

persets and thus it is only necessary to explicitly store the

minimal environments of a label, and (c) recognizing that

all ATMS operations reduce to set operations for which

good algorithms are available.

3. Three Reasons for Backtracking

ATMS-based problem solvers suffer from three kinds

of difficulties related to backtracking: (a) the task may

require that only a small fraction of the search space be

explored, (b) even for problems where all solutions are de-

sired, they often search more than necessary, and (c) they

are inherently more difficult to debug.

First, conventional backtracking searches depth-first,

producing solutions one at a time. Without exercising ex-

ternal control, the ATMS-based problem solver identifies

all solutions at once. If the overall goal of the problem

solver is to find only one solution which satisfies the goal,

then the ATMS-based problem solver can be hopelessly

inefficient.

Consider an example (adapted from [6] and [lo]) where

the task is to construct an n-bit number with odd parity

(i.e., a string of bits with an odd number of ones). For each

bit position two variables are created. Let b, indicate the

ith bit’s value, and p, the parity for all the bits up to and

including bi. Each b; can be zero or one (I’b,I~i represents

the assumption that bi is 0). Parity is defined recursively

as (-+ indicates a justification):

p-1 = 0

pi-1 = O,l&l * pi = 1

The ATMS, which finds all solutions, discovers all 2i bit

strings having odd (and even) parity. If the goal was to

End only one odd-parity bit string, then the simple ATMS-

based problem solver has done ILi more work than neces-

sary.

Second, even if the goal of the problem solving is

to identify all solutions, the ATMS-based problem solver

may still search more than necessary. The problem solver

may ex;Lmine regions 0 f the search space which are never

reached by dependency-directed backtracking.

Consider the familiar Th-queens problem. (For simplic-

ity assume that there are 3 quccus and that queen Qi is

placed on row i.) A set of rules is constructed which checks

that no two queens are placed in attacking positions. The

problem is then to find all placements of the three queens

which are consistent with these rules.

The ATMS-based problem solver would try the placc-

ment of all singletons, pairs and then triples of queens

in search of a consistent solution. For example, it would

check whether placing Qs in column 3 was consistent with

placing Q2 in column 2 and find that they lay on the same

diagonal. Within a backtracking problem solver one would

first attempt to place Qr , then Q2, and only then Qs. As

there is no way of placing a queen in row 1 and Qz in

coluinn ‘2, the above situat,ion (Qs in column 3 and Qz in

column 2) never arises.

Fig. 1 : Unreachable situation for DDB.

Third, debugging an ATMS-based problem solver can

be difficult. Most of the effort of constructing a problem

solver involves debugging the knowledge base and inference

rules. In our experience, by far the most common error of

ATMS users is failing to specify all the ways a context can

be inconsistent. Thus, during debugging far more solutions

are found than expected. Commonly, so mhny solutions

exist that problem solving cannot terminate within a rea-

sonable time. With the ATMS, all solutions are explored

at once. If the solver is halted prematurely, no solution is

found, leaving the user with little information about what

knowledge hc failed to incorporate into his knowledge base

or inference engine. A common and related problem is

that the user has framed a problem such that one of the

solutions cont,ains an infinite amount of data.

problem solver will never terminate.

If so the

These debugging difficulties pose far less of a prob-

lem for a solver based on conventional backtracking where

the problem solver finds one solution at a time. When the

first solution appears inadequate, the implementor imme-

diately notices the missing knowledge. In addition, when

a particular solution seems to take excess computational

resources, 111~ coiilputntion can be interrupted and the cur-

rent state cxaillincd. This is dificult in an ATMS-based

AUTOMATED REASONING / 9 11

problem solver because the intermediate states always rep-

resent pieces of many solutions, any of which could be caus-

ing a problem.

Dependency-directed backtracking is typically applied

to problenrs satisfying the following constjraints: 1) given

a finite set of choices, each solution must select exactly

one choice from each set, 2) a solution is confirmed by

checking for inconsist,encies, 3) testing for inconsistencies

must take a finite amount of time, and 4) the solution does

not depend on the order in which choices are made.

