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The ATMS (A ssumption-Based Truth Maintenance Sys- 

tern) provides a very general futility ior all types of default 

reasoning. One of the principal advantages of the ATMS is 

that cl11 of the possible (usually mutually inconsistent) solu- 

tions or partial solutions are directly available to the prob- 

lem solver. By exploiting this capability of the ATMS, the 

problem solver can eficiently work on all solutions simulta- 

neously and avoid the computational expense of backtrack- 

ing. However, for some applications this ATMS capability 

is more of a hindrance than a help and some form of back- 

tracking is necessary. This paper first outlines some of the 

reasons why backtracking is still necessary, and presents 

a powerful backtracking algorithm which we have imple- 

mented which backtracks more eficiently than other ap- 

proaches. 

for problems where only one of a number of the possible 

solutions arc required. It achieves this efficiency by orga- 

nixing the search to find a single specific solution first. By 

combining them we get the advantages of both. 

2. The ATMS 

A TMS- based problem solver consists of two compo- 

nents: an inference engine and the TMS. The inference 

engine deduces new data from old (usually by the applica- 

tion of rules, or consumers in ATMS terminology). Asso- 

ciated with each consumer is a set of data, referred to as 

the consumer’s antecedents. A consumer is invoked on its 

antecedents when all of them are believed in the current 

context. Every inference resulting from a consumer invoca- 

tion is recorded as a justification using the TMS =and must 

include the antecedents of the consumer. The TMS’s task 

is to determine what data is believed in each context given 

the justifications produced thus far in the problem-solving 

effort. 

1. Introduction 

The complexity of a problem-solving task is a function 

of both the number of rules executed and number of con- 

texts considered in the search. Many techniques have been 

developed to minimize this complexity For various types of 

tasks. In this paper we show how two such approaches, the 

ATMS and conventional dependency-directed backtrack- 

ing (DDB), can be combined to produce a control strategy 

more efficient than either. 

An ATMS-controlled problem-solver tends to be more 

efficient for problems where all the solutions are needed. It 

achieves this efficiency by organizing the search to find the 

most general inferences first. Thus, the number of rules ex- 

ecuted and contexts examined are significantly reduced. A 

DDB-controlled problem-solver tends to be more efficient 

Justification-based TMS’s force the problem solver to 

focus on a ;iingle consistent data base at a time. This has 

many disadvantages (see [4,7]). The ATMS permits the 

problem solver to operate simultaneously in several mutu- 

ally inconsistent contexts. To achieve this, the ATMS aug- 

ments the conventional TMS data structures in a several 

of ways. I’he ATMS introduces the notion of a primitive 

assvmption. Unlike other data, which are believed only if 

belief in them can be justified, assumptions are believed 

unless there is evidence to the contrary. By tracing back- 

wards through supporting justifications for a datum the 

ATMS identifies the set(s) of assumptions upon which the 

datum ultimately depends. Such a set of assumptions is 
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called an environment. Typically a datum can be derived 

in a variety of ways and so a datum can follow from a va- 

riety of environments. The complete set of environments 

from a which a datum can be derived is called its label. The 

set of data derivable from an environment is called its con- 

text. Any environment from which false (-1) can be derived 

is inconsistent and is called a nogooil. The ATMS data base 

achieves its efficiency by (a) optimizing the representation 

of nogoods, (b) exploiting the fact that if a datum follows 

from an environment it follows in all the environment’s su- 

persets and thus it is only necessary to explicitly store the 

minimal environments of a label, and (c) recognizing that 

all ATMS operations reduce to set operations for which 

good algorithms are available. 

3. Three Reasons for Backtracking 

ATMS-based problem solvers suffer from three kinds 

of difficulties related to backtracking: (a) the task may 

require that only a small fraction of the search space be 

explored, (b) even for problems where all solutions are de- 

sired, they often search more than necessary, and (c) they 

are inherently more difficult to debug. 

First, conventional backtracking searches depth-first, 

producing solutions one at a time. Without exercising ex- 

ternal control, the ATMS-based problem solver identifies 

all solutions at once. If the overall goal of the problem 

solver is to find only one solution which satisfies the goal, 

then the ATMS-based problem solver can be hopelessly 

inefficient. 

