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Gaussian graphical models are an increasingly popular technique in psychology to characterize

relationships among observed variables. These relationships are represented as covariances

in the precision matrix. Standardizing this covariance matrix and reversing the sign yields

corresponding partial correlations that imply pairwise dependencies in which the effects of all

other variables have been controlled for. In order to estimate the precision matrix, the graphical

lasso (glasso) has emerged as the default estimation method, which uses ℓ1-based regulariza-

tion. Glasso was developed and optimized for high dimensional settings where the number of

variables (p) exceeds the number of observations (n) which are uncommon in psychological

applications. Here we propose to go “back to the basics”, wherein the precision matrix is

first estimated with non-regularized maximum likelihood and then Fisher Z-transformed

confidence intervals are used to determine non-zero relationships. We first show the exact

correspondence between the confidence level and specificity, which is due to 1 - specificity

denoting the false positive rate (i.e., α). With simulations in low-dimensional settings (p ≪ n),

we then demonstrate superior performance compared to glasso for determining conditional

relationships, in addition to frequentist risk measured with various loss functions. Further,

our results indicate that glasso is inconsistent for the purpose of model selection, whereas the

proposed method converged on the true model with a probability that approached 100%. We

end by discussing implications for estimating Gaussian graphical models in psychology.

Keywords: Gaussian graphical model, maximum likelihood, Fisher Z-transformation, partial

correlation, confidence interval, ℓ1 regularization

Introduction

An important goal for psychological science is developing
methods to characterize relationships between variables. The
customary approach uses structural equation models (SEM)
to connect latent factors on a structural level to a number of
observed measurements (Maccallum & Austin, 2000). More
recently, Gaussian graphical models (GGMs) have been pro-
posed as an alternative approach for describing the relation
among variables, and they have become increasingly popu-
lar in psychology (Borsboom & Cramer, 2013; Epskamp &
Fried, 2016; Van Borkulo et al., 2014). Rather than assessing
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a hypothesized model structure, as in a SEM, GGMs seek
to capture conditional relationships (i.e., direct effects) be-
tween a set of observed variables. On the computational
level, this is accomplished by identifying non-zero covari-
ances in the off-diagonal elements of the inverse-covariance
matrix (i.e., precision matrix) (Dempster, 1972). When these
covariances are standardized and the sign reversed, they
correspond to partial correlations that imply pairwise depen-
dencies in which the linear effects of all other variables have
been controlled for (Fan, Liao, & Liu, 2016; Whittaker, 1990).
Since direct effects allow for rich inferences, this has resulted
in a growing body of literature called “network modeling”
in both methodological (Epskamp & Fried, 2016; Epskamp,
Kruis, & Marsman, 2017) and applied contexts (McNally et
al., 2015; Rhemtulla et al., 2016).

The default approach for estimating network models in
psychology uses ℓ1 regularization (e.g., a form of penalized
maximum likelihood) (Epskamp & Fried, 2016), which can
simultaneously improve predictive accuracy and perform
variable selection by reducing some parameters to exactly
zero (Dalalyan, Hebiri, & Lederer, 2017). In the context of re-
gression, this is known as the lasso (least absolute shrinkage
and selector operator) method (Dalalyan et al., 2017), whereas
the extension to multivariate settings is called the graphical
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lasso (glasso) (Friedman, Hastie, & Tibshirani, 2008). Im-
portantly, the glasso method was primarily developed to
overcome challenges in high-dimensional settings, in which
the number of variables (p) often exceeds the number of
observations (n) (Fan et al., 2016). In these situations, the
covariancematrix cannot be inverted due to singularity (Hart-
lap, Simon, & Schneider, 2007), which is overcome by the
glasso method. Accordingly, most of the simulation work
has focused on high-dimensional settings (n < p), where
model selection consistency is not typically evaluated in
more common asymptotic settings (n → ∞) (Ha & Sun,
2014; Heinävaara, Leppä-aho, Corander, & Honkela, 2016;
Peng, Wang, Zhou, & Zhu, 2009). Further, in behavioral
science applications, the majority of network models are fit
in low-dimensional settings (p ≪ n) (Costantini et al., 2015;
Rhemtulla et al., 2016). Unfortunately, model selection con-
sistency has not been demonstrated with simulation studies
representative of typical psychological applications. One aim
of the current work is to fill this gap by investigating the
properties of the most common glasso estimation techniques
in situations where p is representative of the psychological
literature and fixed, while n increases. This has a straight-
forward translation to applied settings: when a psychomet-
ric scale has been decided on (the number of variables p is
fixed), an important goal is obtaining the smallest possible
sample (n) to accurately estimate the network. A consistent
method for model selection will ideally converge on the true
model, with a probability approaching 100%, at some point
as the sample size becomes larger (Casella, Girón, Martinez,
& Moreno, 2009, n→ ∞).

There is some indication in the literature that the perfor-
mance ℓ1 regularization does not generalize to all settings.
Especially in the context of graphical models. For example,
Heinävaara et al. (2016) demonstrated that ℓ1-based methods
have sub-optimal performance with highly correlated vari-
ables, and that the assumptions for consistency are rarely
met in their particular field of study (genomics). According
to Heinävaara et al. (2016):

Our results strongly suggest that users of the nu-
merous ℓ1-penalised and other ℓ1 based sparse
precision matrix and Gaussian graphical model
structure learning methods should be very care-
ful about checking whether the conditions of
consistency for precision matrix estimation are
likely to be fulfilled in the application area of
interest (p. 106).

