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Abstract A system composed of two cubic nonlinear oscillators with close natural frequencies, and thus
displaying a 1:1 internal resonance, is studied both theoretically and experimentally, with a special emphasis
on the free oscillations and the backbone curves. The instability regions of uncoupled solutions are derived
and the bifurcation scenario as a function of the parameters of the problem is established, showing in
an exhaustive manner all possible solutions. The backbone curves are then experimentally measured on
a circular plate, where the asymmetric modes are known to display companion configurations with close
eigenfrequencies. A control system based on a Phase-Locked Loop (PLL) is used to measure the backbone
curves and also the frequency response function in the forced and damped case, including unstable branches.
The model is used for a complete identification of the unknown parameters and an excellent comparison is
drawn out between theoretical prediction and measurements.

Keywords Nonlinear vibrations · backbone curve · bifurcations · 1:1 resonance · stability · measurements ·
model identification.

1 Introduction

Nonlinear system displaying internal resonance has been the subject of a number of studies as a strong
nonlinear coupling could lead to solutions that are completely different from linear predictions [27,25,12,
42,4,40,24]. Internal resonance is closely related to the normal form theory and Poincaré’s theorem where
the specific resonance relationship between eigenfrequencies is linked to a resonant monom that cannot be
cancelled through a near-identity transform [31,15,46,44]. In vibration theory, these systems are usually
denoted in series of numbers, e.g. 1:2 and 1:1:2, which refers to the relationship between the eigenfrequencies
of the system. For instance, a 1:2 resonant system has eigenfrequencies related by ω2 ≃ 2ω1 while a 1:1:2
system exhibits ω2 ≃ ω1 and ω3 ≃ 2ω1.

Among all possible internal resonances, 1:1 resonance is described by two oscillators having close eigen-
frequencies and may appear as the simplest one and the first to be studied. It occurs in numerous mechanical
systems having known symmetries such as strings, where the two polarizations of a same mode have close
eigenfrequencies [14,13,38,37]; beams [1,26]; and two-dimensional structures with obvious symmetry such
as circular plates [47,32,45,39] square membranes or plates [9,48,6], or circular cylindrical shells [44]. The
resonant monoms related to 1:1 resonance are of cubic order so that quadratic nonlinearity is of no concern
in this case. In most of these studies, the emphasis is put on deriving the forced vibration response, and
less studies are directly concerned with the the freely vibrating 1:1 internal resonance scenario.

A. Givois (a,b)(�) · Jin-Jack Tan (c,d) · Cyril Touzé (c) · Olivier Thomas (a)
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Restricting attention to the free vibration, the papers by Lewandowski in the early 90s give the first
contributions to understand the bifurcation points found on backbone curves. Analytical results obtained
on the case of a beam with 1:3 internal resonance were first derived [19], and then extended to plates and
membranes featuring either 1:1 or 1:3 internal resonance [20]. The analytical methods used a two-mode
approximation and a single-harmonic component in the time domain. A seminal study on the 1:1 internal
resonance has been provided by Manevitch and Manevitch [21]. In particular, they derive the possible
solutions for cubic oscillators deriving from a potential, thus restricting to three parameters for describing
the nonlinear coupling coefficients. They also provide a complete study of the possible cases with varying
parameters, expressing the solutions in terms of first integral of motions and ratio of amplitudes obtained
after numerous changes of coordinates, rendering the solutions sometimes difficult to read. More recently,
the bifurcation of the backbones in case of 1:1 resonance has also been studied in [5], but with restriction to
a single case of coefficients values, thus not bringing important novel results as compared to the exhaustive
study by Manevitch and Manevitch.

Meanwhile, advances of dedicated experimental continuation methods allows easier and more reliable
measurements of backbone curves as well as unstable branches of forced and damped systems. Among them,
the control-based techniques that are founded on a path-following approach of an arclength parameter and
stabilized via feedback control, have managed to obtain backbone curves and bifurcations experimentally
for single degree-of-freedom nonlinear systems [36,33,3]. An alternative approach where control of the phase
is achieved via a phase-locked loop (PLL) procedure has lead to the measurement of frequency response
functions of a piezoelectric ring in high-amplitude nonlinear regimes [22]. Denis et al. has further shown that
the PLL technique allows measurement of the frequency responses on both sides of the phase resonances
including the unstable part [7]. Despite the requirement of a monotonous evolution of the phase, the
robustness and efficiency of the PLL control are demonstrated in the aforementioned piezoelectric systems
[22,7], in musical instruments like Chinese gongs [16] and also in the current work.

For unforced conservative systems, there is an equivalence between the backbone curves of a nonlinear
system and its nonlinear modes, since a backbone represents the frequency dependence on amplitude, when
ones spans the family of periodic orbits (or the equivalent invariant manifold) [34,35]. In this framework,
internal resonance is usually identified as loops in the backbone curve, as shown for example in [17], with
the peculiar feature that the internal resonance occurs on the nonlinear frequencies, far from their linear
values. In the present case of a 1:1 internal resonance between the linear eigenfrequencies, the topology of the
backbone curves is found to show more cases than only simple loops, with no unique qualitative topology,
giving new insights in the behaviour of nonlinear modes. Another important aspect is the experimental
identification of nonlinear modes, which has been a very active subject during the recent years (see, for
instance, [28,7]). Since most of the techniques rely on complex identification algorithms which aims at
extending the ones for linear systems widely used in industrial contexts [29], we propose here a simple
identification method based on the available model, following the unimodal technique introduced in [7].

In the present contribution, a theoretical investigation of the bifurcation scenario for the backbone
curves of a system displaying 1:1 internal resonance is detailed, followed by measurements on a circular
plate. As compared to previous studies, the main outcomes are to generalize the results obtained in [21]
to four nonlinear coupling parameters. More importantly, instability regions for uncoupled solutions are
derived, a point that were not present in [20,21,5], and is important, since it gives a more direct and simpler
analysis of the bifurcation scenario. These instability regions are found by comparison with the forced and
damped cases. The theoretical analyses are all presented in Section 2. Then, an experimental procedure
based on the PLL control is applied to measure the first asymmetric modes of a freely vibrating circular
plate. The backbone curves and bifurcation scenarios of such a 1:1 internal resonance system are identified.
These are all presented in Section 3, which also includes descriptions of the experimental procedures and
the estimation of the nonlinear coefficients. Finally, the paper is concluded in Section 4.

2 Theoretical results

The theoretical derivations are devoted to expressing the backbone curves for a system of two cubic nonlinear
oscillators with close eigenfrequencies. Denoting X1 and X2 the displacements of oscillator 1 and 2, the
equations of motion under study read:

Ẍ1 + ω2
1X1 + ε

[

Γ1X
3
1 + C1X1X

2
2

]

= 0, (1a)

Ẍ2 + ω2
2X2 + ε

[

Γ2X
3
2 + C2X2X

2
1

]

= 0, (1b)
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where ε is a book-keeping parameter, ω1 and ω2 are the two eigenfrequencies such that ω1 ≃ ω2, Γ1 and
Γ2 are the leading cubic coefficients for each oscillator, and C1 and C2 are the cross-coupling coefficients.
The choice of this formulation is guided by the following considerations:

– in a normal form approach [46,44], one can show that quadratic nonlinearity does not lead to resonant
terms for the 1:1 internal resonance when ω1 ≃ ω2. Consequently there is no need to take them into
account.

– the general normal form for a system with cubic nonlinearity should also include the monoms X2
1X2

and X3
2 for the first oscillator, and X2

2X1 and X3
1 for the second oscillator. Here we select a simplest

form depending on four parameters only, Γ1, Γ2, C1 and C2 instead of the most general form including
8 coefficients. The reason is that for most of the mechanical systems like strings, beams and plates, the
symmetry relationships leads to equations of the form (1). Consequently it has been decided to restrict
our attention to a four-parameter problem with varying coefficients. This point will be further discussed
in Section 3 and 4.

When C1 = C2 = C, the stiffness derives from the potential energy V:

V =
1

2

(

ω2
1X

2
1 + ω2

2X
2
2

)

+
ε

4

(

Γ1X
4
1 + 2CX2

1X
2
2 + Γ2X

4
2

)

. (2)

This case was considered by Manevitch and Manevitch in [21]. In order to extend their result to a more
general case with four parameters and include the possibility of taking into account slight imperfections of
real structures, we will also consider the case C1 6= C2 in this study.