In the next two sections we discuss ATMS-guided and

DDEguided problem solving, respectively, for this class of

problems. In Section 6 we compare the approaches, and

then propose a hybrid approach combining the features of

both (without the limitations) in Section 7.

4. AT&f S-guided Problem Solving

For most tasks, the majority of the problem solv-

ing resources are involved with executing the c0nsumers.r

Therefore, a central goal is to minimize the number of con-

sumers that must be executed to solve a particular prob-

lem.

The ATMS is typically used for tasks where multiple

solutions are required. For such tasks, the best approach is

to ensure that no consumer is ever executed unnecessarily.

There are two types of situations where a consumer could

be uselessly invoked. First, a consumer can be executed

in an environment which is later discovered to be contra-

dictory, making the consumer’s execution useless (unless

it applied to another environment as well). Second, a con-

sumer can deduce some datum in some environment, but

some other consumer may later deduce the same datum in

a more general environment; therefore, the first consumer’s

execution was superfluous. To avoid such inefficiencies the

consumers are scheduled such that consumers in smaller

environments are executed first and within each set of con-

sumers for a particular environment, consumers directed

towards detecting inconsistencies are executed first.

Within this framework the consumer scheduler repeat-

edly picks the smallest consistent environment with non-

executed consumers and runs one of its consumers until all

consumers of all consistent environments are executed. For

example, suppose the problem solver must search through

a space of possibilities where it must pick one from each

of the sets: {A, B}, {a,p}, and {1,2}. Fig 2 illustrates

the lattice of possibly consistent environments. The con-

sumer scheduler first executes any pending consumers of

the first row (iA}, {B}, {h {P}, {I), ad {2)), then

1 An ATMS-based problem solver only examines contexts which

result in the execution of consun~ers. Thus the number of consumers

exfalted must be at least as large as the number of contexts exnm-

inch As a result we o111y ~~ccd to evaluate the systan’s pcrformnnce

with respect to rule invocations, not coutcxts cxnmined.

the second row ({A, CY}, {A,P},...), and then the third row

({A a, 1),-J.

If the ATMS finds an inconsistent environment, then

the problem solver stops exploring that environment and

any superset of it. Thus the ATMS may explore some of

the consequences of inconsistent environments with a min-

imal set of assumptions; however, it will not explore <an

inconsistent environment which is not minimal (i.e., has

a subset environment which is also inconsistent). The set

of minimally inconsistent environments can be pictured as

a line, dividing the the search space into two parts; envi-

ronments above the line are consistent and those below are

inconsistent. If we associate each consumer with the small-

est environment it runs in, then 1) all consumers associated

with environments above the line will be executed, 2) some

consumers associated with minimally inconsistent environ-

ments will be run (possibly all), and 3) any consumer asso-

ciated with environments below the line are guaranteed not

to be run. Returning to the example, assume that among

all the rules three inconsistencies are ultimately detected

(H indicates a consumer):

B t-+ I,

a, 1 ++ 1.

The resulting lattice is shown in Fig. 2:

.

2)

7

Fig. 2 : ATMS-controlled search.

5. DDB-guided Problem Solving

As illustrated in Section 3, for tasks requiring only a

small number of the set of possible solutions the simple

ATMS-controlled approach can be extremely inefficient.

Instead, some form of backtracking controI could be ex-

ploited. Even in those cases where all solutions are being

explored, the ATMS may have to explore portions of the

search space which DDI3 would avoid.

912 / ENGINEERING

There is a wide variety of backtracking techniques.

For the sake of discussion we shall use one of the best: the

general dependency-directed backtracking embodied in a

conventional justification-based TMS (such as [9]). The

crucial characteristic of this backtracker upon which our

argument depends is that the backtracker can test a par-

ticular context for any inconsistencies previously encoun-

tered. Consumers are executed only after a context has

been determined not to contain any known inconsistency.