This finding paralleled Kuismin and Sillanpää (2016), where
they similarly noticed inconsistency of the glasso method
in that estimation errors did not diminish with increasing
sample sizes. Further, Leppä-aho, Pensar, Roos, and Corander
(2017) introduced an approximate Bayesianmethod, and their
results showed that glasso was not always consistent with

respect to Hamming distance (Norouzi, Fleet, Salakhutdinov,
& Blei, 2012). These findings are consistent with results of a
less extensive simulation in Epskamp and Fried (2016) and
Epskamp (2016) which incidentally also indicated that error
did not diminish with larger sample sizes.

Moreover, statistical inference is not straight forward from
estimates obtained from ℓ1-based methods (Hastie, Tibshi-
rani, & Wainwright, 2015, Ch. 6: “Statistical Inference”).
That is, just because a variable has been selected, does not
allow for claiming the estimate is significantly different from
zero, or that a non-selected variable has no-effect. These
claims would require formal hypothesis testing (Bayesian
or frequentist) (Lockhart, Taylor, Tibshirani, & Tibshirani,
2014; Mohammadi & Wit, 2015; Schäfer & Strimmer, 2005a),
which does not equate to selecting variables based on pre-
dictive performance or minimizing a particular loss function.
For example, selecting a model based on predictive perfor-
mance can lead to inconsistent model selection (Leng, Lin,
& Wahba, 2006). Further, ℓ1-based methods use automated
variable selection, in which valid inference needs to account
for model selection bias (Efron, 2014; Lee, Sun, Sun, & Taylor,
2016; Taylor & Tibshirani, 2017), although under certain
assumptions “naïve” refitting of the selected variables can
lead to valid inferences (S. Zhao, Shojaie, & Witten, 2017).
The glasso method faces an additional limitation, because
regularization biases the estimates towards zero, which then
requires additional steps to obtain nominal frequentist prop-
erties (e.g., coverage rates), including debiasing techniques
(Javanmard & Montanari, 2015) and non-traditional boot-
strapping schemes (Chatterjee & Lahiri, 2011). Together, the
central challenge for advancing network methodology in
psychology is to not only investigate methods specifically
for the most common applications (p ≪ n), but that also
allowing for customary statistical inferences.

In this paper, rather than building upon relatively recently
introduced statistical procedures (e.g., ℓ1-based methods),
we propose a statistical technique that directly builds upon
work from a century ago (Fisher, 1915, 1924; Yule, 1907), and
thus has a closed form solution. We first introduce Gaussian
graphical models. We then describe the current default sta-
tistical method in psychology, after which we outline our
approach for estimating Gaussian graphical models. With a
“proof of concept,” we demonstrate an important advantage
of the proposed method: nominal frequentist properties (e.g.,
coverage probabilities). We then use simulations to compare
the methods with respect to correctly identifying non-zero
relationships, in addition to frequentist risk measured with
various loss functions. We end with an application to real
data, as well as discussing implications and future directions.

Gaussian Graphical Model

Undirected graphical models can refer to covariance selec-
tion models, randomMarkov fields, or network models (as in
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psychology). Here we adopted the term Gaussian graphical
model (GGM), because it is the most general and provides
an informative description of the method. For example, let
X be a p-dimensional Gaussian random vector defined as

X = {X1, ..., Xp} ∼ N(µ,Σ), (1)

where, without loss of generality, we assume all variables
have been standardized to have mean µ zero (i.e., 0 =

{µ1, ..., µp}⊤) and covariance Σ. A GGM is then a probability
model that characterizes the conditional dependent structure
of X with a graph. This is accomplished by identifying the
non-zero elements within the inverse-covariance matrix Σ−1

= Θ (i.e., the precision matrix). In the following notation, we
denote the graph with G = (V, E) which consists of nodes
V = {1, ..., p} as well as the edge set (non-zero connections
between nodes) E ⊂ V × V . The maximum edges possible in
G is V(V − 1)/2, which correspond to the number of unique
off-diagonal elements of Σ. The edge set forG contains nodes
(Xi, X j) that share a conditional relationship Xi✚✚⊥⊥X j|XV\i, j. In
contrast, conditionally independent nodes Xi ⊥⊥ X j|XV\i, j are
not included in E.

The obtained graph G depends on accurate estimation
of the precision matrix Θ. This is straight forward in
low-dimensional settings (p ≪ n), the because maximum
likelihood estimator (MLE) provides an adequate estimate
(T. Wang et al., 2016). However, in high-dimensional settings
(p ≥ n), the MLE cannot be computed due to singularity:
det(Σ) = 0. That is, since the determinant equals the product
of the eigenvalues (λ)

det(Σ) =

p
∏

i=1

, λi ∈ {1, ..., p}, (2)

and the maximum number of non-zero eigen values is min(n,
p) (Kuismin & Sillanpää, 2017), it can be shown that inver-
sion is not possible (Hartlap et al., 2007). This is known
as the “large p and small n” problem and remains a cen-
tral challenge in the field of statistics (Kuismin & Sillanpää,
2016). Although these kinds of data structures are common
in fields such as genomics (Y. R. Wang & Huang, 2014) and
quantitative finance (Ledoit & Wolf, 2004a, 2004b), they are
the exception in psychology. Nonetheless, in psychology, ℓ1
penalized maximum likelihood has emerged as the default
estimation method (Epskamp & Fried, 2016).