The solutions of this nonlinear problem is derived thanks to a first-order perturbative approach using
the method of multiple time scales. As most of the derivations of the perturbative solution are classical,
they are given in Appendix A, where a special emphasis is also put on deriving the first-order equations for
both the forced/damped case and the free case, in order to show the similarity and differences occurring
in the two sets of equations. In this section, only the main results are recalled, the reader is referred to
Appendix A for the detailed calculations.

A detuning σ1 is introduced in order to quantify the difference between the two eigenfrequencies:

ω2 = ω1 + εσ1. (3)

Without loss of generality, we can assume σ1 ≥ 0, which is not restrictive and only means that oscillator
2 is the one with the larger eigenfrequency. The two time scales T0 = t and T1 = εt are introduced, and
the solution is expressed under the form Xi = Xi1(T0, T1) + εXi2(T0, T1), i = 1, 2. The first-order solution
reads

X11 = A(T1) exp(iω1T0) + c.c., (4a)

X21 = B(T1) exp(iω2T0) + c.c., (4b)

where c.c. stands for complex conjugate. Finally the unknown amplitudes A(T1) and B(T1) are expressed
in polar form, A = a(T1) exp(iα(T1)), B = b(T1) exp(iβ(T1)). In order to make the slow-scale first-order
system autonomous, the following change of variable is introduced for the angles:

γ1 = −α, (5a)

γ2 = −σ1T1 − β. (5b)

As explained in A, this choice is motivated by direct comparisons with the forced/damped system. Finally,
the slow-scale autonomous system reads:

a′ = −
C1

2ω1
ab2 sin 2(γ1 − γ2), (6a)

γ′1 = −
3Γ1

2ω1
a2 −

C1

2ω1
b2 [2 + cos 2(γ1 − γ2)] , (6b)

b′ =
C2

2ω2
ba2 sin 2(γ1 − γ2), (6c)

γ′2 = −
3Γ2

2ω2
b2 −

C2

2ω2
a2 [2 + cos 2(γ1 − γ2)]− σ1. (6d)

The solutions of (6) are obtained after integration with respect to the slow time T1. Two kinds of solutions
exist:
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– the uncoupled solutions, where a single mode is excited while the other stay quiescent. Two uncoupled
solutions exist and will be denoted as the A-mode for which a 6= 0 and b = 0, and the B-mode, for
which b 6= 0 and a = 0,

– the coupled solutions, for which both amplitude solutions are non zero, i.e. a 6= 0 and b 6= 0.

2.1 Uncoupled solutions and instability regions

The uncoupled solutions are easily derived from (6). They are defined by a = const, b = 0, γ1 =
−3Γ1/(2ω1)a

2T1 + ϕ1 and b = const, a = 0, γ2 = −(3Γ2/(2ω2)b
2 + σ1)T1 + ϕ2, thus leading to:

X1(t) = 2a cos
(

ωA
NLt− ϕ1

)

, X2(t) = 2b cos
(

ωB
NLt− ϕ2

)

, (7)

where ϕ1 and ϕ2 depend on the initial conditions. The associated backbone curves are:

for the A-mode :

ωA
NL = ω1

(

1 + ε
3Γ1

2ω2
1

a2
)

. (8)

for the B-mode :

ωB
NL = ω2

(

1 + ε
3Γ2

2ω2
2

b2
)

. (9)

where ωA
NL (respectively ωB

NL) refers to the nonlinear oscillation frequency of A-mode (resp. B-mode), as
a function of its amplitude a (resp. b).

The next question to tackle is the derivation of the stability of these uncoupled solutions, in order to
predict where a loss of stability can happen in favour of a coupled solution through activation of the 1:1
resonance. In previous works and particulary in the paper by Manevitch and Manevitch [21], instability
regions were not derived, for the main reason that setting either b = 0 (to study the stability of the A-
mode) or a = 0 (to study the stability of the B-mode) leads to a degenerate problem given by Eqs. (6):
the four-dimensional phase space shrinks to a two-dimensional one without any possibility of studying the
stability with respect to vanishing directions. The solution is found by using the analysis of the system with
forcing and damping, as shown in Appendix B. Then, taking the limit of vanishing damping and forcing,
one is able to demonstrate (see Appendix B) that the stability region of the A-mode is bounded by the two
following curves:

ωs
Alim = ω2 + ε(2 + s)

C2a
2

2ω2
, with s = ±1. (10)

Symmetrically, the instability region for the B-mode is bounded by the two curves:

ωs
Blim = ω1 + ε(2 + s)

C1b
2

2ω1
, with s = ±1. (11)

In particular, one can note that the stability of A-mode (resp. B-mode) is dictated by the value of the
coupling coefficient C2 (resp. C1), which is logical since this term is responsible for the nonlinear energy
transfer between the two oscillators.

The situation is illustrated in Fig. 1, which has been obtained for a perfect detuned case, i.e. with all
nonlinear coefficients equal, here Γ1 = Γ2 = C1 = C2 = 1, and a detuning between the two eigenfrequencies
with ω1 = π, ε = 1 and σ1 = 1, thus leading to ω2 = 1 + π. Each instability region lies respectively in
the plane of A-mode (i.e. where b = 0) and B-mode (where a = 0), and is delimited by two curves that
are obtained by setting either s = 1 or s = −1. These two curves are plotted in red and green in Fig. 1.
If the backbone curve of the A-mode (resp. B-mode) enters the instability region delimited by the two
curves given by Eqs. (10) and delimiting the grey-shaded area in Fig. 1(a) (resp. the blue-shaded areas in
Fig. 1(b)), then the uncoupled solution becomes unstable. Note that the A-mode starts at ω1 when a −→ 0,
whereas the instability region starts at ω2. Symmetrically, B-mode starts at ω2 while the instability regions
at ω1. All curves are parabolas, and for the A-mode, the coefficient of the parabola is 3Γ1

2ω1

, while the two

instability curves are governed by C2

2ω2

and 3C2

2ω2

. Consequently one may also inspect the possible intersections
of backbones with instability regions by simply looking at the nonlinear coefficients. In the case considered
with Γ1 = Γ2 = C1 = C2, the A-mode crosses the instability region in two points, whereas the B-mode has
only one crossing point with its instability region. This question will be further discussed when all possible
solutions are described by varying the coefficients, see Section 2.3. It is a very important feature of this
problem to understand that most of the topology of the solutions can be understood by simply looking at
the coefficients values.
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(a) (b)

Fig. 1. Instability regions of the uncoupled solutions. (a) In the plane (ω, a), with b = 0 is the stability of
the A-mode. The backbone curve given by Eq. (8) is in black (unstable part with dashed line), while the
stability region delimited by Eqs. (10) is given by the thin red line (for s = −1) and green line (for s = +1).
(b) In the plane (ω, b), with a = 0 is the stability of the B-mode. The backbone curve given by Eq. (9) is
in blue (unstable part with dashed line), while the stability region delimited by Eqs. (10) is given by the
thin red line (for s = −1) and green line (for s = +1).

2.2 Coupled solutions and their stability

X 1

X 2

X 1

X 2

odd p
even p

even m

(a) normal mode : s=+1 (b) elliptic mode : s=−1

odd m

Fig. 2. Definition of normal mode and elliptic mode.