Consider an example (adapted from [6] and [lo]) where 

the task is to construct an n-bit number with odd parity 

(i.e., a string of bits with an odd number of ones). For each 

bit position two variables are created. Let b, indicate the 

ith bit’s value, and p, the parity for all the bits up to and 

including bi. Each b; can be zero or one (I’b,I~i represents 

the assumption that bi is 0). Parity is defined recursively 

as (-+ indicates a justification): 

p-1 = 0 

pi-1 = O,l&l * pi = 1 

The ATMS, which finds all solutions, discovers all 2i bit 

strings having odd (and even) parity. If the goal was to 

End only one odd-parity bit string, then the simple ATMS- 

based problem solver has done ILi more work than neces- 

sary. 

Second, even if the goal of the problem solving is 

to identify all solutions, the ATMS-based problem solver 

may still search more than necessary. The problem solver 

may ex;Lmine regions 0 f the search space which are never 

reached by dependency-directed backtracking. 

Consider the familiar Th-queens problem. (For simplic- 

ity assume that there are 3 quccus and that queen Qi is 

placed on row i.) A set of rules is constructed which checks 

that no two queens are placed in attacking positions. The 

problem is then to find all placements of the three queens 

which are consistent with these rules. 

The ATMS-based problem solver would try the placc- 

ment of all singletons, pairs and then triples of queens 

in search of a consistent solution. For example, it would 

check whether placing Qs in column 3 was consistent with 

placing Q2 in column 2 and find that they lay on the same 

diagonal. Within a backtracking problem solver one would 

first attempt to place Qr , then Q2, and only then Qs. As 

there is no way of placing a queen in row 1 and Qz in 

coluinn ‘2, the above situat,ion (Qs in column 3 and Qz in 

column 2) never arises. 

Fig. 1 : Unreachable situation for DDB. 

Third, debugging an ATMS-based problem solver can 

be difficult. Most of the effort of constructing a problem 

solver involves debugging the knowledge base and inference 

rules. In our experience, by far the most common error of 

ATMS users is failing to specify all the ways a context can 

be inconsistent. Thus, during debugging far more solutions 

are found than expected. Commonly, so mhny solutions 

exist that problem solving cannot terminate within a rea- 

sonable time. With the ATMS, all solutions are explored 

at once. If the solver is halted prematurely, no solution is 

found, leaving the user with little information about what 

knowledge hc failed to incorporate into his knowledge base 

or inference engine. A common and related problem is 

that the user has framed a problem such that one of the 

solutions cont,ains an infinite amount of data. 

problem solver will never terminate. 

If so the 

These debugging difficulties pose far less of a prob- 

lem for a solver based on conventional backtracking where 

the problem solver finds one solution at a time. When the 

first solution appears inadequate, the implementor imme- 

diately notices the missing knowledge. In addition, when 

a particular solution seems to take excess computational 

resources, 111~ coiilputntion can be interrupted and the cur- 

rent state cxaillincd. This is dificult in an ATMS-based 
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problem solver because the intermediate states always rep- 

resent pieces of many solutions, any of which could be caus- 

ing a problem. 

Dependency-directed backtracking is typically applied 

to problenrs satisfying the following constjraints: 1) given 

a finite set of choices, each solution must select exactly 

one choice from each set, 2) a solution is confirmed by 

checking for inconsist,encies, 3) testing for inconsistencies 

must take a finite amount of time, and 4) the solution does 

not depend on the order in which choices are made. 

In the next two sections we discuss ATMS-guided and 

DDEguided problem solving, respectively, for this class of 

problems. In Section 6 we compare the approaches, and 

then propose a hybrid approach combining the features of 

both (without the limitations) in Section 7. 

4. AT&f S-guided Problem Solving 

For most tasks, the majority of the problem solv- 

ing resources are involved with executing the c0nsumers.r 

Therefore, a central goal is to minimize the number of con- 

sumers that must be executed to solve a particular prob- 

lem. 

The ATMS is typically used for tasks where multiple 

solutions are required. For such tasks, the best approach is 

to ensure that no consumer is ever executed unnecessarily. 