ℓ1 Regularization

In the familiar context of multiple regression, the lasso
method uses the ℓ1 norm to find coefficients that minimize

n
∑

i=1

(

yi −
p

∑

j=1

Xi jβ j

)2

+ λ

p
∑

j=1

|β j|, (3)

where λ is the tuning parameter on the sum of absolute values
for the coefficients |β j| (Tibshirani, 1996). Larger values for λ

provide more regularization, whereas λ = 0 results in a non-
penalized model. Under the assumption that ǫ ∼ N(0, σ2),
minimizing the ordinary least squares estimates is equivalent
to maximizing the likelihood, or in this case the ℓ1 penalized
maximum likelihood. Importantly, optimizing Equation 3

has the ability to reduce coefficients to exactly zero, which al-
lows for variable selection. For this reason ℓ1-based methods
have become popular for both regression and for estimating
network models.

Extended to multivariate settings, the penalized likelihood
for the precision matrix is defined as

l(Θ) = log det Θ − tr(SΘ) − λp

∑

i, j

(|Θi, j|) (4)

where S is the sample covariance matrix and λp a penalty
function (Gao, Pu, Wu, & Xu, 2009). The glasso method
applies a penalty on the sum of absolute covariance val-
ues λp(|Θi, j|) (Friedman et al., 2008). The performance of
the glasso method is strongly influenced by the choice of
λ, which can be attained in at least four ways: (1) choose λ
that minimizes the extended Bayesian information criterion
(EBIC; Foygel & Drton, 2010); (2) select λ that minimizes the
Rotation Information Criterion (RIC; T. Zhao, Liu, Roeder,
Lafferty, & Wasserman, 2012); (3) select λ that maximizes
the stability of the solution across subsamples of the data
(i.e., Stability Approach to Regularization Selection; StARS)
(H. Liu, Roeder, & Wasserman, 2010); and (4) base the selec-
tion on k-fold cross-validation (Bien & Tibshirani, 2011).

While a method would ideally be selected with a particular
goal in mind, or based on performance in simulations that
are representative of the particular field, the default method
in psychology is currently EBIC,

EBIC = −2l(Θ) + Elog(n) + 4γElog(p), (5)

where l(Θ) is defined in Equation 4, E is the size of the edge
set (i.e., the number of non-zero elements ofΘ), and γ ∈ [0, 1]

is the EBIC hyperparameter that puts an extra penalty on
the standard Bayesian Information Criterion (BIC) criterion
(γ = 0). The selected network then minimizes EBIC with
respect to λ. This is typically accomplished by assessing a
large number (e.g., 100) of values of λ and selecting the one
for which EBIC is smallest. There is no automatic selection
procedure for the EBIC hyperparameter, but 0.5 was recom-
mended in Foygel and Drton (2010) and Epskamp and Fried
(2016).

Basic Approach

Our proposed method differs from glasso with several
respects. We approach the problem in the simplest terms, in
that we are simply estimating a (partial) correlation matrix
following classic and well known standard methods. Let Xin

be the observed data for the ith (i ∈ 1, ..., p) variable at the
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nth (n ∈ 1, ...,N) observation. We first compute the p × p

covariance matrix with the MLE defined as

Σ =
1

N

n
∑

n=1

(Xn − X̄)(Xn − X̄)⊤, X̄ =
1

N

n
∑

n=1

Xn, (6)

where the variables are centered to have mean zero. As is
evident in Equation 6, this method does not use any form of
regularization. After the MLE is computed, it is straight for-
ward to obtain the precision matrix Σ−1 = Θ̂ which contains
the covariances θ̂i j and variances θ̂ii:

Θ̂ =

























θ̂ii
...
. . .

θ̂i j · · · θ̂ j j

























. (7)

The partial correlations can be obtained as

ρ̂i j =
−θ̂i j

√

θ̂iiθ̂ j j

, (8)

which denote the standardized conditional relationships. In
contrast to ℓ1 regularization, where exact zeros are obtained
through optimization, this approach requires an explicit de-
cision rule for setting ρ̂i j to zero. Here we first use the Fisher
Z-transformation

zi j =
1

2
log

(1 + ρ̂i j

1 − ρ̂i j

)

, (9)

which results in an approximate normal distribution defined
as

zi j ∼ N
(

1

2
log

(1 + ρ̂i j

1 − ρ̂i j

)

,
1

n − 3 − s

)

. (10)

Here s denotes the number of variables controlled for (p− 1)

and
√

1
n−3−s

the standard error. We then define α based on

subjective grounds (e.g., the trade off between false positives
and negatives), and the corresponding critical value Zα/2. In
contrast to λ in glasso, α is a calibrated measure with respect
to false positives and coverage probabilities–i.e., 100(1 −α)%.
The confidence interval for zi j is defined as

ZL = zi j − Zα/2

√

1

n − 3 − s
, (11)

ZU = zi j + Zα/2

√

1

n − 3 − s
,

where ZL and ZU denote the lower and upper bounds. To
obtain the interval for ρ̂i j, a transformation is required:

ρ̂i jL
=

exp(2 ZL) − 1

exp(2 ZL) + 1
and ρ̂i jU =

exp(2 ZL) − 1

exp(2 ZU) + 1
. (12)

From this method, we obtain an edge set E in which the con-
fidence intervals for ρ̂i j exclude zero. If the assumptions of
this model are satisfied, the computed intervals will have the
nominal coverage probabilities. In the context of Gaussian
graphical models, this suggests we can obtain ≈ 100% cover-
age, or that the false positive rate will be close to zero. For
example, specificity (SPC), or true negative rate, is defined as

SPC =
true negative

true negative + false positive
, (13)

which should correspond exactly to the coverage rate of
ρi j = 0 for a given network. Accordingly, 1 - SPC corre-
sponds to the false positive rate.