The coupled solutions have already been derived in [21] with the assumption C1 = C2, here we simply
recall the main results. Inspection of non-zero constant solutions for the amplitudes a and b of the system (6)
shows that uncoupled solutions can exist if and only if sin 2(γ1 − γ2) = 0, which leads to the conclusion
that we have necessarily cos 2(γ1 − γ2) = s = ±1, where the notation s = ±1 is introduced for convenience.
This choice leads to two different kind of solutions. If s = +1, then γ2 = γ1 + pπ, with p ∈ Z. Replacing
this relationship in the phases α and β used in the polar form of the amplitudes A(T1) and B(T1), one can
easily show that the solutions X1 and X2 fulfills the following relationship

X1

a
= ±

X2

b
, (12)

with a positive case when p is even and a negative case when p is odd. Following Manevitch and Manevitch,
this solution is called the normal mode (NM) and is represented in Fig. 2(a). A normal mode is characterized
by a phase difference of 0 (in-phase normal mode, for odd p) or π (out-of-phase normal mode for p even)
between the two solutions, and in the configuration plane (X1, X2), the solutions are oscillating on a line
as dictated by Eq. (12). In particular the two modes reach their maximum amplitudes at the same time.
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The other case is obtained when s = −1, where γ2 = γ1 + (2m + 1)π2 for m ∈ Z. One can easily show
that the relationship between the amplitudes writes:

X2
1

4a2
+
X2

2

4b2
= 1, (13)

These solutions are the elliptic modes (EM), as represented in Fig. 2(b) and are characterized by ellipses
in the configuration space (X1, X2).

The solution branches for the coupled solutions are then simply obtained by remarking that with s = ±1,
γ′1 = γ′2, which gives the following relationship:

σ1 =

[

3Γ1

2ω1
− (2 + s)

C2

2ω2

]

a2 +

[

(2 + s)
C1

2ω1
−

3Γ2

2ω2

]

b2, (14)

with s = +1 for the normal mode solution and s = −1 for the elliptic mode solution. In order to represent
this solution in the space spanned by the two amplitudes a, b, and the nonlinear oscillation frequency, one
has to retrieve the backbone curve for the coupled solutions. Since the amplitudes a and b are constants
with respect to T1, integrating for example Eq. (6b) with respect to T1 leads to

γ1(T1) =

[

−
3Γ1

2ω1
a2 − (2 + s)

C1b
2

2ω1

]

T1 + ϕ1, (15)

with ϕ1 the initial phase corresponding to the initial conditions. Replacing in Eqs. (4a,b) allows one to get
the coupled solution:

X1(t) = 2a cos (ωc
NLt− ϕ1) , X2(t) =

{

±2b cos (ωc
NLt− ϕ1) , for s = 1

2b cos (ωc
NLt− ϕ1 ± π/2) , for s = −1

(16)

where the common nonlinear oscillation frequency ωc
NL for the coupled solution is:

ωc
NL = ω1 + ε

[

3Γ1

2ω1
a2 + (2 + s)

C1b
2

2ω1

]

, (17)

with s = +1 for the normal mode, s = −1 for the elliptic mode, and a and b the amplitudes of the coupled
solutions verifying Eq. (14).

The stability of the coupled solutions is found classically by computing the eigenvalues of the Jacobian
matrix from the system (6), see Appendix C for the detail of the calculation. One can then easily derive
the following stability conditions for the coupled solutions, which extends the results by Manevitch and
Manevitch [21] to the case C1 6= C2. The stability of both NM and EM depends only on the physical
parameters of the system (i.e. eigenfrequencies and coupling coefficients), but not on the amplitudes of the
solutions. Inded, the value of the scalar Sc is sufficient to decide upon the stability of coupled solutions,
with Sc equals to

Sc =
Γ1ω2

C2ω1
+
Γ2ω1

C1ω2
. (18)

The stability rules for the coupled solutions read

– The normal mode is stable as long as Sc < 2,
– The elliptic mode is stable as long as Sc > 2/3.

This very particular feature leads to the fact that the stability of the coupled solutions is pre-determined
directly from the values of the parameters of the system.

Fig. 3 shows the coupled solutions in the detuned perfect case studied before, i.e. for Γ1 = Γ2 = C1 =
C2 = 1, ω1 = π, ε = 1 and σ1 = 1. As already noticed in Fig. 1, the A-mode has two intersections with
the instability region, while the B-mode has only one intersection. From the first loss of stability of the
backbone curve of the A-mode, an elliptic mode emerges. A supercritical pitchfork bifurcation occurs at
this point, and the two bifurcated branches (coupled EM) have the same amplitude, so that only one curve
appears in Fig. 3, but have a difference in the phase of the B-mode with respect to the A-mode, which is
±π/2 as shown by Eq. (16). Indeed, the two EM with odd and even m resulting in a π difference between
γ1 and γ2 branch from this point.

From the second intersection, a normal mode emerges and connects to the other branch point defined
by the intersection of the backbone curve of the B-mode with the instability region. These two points
thus define two subcritical pitchforks, where NM branches from the uncoupled solutions. Fig. 3(a) shows
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(a)

(b)

(c)

Fig. 3. (a) Three-dimensional representation of the solution branches in the (ω, a, b) space. Black line:
backbone of the A-mode, blue line: backbone of the B-mode, red line : elliptic mode, green line : normal
mode. Unstable solutions are marked as dashed lines, stable portions with solid lines. (b) Projection of the
solutions in the (ω, a) plane. (c) Projection of the solutions in the (ω, b) plane

a three-dimensional plot of the solutions in the space (ω, a, b), which is the correct representation to show
the uncoupled solution, included respectively in the subplane (ω, a), and (ω, b), and the coupled solutions.
Fig. 3(b-c) shows the projections of the solutions on the planes (ω, a) and (ω, b).

The stability of the coupled solutions is determined by the scalar Sc, which writes, for the particular
perfect detuned case:

Sc =
ω2Γ1

C2ω1
+
Γ2ω1

C1ω2
, (19)

= 1 + εσ1 +
1

1 + εσ1
, (20)

≃ 2 + ε2
σ2
1

2
. (21)

The result has been obtained by simplification thanks to the equality between the coupling coefficients,
and using ω2 = ω1 + εσ1. We can then simply deduce that the normal mode is unstable, while the elliptic
mode is stable in this case, an information that is reported in Fig. 3.

2.3 Parametric study : bifurcation scenario

We are now interested in deriving all the possible cases when σ1 > 0 and the nonlinear coupling coefficients
are varying. In order to restrict a little the possible cases, we concentrate on a hardening type system
with Γ1, Γ2, C1, C2 > 0. Note however that other cases with negative coefficients can easily be deduced
from the present study. The particular case without detuning is derived in Appendix D: although this very
specific case is hardly ever encoutered in real life applications, it presents some mathematical interests and
completes the derivations of the present section.

As understood from the example shown in Appendix D, the backbone curves of the A-mode and the
B-mode may have, depending on the relative values of the coefficients, either zero, one, or at most two
intersections with the instability regions. These cases delimit the discussion and span the 9 possible cases.

Let us denote IEa as the intersection of the backbone curve of A-mode with the first instability region,
and INa the intersection with the second curve. The situation is depicted in Fig. 4(a). The points IEa and
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INa are thus found by equating Eq. (8) with Eq. (10) (with s = ±1) thus leading to:

a2 =
σ1

3Γ1

2ω1
− (2 + s)

C2

2ω2

, (22)

with s = −1 for IEa and s = +1 for INa. Eq. (22) can also be retrieved from Eq. (14) by letting b = 0.
The consequence of this is that IEa is a branch point where only an elliptic mode can branch with s = −1
(thus the index Ea as ”Elliptic” mode from A-mode), and INa is a branch point to a normal mode.

INa

I Ea

IEb

I
Nb

I
Nb

(a) (b)

Fig. 4. (a) Definition of IEa and INa as intersection of the backbone curve of the A-mode with the two
instability curves. Backbone curves for three different values of Γ1 : 0.3, 0.7 and 1.5, showing respectively
no intersection, one intersection (only IEa exists) and two intersections. (b) Definition of IEb and INb as
intersection of the backbone curve of the B-mode with the two instability curves. Backbone curves for three
different values of Γ2 : 0.2, 0.8 and 1.5, showing respectively two intersections, one intersection (only INb

exists) and no intersection. Other parameters are fixed as C1 = C2 = 1, ω1 = π, ε = 1 and σ1 = 1.

The same reasoning on the B-mode leads to the conclusion that IEb and INb are branch points leading
respectively to elliptic mode and normal mode from the B-solution, and they are defined by:

b2 =
σ1

(2 + s)
C1

2ω1
−

3Γ2

2ω2

, (23)

The main consequence is that EM can branch only from the left-hand side curve of the instability region,
which has been thus reported in red in Figs. 1 and 3, it is also the colour retained to draw the backbone of
the EM. On the other hand, NM can only branch from right-hand side curve from instability region, which
is thus reported in green.