Fig. 3 : DDB-controlled search.

Backtracking exploits the fact that any solution must

pick exactly one element from each set of choices. In our

example, any solution must contain one assumption from

each of {A B), (0, P>, and { 1,2}. Backtracking enumer-

ates the space through depth-first search, selecting one as-

sumption from each set of choices in the order given and

executing the consumers only when a terminal Tnviron-

ment is reached (i.e., environments which contain exactly

one assumption from every set of choices). When this oc-

curs the consumers of that environment, as well as those

in any subset of that environment, are invoked until a con-

tradiction occurs or no inconsistency remains. No ordering

is placed on the order of consumer invocation. The TMS

ensures that no consumer will ever be executed in a ter-

minal environment which contains a previously discovered

inconsistency. For example, if some consumer determines

that {cy, 1) is inconsistent while analyzing the terminal en-

vironment {A, M, l}, no consumer will ever be executed in

the terminal environment {B, (Y, 1). (Note that here as in

Section 5 we presume that every inference performed is

recorded as a justification and thus no consumer need ever

be executed twice.)

Given the same consumers as Section 4., DDB ex-

plores the search space as shown in Fig. 3. For presenta-

tion we associate tonsumers with their minimal environ-

ments although without the ATMS these cannot be ex-

plicitly computed. The DDB-controlled search runs con-

sumers only in terminal environments which is equivalent

to running all consumers in all subsets of the terminal envi-

ronment. Fig. 3 illustrates the DDB-guided search. Rules

.

have been run in every environment above this line2.

6. A Comparison of the Approaches

Each of the approaches explored above has its own

advantngcs and disadvantages. These are described below.

The primary advantage of the ATMS is that it is

guaranteed not to explore any inconsistent environment

which is not minimally inconsistent. To accomplish this

the ATMS organizes the search to find the most general

inferences first. The ATMS has the additional feature that

it only examines environments which contain at least one

pending consumer. Thus for those problems with a sparse

number of pending consumers and a very large set of en-

vironments the ATMS will have a significant performance

advantage over those approaches where every environment

is examined.

The primary disadvantage of the ATMS is that it es-

sentially works in a breadth-first manner, working on all

solutions simultaneously. As pointed out in Section 3, for

those problems where only a few of a large number of solu-

tions is desired the ATMS can have significant drawbacks.

In addition, the ATMS’ unfocused behavior makes it diffi-

cult to debug.

These, however, are exactly the advantages of depen-

dency-directed backtracking. DDB focuses on one solution

at a time, making its inferences easy to follow (by the im-

plementor). In those cases where one or a few solutions are

desired, DDB does not waste effort exploring additional so-

lutions never used. The primary disadvantage of DDB is

that, unlike the ATMS, it can explore inconsistent envi-

ronments which are not minimal. This happens because,

given a terminal environment, there is no ordering placed

on the subset environments being explored. Thus an envi-

ronment may be explored before its subset is shown to be

inconsistent. If these environments contain a number of

consumers using enormous computational resources then

the consumers are invoked needlessly and the performance

of DDB will be clea~rly inferior. For example, {B, 0) is

an example of an inconsistent environment which was use-

lessly explored by DDB in the example of section 5 but not

explored by the ATMS in section 4.

DDB has <another advantage over the ATMS approach.

Even when looking for all solutions there are environments

explored by the ATMS, which <are not explored using DDB.

The reason for this is subtle, and depends on two key ob-

servations: First, each solution must select one assumption

from every set of choices, any incomplete set of choices is

not

are

a solution. Second, the order in which th ese choices

made is irrelevant. For any problem with more than

two sets of choices, there are several orders in which the

’ As with the ATMS-guided search, depending on the order in

which the rules are executed, few or many of the rules of an incon-

sistent environn:erit’lllny be run.

