
Int J Data Sci Anal (2016) 1:215–227

DOI 10.1007/s41060-016-0017-y

REGULAR PAPER

Backbone discovery in traffic networks

Sanjay Chawla1
· Kiran Garimella2

· Aristides Gionis2
· Dominic Tsang3

Received: 28 April 2016 / Accepted: 5 May 2016 / Published online: 29 July 2016

© Springer International Publishing Switzerland 2016

Abstract We introduce a new computational problem, the

BackboneDiscovery problem, which encapsulates both

functional and structural aspects of network analysis. While

the topology of a typical road network has been available for

a long time (e.g., through maps), it is only recently that fine–

granularity functional (activity and usage) information about

the network (such as source–destination traffic information)

is being collected and is readily available. The combination

of functional and structural information provides an efficient

way to explore and understand usage patterns of networks

and aid in design and decision making. We propose efficient

algorithms for the BackboneDiscovery problem including

a novel use of edge centrality. We observe that for many real-

This paper is an extended version of the paper “Discovering the net-

work backbone from traffic activity data” presented in PAKDD 2016

conference [6].

S. Chawla: On leave from the University of Sydney.

K. Garimella, A. Gionis: This work is supported by European

Community H2020 Programme under the scheme

“INFRAIA-1-2014-2015: Research Infrastructures”, Grant Agreement

No. 654024 “SoBigData: Social Mining and Big Data Ecosystem”.

B Kiran Garimella

kiran.garimella@aalto.fi

Sanjay Chawla

schawla@qf.org.qa

Aristides Gionis

aristides.gionis@aalto.fi

Dominic Tsang

dwktsang@yahoo.com

1 Qatar Computing Research Institute, HBKU, Doha, Qatar

2 Aalto University, Espoo, Finland

3 University of Sydney, Sydney, Australia

world networks, our algorithm produces a backbone with a

small subset of the edges that support a large percentage of

the network activity.

Keywords Backbone · Network sparsification · Network

simplification · Shortest path

1 Introduction

In this paper, we study a novel problem, which combines

structural and functional (activity) network data. In recent

years, there has been a large body of research related to

exploiting structural information of networks. However, with

the increasing availability of fine-grained functional informa-

tion, it is now possible to obtain a detailed understanding of

activities that are taking place in a network. Such activities

include source–destination traffic information in road and

communication networks such as those considered in this

paper.

More specifically we study the problem of discovering

the backbone of traffic networks. In our setting, we consider

the topology of a network G = (V, E) and a traffic log

L = {(si , ti , wi)}, recording the amount of traffic wi that

incurs between source si and destination ti . We are also given

a budget B that accounts for a total edge cost. The goal is

to discover a sparse subnetwork R of G, of cost at most B,

which summarizes as well as possible the recorded traffic L.

The problem we study has applications for both explorat-

ory data analysis and network design. An example applica-

tion of our algorithm is shown in Fig. 1. Here, we consider

a traffic log (Fig. 1, left), which consists of the most popular

routes used on the London tube. The backbone produced by

our algorithm takes into account this demand (based on the

traffic log) and tries to summarize the underlying network,

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s41060-016-0017-y&domain=pdf
http://orcid.org/0000-0002-5054-3527

216 Int J Data Sci Anal (2016) 1:215–227

Fig. 1 London tube network, with nodes representing the stations. The

figure on the left shows a subset of the trips made, and the figure on the

right shows the corresponding backbone, as discovered by our algo-

rithm. The input data contain only source–destination (indicating start

and end points of a trip) pairs and for visualization purposes, a B-spline

was interpolated along the shortest path between each such pair. The

backbone presented on the right covers only 24 % of the edges in the

original network and has a stretch factor of 1.58. This means that even

with pruning 76 % of the edges in the network, we are able to main-

tain shortest paths which are at most 1.58 times the shortest-path length

original graph

thus presenting us with insights about usage pattern of the

London tube (Fig. 1, right). This representation of the “back-

bone” of the network could be very useful to identify the

important edges to upgrade or to keep better maintained in

order to minimize the total traffic disruptions.

We only consider source–destination pairs in the traffic

log, and not full trajectories, as source–destination infor-

mation captures true mobility demand in a network. For

example, data about the daily commute from home (source)

to office (destination) are more resilient than trajectory infor-

mation, which is often determined by local and transient

constraints, such as traffic conditions on the road and time

of day. Furthermore, in communication networks, only the

source-ip and destination-ip information is encoded in TCP-

IP packets. Similarly, in a city metro, check-in and check-out

information is captured while the intervening movement is

not logged.

The BackboneDiscovery problem is an amalgam of the

k-spanner problem [15] and the Steiner forest problem [22].

However, our problem formulation will have elements which

are substantially distinct from both of these problems.

In the k-spanner problem, the goal is to find a minimum-

cost subnetwork R of G, such that for each pair of nodes u

and v, the shortest path between u and v on R is at most k

times longer than the shortest path between u and v on G. In

our problem, we are not necessarily interested in preserving

the k-factor distance between all nodes but for only a subset

of them.

In the Steiner forest problem, we are given a set of pairs

of terminals {(si , ti)} and the goal is to find a minimum-cost

forest on which each source si is connected to the corre-

sponding destination ti . Our problem is different from the

Steiner forest problem because we do not need all {(si , ti)}

to be connected, and try to optimize a stretch factor so

that the structural aspect of the network are also taken into

account.