Proof of Concept: Coverage Probabilities

In this section, we investigate coverage probabilities of the
proposed CI based method. This was done for two reasons:
1) The covariance matrix can be inverted in low-dimensional
settings (p < n), but there can still be increased estimation
errors when p approaches n (Ledoit & Wolf, 2004b); and
2) Alternative approaches, developed for high-dimensional
settings in particular, construct an approximate null sam-
pling distribution for the partial correlations, and then use
p-values to determine the edge set E (Schäfer & Strimmer,
2005b). To our knowledge, coverage probabilities for partial
correlations have not been examined in relatively large p

settings.
We simulated data from null networks, in which all par-

tial correlations were set to 0. The corresponding precision
matrices Θ ∼ WG(d f = 20, Ip) were then generated from a
Wishart distribution with 20 degrees of freedom and scale Ip

(Mohammadi & Wit, 2015). The number of variables p was
fixed at 20 and the sample sizes varied: n ∈ {25, 50, 150, 250,
500, 1,000, and 10,000}. The 95 and 99% coverage probabilities
were averaged across 1,000 simulation trials. We also plotted
results from a representative trial to illustrate coverage for
a given network, with the 95% confidence interval, which
demonstrates the exact correspondence to specificity.

The results from one simulation trial are plotted in Fig-
ure 1. Panel A shows the properties of the computed 95%
intervals, in which false positives are denoted in black. Note
that the estimated confidence intervals have several desirable
characteristics, including being bounded between -1 and 1.
When the sample is larger than 25, they are symmetric and be-
come narrower with increasing sample sizes. This stands in
contrast to lasso estimation, inwhich only point estimates are
provided by optimizing Equation 4. Further, when bootstrap
schemes are used, the sampling distribution can be distorted
which is a well-known result of ℓ1-regularization (Hastie et
al., 2015). This point is further discussed and demonstrated
in the applied example (Figure 4; Section Application)

The corresponding coverage rates are provide in panel
B of figure 1, where the expected level is 95-%. Note that
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Figure 1. Panel A: Estimated partial correlations and confidence intervals. Black dots denote confidence intervals that exclude zero.

Panel B: Specificity and coverage probabilities for the estimated networks in panel A. This demonstrates that, for a given network,

specificity and coverage are equivalent.

there is a direct 1:1 correspondence among specificity and
coverage illustrated by the diagonal line. This was confirmed
with the exact correspondence to specificity (Equation 13),
which is a measure of binary classification accuracy that is
often used in the GGM literature. It should be noted that
coverage was very close to nominal levels, for example, even
for one simulation trial it ranged from 93.2% to 96.3% when
the samples sizes were larger than 50. With sample sizes
of 500 and 1,000, the coverage rate was 94.7% and 95.3%,
respectively. Further, as seen in Table 1, long-run coverage
probabilities were at the expected levels. This is especially
important in applied settings, because it allows for a more
principled and familiar rationale for determining the trade-
off between false positives and negatives. The current alterna-
tive in psychology is to adjust the γ value in EBIC (Equation
5), which paradoxically resulted in diminishing returns with
increasing sample sizes (Epskamp & Fried, 2016), in addition
to γ not having a straightforward meaning. In contrast, con-
fidence intervals are commonly used, have a straightforward
frequentist interpretation (Morey, Hoekstra, Rouder, & Lee,
2015), and allow for defining expected long-run error rates
(α).

Simulation Description

In this section, we present numerical experiments to assess
performance of the proposed CI method compared to glasso.
We specifically focus on model selection consistency in com-
mon situations where network models are fit in psychology.
We assumed fixed p = 20, and increased the sample size n ∈
{50, 150, 250, 500, 1,000, 10,000 and 100,000}. The largest sam-
ple sizes were included to assess consistency of each method.
In applied settings, this mimics choosing a psychometric

scale (fixed p) and then assessing expected performance by
increasing the sample size (n). Additionally, we included a
range of sparsity levels, in which the proportion of connected
edges varied (0.2, 0.4, 0.6, and 0.8). The edge sets were ran-
domly generated from a Bernoulli distribution, and the corre-
sponding precision matrices Θ ∼ WG(d f = 20, Ap×p) from a
Wishart distribution with 20 degrees of freedom and scale A

that had 20’s along the diagonal and 0’s as the off-diagonal
elements. This choice of d f ensured the partial correlations
were within a reasonable range (ρi j ≈ ± 0.40), in addition to
being approximately normally distributed with mean zero.
This scale (Ap×p) differed from Mohammadi and Wit (2015),
who used an identity matrix Ip, but was selected to provide
the most favorable conditions for the glasso method, which
we noted had worse performance (specifically for the risk
of Θ̂) when the diagonal of the true precision contained too
large or small values.

We used the package qgraph to fit the glasso models (Ep-
skamp, Cramer, Waldorp, Schmittmann, & Borsboom, 2012).
Here we assumed γ values of 0 and 0.5. The latter is the
default setting in qgraph. For the largest sample sizes, we

Table 1
Average coverage probabilities for the partial correlation ma-

trices. The parentheses include the standard deviations.

Sample size (n)
25 50 150 250 500 1000

95-% CI 0.970 0.953 0.952 0.951 0.951 0.950
(0.06) (0.03) (0.02) (0.02) (0.02) (0.02)

99-% CI 0.995 0.990 0.990 0.990 0.990 0.990
(0.02) (0.01) (0.01) (0.01) (0.01) (0.01)
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Figure 2. Edge set identification scores (1 - Specificity is the false positive rate).The probability of connection is denoted with 20 %,

40 %, 60 %, and 80 %. MCC = Mathews correlation coefficient.

observed warnings that the lowest λ values was chosen (Sec-
tion ℓ1 Regularization). We followed the package recom-
mendation, and allowed this settings to be changed during
the simulation. For our proposed CI method, we used two
confidence levels of 95-% and 99-%. These models were fit
with a custom function that is provided in the Appendix. The
performance measures were averaged across 1,000 simula-
tion trials. All computer code is publicly available on the
Open Science Framework (link).