From Eqs. (22) and (23) we can easily derive existence conditions for the branch points, which read:

– IEa exists if 3Γ1ω2 ≥ C2ω1

– INa exists if Γ1ω2 ≥ C2ω1

– IEb exists if C1ω2 ≥ 3Γ2ω1

– INb exists if C1ω2 ≥ Γ2ω1.

Note that these conditions can also be found easily from the inspection of Fig. 4 by comparing the coefficients
of the parabolas of each curve.

The 9 possible cases are represented in Fig. 5, where, for the sake of simplicity, Γ1 and Γ2 have been
considered as fixed, and C1 and C2 as variable. The existence conditions of the branch points have been
reported on the horizontal and vertical axes. For example when referring to C1: no branch point exists
when C1 < Γ2ω1/ω1 (thus the symbol ∅), then only INb exists for C1 > Γ2ω1/ω1 and finally both INb and
IEb exist for C1 > 3Γ2ω1/ω1.

The parameter plane exhibits 9 different regions, one with no branch point at all and one with 4 branch
points, 2 regions with 1 and 3 branch point, and 3 regions with 2 branch points. In each area, the existing
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Fig. 5. Type of solutions in the parameter plane (C1, C2), for when Γ1 and Γ2 are fixed. Specific points
labeled (a) to (d) corresponds to the examples given in Fig. 6(a-d). A ∞ sign is represented when the
branch of coupled solution is of infinite extent, otherwise the branch is finite.

branch point is reported, as well as the stability of the coupled mode, which could be a normal mode (NM)
and/or an elliptic mode (EM), following the rule of the value of Sc as compared to either 2 or 2/3. For
example, in the two zones where a single branch point exists, there is a region where INb exists, thus the
coupled solution is a normal mode and it is stable. In the other area, an elliptic mode arises from the branch
point and it is also stable. In these two cases, the coupled mode solution branch is infinite and is reported
in the chart for each case with the ∞ sign.

In the three regions with two branch points, one can distinguish the upper right region, where both
IEb and INb exist. This means that both the NM and EM appear, and are both connected to the B-mode
solution. They are also both infinite and the NM is stable while the EM is unstable. Symmetrically, the
lower left region shows two coupled modes branching from the A-mode, of infinite size, with NM unstable
and EM stable. In the central region, the NM is connected to the B-mode while the EM branches from the
A-mode, and both coupled solutions are stable.

In the regions with 3 branch points, the upper right zone is characterized by an EM branch of finite
size, since both IEa and IEb exist. The stability of the EM is undetermined in this case, since the two cases
(stable/unstable) can appear in this area, depending on the parameter values. On the other hand, NM
is an infinite branch of stable solution. Symmetrically in the lower left region with 3 branch points, NM
is a finite branch of solutions connecting A-mode to B-mode, and its stability cannot be unambiguously
determined, whereas EM is stable. Note that the perfect detuned case studied in the previous section falls
into this region as illustrated in Fig. 3. Finally when the four branch points exist, the two coupled solutions
are of finite extent, EM is stable while the stability of NM cannot be unambiguously determined.

Fig. 6 illustrates the preceding analysis by showing various cases. Fig. 6(a), corresponding to point (a)
shown in Fig. 5, is a case where only one branch point exists and give rise to a stable normal mode, emanating
from a pitchfork bifurcation on the B-mode. Fig. 6(b) also shows a three-dimensional representation of the
solution branches in the space (a, b, ωNL), where 4 branch points are present, giving rise to two stable
coupled solutions of finite extent. Note that in this area of the stability chart shown in Fig. 5, the elliptic
mode is always stable, however depending on the values one can have either a stable or an unstable normal
mode. In Fig. 6(b) with the selected values of the coefficients, the normal mode is also stable. Fig. 6(c-d)
shows the solutions in a Frequency-Energy Plot (FEP), which is possible only when C1 = C2. Fig. 6(c)
shows the shape of the solution branches in a case where two branch points exist, giving rise to two stable
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Fig. 6. Miscellaneous solutions for Γ1=Γ2=1, ω1 = π, ε = 1 and σ1 = 1. Black line: backbone of the
A-mode, blue line: backbone of the B-mode, red line: elliptic mode, green line: normal mode. (a) Case with
one branch point for C1=2, C2=5, and corresponding to point (a) in Fig. 5. (b) Case with four branch
points for C1=3, C2=1, point (b) in Fig. 5. (c) Frequency-Energy plot (FEP) for the case C1 = C2 = 1.5
with two branch points, point (c) in Fig. 5. (d) FEP for the case C1 = C2 = 2.6 with three branch points,
point (d) in Fig. 5.

coupled solutions of inifinite extent. Finally, in Fig. 6(d), three branch points are present, so that the elliptic
mode is stable with finite extent, while the solution branch of elliptic mode is stable with infinite extent.

Depending on the cases described above, several geometrical characteristics of the coupled solutions can
be drawn out. First, two main topologies can be exhibited. The first possibility for a given coupled solution
is to emerge from an uncoupled backbone curve (A-mode or B-mode) through a pitchfork bifurcation and
extend to infinity. In Fig. 5, this is shown in all cases having from 1 to 3 branch points and labeled with
a ∞ sign. The second possibility for a given coupled solution is to connect the two uncoupled backbones.
In this case, two pitchfork bifurcations are necessary. In Fig. 5, they are present only in cases with 3 or
4 branch points. Depending on the stability of the considered coupled solution, the pitchfork bifurcations
are either subcritical or supercritical. Secondly, as shown before, the EM branches always emerge from the
upper limit, in term of amplitude, of the instability region, i.e. the red limit curves of the instability regions
obtained with s = −1. On the other hand, the NM branches always emerge from its lower limit, the green
limit curve of the instability regions obtained with s = +1. In a FEP, the obtained topologies are shown in
Figs. 6(c,d). They are very different from more classical n : m internal resonances that appear as loops in
the FEP (see [17,10]).
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2.4 Comparison with a numerical solution

To conclude this section on the theoretical developments, a comparison is drawn out between the analytical
solutions derived with the multiple scales method and a numerical solution obtained thanks to a continuation
method. A pseudo-arc length method, as implemeted in the software AUTO 2000 [8], is used to obtain the
numerical reference solution. A key point related to the analytical solution is that the first-order expansion
is valid as long as the amplitudes of the responses are smaller than one. For the sake of clarity, all the figures
shown in the previous sections have been realised by selecting ε = 1, leading to amplitude values larger
than one, preventing direct comparison with the numerical solution. In order to draw out a fair comparison,
the coefficients have been reselected as ε = 0.1, ω1 = π and σ1 = 1, so that ω2 = π + 0.1. The nonlinear
coefficients have been set to Γ1 = Γ2 = 10, C1 = 20 and C2 = 5. For these values, the stability chart given
in Fig. 5 predicts a stable elliptic mode of infinite extent and a normal mode of finite extent, which is here
found to be unstable.

Fig. 7 shows the comparison between analytical and numerical results, where analytical results are
reported with a thick line whereas a thin line is used for numerical solutions. As expected, the solutions
are almost perfectly identical when the amplitudes are smaller than 1, which is especially true for the
solution branch of normal modes, where both solutions are perfectly equal. For all the other branches,
one can observe that as soon as the amplitudes are larger than one, a small departure is found between
the analytical solution and the numerical solution, as seen on the uncoupled solutions and the branch of
coupled elliptic modes. These differences are completely logical and in line with the first-order perturbative
solution. Note in particular that it could lead to modification of the predictions of bifurcation scenario
given by the chart in Fig. 5. Indeed, all the solutions in Fig. 5 are found by comparing the curvature of
solution branches at first order defined by parabolas. When amplitudes are larger than one, the curvature
is slightly modified by higher-order so that some pitchfork bifurcation points I can move and change the
whole picture. Hence the analytical predictions are meant to be very accurate only for small amplitudes,
otherwise slight modifications may appear.