A novel aspect of our work is the use of edge-betweenness

to guide the selection of the backbone [16]. The intuition is

as follows. An algorithm to solve the Steiner forest problem

will try and minimize the sum of cost of edges selected as

long as the set of terminal pairs {(si , ti)} are connected and

is agnostic to minimizing stretch factor. However, if the edge

costs are inversely weighted with edge-betweenness, then

edges that can contribute to reducing the stretch factor can

be potentially included into the backbone.

We also introduce the concept of a budget in the Back-

boneDiscovery problem to be able to model resource

availability constraints. Cases where resource availability is

not an issue can just consider a large budget.

To understand the differences of the proposed Back-

boneDiscovery problem with both the k-spanner and

Steiner forest formulations, consider the example shown in

Fig. 2. In this example, there are four groups of nodes:

1. group A consists of n nodes, a1, . . . , an ,

2. group B consists of n nodes, b1, . . . , bn ,

3. group C consists of 2 nodes, c1 and c2, and

4. group D consists of m nodes, d1, . . . , dm .

Assume that m is smaller than n and thus much smaller than

n2. All edges shown in the figure have cost 1, except the

edges between c1 and c2, which has cost 2. Further assume

that there is one unit of traffic between each ai and each b j ,

for i, j = 1, . . . , n, resulting in n2 source–destination pairs

(the majority of the traffic), and one unit of traffic between

di and di+1, for i = 1, . . . , m − 1, resulting in m − 1

source–destination pairs (some additional marginal traffic).

The example abstracts a common layout found in many cities:

123

Int J Data Sci Anal (2016) 1:215–227 217

(a) (b) (c)

Fig. 2 BackboneDiscovery problem solution results in a better net-

work than the one obtained from the Steiner forest solution. a A traffic

network. We consider a unit of traffic from each node in A to each node

in B, and from each node in D to its right neighbor. b Shown with thick

edges is an optimal Steiner forest for certain cost C . c Shown with thick

edges is a backbone of cost at most C that captures the traffic in the

network better than the optimal Steiner forest.

a few busy centers (commercial, residential, entertainment,

etc.) with some heavily used links connecting them (group

C), and some peripheral ways around, that serve additional

traffic (group D).

Careful inspection of the above example highlights advan-

tages of the backbone discovery problem:

– As opposed to the k-spanner problem, we do not need to

guarantee short paths for all pairs of nodes, but only for

those in our traffic log which makes our approach more

general. In particular, based on the budget requirements

a backbone could be designed for the most voluminous

paths.

– Due to the budget constraint, it may not be possible to

guarantee connectivity for all pairs in the traffic log.

We thus need a way to decide which pairs to leave dis-

connected. Neither the k-spanner nor the Steiner forest

problems provision for disconnected pairs. In fact, it is

possible that the optimal backbone may even contain

cycles while leaving pairs disconnected. Again, allowing

for a disconnected backbone generalizes the Steiner-

forest problem and may help provision for a tighter

budget. In order to allow for a disconnected backbone,

we employ the use of stretch factor, defined as a weighted

harmonic mean over the source–destination pairs of the

traffic log, which provides a principled objective to opti-

mize connectivity while allowing to leave disconnected

pairs, when there is insufficient budget.

– Certain high cost edges may be an essential part of the

backbone that other problem formulations may leave out.

For example, while the edge that connects the nodes in

C is a very important edge for the overall traffic (as it

provides a short route between A and B), the optimal

Steiner forest solution, shown in Fig. 2b, prefers the long

path along the nodes in D. Our algorithm includes the

component C (as seen in Fig. 2c) because it is an edge

that has a high edge-betweenness.

The rest of the paper is organized as follows. In Sect. 2,

we rigorously define the BackboneDiscovery problem. In

Sect. 3, we survey related work and distinguish our prob-

lem formulation with other relevant approaches. Section 4

introduces our algorithm based on the greedy approach, and

Sect. 5 details our experimental evaluation, results and dis-

cussion. We conclude in Sect. 6 with a summary and potential

directions for future work.

2 Problem definition

Let G = (V, E) be a network, with |V | = n and |E | = m.

For each edge e ∈ E , there is a cost c(e). Additionally, we

consider a traffic log L, specified as a set of triples (si , ti , wi),

with si , ti ∈ V, i = 1, . . . , k. A triple (si , ti , wi) indicates

the fact that wi units of traffic have been recorded between

nodes si and ti .

We aim at discovering the backbone of traffic networks.

A backbone R is a subset of the edges of the network G, that

is, R ⊆ E that provides a good summarization for the whole

traffic in L. In particular, we require that if the available traffic

had used only edges in the backbone R, it should have been

almost as efficient as using all the edges in the network. We

formalize this intuition below.

Given two nodes s, t ∈ V and a subset of edges A ⊆

E , we consider the shortest path dA(s, t) from s to t that

uses only edges in the set A. In this shortest-path definition,

edges are counted according to their cost c. If there is no path

from s to t using only edges in A, we define dA(s, t) = ∞.

Consequently, dE (s, t) is the shortest path from s to t using

all the edges in the network, and dR(s, t) is the shortest path

from s to t using only edges in the backbone R.

To measure the quality of a backbone R, with respect to

some traffic log L = {(si , ti , wi)} we use the concept of

stretch factor. Intuitively, we want to consider shortest paths

from si to ti , and evaluate how much longer are those paths

on the backbone Rthan on the original network. The idea of

using stretch factor for evaluating the quality of a subgraph

has been used extensively in the past in the context of spanner

graphs [15].

In order to aggregate shortest-path information for all

source–destination pairs in our log in a meaningful way,

we need to address two issues. The first issue is that not all

123

218 Int J Data Sci Anal (2016) 1:215–227

source–destination pairs have the same volume in the traffic

log. This can be easily addressed by weighting the contribu-

tion of each pair (si , ti) by its corresponding volume wi .