AUTOMATED REASONING / 9 13

choices could be made. Each sequence of choices corre-

sponds to a path moving from the root of the environment

lattice to one of the solutions. DDB makes the observation

that ordering is irrelevant and thus explores only one path

to a particular solution, (based on the ordering in which

choices are supplied). The ATMS, on the other hand, ex-

plores all paths to the same solution in parallel. This is

clearly wasteful. Thus it is not surprising that the ATMS

stumbles across environments which need not be explored

using dependency-directed backtracking. {p, 2) is an envi-

ronment which was explored by the ATMS in the example

of section 4 but not explored by DDB in section 5.

7. Assumption-based DDB

Given the analysis above, our goal is to combine the

features of each approach without inheriting any of their

disadvantages. Figs. 2 and 3 highlight the differences be-

tween the two approaches. Note that each approach ig-

nores certain environments explored by the other. Thus

ideally we would like to construct an approach which ex-

plores only the intersection of the environments explored

by the two approaches taken alone. This is depicted in

Fig. 4. More precisely we would like an approach which

explores an environment if 1) it is a subset of a terminal

environment explored by DDB, and 2) it is either a consis-

tent environment or a minimally inconsistent environment.

To accomplish this task we construct an algorithm called

assumption-based DDB which takes the DDB algorithm

and embeds the ATMS within it. When DDB decides to

explore a terminal environment, we use the ATMS sched-

uler to explore the subsets of the terminal environment,

smallest first (again only examining environments which

have pending consumers). Thus DDB provides the search

strategy with a coarse focus, while the ATMS provides an

additional level of discrimination.

Fig. 4 : Assumption-based DDB controlled search.

Because this approach explores the intersection of the

environments explored by DDB and the ATMS, we are

guaranteed that its worst case performance with respect

to the munbcr of consumer invocations will be at least <as

good if not better than the two approaches taken sepa-

rately. This statement is true independent of the nulnber

of solutions being explored. Even if the problem solver is

only interested in one solution!3

A more detailed description of the algorithm follows,

The consumer scheduler for assumption-based DDB main-

tains an ordered set of choices, each referred to as a control

disjunction:

control(C1, Cz, . ..}

A control disjunction consists of an ordered set of assump-

tions, called control assumptions, which are pairwise in-

consistent. The system also supports assumptions which

are not part of any control disjunction; these are handled

by the traditional ATMS mechanism. The scheduler also

maintains a single current environment consisting of a set

of assumptions, one from each control clisjunction. A con-

sumer is not run unless the union of one of its antecedent

environments and the current environment is consistent.”

When a contradiction is encountered, the scheduler finds

the next (in chronological backtracking order) environment

free from any known contradiction.

Initially we start with the empty current environment

E and a stack of control disjunctions S. The backtracker

can be implemented by the procedure bncktrack(E, S):

1. If S is empty, schedule(E), and return.

2. Let D be the first control disjunction of S, S the

remainder.

3. If no remaining assumptions in D, return.

4. Let a be the first control assumption of D, D the

remainder.

5. E’ 1 {a} u E.

6. If E’ is consistent, backtrack(E’,S).

7. If E is now inconsistent, return.

8. Go to 3.

Schedule(E) executes consumers in the smallest envi-

ronments first. For example, scheduZe({A, a? 1)) executes

the consumers in the following order: {rl}, {a}, {A, a), {l},

{A, I>, {a, 11, {A Q, 1).

We must place two conditions on the problem solver to

ensure the correct operation of this backtracking scheme.

First, all problem-solving operations are performed by the

consumers. In particular, the user may not add new con-

sumers, assumptions, justifications, data, etc. during the

search. The reason for this is that the new information

could create new contexts which have already been im-

plicitly examined by the backtracking mechanism. Thus,

3 In addition, the same claim holds for the number of environ-

ments explored, since cnvironmcnts arc only explored if they have

consumers associated with them.

4 The set of assumptions in an environment can be broken into

two sets: control assumptions and non-control assumptions. The

environment will be consistent with the current environment only

if 1) the set of control assumptions I ‘s a subset of the current anvi-

ronmrnt, and 2) the addition of the non-control assumptions does

not cause the current cnvironmcnt to become inconsistent with the

current environment.