There are two types of situations where a consumer could 

be uselessly invoked. First, a consumer can be executed 

in an environment which is later discovered to be contra- 

dictory, making the consumer’s execution useless (unless 

it applied to another environment as well). Second, a con- 

sumer can deduce some datum in some environment, but 

some other consumer may later deduce the same datum in 

a more general environment; therefore, the first consumer’s 

execution was superfluous. To avoid such inefficiencies the 

consumers are scheduled such that consumers in smaller 

environments are executed first and within each set of con- 

sumers for a particular environment, consumers directed 

towards detecting inconsistencies are executed first. 

Within this framework the consumer scheduler repeat- 

edly picks the smallest consistent environment with non- 

executed consumers and runs one of its consumers until all 

consumers of all consistent environments are executed. For 

example, suppose the problem solver must search through 

a space of possibilities where it must pick one from each 

of the sets: {A, B}, {a,p}, and {1,2}. Fig 2 illustrates 

the lattice of possibly consistent environments. The con- 

sumer scheduler first executes any pending consumers of 

the first row (iA}, {B}, {h {P}, {I), ad {2)), then 

1 An ATMS-based problem solver only examines contexts which 

result in the execution of consun~ers. Thus the number of consumers 

exfalted must be at least as large as the number of contexts exnm- 

inch As a result we o111y ~~ccd to evaluate the systan’s pcrformnnce 

with respect to rule invocations, not coutcxts cxnmined. 

the second row ({A, CY}, {A,P},...), and then the third row 

({A a, 1),-J. 

If the ATMS finds an inconsistent environment, then 

the problem solver stops exploring that environment and 

any superset of it. Thus the ATMS may explore some of 

the consequences of inconsistent environments with a min- 

imal set of assumptions; however, it will not explore <an 

inconsistent environment which is not minimal (i.e., has 

a subset environment which is also inconsistent). The set 

of minimally inconsistent environments can be pictured as 

a line, dividing the the search space into two parts; envi- 

ronments above the line are consistent and those below are 

inconsistent. If we associate each consumer with the small- 

est environment it runs in, then 1) all consumers associated 

with environments above the line will be executed, 2) some 

consumers associated with minimally inconsistent environ- 

ments will be run (possibly all), and 3) any consumer asso- 

ciated with environments below the line are guaranteed not 

to be run. Returning to the example, assume that among 

all the rules three inconsistencies are ultimately detected 

(H indicates a consumer): 

B t-+ I, 

a, 1 ++ 1. 

The resulting lattice is shown in Fig. 2: 

. 

2) 

7 

Fig. 2 : ATMS-controlled search. 

5. DDB-guided Problem Solving 

As illustrated in Section 3, for tasks requiring only a 

small number of the set of possible solutions the simple 

ATMS-controlled approach can be extremely inefficient. 

Instead, some form of backtracking controI could be ex- 

ploited. Even in those cases where all solutions are being 

explored, the ATMS may have to explore portions of the 

search space which DDI3 would avoid. 
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There is a wide variety of backtracking techniques. 

For the sake of discussion we shall use one of the best: the 

general dependency-directed backtracking embodied in a 

conventional justification-based TMS (such as [9]). The 

crucial characteristic of this backtracker upon which our 

argument depends is that the backtracker can test a par- 

ticular context for any inconsistencies previously encoun- 

tered. Consumers are executed only after a context has 

been determined not to contain any known inconsistency. 

Fig. 3 : DDB-controlled search. 

Backtracking exploits the fact that any solution must 

pick exactly one element from each set of choices. In our 

example, any solution must contain one assumption from 

each of {A B), (0, P>, and { 1,2}. Backtracking enumer- 

ates the space through depth-first search, selecting one as- 

sumption from each set of choices in the order given and 

executing the consumers only when a terminal Tnviron- 

ment is reached (i.e., environments which contain exactly 

one assumption from every set of choices). When this oc- 

curs the consumers of that environment, as well as those 

in any subset of that environment, are invoked until a con- 

tradiction occurs or no inconsistency remains. No ordering 

is placed on the order of consumer invocation. The TMS 

ensures that no consumer will ever be executed in a ter- 

minal environment which contains a previously discovered 

inconsistency. For example, if some consumer determines 

that {cy, 1) is inconsistent while analyzing the terminal en- 

vironment {A, M, l}, no consumer will ever be executed in 

the terminal environment {B, (Y, 1). (Note that here as in 

Section 5 we presume that every inference performed is 

recorded as a justification and thus no consumer need ever 

be executed twice.) 