The second issue is that since we aim at discovering very

sparse backbones, many source–destination pairs in the log

could be disconnected in the backbone. To address this prob-

lem, we aggregate shortest-path distances using the harmonic

mean. This idea, proposed by Marchiori and Latora [12] and

recently used by Boldi and Vigna [1] in measuring centrality

in networks, provides a very clean way to deal with infi-

nite distances: If a source–destination pair is not connected,

their distance is infinity, so the harmonic mean accounts for

this by just adding a zero term in the summation. Using the

arithmetic mean is problematic, as we would need to add an

infinite term with other finite numbers.

Overall, given a set of edges A ⊆ E , we measure the

connectivity of the traffic log L = {(si , ti , wi)}, |L| = k by

HL(A) =

(
k∑

i=1

wi

)(
k∑

i=1

wi

dA(si , ti)

)−1

.

The stretch factor of a backbone R is then defined as

λL(R) =
HL(R)

HL(E)
.

The stretch factor is always greater than or equal to 1. The

closer it is to 1, the better the connectivity that it offers to

the traffic log L. This definition of stretch factor provides a

principled objective to optimize connectivity while allowing

to leave disconnected pairs, when there is insufficient budget.

We are now ready to formally define the problem of back-

bone discovery.

Problem 1 (BackboneDiscovery) Consider a network

G = (V, E) and a traffic log L = {(si , ti , wi)}. Consider

also a cost budget B. The goal is to find a backbone net-

work R ⊆ E of total cost B that minimizes the stretch factor

λL(R) or report that no such solution exists.

As one may suspect, BackboneDiscovery is an NP-

hard problem.

Lemma 1 The BackboneDiscovery problem, defined in

Problem 1, is NP-hard.

Proof (Sketch) We obtain a reduction from the SetCover

problem: given a ground set U = {u1, . . . , un}, a collection

S = {S1, . . . , Sm} of subsets of U , and an integer k, deter-

mine whether there are k sets in S that cover all the elements

of U .

Given an instance of the SetCover problem, we form an

instance of the BackboneDiscovery problem as follows

(see Fig. 3 for illustration). We create one node ui for each

Fig. 3 Reduction from set cover to BackboneDiscovery for the log

L = {(ui , z, 1)|ui ∈ U }

ui ∈ U and one node v j for each S j ∈ S. We also create

a special node z. We create an edge (ui , v j) if and only if

ui ∈ S j and we assign to this edge cost 0. We also create an

edge (v j , z) for all S j ∈ S and we assign to this edge cost 1.

As far as the traffic log is concerned, we set L = {(ui , z, 1) |

ui ∈ U }, that is, we pair each ui ∈ U with the special node

z with volume 1. Finally we set the budget B = k. It is not

difficult to see that the instance of the BackboneDiscovery

problem constructed in this way has a solution with stretch

factor 1 if and only if the given instance of the SetCover

problem has a feasible solution. ⊓⊔

3 Related work

As already noted, BackboneDiscovery is related to the

k-spanner and the Steiner forest problem and the decision

versions of both are known to be NP-complete [15,22]. The

k-spanner problem is designed to bound the stretch factor

for all pairs of nodes and not just those from a specific set

of (s, t) pairs. The Steiner forest problem on the other hand

is designed to keep the (s, t) pairs connected with a mini-

mal number of edges and is agnostic about the stretch factor.

Both these problems only consider structural information and

completely ignore functional (activity) data that may be avail-

able about the usage of the network. They also have strict

limitations that all nodes need to be covered, which makes

them restrictive.

The prize-collecting Steiner forest problem (PCSF) [10]

is a version of the Steiner forest problem that allows for dis-

connected source–destination pairs, by imposing a penalty

for disconnected pairs. Even in this variant, there is no budget

or stretch requirement, and hence, the optimization problem

that PCSF solves is completely different from what we solve.

We show how our algorithm fares in comparison to PCSF in

Sect. 5.2. A comparison of various related algorithms is given

in Table 1.

Our work is different from trajectory mining [9,23], which

consider complete trajectories between source–destination

pairs. We do not make use of the trajectories and are only

interested in the amount of traffic flowing between a source

123

Int J Data Sci Anal (2016) 1:215–227 219

Table 1 Overview of related

algorithms
Structural info Functional info Disconnected graph? Budget

k-spanner � – – –

Steiner forest � � – –

Graph sparsifiers � – � �

Prize-collecting Steiner forest � � � –

BackboneDiscovery � � � �

and destination. Also, the type of questions we try to answer

in this paper are different from that of trajectory mining.

While trajectory mining tries to answer questions such as

“Which are the most used routes between A and B?,” our

paper tries to use information about traffic from A to B in

order to facilitate a sparse backbone of the underlying net-

work which allows traffic to flow from A to B, also keeping

global network characteristics in mind.

The BackboneDiscovery problem is also related to

finding graph sparsifiers and simplifying graphs. For exam-

ple, Toivonen et al. [19] as well as Zhou et al. [24] propose

an approach based on pruning edges while keeping the qual-

ity of best paths between all pairs of nodes, where quality is

defined on concepts such as shortest path or maximum flow.

Misiolek and Chen [14] propose an algorithm which prune

edges while maintaining the source-to-sink flow for each pair

of nodes. Mathioudakis et al. [13] and Bonchi et al. [2] study

the problem of discovering the backbone of a social network

in the context of information propagation, which is a different

type of activity than source–destination pairs, as considered

here. In the work of Butenko et al., a heuristic algorithm for

the minimum connected dominating subset of wireless net-

works was proposed [4]. There has been some work in social

network research to extract a subgraph from larger subgraphs

subject to constraints [8,18]. Other forms of network back-

bone discovery have been explored in domains including

biology, communication networks and the social sciences.