(a) (b)

Fig. 7. Comparison between analytical and numerical solution obtained with a pseudo arclength continua-
tion method. Selected parameters are Γ1 = Γ2 = 10, C1 = 20, C2 = 5, ε = 0.1, ω1 = 3.14159, ω2 = 3.24159.
Analytical solutions with thick lines, numerical solutions with thin lines, showing a perfect comparison as
long as the amplitudes are smaller than 1. Colour code as in the previous figures: black line: backbone of
the A-mode, blue line: backbone of the B-mode, red line: elliptic mode, green line: normal mode.

3 Experiments

An experimental investigation is also performed in order to illustrate the previous findings, in which the
first two companion asymmetric modes of a circular plate are considered. The selected plate is of radius
R = 0.11 m, thickness h = 1.5 mm, and is made in brass of mass density ρ = 8486 kg.m−3, Young’s
modulus Y = 110 GPa and Poisson ratio ν = 0.3. The responses are measured around the first resonances
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Fig. 8. Investigated structure and operating deflection shapes of the two modes, with detailed positions
of the nodal radii (in dashed lines), accelerometers (A), coils (C1, C2), magnets (M), lests (L) and nylon
threads (NT). Notice that the orientations of the two bottom figures are different from the upper one, with
a rotation of ≃ 45◦.

of the structure, i.e. the two companion asymmetric modes with two nodal diameters. Due to the rotational
symmetry of the plate, these modes thus have close eigenfrequencies.

3.1 Experimental setup

The experimental setup is shown in Fig. 8. The plate is hanged horizontally (with respect to gravity) by
three Nylon threads attached in three holes of small radius, equally spaced near its outer edge, to replicate
the theoretical free boundary conditions. The excitation system consists of a custom-built non-contact coil
/ magnet device. The interested reader can refer to [39] for all practical details. It has a very low distorsion
rate compared to a traditional shaker excitation, the mechanical forcing considered here is proportional to
the current intensity. A preliminary modal analysis is performed from velocity measurements thanks to a
scanning laser vibrometer (Polytec PSV-400). The operating deflection shapes of the two companion modes
under interest are shown in Fig. 8 and labeled A-mode and B-mode in accordance with the theoretical part
of the article, the A-mode being the one with the lower eigenfrequency. To measure the modal coordinates
associated with those two modes, we use two small accelerometers (Brüel & Kjær 4375) glued near the edge
of the plate, precisely on a nodal radius of the deformed shapes, to naturally discreminate the effect of the
two modes. In this way, each accelerometer measures the oscillation of one mode only. Two neodymium
magnets are also glued on the nodal radii of the two modes, so as to allow actuation of each mode separately
with the help of a coil.

Plate setup Mode A: f1 [Hz] Mode B: f2 [Hz] ∆f = f2 − f1 [Hz]
Hanged plate + {magnet}×2 107.3 115.8 8.5

Plate + {magnet + accel.} ×2 + lests 104.66 109.25 4.59

Tab. 1: Comparison of the resonance frequencies of the plate, with initial and complete devices

The plate with no accelerometers and only a single magnet attached (to excite the plate) have eigenfre-
quencies at 107.3 Hz and 115.8 Hz. To reduce the gap between those two frequencies that arises from the
unavoidable imperfections of the system, additional lests (magnets) are placed on the two nodes of A-mode,
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on both sides of the plate, to reduce the frequency of B-mode. Tab. 1 shows the effect of all added masses
and that the full configuration has closer eigenfrequencies, with a frequency difference of 4.59 Hz instead
of 8.5 Hz.

Charge amplifier

Power amplifier

dSPACE
MicroLabBox

Computer

Accelerometers

Coil / magnet system

Current intensity

A
B

A−mode

B−mode

Fig. 9. Scheme of the experimental setup. a1, a2 and Q denote the measured accelerometers and the
electromechanical excitation, respectively at the inputs and output of the dSpace.

An experimental continuation procedure based on a Phase Locked Loop (PLL) [7] is used to measure
the backbone curves as well as the forced responses of the system as shown in Fig. 9. The excitation is
an amplified sine signal of frequency Ω sent to the coil, which creates a force proportional to the current
intensity denoted as I(t). A real time control system (a dSpace MicroLabBox 1302T), with a control loop
mainly based on a proportional / integral controller, adjusts the frequency Ω so that a prescribed phase
is obtained between the force excitation signal1 and the acceleration of one of the modes (called a1(t) and
a2(t) respectively for the A-mode and B-mode). Due to the nonlinearities, a small harmonic distorsion is
often observed in the acceleration signal and the phase estimations are performed on the first harmonic of
the signal, as extracted from a homodyne detection. The sampling frequency of the control system is fixed
at 50 kHz and for all measurements, the integral and proportional gains of the control loop are respectively
fixed at Ki = 150 and Kp = 5. These values are larger than those used in [7] but avoid the instability
regions of the control system in a closed-loop case. It has been shown in [7] that if the system behaves
as a single Duffing oscillator, the unstable parts of the forced response are stabilized by the control loop,
without changing the systems response in the steady state.

In practice, since only the first harmonics of the signals are measured, we write the current intensity
and the two displacement signals at points A and B:

I(t) = I0 cosΩt, wA(t) = w1 cos(Ωt− ψ1), wB(t) = w2 cos(Ωt− ψ2). (24)

Then, since the acceleration are measured at points A and B, with amplitudes a1, a2 and phases ψ1, ψ2

respectively, we obtain the amplitude w1, w2 and the phases φ1, φ2 of the displacement signals at points A
and B on the plate by:

w1 =
a1
Ω2

, w2 =
a2
Ω2

, φ1 ≡ ψ1 + π (mod 2π), φ2 ≡ ψ2 + π (mod 2π). (25)

Two distinct measurements can be performed [7]. First, it is possible to measure a given backbone curve by
prescribing the phase lag between the displacement and the forcing signals to a fixed value φ = −π/2, so
as to excite the system in phase resonance. Then, by increasing the forcing amplitude, the control system
adjusts the frequency Ω so that φ is as close as possible to −π/2 and Ω is thus theoretically the free
oscillation frequency of the associated conservative system. This is because at phase resonance, the forcing
exactly cancels the viscous damping forces [30]. The second experiment measures a forced response. In this
case, the amplitude of the forcing I0 to a selected value is prescribed. For a given system, if the phase is a
monotonous function of a path parameter on the forced response curve e.g. a Duffing oscillator [7], a phase
sweep (between 0 and π for instance) gives the full forced response of the system with the unstable part
stabilized (and thus measured) by the control system. These two types of measurements are both applied
to the circular plate in the current work.

1 In practice the current intensity in the coil is measured, and is assumed to be proportional to the actual force with no
phase lag.
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3.2 Backbone measurements and identification
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Fig. 10. Amplitudes and phases of the displacement signals of the A and B-mode mode during a phase
resonance experiment (black and purple curves, respectively) and during a forced experiment (blue and red
curve, respectively; phase sweep at constant driving amplitude of I0 = 0.191 A). Some details, around the
amplitude resonance of the elliptic mode, are provided (z1, z2).

The backbone curve of the A-mode is first measured. The plate is excited at a node of B-mode as shown
in Fig. 9, so that the modal excitation of the companion B-mode is as small as possible. Then, using the
PLL procedure described in the previous section, a phase lag of ψ1 = π/2 (φ1 = −π/2) is prescribed and
the amplitude of excitation is increased from zero. The black curve in Figs. 10(a,b) shows the amplitude and
phase of the A-mode, w1 and ψ1, as a function of the driving frequency Ω, whereas the purple curves shows
the amplitude and phase of the B-mode, w2 and ψ2. For low amplitudes, a smooth hardening backbone
curve is obtained, with the amplitude w2 of B-mode remaining close to zero (Fig. 10(a)). This solution
branch is thus a part of the (uncoupled) backbone of the A-mode, since no significative response of the
B-mode is observed. Then, for (w1, Ω/(2π)) ≃ (0.8 mm, 111 Hz), a change of curvature is observed and w2

starts to increase from zero. Looking at the phases in Fig. 10(b), it is observed that the phase of B-mode
locks exactly at ψ2 = ψ1 − π/2. Qualitatively, this part of the response has the features of an elliptic
mode, as described theoretically in section 2.2, that emerges from the A-mode after an imperfect pitchfork
bifurcation.