Edge Set Identification

We assessed three measures for identifying non-zero par-
tial correlations. The first was specificity, which was previ-
ously defined in Equation 13. The next measure is sensitivity
(SN), or the true positive rate, and is defined as

SN =
true positives

true positive + false negatives
. (14)

We also wanted to include a measure that considers all as-
pects of binary classification (i.e., false positives (FP) and
negatives (FN), as well as true positives (TP) and negatives
(TP)). To our knowledge, theMatthews correlation coefficient
(MCC) is the only measure that meets this criteria. MCC is
defined as

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

, (15)

and ranges between -1 and 1 (Powers, 2011). A correlation
of 1 is perfect correspondence between the actual and esti-
mated edges. Its value is equivalent to the phi coefficient
that assesses the association between two binary variables,
but for the special case of binary classification accuracy.

The results are presented in Figure 2. We first discuss
specificity (1 - specificity = false positive rate). All methods
had similar performance when 20% of the nodes shared a
connection. However, while not a large difference, specificity
decreased slightly when the sample size (n) grew larger for
both glasso models (γ = 0 and 0.5). This result was especially
pronounced for denser networks. For example, with 60%
connectivity, the specificity for glasso was 100% (n = 25) but
was below 80% with a sample size of 500 and approached
50% with n = 10, 00. In contrast,the proposed CI method
(Section Basic Approach) performed uniformly across con-
ditions. Indeed, these results confirm Figure 1 and table 1
where confidence levels corresponded exactly to specificity.

Importantly, the high specificity of the proposed CI
method did not result in substantially lower sensitivity than
the glasso models. For glasso with γ = 0.5 in particular,
sensitivity was comparable to the CI method, but the false

https://osf.io/qgsz3/
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Hamming distance; MSE = mean squared error. The results are presented on the log(x + 1) scale.

positive rate was much higher and became increasingly so
with larger sample sizes. These results parallel Heinävaara
et al. (2016) and Kuismin and Sillanpää (2016), where it was
noted that glasso behaves inconsistently as n increases. That
is, when sample sizes increase, a reasonable expectation is
that the estimated model will become more reliable, but this
is not always the case for the glasso method. Further, in
the present simulation conditions the proposed CI method
turned out to be a consistent estimator for the purpose of
model selection. That is, specificity can be set to ≈ 99%

(i.e., the confidence level), and increasing n ultimately results
in selecting the true model with a probability approaching
100%.

In terms of the Mathews correlation coefficient (MCC;
Equation 15), which provides a correlation for binary vari-
ables, all methods performed similarly for a network with
20% connectivity, which parallels the results for specificity
and sensitivity. However, the CI based methods often outper-
formed both glassomethods in the other conditions, although
the MCC correlation increased with larger n in all cases. For
example, the methods were similar for the smaller sample
sizes, but the proposed CI methods resulted in larger corre-
lations with increasing sample sizes. For the largest sample

size (n = 10,000) and 60% connectivity, the CI methods had
an almost perfect MCC score, whereas the glasso methods
had a score of approximately 0.50.

Loss Functions

To further assess the quality of the estimation methods,
we compared the glasso and CI methods in terms of risk. Risk
of the estimated precision matrices was assessed with two
loss functions, each of which are commonly used in the Gaus-
sian graphical model literature. The first is Kullback–Leibler
divergence, or entropy loss, defined as

KL(Θ, Θ̂) = tr(Θ−1
Θ̂) − log(|Θ−1

Θ̂|) − p, (16)

where log(|Θ−1
Θ̂|) denotes the log determinant. This pro-

vides a measure of information loss between the estimated
and true model. We also assessed Quadratic loss (QL) that
follows

QL(Θ, Θ̂) = tr(Θ−1
Θ̂ − Ip)2, (17)

where Ip is an identity matrix. Moreover, we assessed the risk
of the estimated partial correlation matrices P. As a measure
of discrepancy among the true and estimated model we also
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computed the Hamming distance (Heinävaara et al., 2016),
which provides a measure of discrepancy between binary
strings. Here, non-zero partial correlations were denoted
with 1, whereas the partial correlations that were set to zero
were denoted with a 0. Hamming distance (HM) addresses
the discrepancy among the true and estimated model. For
example,

True: 00 10 1 0100, (18)

Estimated: 11 10 0 0100,

results in a Hamming distance of three. The second measure
of risk was squared error

R(P, P̂) =
∑

i, j

(ρ̂i j − ρi j)
2, (19)

where this value was averaged across the simulations trials.
This resulted in mean squared error MSE(P, P̂). For all loss
functions, values closer to zero indicate less error from the
actual precision or partial correlation matrix.

The results are presented in Figure 3. Before discussing
these results in detail, it should be noted that there were some
difficulties computing KL-divergence. This occurred with the
smallest samples size (n = 50) in particular, and was due to the
risk being assessed from the sparsified precision matrix. We
revisit this issue in the discussion (Section Limitations). In
terms of KL-divergence, both glasso estimates (γ = 0 and 0.5)
were inconsistent, in that risk appeared to plateau and did not
reduce further with larger sample sizes. Importantly, glasso
did have superior performance with the smallest sample sizes
(p/n = 0.40), while the CI models had consistent performance.
For example, as n increased, the risk consistently diminished
to almost zero for the CI based methods. While the results
for quadratic loss (QL) showed a similar pattern, the risk ac-
tually increased for both glasso methods as the sample sizes
increased. In contrast, the proposed CI method was again
consistent, although glasso did have superior performance
for the smaller sample sizes (n < 250).