914 / ENGINEERING

if new knowledge is added externally during the problem-

solving activity, the backtracker must start searching the

space from the beginning. In the ATMS framework this is

relatively inexpensive (but not fret) as the consumer sched-

uler guarantees no work is ever done twice and remembers

all contradictions ever encountered. Second, every action

of a consumer must itself depend on all its antecedents (a

stipulation already imposed by the ATMS scheduler itself).

If a consumer were permitted to perform arbitrary actions,

then this would be the same as adding external knowledge.

8. Minimizing Consistency Checks :

Prior to running any consumers in an environment,

the backtracker first checks it for previously discovered in-

consistencies. Although limiting the number of consumers

executed is of primary importance, it is also important to

limit the number of contexts the backtracking procedure is

forced to examine for possible inconsistencies. Intrinsic to

the ATMS are two capabilities which reduce the number of

contexts tested for consistency. Although these two capa-

bilities do not reduce the number of consumers executed,

they do reduce the number of contexts the backtracker

must examine.

Unlike a conventional justification-based TMS, the

ATMS is guaranteed to explicitly identify allnogoods which

follow from the current set of justifications. A conventional

TMS will only identify the first nogood it comes across

(which necessarily identifies the current environment as

inconsistent). As a result, a conventional TMS may have

to consider environments which would have been excluded

using nogoods explicitly identified by the ATMS. For ex-

ample, suppose we already have the justifications:

A,z =+ I,

1,z =+ I,

P =$ L

and in the current environment {A, cy, 1) a consumer pro-

duces:

In a conventional TMS only one of the two contradic-

tions may be explicitly noted, say {(u, 1) while an ATMS

detects {A, a} immediately as well. As a result a con-

ventional TMS tests {A, a, 2) while the ATMS never con-

siders it. In addition, {p} is marked nogood immedi-

ately, so {A, p, 1}, {A, ,B, 2) will never be considered by

the assumption-based backtracker either.

The ATMS also takes advantage of the fact that the

set, of choices in each control disjunction is exhaustive.

Consider the example (H indicates a consumer):

control{A, B},

control(C, D, E, . ..}.

control {X, Y},

A-x=2,

X+-vc=l,

Yw2=1.

The backtracker first explores the environment {A, C, X}.

It is found that {A, X} is inconsistent and the correspond-

ing nogood is recorded. Next it explores the context {A, C,

Y} noticing {A, Y} is nogood as well. Traditional dependent;

directed backtracking would then try exploring the envi-

ronments {A, D,X}, {A, D,Y}, {A, E,X}, {A, E,Y} ,....

In each case the backtracker will realize that the cnviron-

ment is a superset of one of t,he explicit nogoods before run-

ning any consumers. Nevertheless, time is wasted switch-

ing to each context. Using the ATMS the backtracker is

able to infer from the two nogoods, plus the exhaustivity

of the third control disjunction that {A} is also a nogood.

Thus no superset environment of {A} is considered further.

To accomplish this the ATMS contains the following

hyperresolution rule for disjunctions (of which control dis-

junctions are an instance).

control(A1, AZ, . ..}

nogood at where A, E q and Ajf-i @ cq for all i

nogoodUi[a; - {A;}]

In this case, the ATMS infers:

control{X, Y}

nogood{ A, X)

nogood{A, Y}

nogood

Therefore, the ATMS-controlled backtracker considers the

environment {B, C, X} next. It is important to note that

the backtracking algorithm is unchanged: all the neces-

sary nogoods are detected by the ATMS itself in its nor-

mal operation and are indistinguishable from the nogoods

detected explicitly by consumers.

9. Generalized Assumption-based DDB

The ATMS backtracking scheme outlined in the previ-

ous section presumes the set of control disjunctions is lixed

at the beginning of problem solving and that each set of

choices is completely independent. Neither is the case in

practice. During problem solving a new set of choices may

become of interest in addition to the ones already known.