In the same manner for the backbones of the A-mode and the EM, the same procedure is applied to
obtain the backbone of the B-mode. The plate is excited at an node of the A-mode and the phase of the
B-mode is prescribed at ψ2 = −π/2 with the driving amplitude increased from zero. A single hardening
uncoupled backbone is obtained and shown as a solid blue line in Fig. 11.

With the backbones of the A-mode, B-mode and EM all gathered in Fig. 11, it is possible to estimate
the values of the coefficients of the reduced order model of Eqs. (1). First, the two eigenfrequencies ω1 and
ω2 are obtained as the vanishing amplitude limit of the two A-mode and B-mode backbones, at 104.66 Hz
and 109.26 Hz. Then, with the curvature of those two uncoupled branches, the coefficients Γ1 and Γ2 can
be estimated using Eqs. (8) and (9). Finally, the elliptic mode coupled backbone that emerges from the
uncoupled A-mode backbone at ≃111 Hz allows the estimation of the two remaining nonlinear coefficients,
that are considered equal in this case: C1 = C2. The fitting of this last coefficient is processed such that :

– From Eq. (22), the intersection between the backbone curve of A-mode and the instability region from
which the elliptic mode appears (point IEa) gives an estimate for coefficient C2;

– the curvature of the elliptic mode, given by Eq. (17) identifies the coefficient C1 independently of C2.

The backbone curves computed with the estimated coefficients are also shown in Fig. 11, as well as the
instability regions, computed with Eqs. (8), (9), (17), (A.10), (A.11). An almost perfect agreement is
obtained between the experimental measurements and the theoretical results for amplitudes of oscillations
up to 1 mm. For higher amplitudes, a slight departure between theoretical predictions and measurements
is observed, which is probably due to the first-order solution used in the calculations, valid only for small
amplitudes of motion.
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Fig. 11. Experimentally identified backbones and stability curves: amplitudes w1 and w2 of A and B-
mode as a function of frequency Ω. Black solid line: measured backbone curve of A-mode (A-mode exp.,
before the stability limit, in red) and elliptical mode (EM - exp., after the stability limit). Blue solid line:
experimental backbone curve of B-mode (B-mode exp.). Black dotted and blue dashed lines: identified
backbones of respectively A and B-modes in uncoupled regime (A-mode ident., B-mode ident.). Black
dashed line: identified backbone of the coupled elliptic mode (EM - ident.).

It must also be noted that the model identification proposed here can be viewed as an extension to
the case of a 1:1 internal resonance of the general procedure proposed in [7]. The model is obtained by a
normal form reduction (restricted to a 4 nonlinear terms perfect case) and identified via backbone curves
obtained from experimental continuation. It is, to the knowledge of the author, a first (but modest) attempt
of identification of a nonlinear model with modes in internal resonance, whereas other contributions use
the forced responses [39,41,23]. It will be seen in the next section that this parameter identification is also
robust in the sense that the results can be easily extended to forced vibrations.

Identified Theory
f1 (Hz) f2 (Hz) ξ1(%) ξ2(%) Γ1 Γ2 C1 C2 Γ1 = Γ2 = C1 = C2

Free 104.66 109.26 – – 1.80 1.68 1.55 1.55 1.89
Forced 104.90 109.01 0.13 0.06 1.80 1.58 1.85 1.58 1.89

Tab. 2: Identified values of frequencies, modal dampings and nonlinear coefficients by adjusting theory with
experiments. The theoretical value of those coefficients, from [45], are also given.

The identified coefficients are now compared to analytical values computed from a nonlinear plate
model, founded on the Kirchhoff-Love kinematics and the von Kármán strain–displacement law. A complete
derivation and numerical results can be found in [45,10], where a dimensionless form of the nonlinear plate
equations is used to obtain the general system of Eqs (1). Due to the choosen locations of the accelerometers,
the physical parameters are considered proportional to the modal coordinates. Consequently, the following
relationships between physical and dimensionless values are used to perform the adjustment of the model
parameters:

f =
h

2πR2

√

E

12ρ(1− ν2)
ω̄, w1 = Φ(rmeas)

h2

R
2a, w2 = Φ(rmeas)

h2

R
2b, ε =

12(1− ν2)h2

R2
, (26)

where f refers to a frequency in Hz related to a dimensionless angular frequency ω̄ , Φ(rmeas) is the
theoretical amplitude of the mode shape of the considered mode, defined with Bessel functions (see [45]) at
the radius rmeas of location of the accelerometers. One has to notice the factor 2 comes from the definition
of w1 and a (resp. w2 and b) in Eqs. (7) and (24).

According to this scaling, the dimensionless values of coefficients Γ1, Γ2, C1 = C2 are gathered in Tab. 2,
from both the theory [45] and the present estimated values. The estimated nonlinear coefficients are a little
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smaller than the theoretical values, with an error of the order of 5%, 10% and 20% for the coefficient Γ1,
coefficient Γ2 and the 2 coefficients C1 and C2 respectively. These differences with the numerical values
can be explained by the imperfections, inherent to the plate but also the added masses (accelerometers,
magnets). The nonlinear coefficients are sensitive to the mode shapes, in particular to the differences
between the nodal and anti-nodal diameters compared to those of a perfect plate. Similar results have been
found in [39].

Due to the imperfections, the pitchfork bifurcation at 110 Hz leading to the coupled elliptic mode is also
imperfect; thus a single continuous stable branch is found and naturally followed by the PLL. The second
stable coupled branch (with almost the same amplitude and a phase ψ2 = ψ1+π/2), should be isolated from
the main branch and connected to the uncoupled unstable A-mode backbone by a saddle-node bifurcation.
It has not been possible to initialize the PLL procedure on one of the isolated branch to measure them, as
it has been done in [39]. Moreover, preliminary numerical investigations on the model of Section 2, shows
that whatever the value of the coefficients, only perfect pitchfork bifurcations are found. This suggests that
the imperfections of the plate should be taken into account by small nonzero added nonlinear cubic terms
in the model (e.g. the X3

2 and X2
1X2 terms in Eq. (1a) and the X3

1 and X2
2X1 terms in Eq. (1b)), thus

extending the analysis to eight parameters for the nonlinear coefficients. This is logical as adding those new
terms in the equations prevent the uncoupled solutions from existing, since invariant-breaking terms, in the
sense given in [43], are now present. Consequently, perfect bifurcation cases exist with those new terms,
which has been clearly observed with numerical investigations using continuation methods. The detailed
analysis of this transition to imperfect bifurcations is however left for further studies.

3.3 Forced response around A-mode and PLL behavior
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Fig. 12. Experimental forced responses around the backbone of the A-mode. Dashed red line: limits of the
instability regions, computed with the identified parameters of Tab. 2.

In parallel to the backbone curve measurements of the previous section, forced responses have also been
measured by the PLL control system, by keeping the amplitude of forcing constant and sweeping the phase
of the directly excited mode from 0 to π. These supplementary measurements demonstrate that the PLL
control system is also able to observe the 1:1 internal resonance in the case of the forced responses. In
particular, the entire response curve could be measured only if the controlled phase is monotonous. Fig. 10
shows a typical forced response when the driving point is chosen on a node of the B-mode to mainly drive
the A-mode. Similar responses than those predicted and measured in [45,39] are obtained, with a phase
difference of ψ2 −ψ1 = π/2 between A and B-mode in the coupled part, a characteristic of a forced elliptic
mode giving rise to a rotating travelling wave. Two features are noteworthy. First, the forced response lies
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in the vicinity of the backbones, with a crossing at the phase resonance of the coupled branch (ψ1 = π/2),
which stands close to the amplitude resonance. Second, the unstable part is stabilized by the PLL control
loop on a large part of the coupled response, as discussed in the following.