The main focus of most of these approaches is on the trade-

off between the level of network reduction and the amount

of relevant information to be preserved either for visualiza-

tion or community detection. While in this paper we try to

also sparsify a graph, our objective and approach is com-

pletely different from the above because we cast the problem

in a well-defined optimization framework where the struc-

tural aspects of the network are captured in the requirement

to maintain a low stretch while the functional requirements

are captured in maintaining connectedness between traffic

terminals, which has not been done before.

In the computer network research community, the notion

of software defined networks (SDN), which in principle

decouples the network control layer from the physical routers

and switches, has attracted a lot of attention [5,11]. SDN (for

example through OpenFlow) will essentially allow network

administrators to remotely control routing tables. The Back-

boneDiscovery problem can essentially be considered as an

abstraction of the SDN problem, and as we show in Sect. 5.4,

our approach can make use of traffic logs to help SDNs make

decisions on routing and switching in the physical layer.

4 Algorithm

The algorithm we propose for the BackboneDiscovery

problem is a greedy heuristic that connects one by one the

source–destination pairs of the traffic log L. A distinguish-

ing feature of our algorithm is that it utilizes a notion of edge

benefit. In particular, we assume that for each edge e ∈ E

we have available a benefit measure b(e). The higher is the

measure b(e) the more beneficial it is to include the edge e

in the final solution. The benefit measure is computed using

the traffic log L and it takes into account the global structure

of the network G.

The more central an edge is with respect to a traffic log,

the more beneficial it is to include it in the solution, as it can

be used to serve many source–destination pairs. In this paper,

we use edge-betweenness as a centrality measure, adapted to

take into account the traffic log. We also experimented with

commute-time centrality, but edge-betweenness was found

to be more effective.

Our algorithm relies on the notion of effective distance

ℓ̂(e), defined as ℓ̂(e) = c(e)/b(e), where c(e) is the cost

of an edge e ∈ E and b(e) is the edge-betweenness of e.

The intuition is that by dividing the cost of each edge by its

benefit, we are biasing the algorithm toward selecting edges

with high benefit.

We now present our algorithm in more detail.

4.1 The greedy algorithm

As discussed above, our algorithm operates with effective

distances ℓ̂(e) = c(e)/b(e), where b(e) is a benefit score for

each edge e. The objective is to obtain a cost/benefit trade-

off: Edges with small cost and large benefit are favored to

be included in the backbone. In the description of the greedy

algorithm that follows, we assume that the effective distance

ℓ̂(e) of each edge is given as input.

The algorithm works in an iterative fashion, maintaining

and growing the backbone, starting from the empty set. In

123

220 Int J Data Sci Anal (2016) 1:215–227

Algorithm 1 The greedy algorithm

Input: Network G = (V, E), edge costs c(e), benefit costs b(e), cost

budget B, traffic log L = {(si , ti , wi)}

Output: A subset of edges R ⊆ E of total cost c(R) ≤ B and small

stretch factor λ(R)

1: for all e ∈ E do

2: ℓ̂(e) ← c(e)/b(e)

3: R ← ∅

4: λ ← ∞

5: while (B > 0) and (λ > 1) do

6: for each (si , ti , wi) ∈ L do

7: pi ←ShortestPath(si , ti , G, ℓ̂)

8: λi ←StretchFactor(R ∪ pi , G, L)

9: p∗ ← mini {λi } // the path with min. stretch factor in the above

iteration

10: R′ ← p∗ \ R // edges to be newly added

11: if c(R′) > B then

12: Return R // budget exhausted

13: R ← R ∪ R′ // add new edges in the backbone

14: ℓ̂(R′) ← 0 // reset cost of newly added edges

15: B ← B − c(R′) // decrease budget

16: λ ←StretchFactor(R, G, L) // update λ

17: Return R

the i th iteration, the algorithm picks a source–destination

pair (si , ti) from the traffic log L, and “serves” it. Serving a

pair (si , ti) means computing a shortest path pi from si to ti ,

and adding its edges in the current R, if they are not already

there. For the shortest-path computation, the algorithm uses

the effective distances ℓ̂(e). When an edge is newly added to

the backbone its cost is subtracted from the available budget.

Here, the actual cost of the edge c(e) (instead of the ℓ̂(e)) is

used. Also its effective distance is reset to zero, since it can be

used for free in subsequent iterations of the algorithm. The

source–destination pair that is chosen to be served in each

iteration is the one that reduces the stretch factor the most at

that iteration and hence the greedy nature of the algorithm.

The algorithm proceeds until it exhausts all its budget or

until the stretch factor becomes equal to 1 (which means that

all pairs in the log are served via a shortest path). The pseudo-

code for the greedy algorithm is shown in Algorithm 1.

We are experimenting with two variants of this greedy

scheme, depending on the benefit score we use.

These are the following:

Greedy: We use uniform benefit scores (b(e) = 1).

GreedyEB: The benefit score of an edge is set equal to

its edge-betweenness centrality.

4.2 Speeding up the greedy algorithm

As we show in the experimental section, the greedy algo-

rithm provides solutions of good quality, in particular the

variant with the edge-betweenness weighting scheme. How-

ever, the algorithm is computationally expensive, and thus, in

this section we discuss a number of optimizations. We start

by analyzing the running time of the algorithm.