We now describe the results for P. For Hamming distance,
error reduced for all models. While the models had similar
trajectories, it should be noted that only CI based methods
approached a Hamming distance of 0. For 60% connectiv-
ity, as an example, the glasso methods had risk of almost
50, whereas the proposed method had close to zero errors.
Importantly, mean squared error (MSE) was similar for each
method. However, for sample sizes less than 1,000, glasso (γ
= 0.5) had the highest MSE. This is notable, because this γ
value is the default in the R package qgraph.

Application

In this section, we estimate the network structure of post-
traumatic stress disorder symptoms (Epskamp & Fried, 2016).

Our interest is not in a substantive question, but to compare
the methods in two quantitative aspects: (1) agreement (or
disagreement) between methods, and in particular the degree
of estimated sparsity; and (2) to highlight post-selection esti-
mates of the partial correlations, for example, bootstrapping
the glasso models compared to the CI based approach. The
data consists of 20 variables (p) and 221 observations (n) mea-
sured on the likert scale (0 – 4). We thus assumed normality
for the CI basedmethods, while the glasso methods estimated
polychoric partial correlations, which is the default approach
in the package qgraph.1

The results are presented in Figure 4. We first discuss
the estimated network structures in panel A. There are sub-
stantial differences between the methods, in that the glasso
estimated dense networks where almost half of the possible
edges were connected. In contrast, the CI methods had con-
nectivity of 36% (CI 95-%) and 11% (CI 99-%), respectively.
In addition to the simulations presented here (Figure 2), the
glasso estimate (γ = 0.5) of these exact data was used to
provide the data generating matrix in Epskamp and Fried
(2016). The limited simulation provided in Epskamp and
Fried (2016) showed that glasso was similarly inconsistent,
which parallels the present simulation results, and that speci-
ficity was never higher than 75%. This suggests that the
estimated network in this example has a false positive rate (1
- specificity) of close to 25% (i.e., 1 out of 4). In contrast, the
proposed method not only had the highest specificity (and
thus the lowest false positive rate), but similar sensitivity
to the glasso methods in this simulation, which together
suggests a more accurate estimate of the network.

We now focus on post-selection assessment of the partial
correlations for the glasso method (Figure 4; panel B). That
is, after glasso has selected a model, common practice in
psychology is to use a bootstrapping procedure to approxi-
mate the sampling distributions. We thus implemented the
default approach in the R package bootnet (Epskamp, Bors-
boom, & Fried, 2018). However, to be clear, the naïve use of
bootstrapping does not necessarily allow for valid inferences
such as null hypothesis testing with well-defined error rates
(α). This is evident in panel B of Figure 4, where it can be
seen that the bootstrapped estimates (summarized with the
mean and 95-% quantile intervals) are heavily skewed for the
default glasso method (γ = 0.5). In the context of Gaussian
graphical models in particular (Janková & van de Geer, 2017),
statistical inference is an emerging area of research in the
field of statistics that often require debiasing the regularized
estimates to compute confidence intervals (Janková & van de
Geer, 2015; Ren, Sun, Zhang, & Zhou, 2015) and p-values
(W. Liu, 2013; Z. Wang, 2016). There is a recent R package–
Statistical Inference of Large-Scale Gaussian GraphicalModel

1We confirmed that the CI based methods generally had nomi-

nal coverage for ordinal data that was generated with the bootnet

package.
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Partial Correlation

glasso (γ = 0) glasso (γ = 0.5) CI 95-% CI 99-%
A

B

Figure 4. Panel A: Estimated networks for symptoms of post-traumatic stress disorder. γ denotes the parameter in EBIC (Equation

5). Panel B: A comparison between estimates, including confidence intervals, for the estimated networks. The glasso confidence

intervals were constructed with a bootstrap procedure from the package bootnet.

in Gene Networks (SILGGM)–that provides many options for
network model inference (Rong, Ren, & Chen, 2017). How-
ever, it should be noted that the methods were optimized
in high-dimensional settings (n < p), so performance con-
firmation would be needed in low-dimensional settings. In
contrast, because typical psychological networks are fit in
low-dimensional settings, the proposed CI method already al-
lows for calibrated confidence intervals (and p-values; Figure
1).

Moreover, we see that the CI based methods, described
in the present paper have symmetric intervals that readily
allow for demonstrating nominal frequentist calibration (Fig-
ure 1 and Table 1). While there is still the issue of multiple
comparisons, one could argue that 99% intervals mitigate
these multiplicities, without further reducing sensitivity and
because increasing the confidence levels results in trivial
changes in the width of the intervals. Further, assuming the
null is true for each partial correlation, coverage (or non-
coverage of 0) and thus specificity can be inferred due to the
large number of constructed intervals (Figure 1). This again
stands in contrast to glasso with EBIC selection of the tuning
parameter (Equation 4), where the meaning of γ is unclear,
in addition to the assumed γ (0 and 0.5) values estimating

very similar networks.