Furthermore, some choice sets are logically dependent on

others. Together these make it diihcult for the problem

solver to reason about it#s own control. We follow the ideas

AUTOMATED REASONING 1 915

of PI and allow control decisions to have justifications as

well. For example, we write:

x =+- control(A, B)

to state that if 5 holds, then control{A, B} is an active con-

trol disjunction and has the full force of a normal control

disjunction. If a control disjunction has no valid justifica-

tion, then it is pnssive and is ignored completely. When

a control disjunction is passive, its assumptions (unless

they appear in other control disjunctions), will never be

part of the current environment and hence no consumer

which solely depends on them will be executed. The exe-

cution condition for consumers is the same as that for the

assumption-based DDB of Section 7.

The control disjunction is designed to be used within

a schema which ensures that any inferences following from

one of its control assumptions also depends on the control

disjunction’s antecedents. For example, the proposition (if

al, u2,... hold, explore cl first, then ~a,...),

al A a2 A . . . --) Cl v c2 v ..*

is encoded by the control disjunction,

a1,a2, -** * control(C1, C2, . ..}.

and justifications,

a1,a2, "', ci 3 c;.

This encoding ensures that some c; will hold only in a con-

text in which al, ~22, . . . hold as well as the specified control

assumption being active. A control disjunction may be be-

lieved in some context, but in order to be active it must

be consistent with the current environment.

This formulation of dependency-directed backtrack-

ing is extremely powerful and allows the problem solver

to dynamically manipulate the shape of its search space

without requiring any change of terminology or represen-

tation. The backtracking algorithm is, however, rather

complicated and we briefly outline it here. The general-

ized backtracker follows the simpler version by depending

heavily on the nogood data-base of the ATMS. The back-

tracker maintains a single stack of the currently active con-

trol disjunctions. There are three significant events: a pas-

sive control disjunction becomes active, an active control

disjunction becomes passive, cand the current environment

becomes inconsistent.

When a passive control disjunction becomes active

add it to the active stack, select the first control assump-

tion from it that can be consistently added to the current

environment, and make the resulting environment the new

current environment. If no such assumption exists, the

hyperresolution rule will have determined that the current

environment is inconsistent. As long as the active stack

does not change, search continues in chronological order.

More than one control disjunction can become active si-

multaneously. In such cases if desired the control disjunc-

tions can be sorted, oldest first, and an assumption chosen

from each in turn. The sorting guarantees that the search

space is explored in the order intended by the problem

solver.

The case of an active control disjunction becoming

passive is more complex. Although far more complex strate-

gies are possible, the simplest technique is to temporarily

unwind the control disjunctions on the active stack up to

and including the affected control disjunction. As each

control disjunction is removed, the active control assump-

tion for that disjunction is removed from the current con-

text. After the affected disjunction is removed the remain-

ing temporarily removed control disjunctions still active

are pushed back on the control stack (selecting their first

consistent control assumption for the current context).

A more complex strategy would only reexamine those

environments whose exploration was blocked (i.e., the en-

vironment was inconsistent with the current environment)

by nogoods containing a control assumption of the newly

passive control disjunction. Such a scheme would avoid ex-

amining some.environments twice. Fortunately, the ATMS

scheduler explicitly records all pending consumers with en-

vironments, thus it is almost free to reexamine an environ-

ment.

When the current context becomes inconsistent, but

the active stack is unchanged, the backtracking proceeds

as in the simple assumption-based DDB scheme. However,

when more than one of these three conditions occurs simul-

taneously, these operations must be interleaved to avoid

needless thrashing.

10. Related Work

Our approach to backtracking is dependent on the

ATMS [4,5,6] but exploits the ideas of explicit control of

reasoning [8] and previous approaches to backtracking [9,12].