Running time Assume that the benefit scores b(e) are given

for all edges e ∈ E and that the algorithm performs I itera-

tions until it exhausts its budget. In each iteration, we need

to perform O(k2) shortest-path computations, where k is

the size of the traffic log L. A shortest-path computation

is O(m + n log n), and thus, the overall complexity of the

algorithm is O(I k2(m + n log n)). The number of iterations

I depends on the available budget, and in the worst case it

can be as large as k. However, since we aim at finding sparse

backbones, the number of iterations is typically smaller.

Optimizations with no approximation We first show how to

speed up the algorithm, while guaranteeing the same solution

with the naïve implementation of the greedy. Since the most

expensive component is the computation of shortest paths on

the newly formed network, we make sure that we compute the

shortest path only when needed. Our optimizations consist

of two parts.

First, during the execution of the algorithm we maintain

the connected components that the backbone creates in the

network. Then, we do not need to compute shortest paths

for all (si , ti) pairs, for which si and ti belong to different

connected components; we know that their distance is ∞.

This optimization is effective at the early stages of the algo-

rithm, when many terminals belong to different connected

components.

Second, when computing the decrease in the stretch factor

due to a candidate shortest path to be added in the backbone,

for pairs for which we have to recompute a shortest-path

distance, we first compute an optimistic lower bound, based

on the shortest path on the whole network (which we compute

once in a preprocessing step). If this optimistic lower bound

is not better than the current best stretch factor, then we can

skip the computation of the shortest path on the backbone.

As shown in the empirical evaluation of our algorithms,

depending on the dataset, these optimization heuristics lead

to 20–35 % improvement in performance.

Optimization based on landmarks To further improve the

running time of the algorithm, we compute shortest-path

distances using landmarks [7,17], an effective technique to

approximate distances on graphs. Here we use the approach

of Potamias et al. [17]: A set of ℓ landmarks L = {z1, . . . , zℓ}

is selected and for each vertex v ∈ V the distances d(v, zi) to

all landmarks are computed and stored as an ℓ-dimensional

vector representing vertex v. The distance between two

vertices v1, v2 is then approximated as mini {d(v1, zi) +

d(v2, zi)}, i.e., the tightest of the upper bounds induced by

the set of landmarks L .

To select landmarks, we use high-degree non-adjacent

vertices in the graph, which is reported as one of the best-

performing methods by Potamias et al. [17]. Note that the

distances are now approximations to the true distances, and

123

Int J Data Sci Anal (2016) 1:215–227 221

the method trades accuracy by efficiency via the number of

landmarks selected. In practice, a few hundreds of landmarks

are sufficient to provide high-quality approximations even for

graphs with millions of vertices [17].

For the running time analysis, note that in each iteration we

need to compute the distance between all graph vertices and

all landmarks. This can be done with ℓ single-source shortest-

path computations and the running time is O(ℓ(m+n log n)).

The landmarks can then be used to approximate shortest-

path distances between all source–destination pairs in the

traffic log L, with running time O(kℓ). Thus, the overall

complexity is O(Iℓ(k + m + n log n)). Since ℓ is expected

to be much smaller than k, the method provides a significant

improvement over the naïve implementation of the greedy.

As shown in the experimental evaluation, using landmarks

provides an improvement of up to four times in terms of

runtime in practice.

4.3 Edge-betweenness centrality

As we already discussed in the previous sections, our greedy

algorithm uses edge centrality measures for benefit scores

b(e). In this section, we discuss edge-betweenness and in par-

ticular show how we adapt the measure to take into account

the traffic log L.

We first recall the standard definition of edge-betweenness.

Given a network G = (V, E), we define V2 =
(

V
2

)
to be the

set of all pairs of nodes of G. Given a pair of nodes (s, t) ∈ V2

and an edge e ∈ E , we define by σs,t the total number of

shortest paths from s to t , and by σs,t (e) the total number of

shortest paths from s to t that pass though edge e.

The standard definition of edge-betweenness centrality

EB(e) of edge e is the following:

EB(e) =
∑

(s,t)∈V2

σs,t (e)

σs,t

.

In our problem setting, we take into account the traffic

log L = {(si , ti , wi)}, and we define the edge-betweenness

EBL(e) of an edge e with respect to log L, as follows.

EBL(e) =
∑

(s,t,w)∈L

w
σs,t (e)

σs,t

.

In this modified definition, only the source–destination pairs

of the log L contribute to the centrality of the edge e, and the

amount of contribution is proportional to the corresponding

traffic. The adapted edge-betweenness can still be computed

in O(nm) time [3].

5 Experimental evaluation

The aim of the experimental section is to evaluate the perfor-

mance of the proposed algorithm, the optimizations and the

edge-betweenness measure. We also compare our algorithm

with other state-of-the-art methods which attempt to solve a

similar problem.

Datasets We experiment with six real datasets: four trans-

portation networks, one Web network and one Internet traffic

network. For five of the datasets, we also obtain real traf-

fic, while for one we use synthetically generated traffic. The

characteristics and description of our datasets are provided

in Table 2.

LondonTube The London Subway network consists of sub-

way stops and links between them. We use the geographic

distance between stations as a proxy for edge costs. We obtain

the traffic log L from the Oyster card system.1

USFlights This network consists of flights between US air-

ports. We obtain a large network of US airports, and the list of

all flights within the US during 2009–2013, from the Bureau

of Transportation Statistics.2 Flying distances between air-

ports, obtained using Travelmath.com, are used as edge costs.

The traffic volume is the number of flights between airports.