Discussion

In this paper, we have described the current default ap-
proach for estimating psychological networks, with a partic-
ular focus on the disconnect between the fields where glasso
was developed (n ≪ p) and the most common psychological
applications (n ≫ p). We then described a method based on
maximum likelihood and Fisher Z-transformed partial cor-
relations. With confidence intervals as the decision rule for
determining non-zero relationships, we then demonstrated
superior performance compared to the glasso method in
almost all instances (Figure 2). In particular, we showed
the exact correspondence between the confidence level and
specificity, which is due to 1 - specificity denoting the false
positive rate (e.g., α; Figure 1). As indicated by Figure 3, it is
also clear that the glasso method does not reduce risk of the
estimated precision matrices, relative to the non-regularized
method based on maximum likelihood. Indeed, the glasso
methods actually showed increased estimation errors for
quadratic loss when the sample sizes became larger. Most
importantly, we explicitly evaluated model selection consis-
tency of the glasso method. Here it was shown that glasso
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is not a consistent estimator for the purpose of model se-
lection, in low-dimensional settings, whereas the proposed
method converged on the true model with a probability that
approached 100% (Figure 2).

Although our focus here is statistical methodology, and
not on the use or corresponding inferences in practice, these
results can be used to inform the current discussion sur-
rounding the replicability of psychological networks (Forbes,
Wright, Markon, & Krueger, 2017). There are several less
extensive simulations that have demonstrated that glasso is
not consistent for the purpose of model selection in psycho-
logical settings. In fact, we have not seen one instance in
which glasso converged upon the true model. For example,
in Epskamp and Fried (2016) and Epskamp (2016), it was
shown that specificity either reduced slightly or remained
constant at around 75 – 80% as n increased. That is, the false
positive rate (1 - specificity) of glasso is regularly around
20 – 25%. Further, while Epskamp et al. (2017) cautioned
that assuming sparsity will result in false negatives if the
true network is dense, our results suggest that levels of spar-
sity not typically seen in psychological applications (< 20%
connectivity; Figure 2) are necessary for consistent model
selection (although specificity declined slightly for the largest
sample sizes). In the context of replication, high false posi-
tive rates (> 20%) obscure the ability to consistently replicate
network structures. Although the glasso method appears to
estimate similar networks across datasets (Fried et al., 2018),
for example, it is not entirely clear what is being replicated
for a method whose performance is consistently inconsistent
(Epskamp, 2016; Epskamp & Fried, 2016; Heinävaara et al.,
2016; Kuismin & Sillanpää, 2016; Leppä-aho et al., 2017).

These results may be surprising to some, because the
glasso method has emerged as the default approach for net-
work estimation in psychology. However, while the orig-
inal glasso paper is highly cited (Friedman et al., 2008), it
should be noted that the performance of the method for
edge identification was not assessed. Similarly, in Foygel
and Drton’s (2010) work that introduced EBIC for tuning
parameter (λ) selection, no comparison to other methods
was made. However, there are numerous papers that have
demonstrated superior performance than glasso with EBIC
(Kuismin & Sillanpää, 2017, see here for a review of different
methods). For example, Leppä-aho et al. (2017) introduced
an approximate Bayesian method, using a marginal pseudo-
likelihood approach, that showed glasso was not always
consistent with respect to Hamming distance (Norouzi et al.,
2012), whereas the LASSO regression approach was consis-
tent (Meinshausen & Bühlmann, 2006). This finding parallels
Kuismin and Sillanpää’s (2016), where the unusual behavior
of glasso was explicitly noted:

We are surprised by the moderate performance
of the graphical lasso in this simulation setting.
Even when the sample size increases, the risk

measures do not diminish, and that is quite un-
expected. This is most certainly due the EBIC
used to choose the regularization parameter ρ
[λ] (p.12).

Again, these methods were developed for high-
dimensional settings, and thus the focus was not on
low-dimensional settings where classic methods are
performing well. In fact, most common statistical methods
(e.g., maximum likelihood) are known to have optimal
performance in situations common to psychology. In
this light, it is clear that the results presented in the
current paper are not too surprising if viewed from the
position of going “back to the basics.” That is, in most
psychological applications, partial correlation networks
are most simply estimating correlation matrices in settings
that do not pose challenges for statistical approaches
developed over a century ago. Of course, while using a
Fisher Z-transformation does not have the appeal of novelty
as glasso, regularization, or EBIC, it is also clear that going
“back to the basics” provides consistent model selection in
the most common situations were psychological networks
are estimated.

Limitations

There are several limitations of this work. First, predictive
accuracy is one possible advantage of ℓ1 regularization, but
we did not consider this here. However, it should be noted
that ℓ1-based methods do not always have improved predic-
tive accuracy. For example, according to Friedman et al. (2008,
the original glasso paper) “...cross-validation curves indicate
that the unregularized model is the best, [which is] not sur-
prising given the large number of observations and relatively
small number of parameters” (p. 9). Nonetheless, alternative
methods based on non-regularized regression models could
be used to select variables with the Bayesian information
criterion, which is known to be consistent for model selection
(Casella et al., 2009, p ≪ n) and can be justified in terms of
predictive accuracy (Shao, 1997, leave–v–out). Second, we
only considered networks with a random structure. Future
work would have to evaluate whether these findings gener-
alize to various network structures, which seems reasonable
since the proposed method is based on maximum likelihood
(Equation 6). Third, while the confidence intervals are cali-
brated (Figure 1), it is not clear how to statistically compare
partial correlations to each other. Although the bootstrap
approach is recommended in Epskamp and Fried (2016), we
were unable to locate any proofs in the statistics literature
that this procedure generally allows for valid inferences. In
fact, according to Bühlmann, Kalisch, and Meier (2014):

...[W]e typically use sparse estimators for high-
dimensional data analysis, for example the
Lasso... The (limiting) distribution of such a
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sparse estimator is non-Gaussian with point
mass at zero, and this is the reason why standard
bootstrap or subsampling techniques do not pro-
vide valid confidence regions or p-values. Thus,
we have to use other approaches to quantify
uncertainty (p. 7–8).