Given the same consumers as Section 4., DDB ex- 

plores the search space as shown in Fig. 3. For presenta- 

tion we associate tonsumers with their minimal environ- 

ments although without the ATMS these cannot be ex- 

plicitly computed. The DDB-controlled search runs con- 

sumers only in terminal environments which is equivalent 

to running all consumers in all subsets of the terminal envi- 

ronment. Fig. 3 illustrates the DDB-guided search. Rules 

. 

have been run in every environment above this line2. 

6. A Comparison of the Approaches 

Each of the approaches explored above has its own 

advantngcs and disadvantages. These are described below. 

The primary advantage of the ATMS is that it is 

guaranteed not to explore any inconsistent environment 

which is not minimally inconsistent. To accomplish this 

the ATMS organizes the search to find the most general 

inferences first. The ATMS has the additional feature that 

it only examines environments which contain at least one 

pending consumer. Thus for those problems with a sparse 

number of pending consumers and a very large set of en- 

vironments the ATMS will have a significant performance 

advantage over those approaches where every environment 

is examined. 

The primary disadvantage of the ATMS is that it es- 

sentially works in a breadth-first manner, working on all 

solutions simultaneously. As pointed out in Section 3, for 

those problems where only a few of a large number of solu- 

tions is desired the ATMS can have significant drawbacks. 

In addition, the ATMS’ unfocused behavior makes it diffi- 

cult to debug. 

These, however, are exactly the advantages of depen- 

dency-directed backtracking. DDB focuses on one solution 

at a time, making its inferences easy to follow (by the im- 

plementor). In those cases where one or a few solutions are 

desired, DDB does not waste effort exploring additional so- 

lutions never used. The primary disadvantage of DDB is 

that, unlike the ATMS, it can explore inconsistent envi- 

ronments which are not minimal. This happens because, 

given a terminal environment, there is no ordering placed 

on the subset environments being explored. Thus an envi- 

ronment may be explored before its subset is shown to be 

inconsistent. If these environments contain a number of 

consumers using enormous computational resources then 

the consumers are invoked needlessly and the performance 

of DDB will be clea~rly inferior. For example, {B, 0) is 

an example of an inconsistent environment which was use- 

lessly explored by DDB in the example of section 5 but not 

explored by the ATMS in section 4. 

DDB has <another advantage over the ATMS approach. 

Even when looking for all solutions there are environments 

explored by the ATMS, which <are not explored using DDB. 

The reason for this is subtle, and depends on two key ob- 

servations: First, each solution must select one assumption 

from every set of choices, any incomplete set of choices is 

not 

are 

a solution. Second, the order in which th ese choices 

made is irrelevant. For any problem with more than 

two sets of choices, there are several orders in which the 

’ As with the ATMS-guided search, depending on the order in 

which the rules are executed, few or many of the rules of an incon- 

sistent environn:erit’lllny be run. 
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choices could be made. Each sequence of choices corre- 

sponds to a path moving from the root of the environment 

lattice to one of the solutions. DDB makes the observation 

that ordering is irrelevant and thus explores only one path 

to a particular solution, (based on the ordering in which 

choices are supplied). The ATMS, on the other hand, ex- 

plores all paths to the same solution in parallel. This is 

clearly wasteful. Thus it is not surprising that the ATMS 

stumbles across environments which need not be explored 

using dependency-directed backtracking. {p, 2) is an envi- 

ronment which was explored by the ATMS in the example 

of section 4 but not explored by DDB in section 5. 

7. Assumption-based DDB 

Given the analysis above, our goal is to combine the 

features of each approach without inheriting any of their 

disadvantages. Figs. 2 and 3 highlight the differences be- 

tween the two approaches. Note that each approach ig- 

nores certain environments explored by the other. Thus 

ideally we would like to construct an approach which ex- 

plores only the intersection of the environments explored 

by the two approaches taken alone. This is depicted in 

Fig. 4. More precisely we would like an approach which 

explores an environment if 1) it is a subset of a terminal 

environment explored by DDB, and 2) it is either a consis- 

tent environment or a minimally inconsistent environment. 