Our approach is also strongly related to the use of in-

telligent backtracking in PROLOG [1,2,3]. The backtrack-

ing scheme of [l] is similar to the case where the control

disjunctions are fixed (our control disjunctions correspond

to [11’s value generators). When a contradiction is encoun-

tered, the stack is unwound to the first generator contribut-

ing to the contradiction. When a generator is exhausted,

the reasons for each eliminated value are combined to form

a contradiction which is used to guide the backtracking.

This corresponds to the ATMS’ use of hyperresolution.

The basic difference (as far as backtracking is concerned)

is that the assumption-based backtracker records all no-

goods permanently while the PROLOG intelligent back-

trackers throw away contradiction records when the stack

916 / ENGINEERING

is unwound. As a consequence some contradictions must

be continually rediscovered. [l] argues that the cost of

Becording <and checking for possible contradictions is not

worth the computational overhead incurred.

11. Conclusions

Problem solvers built on the ATMS are often very dif-

ficult to control. Some problems are inherently ill-suited

to the ATMS, but for many others the addition of a simple

backtracking control structure resolves many of the diffr-

culties. This paper has presented a simple backtracking

scheme which exploits some of the unique properties of

both the ATMS and DDB, resulting in a hybrid algorithm

whose worst case performance based on rule invocations is

superior to the two approaches individually. This perfor-

mance holds from problems demanding anywhere from a

single solution to all solutions.

Non-control assumptions are treated as conventional

ATMS assumptions, while control assumptions are treated

much like DDB in a justification-based TMS. In addition,

the system supports conditional control disjunctions used

to model the interactions between “ not quite independent”

choices. The result is an overall problem solver with the ad-

vantages of both an ATMS and dependency-directed back-

tracking.

ACKNOWLEDGMENTS

Ken Forbus, David McAllester, Phil McBride, Paul

Morris, Bob Nado and Leah Williams provided lively dis-

cussion, insights, and comments on the topic.

BIBLIOGRAPHY

1. Bruynooghe, M., Solving combinatorial search prob-

lems by intelligent backtracking, Information Process-

ing Letters 12 (1981) 36-39.

2. Bruynooghe, M. and Pereira, L.M., Deduction revi-

sion by intelligent backtracking, in: J.A. Campbell

(Ed.), Current Issues in Prolog Implementation, (Wi-

ley, New York, 1984) 194-215.

3. Clocksin, W.F. and C.S. Mellish, Programming in Pro-

log, (Springer-Verlag, New York, 1981).

4. de Kleer, J., .4n assumption-based truth maintenance

system, Artificial Intelligence 28 (1986) 127-162.

5. de Kleer, J., Extending the ATMS, Artificial Intelli-

gence 28 (1986) 163-196.

6. dc Kleer, J., Problem solving with the ATMS, Art+

cial Intelligence 28 (1986) 197-224.

7. de Kleer, J., Choices without backtracking, Proceed-

ings of the National Conference on Artificial Intelli-

gence, Austin, TX (August 1984), 79-85.

8.

9.

10.

11.

12.

de Kleer, J., Doyle, J., Steele, G.L. and Sussman,

G.J., Explicit control of reasoning, in Artificial In-

telligence: An MIT P erspective, edited by P.H. Win-

ston and R.H. Brown, 1979. Also in: Proceedings of

the Symposium on Artificial Intelligence and Program-

ming Languages, 1977, Also in: Readings in Knowl-

edge Representation, edited by R.J. Brachman and

H.J. Levesque, (Morgan Kaufman, 1985).

Doyle, J., A truth maintenance system, Artificial In-

telligence 24 (1979).

McAllester, D., A widely used truth maintenance sys-

tem, unpublished, 1985.

Stallman, R. and Sussman, G.J., Forward reasoning

and dependency-directed backtracking in a system for

computer-aided circuit analysis, Artificial Intelligence

9 (1977) 135-196.

Steele, G.L., The definition and implementation of a

computer programming language based on constraints,

AI Technical Report 595, MIT, Cambridge, MA, 1979.

AUTOMATED REASONING / 9 17