Fig. 12 displays the backbone of the A-mode and several forced responses, for three excitations levels.
First, the same qualitative behaviour is obtained, with the nonlinear forced responses, shown as green
and yellow curves, distributed around the backbone curve both for the uncoupled solution and after the
emergence of the 1:1 internal resonance. Secondly, for the same response curves, the PLL control loop is
not able to stabilize the whole forced response in a single phase sweep, as it would be the case for a Duffing
oscillator [7]. Indeed, a first branch is obtained by an increasing phase sweep from ψ1 = 0 corresponding to
point C in Fig. 12. Then, pointD is reached, with the emergence of the 1:1 interaction, which is theoretically
stable until the saddle-node bifurcation at point E on the green curve. Then, further increasing the phase
leads to the measurement of a theoretical unstable coupled branch, which is stabilized by the PLL until
point F in which the control loop loses its stability. It is possible to measure another branch starting
from point G with a phase close to π and doing a decreasing phase sweep, to first reach point H with a
saddle-node bifurcation and then point F where the control loop loses its stability.
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Fig. 13. Experimental (expe.) amplitudes and phases of the displacements around A-mode response in
forced regime under current I0 = 0.191 A. Numerical corresponding response, computed with Manlab, with
the estimated parameters. The theoretical unstable branches are plot in dashed line.

To discuss this instability of the control system in forced regime, the experimental results are compared
to the numerical simulations obtained using the continuation software Manlab [2,11], that enables the
simulation of periodic responses of system like Eqs. (A.1) using the harmonic balance method and an
asymptotic numerical method. The stability of the branches is obtained by the Hill method [18]. The values
of the parameters used for the simulation are gathered in the last row of Tab. 2. The values common
with the free response case have been slightly changed for a better fit on the experiments. Then, modal
damping factors (dimensionless), defined as ξ1 = εµ1/ω1 and ξ2 = εµ2/ω2, have been estimated by a half
power bandwidth method on linear (small amplitude) frequency response functions. Finally, the forcing
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amplitudes have been chosen such that F1 ≫ F2, with F1 = 5.97 and F2 = F1/35.0, with a slight non zero
forcing of B-mode due to experimental imperfections.

The computed forced responses are presented in Fig. 13. A remarkable comparison is obtained between
theory and experiments. However, the simulations show precisely the topology of all the unstable branches,
especially the uncoupled resonance of the A-mode. Its unstable part is connected to the rest of the diagram
through two pitchfork bifurcations, at points D and F in Fig. 13. Because of the nonzero value of F2, these
pitchfork bifurcations are imperfect. The main result is that the PLL control loop loses its stability precisely
at the pitchfork of point F , where the unstable uncoupled A-mode branch is connected to the rest of the
diagram. For a reason out of the scope of this paper, the PLL control system is not able to branch into the
coupled regime from the uncoupled one and inversely at point F . It must be noticed that the stability of
the PLL control loop has been theoretically proved only with a single Duffing oscillator in [7]. This study
remains to be extended to the present case of a 1:1 internal resonance. A particular focus on the phase
paths of the two oscillators needs to be performed. Indeed, the particular behaviour of the PLL control
loop observed in this section could be explained by a complex topology of the phases, not compatible with
the monotonous path prescribed in these experiments.

4 Conclusion

This paper adresses the theoretical analysis and the experimental investigations on a system with two
coupled oscillators of cubic nonlinearities featuring 1:1 internal resonance. The coupled and uncoupled
solutions of the nonlinear system are derived by using a multiple-scale analysis. The main outcomes of the
analytical results offer a complete view of the bifurcation scenario thanks to the derivation of the analytical
expressions of the instability regions, that has never been written out in the previous investigations on the 1:1
resonance in free vibrations. An extension to the results by Manevitch and Manevitch [21] is also provided
by taking into account 4 nonlinear coupling coefficients as parameters. Depending on the parameter values,
nine possible bifurcation scenarios have been established, with different topological configurations including
supercritical or subcritical pitchfork, two kinds of coupled solutions (elliptic and normal modes), with
solution branches either of finite or infinite extent. The measurements on two companion configurations of
a circular plate exhibit one bifurcation point, from which a coupled elliptic mode emerges. The estimation of
the nonlinear coefficients leads to identification of the corresponding scenario, showing that the experimental
setup does not allow measurement of all the existing solutions. The behaviour of the PLL system in the
forced regime has also been commented showing its difficulty in following a single run of a complete
bifurcation diagram when a 1:1 resonance is activated. This behaviour is found to be different from the one
observed when following a simple Duffing equation, necessitating further research in order to give a better
control on the system to measure all solutions smoothly. Imperfect bifurcations has been also discussed
as a key point to explain the slight differences between the theory and the experiments, and it has been
underlined that in free vibrations, imperfect pitchfork bifurcations are observed only when taking into
account the other nonlinear coupling coefficients than the four retained in this study. This particular point
may call for further dedicated research to shed light on this specific behaviour.

Appendix A: Derivation of first-order equations

This appendix gives the full detail of the derivation of the first-order slow-scale equations for the system of
cubic oscillators featuring 1:1 internal resonance using the multiple scales method. The derivation is written
for the forced and damped problem and is then finally reduced to free vibration by cancelling the forcing
and damping terms. This allows us to give a unified presentation for the two cases, following closely the
derivation shown in [45]. It is also mandatory for our presentation since the derivation of the instability
region for the free vibration is derived from the forced and damped case, as explained below.

The starting point is thus the following equations of motion:

Ẍ1 + ω2
1X1 + ε

[

2µ1Ẋ1 + Γ1X
3
1 + C1X1X

2
2

]

= εF1 cosΩt, (A.1a)

Ẍ2 + ω2
2X2 + ε

[

2µ2Ẋ2 + Γ2X
3
2 + C2X2X

2
1

]

= εF2 cosΩt. (A.1b)

These two equations generalizes the case of free vibration considered in (1), by adding two different damping
factors for each oscillator, µ1 and µ2, and two forcing terms with amplitudes F1 and F2, scaled at order
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ε since the primary resonance is investigated. These equations are close to those used in [45], except that
two distinct damping terms are considered instead of a single one µ = µ1 = µ2 selected in [45]. Note also
that in [45], the nonlinear stiffness terms were at the right-hand side of the equations of motions, so that
the comparison can be drawn by simply changing the signs of Γ1, Γ2, C1 and C2.

The two detunings are introduced as

ω2 = ω1 + εσ1, (A.2a)

Ω = ω1 + εσ2. (A.2b)

The first detuning σ1 quantifies the 1:1 internal resonance, while σ2 expresses the fact that a primary
resonance is investigated so that Ω ≃ ω1. The multiple scales method is introduced, with T0 = t a fast time
scale and T1 = εt a slow time scale. The unknown are expanded as Xi = Xi1(T0, T1) + εXi2(T0, T1). The
first-order solution is easy to find and reads:

X11 = A(T1) exp(iω1T0) + c.c., (A.3a)

X21 = B(T1) exp(iω2T0) + c.c., (A.3b)

where c.c. stands for complex conjugate. The solvability conditions write, for the two unknown complex
amplitudes A(T1) and B(T1) :

−2iω1(A
′ + µ1A)− 3Γ1A

2Ā− C1(ĀB
2 e2iσ1T1 +2ABB̄) +

F1

2
eiσ2T1 = 0, (A.4a)

−2iω2(B
′ + µ2B)− 3Γ2B

2B̄ − C2(B̄A
2 e−2iσ1T1 +2BAĀ) +

F2

2
ei(σ2−σ1)T1 = 0, (A.4b)

where ()′ denotes the derivative with respect to the slow time scale T1. These two equations can be
rewritten by considering the polar form for the two unknowns, such that A = a(T1) exp(iα(T1)) and
B = b(T1) exp(iβ(T1)). The non-autonomous system for the amplitude and phases finally writes:

a′ = −µ1a−
C1

2ω1
ab2 sin(2β − 2α+ 2σ1T1) +

F1

4ω1
sin(σ2T1 − α), (A.5a)

α′ =
3Γ1

2ω1
a2 +

C1

2ω1
b2 (2 + cos(2β − 2α+ 2σ1T1))−

F1

4ω1a
cos(σ2T1 − α), (A.5b)

b′ = −µ2b−
C2

2ω2
ba2 sin(−2β + 2α− 2σ1T1) +

F2

4ω2
sin ((σ2 − σ1)T1 − β) , (A.5c)

β′ =
3Γ2

2ω2
b2 +

C2

2ω2
a2 (2 + cos(−2β + 2α− 2σ1T1))−

F2

4ω2b
cos ((σ2 − σ1)T1 − β) . (A.5d)