To accomplish this task we construct an algorithm called 

assumption-based DDB which takes the DDB algorithm 

and embeds the ATMS within it. When DDB decides to 

explore a terminal environment, we use the ATMS sched- 

uler to explore the subsets of the terminal environment, 

smallest first (again only examining environments which 

have pending consumers). Thus DDB provides the search 

strategy with a coarse focus, while the ATMS provides an 

additional level of discrimination. 

Fig. 4 : Assumption-based DDB controlled search. 

Because this approach explores the intersection of the 

environments explored by DDB and the ATMS, we are 

guaranteed that its worst case performance with respect 

to the munbcr of consumer invocations will be at least <as 

good if not better than the two approaches taken sepa- 

rately. This statement is true independent of the nulnber 

of solutions being explored. Even if the problem solver is 

only interested in one solution!3 

A more detailed description of the algorithm follows, 

The consumer scheduler for assumption-based DDB main- 

tains an ordered set of choices, each referred to as a control 

disjunction: 

control(C1, Cz, . ..} 

A control disjunction consists of an ordered set of assump- 

tions, called control assumptions, which are pairwise in- 

consistent. The system also supports assumptions which 

are not part of any control disjunction; these are handled 

by the traditional ATMS mechanism. The scheduler also 

maintains a single current environment consisting of a set 

of assumptions, one from each control clisjunction. A con- 

sumer is not run unless the union of one of its antecedent 

environments and the current environment is consistent.”  

When a contradiction is encountered, the scheduler finds 

the next (in chronological backtracking order) environment 

free from any known contradiction. 

Initially we start with the empty current environment 

E and a stack of control disjunctions S. The backtracker 

can be implemented by the procedure bncktrack(E, S): 

1. If S is empty, schedule(E), and return. 

2. Let D be the first control disjunction of S, S the 

remainder. 

3. If no remaining assumptions in D, return. 

4. Let a be the first control assumption of D, D the 

remainder. 

5. E’ 1 {a} u E. 

6. If E’ is consistent, backtrack(E’,S). 

7. If E is now inconsistent, return. 

8. Go to 3. 

Schedule(E) executes consumers in the smallest envi- 

ronments first. For example, scheduZe({A, a? 1)) executes 

the consumers in the following order: {rl}, {a}, {A, a), {l}, 

{A, I>, {a, 11, {A Q, 1). 

We must place two conditions on the problem solver to 

ensure the correct operation of this backtracking scheme. 

First, all problem-solving operations are performed by the 

consumers. In particular, the user may not add new con- 

sumers, assumptions, justifications, data, etc. during the 

search. The reason for this is that the new information 

could create new contexts which have already been im- 

plicitly examined by the backtracking mechanism. Thus, 

3 In addition, the same claim holds for the number of environ- 

ments explored, since cnvironmcnts arc only explored if they have 

consumers associated with them. 

4 The set of assumptions in an environment can be broken into 

two sets: control assumptions and non-control assumptions. The 

environment will be consistent with the current environment only 

if 1) the set of control assumptions I ‘s a subset of the current anvi- 

ronmrnt, and 2) the addition of the non-control assumptions does 

not cause the current cnvironmcnt to become inconsistent with the 

current environment. 
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if new knowledge is added externally during the problem- 

solving activity, the backtracker must start searching the 

space from the beginning. In the ATMS framework this is 

relatively inexpensive (but not fret) as the consumer sched- 

uler guarantees no work is ever done twice and remembers 

all contradictions ever encountered. Second, every action 

of a consumer must itself depend on all its antecedents (a 

stipulation already imposed by the ATMS scheduler itself). 

If a consumer were permitted to perform arbitrary actions, 

then this would be the same as adding external knowledge. 

8. Minimizing Consistency Checks : 

Prior to running any consumers in an environment, 

the backtracker first checks it for previously discovered in- 

consistencies. Although limiting the number of consumers 

executed is of primary importance, it is also important to 

limit the number of contexts the backtracking procedure is 

forced to examine for possible inconsistencies. Intrinsic to 

the ATMS are two capabilities which reduce the number of 

contexts tested for consistency. Although these two capa- 

bilities do not reduce the number of consumers executed, 

they do reduce the number of contexts the backtracker 

must examine. 