NYCTaxi We obtain the complete road network of NYC

using OpenStreetMap data.3 In this network, each node cor-

responds to a road intersection and each link corresponds

to a road segment. Edge costs are computed as the geo-

graphic distances between the junctions. Data on the pickup

and drop-off locations of NYC taxis for 2013 was used to

construct the traffic log.4 The 2000 most frequently used

source–destination pairs was used to create the traffic log.

Wikispeedia Wikispeedia5 [21] is an online crowd sourcing

game designed to measure semantic distances between two

wikipedia pages using the paths taken by humans to reach

from one page to the other. This dataset contains a base net-

work of hyperlinks between Wikipedia pages and the paths

taken by users between two pages. We construct the traffic

log using the unique (start, end) pages from these data.

UKRoad Next we consider the UK road network.6 The

network construction is similar to what was done with

the NYCTaxi data. For simplicity, we use only the largest

connected component. Since we were not able to obtain real-

world traffic data for this network, we generate synthetic

traffic logs L simulating different scenarios. In particular,

we generate traffic logs according to four different distrib-

1 http://bit.ly/1qM2BYi.

2 http://1.usa.gov/1ypXYvL.

3 http://metro.teczno.com/#new-york.

4 http://chriswhong.com/open-data/foil_nyc_taxi/.

5 http://snap.stanford.edu/data/wikispeedia.html.

6 http://www.dft.gov.uk/traffic-counts/download.php.

123

http://bit.ly/1qM2BYi
http://1.usa.gov/1ypXYvL
http://metro.teczno.com/#new-york
http://chriswhong.com/open-data/foil_nyc_taxi/
http://snap.stanford.edu/data/wikispeedia.html
http://www.dft.gov.uk/traffic-counts/download.php

222 Int J Data Sci Anal (2016) 1:215–227

Table 2 Dataset statistics
Dataset Type No. of nodes No. of edges Real network Real traffic

LondonTube Transportation 316 724 � �

USFlights Transportation 1268 51,098 � �

UKRoad Transportation 8341 13,926 � –

NYCTaxi Transportation 50,736 158,898 � �

Wikispeedia Web 4604 213,294 � �

Abeline Internet 12 15 � �

% Edge cost covered
3 4 5 6

S
tr

e
tc

h
 F

a
c
to

r

1

2

3

4

5

6
London tube

Baseline
Greedy
GreedyEB

% Edge cost covered
2 4 6 8

S
tr

e
tc

h
 F

a
c
to

r

0

5

10

15

20

25
US Flights

Baseline
Greedy
GreedyEB

% Edge cost covered
2 4 6 8

S
tr

e
tc

h
 F

a
c
to

r

0

10

20

30
NYC Taxi

Baseline
Greedy
GreedyEB

% Edge cost covered
2 4 6 8

S
tr

e
tc

h
 F

a
c
to

r

0

5

10

15

20
Wikispeedia

Baseline
Greedy
GreedyEB

% Edge cost covered
0 2 4 6

S
tr

e
tc

h
 F

a
c
to

r

0

2

4

6

8
Powerlaw (w) - Powerlaw (l)

Baseline
Greedy
GreedyEB

% Edge cost covered
1 2 3 4 5

S
tr

e
tc

h
 F

a
c
to

r

0

5

10
Random (w) - Powerlaw (l)

Baseline
Greedy
GreedyEB

% Edge cost covered
0 5 10

S
tr

e
tc

h
 F

a
c
to

r

0

5

10

15

20
Powerlaw (w), Random (l)

Greedy
GreedyEB

% Edge cost covered
0 5 10

S
tr

e
tc

h
 F

a
c
to

r

0

5

10

15

20
Random (w) - Random (l)

Greedy
GreedyEB

(a) (b) (c) (d)

(h)(g)(f)(e)

Fig. 4 Effect of edge-betweenness on the performance of the greedy

algorithm, for various datasets a LondonTube, b USFlights, c NYC-
Taxi, d Wikispeedia, e–h UKRoad. Baseline is missing in figures (g)

and (h) because the stretch factor was very large or infinity. We see

a consistent trend that using edge-betweenness improves the perfor-

mance. In figures (e–h), (w) indicates traffic volume, and (l) indicates

the log

utions: (i) power-law traffic volume, power-law s–t pairs;

(ii) power-law traffic volume, uniformly random s–t pairs;

(iii) uniformly random traffic volume, power-law s–t pairs;

and (iv) uniformly random traffic volume, uniformly random

s–t pairs. These different distributions capture different traf-

fic volume possibility and hence help in understanding the

behavior of our algorithm with respect to the traffic log L.

Abeline For a qualitative analysis we also consider the well-

known Abeline dataset consisting of a sample of the network

traffic extracted from the Internet2 backbone7 and that carries

the network traffic between major universities in the conti-

nental USA. The network consists of twelve nodes and 15

high-capacity links. Associated with each physical link, we

also have capacity of the link which serves as a proxy for the

7 http://www.internet2.edu.

cost of the link. We obtain traffic logs from 2003 between all

pairs of nodes.

Baseline To obtain better intuition for the performance of our

methods, we define a simple baseline, where a backbone is

created by adding edges in increasing order of their effective

distances ℓ̂(e) = c(e)/b(e), where b(e) is edge-betweenness;

this was the best-performing baseline among other baselines

we tried, such as adding source–destination pairs one by one

(i) randomly, (ii) in decreasing order of volume (wi), (iii) in

increasing order of effective distance defined using closeness

centrality, etc.