Note that in order to make the system (A.5) autonomous, one needs to introduce the following two additional
variables

γ1 = σ2T1 − α, (A.6a)

γ2 = (σ2 − σ1)T1 − β. (A.6b)

When forcing and damping terms are removed, Eqs. (A.5) depends on only one angular variable, so that
numerous different choices can be selected in order to make the system autonomous. In order to stay close
to the notations used for the forced and damped system, the following change of coordinate is selected as:

γ1 = −α, (A.7a)

γ2 = −σ1T1 − β. (A.7b)

This choice leads to the autonomous system given in Section 2, Eqs. (6).
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Appendix B: Instability region for the uncoupled solutions

In this section we derive the instability region of the uncoupled solutions for the free vibration case, from
the analysis of the damped/forced system. The starting point is the instability regions derived in [39] for
the forced/damped case, i.e. for the system (A.5), made autonomous using change of variable from Eq.
(A.6). The analysis led in [45] shows that uncoupled solution where only the first mode is excited is unstable
when this relationship is fulfilled :

σ2 = σ1 +
C2a

2

ω2

√

C2
2a

4

3ω2
2

− µ2 (A.8)

Cancelling the damping by letting µ = 0 in this equation leads to

σ2 = σ1 + (2 + s)
C2a

2

ω2
with s = ±1. (A.9)

The last step is to replace σ2, which is defined by (A.2b). However cancelling the forcing would result in Ω
being undefined. Instead, one needs to map Ω to the nonlinear oscillation frequency in the free regime. σ2 is
then the detuning allowing one to express this nonlinear frequency as a function of the linear eigenfrequency
with ωNL = ω1 + εσ2. Replacing σ2 with its expression as given by Eq. (A.9), one can finally obtain:

ωNL = ω2 + ε(2 + s)
C2a

2

ω2
with s = ±1. (A.10)

This equation shows that as soon as the nonlinear frequency of A-mode enters the region delimited by the
two curves obtained with s = ±1, then the uncoupled solution becomes unstable. In order to derive the
instability region for the B-mode, the same reasoning is applied using symmetric relationships, leading to:

ωNL = ω1 + ε(2 + s)
C1b

2

ω1
with s = ±1. (A.11)

Appendix C: Stability of the coupled solutions

The stability of the coupled solution is derived classically from the jacobian matric of (6). The general
jacobian J reads, with Sγ = sin 2(γ1 − γ2) and Cγ = cos 2(γ1 − γ2) in order to ease notations:

J =









− C1

2ω1

b2Sγ −C1

ω1

ab2Cγ −C1

ω1

abSγ
C1

ω1

ab2Cγ

− 3Γ1

ω1

a
C1

ω1

b2Sγ −C1

ω1

b(2 + Cγ) −C1

ω1

b2Sγ

C2

ω2

abSγ
C2

ω2

ba2Cγ
C2

2ω2

a2Sγ −C2

ω2

ba2Cγ

−C2

ω2

a(2 + Cγ)
C2

ω2

a2Sγ − 3Γ2

ω2

b −C2

ω2

a2Sγ









. (A.12)

The coupled solutions are characterized by specific relationships on the angles leading to simplification of
J . Indeed one has sin 2(γ1 − γ2) = 0 and cos 2(γ1 − γ2) = s = ±1. With these simplifications the 4×4
determinant of the jacobian matrix D = det(J −λI) with I the identity matrix can be analytically derived
as:

D = λ2
[

λ2 − 3a2b2s

(

Γ2C2

ω2
2

+
Γ1C1

ω2
1

)

+ 2
C1C2

ω1ω2
b2a2s(2 + s)

]

. (A.13)

Two eigenvalues are found to be zero which is logical for coupled solutions in four-dimensional phase space.
The two other eigenvalues are solutions of

λ2 = 3a2b2s

[

Γ2C2

ω2
2

+
Γ1C1

ω2
1

−
2

3

C1C2

ω1ω2
(2 + s)

]

, (A.14)

with s = +1 for normal mode and s = −1 for elliptic mode. Each mode (normal or alliptic) is stable as
long as λ2 < 0, which leads to the conclusion that stablity is governed only by the value of the scalar
Sc = Γ1ω2

C2ω1

+ Γ2ω1

C1ω2

, the normal mode being stable as long as Sc < 2, and the elliptic mode as long as
Sc > 2/3.
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Appendix D: Parametric study: bifurcation scenario in the particular case without detuning

In this appendix, the particular case of perfectly equal eigenfrequencies ω1 = ω2 with a vanishing detuning
σ1 = 0, is considered. In this case, the amplitude values for which the branch points IEa, INa, IEb and
INb (as defined in Eqs. (22) and (23)) are equal to zero: this means that the coupled solutions could
exist from a vanishing amplitude. This is the direct consequence of the fact that, as σ1 = 0, the gaps
between the starting point of the A-mode and the B-mode backbone curves and their instability regions,
does not exist anymore. The second consequence is also that uncoupled solutions are either always stable
or always unstable, whatever the amplitude. Considering the coupled solutions, cancelling the values of all
branch points does not mean that NM and EM always exist. Indeed, Eq (14), which defines the amplitude
relationships for coupled solutions, rewrites with σ1 = 0

(3Γ1 − (2 + s)C2) a
2 = (3Γ2 − (2 + s)C1) b

2, (A.15)

with s = ±1 for NM and EM. Consequently coupled solutions can exist if and only if the respective
coefficients in front of the square amplitude have the same sign.

The stability chart that gives all possible solutions as function of the nonlinear coefficients is thus
modified and shown in Fig. A1(a). The main difference with the detuned case where σ1 > 0 is that the
coupled solutions of finite extent can not exist anymore since all branch points have the same vanishing
amplitude. This leads to modification of the lower right part of the stability chart to make it symmetric.
The possible cases are discussed as function of the stability of the uncoupled mode, reported in Fig. A1(a)
on the vertical and horizontal axes. Four cases exist:

- Case 1 :A-mode and B-mode are stable. This means that the backbone curve of each uncoupled
solution is outside its instability region. It corresponds to the four edges of the stablity chart, in upper left,
upper right, lower left and lower right regions. Two cases are then possible:

– Case 1.1: if 3Γ1 < C2 and Γ2 > C1, or if 3Γ2 < C1 and Γ1 > C2. This case means that the backbone
curve of the A-mode stays on the left of the instablity region while backbone curve of the B-mode is
on the right (or vice-versa). Then in this case the coefficients of Eq.(A.15) have opposite signs, thus no
coupled solutions exist.

– Case 1.2: if 3Γ1 < C2 and 3Γ2 < C1 (case 1.2.1), or if Γ1 > C2 and Γ2 > C1 (case 1.2.2), the backbone
curves of the A-mode and the B-mode are respectively on the same side of their instability regions.
Then in this case both coupled solutions exist, and inspection of the values of Sc indicates that in case
1.2.1 NM is stable while EM is unstable, and case 1.2.2 leads to the contrary with NM unstable and
EM stable.

- Case 2 :The A-mode and the B-mode are unstable. This means that each backbone curve is totally
inside the instability region, so that C2/3 < Γ1 < C2 and C1/3 < Γ2 < C1. Then in this case both coupled
solutions exist and are stable.

- Case 3 :The A-mode is unstable and the B-mode is stable. The instability of the A-mode is obtained
thanks to the condition C2/3 < Γ1 < C2. Two subcases are then possible:

– If 3Γ2 < C1, then EM does not exist, only NM is possible and is stable (case 3.1).
– If Γ2 > C1, then NM does not exist, only EM is possible and is stable (case 3.2).

- Case 4 :The B-mode is stable and the A-mode is unstable. This case can be simply deduced from the
previous one by symmetry (changing the indices 1 ⇄ 2).

Fig. A1(b) illustrates a case in the upper right region of the stability chart, in which both the A-mode
and the B-mode are stable and the two coupled solutions exist: the NM is stable while the EM is unstable.
Finally Fig. A1(c-d) shows the projection on the (ω, a) and (ω, b) for the case in the central region where
both uncoupled solutions are unstable. In this case, the only stable solutions are the coupled branches, and
both EM and NM are stable.
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