Unlike a conventional justification-based TMS, the 

ATMS is guaranteed to explicitly identify allnogoods which 

follow from the current set of justifications. A conventional 

TMS will only identify the first nogood it comes across 

(which necessarily identifies the current environment as 

inconsistent). As a result, a conventional TMS may have 

to consider environments which would have been excluded 

using nogoods explicitly identified by the ATMS. For ex- 

ample, suppose we already have the justifications: 

A,z =+ I, 

1,z =+ I, 

P =$ L 

and in the current environment {A, cy, 1) a consumer pro- 

duces: 

In a conventional TMS only one of the two contradic- 

tions may be explicitly noted, say {(u, 1) while an ATMS 

detects {A, a} immediately as well. As a result a con- 

ventional TMS tests {A, a, 2) while the ATMS never con- 

siders it. In addition, {p} is marked nogood immedi- 

ately, so {A, p, 1}, {A, ,B, 2) will never be considered by 

the assumption-based backtracker either. 

The ATMS also takes advantage of the fact that the 

set, of choices in each control disjunction is exhaustive. 

Consider the example ( H indicates a consumer): 

control{A, B}, 

control(C, D, E, . ..}. 

control {X, Y}, 

A-x=2, 

X+-vc=l, 

Yw2=1. 

The backtracker first explores the environment {A, C, X}. 

It is found that {A, X} is inconsistent and the correspond- 

ing nogood is recorded. Next it explores the context {A, C, 

Y} noticing {A, Y} is nogood as well. Traditional dependent; 

directed backtracking would then try exploring the envi- 

ronments {A, D,X}, {A, D,Y}, {A, E,X}, {A, E,Y} ,.... 

In each case the backtracker will realize that the cnviron- 

ment is a superset of one of t,he explicit nogoods before run- 

ning any consumers. Nevertheless, time is wasted switch- 

ing to each context. Using the ATMS the backtracker is 

able to infer from the two nogoods, plus the exhaustivity 

of the third control disjunction that {A} is also a nogood. 

Thus no superset environment of {A} is considered further. 

To accomplish this the ATMS contains the following 

hyperresolution rule for disjunctions (of which control dis- 

junctions are an instance). 

control(A1, AZ, . ..} 

nogood at where A, E q and Ajf-i @ cq for all i 

nogoodUi[a; - {A;}] 

In this case, the ATMS infers: 

control{X, Y} 

nogood{ A, X) 

nogood{A, Y} 

nogood 

Therefore, the ATMS-controlled backtracker considers the 

environment {B, C, X} next. It is important to note that 

the backtracking algorithm is unchanged: all the neces- 

sary nogoods are detected by the ATMS itself in its nor- 

mal operation and are indistinguishable from the nogoods 

detected explicitly by consumers. 

9. Generalized Assumption-based DDB 

The ATMS backtracking scheme outlined in the previ- 

ous section presumes the set of control disjunctions is lixed 

at the beginning of problem solving and that each set of 

choices is completely independent. Neither is the case in 

practice. During problem solving a new set of choices may 

become of interest in addition to the ones already known. 

Furthermore, some choice sets are logically dependent on 

others. Together these make it diihcult for the problem 

solver to reason about it#s own control. We follow the ideas 
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of PI and allow control decisions to have justifications as 

well. For example, we write: 

x =+- control(A, B) 

to state that if 5 holds, then control{A, B} is an active con- 

trol disjunction and has the full force of a normal control 

disjunction. If a control disjunction has no valid justifica- 

tion, then it is pnssive and is ignored completely. When 

a control disjunction is passive, its assumptions (unless 

they appear in other control disjunctions), will never be 

part of the current environment and hence no consumer 

which solely depends on them will be executed. The exe- 

cution condition for consumers is the same as that for the 

assumption-based DDB of Section 7. 

The control disjunction is designed to be used within 

a schema which ensures that any inferences following from 

one of its control assumptions also depends on the control 

disjunction’s antecedents. For example, the proposition (if 

al, u2,... hold, explore cl first, then ~a,...), 

al A a2 A . . . --) Cl v c2 v ..* 

is encoded by the control disjunction, 

a1,a2, -** * control(C1, C2, . ..}. 

and justifications, 

a1,a2, "', ci 3 c;. 

This encoding ensures that some c; will hold only in a con- 

text in which al, ~22, . . . hold as well as the specified control 

assumption being active. A control disjunction may be be- 

lieved in some context, but in order to be active it must 

be consistent with the current environment. 