5.1 Quantitative results

We focus our evaluation on three main criteria: (i) com-

parison of the performance with and without the edge-

123

http://www.internet2.edu

Int J Data Sci Anal (2016) 1:215–227 223

% Edge cost covered
2 4 6

T
im

e
 t

a
k
e

n
 (

s
e

c
)

0

200

400

600
London Tube

BasicGreedyEB
GreedyEBCC
GreedyEBLandmarks75
GreedyEBLandmarks50
GreedyEBLandmarks25

% Edge cost covered
2 4 6

T
im

e
 t

a
k
e

n
 (

s
e

c
)

0

500

1000

1500

2000
US Flights

BasicGreedyEB

GreedyEBCC

GreedyEBLandmarks75

GreedyEBLandmarks50

GreedyEBLandmarks25

% Edge cost covered
2 4 6 8

T
im

e
 t

a
k
e

n
 (

s
e

c
)

× 10
4

0

1

2

3

4
NYC Taxi

BasicGreedyEB
GreedyEBCC
GreedyEBLandmarks75
GreedyEBLandmarks50
GreedyEBLandmarks25

% Edge cost covered
2 4 6 8

T
im

e
 t

a
k
e

n
 (

s
e

c
)

0

2000

4000

6000

8000
Wikispeedia

BasicGreedyEB
GreedyEBCC
GreedyEBLandmarks75
GreedyEBLandmarks50
GreedyEBLandmarks25

% Edge cost covered
0 2 4 6

T
im

e
 t

a
k
e

n
 (

s
e

c
)

0

1000

2000

3000

4000
Powerlaw (w), Powerlaw (l)

BasicGreedyEB
GreedyEBCC
GreedyEBLandmarks100

% Edge cost covered
0 2 4 6

T
im

e
 t

a
k
e

n
 (

s
e

c
)

0

1000

2000

3000

4000

5000
Random (w), Powerlaw (l)

BasicGreedyEB
GreedyEBCC
GreedyEBLandmarks100

% Edge cost covered
0 2 4 6

T
im

e
 t

a
k
e

n
 (

s
e

c
)

0

2000

4000

6000
Powerlaw (w), Random (l)

BasicGreedyEB
GreedyEBCC
GreedyEBLandmarks100

% Edge cost covered
0 2 4 6

T
im

e
 t

a
k
e

n
 (

s
e

c
)

0

2000

4000

6000
Random (w), Random (l)

BasicGreedyEB
GreedyEBCC
GreedyEBLandmarks100

(a) (b) (c) (d)

(h)(g)(f)(e)

Fig. 5 Comparison of the time taken by the algorithm using different

optimizations mentioned in Sect. 4.2, for a LondonTube, b USFlights,

c NYCTaxi, d Wikispeedia, e–h UKRoad. BasicGreedyEB does not

use any optimizations, GreedyEBCC is the version using connected

components, GreedyEBLandmarks* uses * landmarks. We can clearly

see a great improvement (up to 4×) in speed by using landmarks. As we

increase the number of landmarks, we trade-off speed with accuracy. In

figures (e–h), (w) indicates traffic volume, and (l) indicates the log

betweenness measure; (ii) effect of the optimizations, in

terms of quality and speedup; and (iii) effect of allocating

more budget on the stretch factor.

Effect of edge-betweenness We study the effect of using

edge-betweenness in the greedy algorithm. The results are

presented in Fig. 4.

Effect of landmarks Landmarks provide faster computation

with a trade-off for quality. Figure 5 shows the speedup

achieved when using landmarks. In the figures, Basic-

GreedyEB indicates the greedy algorithm that does not use

any optimizations. GreedyEBCC makes use of the optimiza-

tions proposed in Sect. 4.2 which do not use approximation.

GreedyEBLandmarks* makes use of the landmarks opti-

mization and the * indicates the number of landmarks we

tried. Figure 6 shows the performance of GreedyEB algo-

rithm with and without using landmarks.

Budget versus stretch factor We examine the trade-off

between budget and stretch factor for our algorithm and its

variants. A lower stretch factor for the same budget indi-

cates that the algorithm is able to pick better edges for the

backbone. Figure 4 shows the trade-off between budget and

stretch factor for all our datasets. In all figures, the budget

used by the algorithms, shown in the x-axis, is expressed as

a percentage of the total edge cost.

Key findings Our key findings are the following.

– The greedy algorithm and its variants performs much

better than the baseline (see Fig. 4). Note that the baseline

is not included in Fig. 4g, h because the edges in the

baseline are added one by one and for a large interval of

the cost, the stretch factor was very large or even infinity.

– The backbones discovered by our algorithms are sparse

and summarize well the given traffic (Figs. 4, 6). In all

cases, with about 15 % of the edge cost in the network it is

possible to summarize the traffic with stretch factor close

to 1. In some cases, even smaller budget (than 15 %) is

sufficient to reach a lower stretch factor value.

– Incorporating edge-betweenness as an edge-weighting

scheme in the algorithm improves the performance; in

certain cases, there is an improvement of at least 50 %

(see Fig. 4; in most cases, even though there is a signifi-

cant improvement, the plot is overshadowed by a worse

performing baseline). This is because, using edges of high

centrality will make sure that these edges are included in

many shortest paths, leading to reusing many edges.