Rather than attempting to overcome the biased estimates
of ℓ1 regularization, a non-regularized bootstrap could be
applied directly on the maximum likelihood estimator (Equa-
tion 6), from which differences as well as equivalence can
be tested (Lakens, 2017). Of course, this would first require
demonstrating that the constructed intervals and/or p-values
are properly calibrated. Fourth, we only evaluated simula-
tion conditions with p fixed to 20. While this is a reasonable
choice based on the psychological literature (Epskamp &
Fried, 2016), it should be noted that estimation errors of the
MLE arise with larger p/n ratios. However, for the purpose of
edge set identification, the CI based methods outperformed
the glasso (γ = 0.5; the default in qgraph) with the highest
ratio evaluated (p/n = 0.40). Fifth, the proposed method
had difficulties computing KL-divergence. In the context of
determining non-zero partial correlations, in which sparsity
is induced after Equation 8, this is not problematic. This issue
arose because KL-divergence was assessed with covariances
forced to zero, which we viewed as a fairer comparison to
the glasso method (that also has covariances set to zero) and
allowed for assessing risk for each confidence level (using
the non-sparsified precision matrix would have provided
the same estimate for each decision rule). Importantly, in
all instances the estimated precision matrices were positive
definite.

To be clear, while not necessary a limitation of this work, it
should be noted that we used the default settings in the pack-
age qgraph. This allowed for making our findings especially
relevant for psychology, but does limit the generalizability of
our results. For example, there are alternative default settings
in other R packages (T. Zhao et al., 2012, e.g., huge), where
EBIC is not the default method for selecting λ. We did explore
many of the settings for the glasso method. For example, in
addition to different methods for selecting λ, the range of
λ’s can change the results in meaningful ways. If the true
model is known, it is possible to adapt a number of parameter
settings to improve performance in glasso. However, we view
this as an additional benefit of the proposed method, because
performance only depends on pre-specifying the confidence
level which has a straight forward meaning in practice.

Conclusion

To be clear, Gaussian graphical models are useful tools
in that they can provide important insights into psychologi-
cal phenomena. These insights are not possible with more
traditional statistical techniques such as structural equation

models. An important future direction is therefore to address
the issues that we raised, in addition to further characteriz-
ing non-regularized methods, which together will provide a
deeper understanding of this relatively novel approach for
conceptualizing a correlation matrix. However, in regards to
the current default approach in psychology, we believe the
statistical foundations of partial correlation network method-
ology requires rethinking.

Appendix A
R-code

mle_CI <- function(X, alpha){

X <- as.matrix(X)
# X: data frame

if (!require("qgraph")) install.packages("
qgraph")

if (!require("Matrix")) install.packages("
Matrix")

# number of observations (rows)

n <- nrow(X)
# number of variables (columns)

p <- ncol(X)
## compute maximum likelihood estimator

## for covariance matrix

mle_cov <- crossprod(scale(X, scale = F))

/ n

## compute maximum likelihood estimator of

precision matrix

## (inverse covariance matrix)

mle_inv <- solve(mle_cov)

## standardize and revese sign = partial

correaltions

par_cors <- as.matrix(qgraph::wi2net(mle
_inv))

mle_parcors <- mle_ci_helper(alpha = alpha

, par_cors = par_cors, n = n, s = p -

1)

mle_inv <- mle_parcors$sig_mat * mle_inv
list(mle_parcors = mle_parcors, mle_inv =

mle_inv)

}

mle_ci_helper <- function(alpha, par_cors, s

, n) {

# n: sample size

# s: p - 1 (controlled for)

# alpha: confidence level



12 WILLIAMS & RAST

# par_cors: partial correlations

mat <- matrix(0,nrow = s + 1, ncol = s +

1)

CI_ls <- list()
par_cor <- par_cors[upper.tri(par_cors)]
cov <- list()
for(i in 1:length(par_cor)){

# critical value

z_crit <- qnorm(1 - alpha/2)
# standard error

se <- sqrt(1/((n - s - 3)))

# z transformation

z <- log((1 + par_cor[i])/(1 - par_cor[i
]))/2

# z lower bound

Z_L <- z - z_crit * se
# Z upper bound

Z_U <- z + z_crit * se
rho_L <- (exp(2*Z_L) - 1)/(exp(2*Z_L) +

1)

rho_U <- (exp(2*Z_U) - 1)/(exp(2*Z_U) +

1)

CI <- c(rho_L, rho_U)
CI_ls[[i]] <- CI

cov[[i]] <- ifelse(CI[1] < 0 & CI[2] >

0, 0, 1)

}

ci_dat <- do.call(rbind.data.frame, CI_ls)
colnames(ci_dat) <- c("low", "up")

ci_dat$pcor <- unlist(par_cor)
diag(mat) <- 1

mat[upper.tri(mat)] <- unlist(cov)
mat <- as.matrix(Matrix::forceSymmetric(

mat))
list(sig_mat = mat, par_cors = par_cors,

par_sig = mat * par_cors,
cis = ci_dat, cov_prob = unlist(cov))

}

Assume X is a data matrix:
# 95 % CI

est_mle_95 <- mle_CI(X, alpha = 1 - 0.95)

# sparsified partial correlation matrix

est_mle_95$mle_parcors$par_sig

# 99 % CI

est_mle_99 <- mle_CI(X, alpha = 1 - 0.99)

# sparsified partial correlation matrix

est_mle_99$mle_parcors$par_sig

Appendix B
Open Science Framework

Here: link to project
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