This formulation of dependency-directed backtrack- 

ing is extremely powerful and allows the problem solver 

to dynamically manipulate the shape of its search space 

without requiring any change of terminology or represen- 

tation. The backtracking algorithm is, however, rather 

complicated and we briefly outline it here. The general- 

ized backtracker follows the simpler version by depending 

heavily on the nogood data-base of the ATMS. The back- 

tracker maintains a single stack of the currently active con- 

trol disjunctions. There are three significant events: a pas- 

sive control disjunction becomes active, an active control 

disjunction becomes passive, cand the current environment 

becomes inconsistent. 

When a passive control disjunction becomes active 

add it to the active stack, select the first control assump- 

tion from it that can be consistently added to the current 

environment, and make the resulting environment the new 

current environment. If no such assumption exists, the 

hyperresolution rule will have determined that the current 

environment is inconsistent. As long as the active stack 

does not change, search continues in chronological order. 

More than one control disjunction can become active si- 

multaneously. In such cases if desired the control disjunc- 

tions can be sorted, oldest first, and an assumption chosen 

from each in turn. The sorting guarantees that the search 

space is explored in the order intended by the problem 

solver. 

The case of an active control disjunction becoming 

passive is more complex. Although far more complex strate- 

gies are possible, the simplest technique is to temporarily 

unwind the control disjunctions on the active stack up to 

and including the affected control disjunction. As each 

control disjunction is removed, the active control assump- 

tion for that disjunction is removed from the current con- 

text. After the affected disjunction is removed the remain- 

ing temporarily removed control disjunctions still active 

are pushed back on the control stack (selecting their first 

consistent control assumption for the current context). 

A more complex strategy would only reexamine those 

environments whose exploration was blocked (i.e., the en- 

vironment was inconsistent with the current environment) 

by nogoods containing a control assumption of the newly 

passive control disjunction. Such a scheme would avoid ex- 

amining some.environments twice. Fortunately, the ATMS 

scheduler explicitly records all pending consumers with en- 

vironments, thus it is almost free to reexamine an environ- 

ment. 

When the current context becomes inconsistent, but 

the active stack is unchanged, the backtracking proceeds 

as in the simple assumption-based DDB scheme. However, 

when more than one of these three conditions occurs simul- 

taneously, these operations must be interleaved to avoid 

needless thrashing. 

10. Related Work 

Our approach to backtracking is dependent on the 

ATMS [4,5,6] but exploits the ideas of explicit control of 

reasoning [8] and previous approaches to backtracking [9,12]. 

Our approach is also strongly related to the use of in- 

telligent backtracking in PROLOG [ 1,2,3]. The backtrack- 

ing scheme of [l] is similar to the case where the control 

disjunctions are fixed (our control disjunctions correspond 

to [11’s value generators). When a contradiction is encoun- 

tered, the stack is unwound to the first generator contribut- 

ing to the contradiction. When a generator is exhausted, 

the reasons for each eliminated value are combined to form 

a contradiction which is used to guide the backtracking. 

This corresponds to the ATMS’ use of hyperresolution. 

The basic difference (as far as backtracking is concerned) 

is that the assumption-based backtracker records all no- 

goods permanently while the PROLOG intelligent back- 

trackers throw away contradiction records when the stack 
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is unwound. As a consequence some contradictions must 

be continually rediscovered. [l] argues that the cost of 

Becording <and checking for possible contradictions is not 

worth the computational overhead incurred. 

11. Conclusions 

Problem solvers built on the ATMS are often very dif- 

ficult to control. Some problems are inherently ill-suited 

to the ATMS, but for many others the addition of a simple 

backtracking control structure resolves many of the diffr- 

culties. This paper has presented a simple backtracking 

scheme which exploits some of the unique properties of 

both the ATMS and DDB, resulting in a hybrid algorithm 

whose worst case performance based on rule invocations is 

superior to the two approaches individually. This perfor- 

mance holds from problems demanding anywhere from a 

single solution to all solutions. 

Non-control assumptions are treated as conventional 

ATMS assumptions, while control assumptions are treated 

much like DDB in a justification-based TMS. In addition, 

the system supports conditional control disjunctions used 

to model the interactions between “ not quite independent”  

choices. The result is an overall problem solver with the ad- 

vantages of both an ATMS and dependency-directed back- 

tracking. 
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