– The optimizations we propose in Sect. 4.2 help in reduc-

ing the running time of our algorithm (Fig. 5). For the

optimizations not using landmarks, we see around 30 %

123

224 Int J Data Sci Anal (2016) 1:215–227

% Edge cost covered
2 4 6

S
tr

e
tc

h
 F

a
c
to

r

0

5

10
London Tube

GreedyEBLandmarks25
GreedyEBLandmarks50
GreedyEBLandmarks75
GreedyEB

% Edge cost covered
2 4 6

S
tr

e
tc

h
 F

a
c
to

r

0

5

10

15

20
US Flights

GreedyEBLandmarks25
GreedyEBLandmarks50
GreedyEBLandmarks75
GreedyEB

% Edge cost covered
2 4 6 8

S
tr

e
tc

h
 F

a
c
to

r

0

5

10

15

20
NYC Taxi

GreedyEBLandmarks25
GreedyEBLandmarks50
GreedyEBLandmarks75
GreedyEB

% Edge cost covered
2 4 6 8

S
tr

e
tc

h
 F

a
c
to

r

0

5

10

15
Wikispeedia

GreedyEBLandmarks25
GreedyEBLandmarks50
GreedyEBLandmarks75
GreedyEB

% Edge cost covered
0 2 4 6

S
tr

e
tc

h
 F

a
c
to

r

1

2

3

4

5
Powerlaw (w), Powerlaw (l)

GreedyEBLandmarks100
GreedyEB

% Edge cost covered
0 2 4 6

S
tr

e
tc

h
 F

a
c
to

r

1

1.5

2

2.5

3

3.5
Random (w), Powerlaw (l)

GreedyEBLandmarks100
GreedyEB

% Edge cost covered
0 5 10

S
tr

e
tc

h
 F

a
c
to

r
0

5

10

15

20
Powerlaw (w), Random (l)

GreedyEBLandmarks100

GreedyEB

% Edge cost covered
0 5 10

S
tr

e
tc

h
 F

a
c
to

r

0

5

10

15

20
Random (w), Random (l)

GreedyEBLandmarks100
GreedyEB

(a) (b) (c) (d)

(h)(g)(f)(e)

Fig. 6 Performance in terms of stretch factor of our greedy algorithm

with and with out using landmarks, for a LondonTube, b USFlights,

c NYCTaxi and d Wikispeedia e–h UKRoad. For all the datasets, as

expected, we see a slight decrease in performance using landmarks. In

figures (e–h), (w) indicates traffic volume, and (l) indicates the log

improvement in running time. Using landmarks substan-

tially decreases the time taken by the algorithms (3–4

times). While there is a compromise in the quality of

the solution, we can observe from Fig. 6 that the perfor-

mance drop is small in most cases and can be controlled

by choosing the number of landmarks accordingly. Our

algorithms, using the optimizations we propose, scale

to large, real-world networks with tens of thousands of

nodes, which is the typical size of a road/traffic network.

5.2 Comparison to existing approaches

In this section, we compare the performance of Backbone-

Discovery with other related work in the literature. The

comparison is done based on two factors (i) stretch factor

and (ii) percentage of edges covered by the solution for the

same input graph. Intuitively, a good backbone should try

to minimize both, i.e., produce a sparse backbone, which

also preserves the shortest paths between vertices as well as

possible.

Comparison with Prize-Collecting Steiner forest (PCSF)

Prize-collecting Steiner forest [10] is a variant of the clas-

sic Steiner forest problem, which allows for disconnected

source–destination pairs, by paying a penalty. The goal is to

minimize the total cost of the solution by “buying” a set of

edges (to connect the s–t pairs) and paying the penalty for

those pairs which are not connected. We compare the per-

formance of GreedyEB with PCSF, based on two factors (i)

stretch factor (Fig. 7a), and (ii) percentage of edges covered

by the solution (Fig. 7b). We use the same (s, t) pairs that

we use in GreedyEB and set the traffic volume wi as the

penalty score in PCSF. We first run PCSF on our datasets

and compute the budget of the solution produced. Using the

budget as input to GreedyEB, we compute our backbone.

We can see from Fig. 7a that GreedyEB produces a back-

bone with a much better stretch factor than PCSF. In most

datasets, our algorithm produces a backbone which is at least

2 times better in terms of stretch factor.

Figure 7b compares the fraction of edges covered by

GreedyEB and PCSF. We observe that the fraction of edges

covered by our algorithm is lower than that of PCSF. This

could be because GreedyEB reuses edges belonging to mul-

tiple paths. Figure 7a, b shows that even though our solution

is much better in terms of stretch factor, we produce sparse

backbones (in terms of the percentage of edges covered).

Comparison with k-spanner As described in Sect. 3, our

problem is similar to k-spanner [15] in the sense that we

try to minimize the stretch factor. A k-spanner of a graph

is a subgraph in which any two vertices are at most k times

far apart than on the original graph. One of the main advan-

123

Int J Data Sci Anal (2016) 1:215–227 225

U
S
F
lig

ht
s

N
Y
C
T
ax

i

W
ik
is
pe

ed
ia

U
K
R
oa

d rp

U
K
R
oa

d p
p

U
K
R
oa

d rr

U
K
R
oa

d p
r

Lo
nd

on
T
ub

e

Dataset

5

10

15

S
tr

e
tc

h
 F

a
c
to

r
PCSF

GreedyEB

U
S
Fl
ig
ht
s

N
Y
C
Ta

xi

W
ik
is
pe

ed
ia

U
K
R
oa

d rp

U
K
R
oa

d p
p

U
K
R
oa

d r r

U
K
R
oa

d p
r

Dataset

0

5

10

%
 E

d
g
e
s
 c

o
v
e
re

d PCSF

GreedyEB

U
S
Fl
ig
ht
s

N
Y
C
Ta

xi

W
ik
is
pe

ed
ia

U
K
R
oa

d rp

U
K
R
oa

d p
p

U
K
R
oa

d rr

U
K
R
oa

d p
r

Lo
nd

on
Tu

be

Dataset

1

1.1

1.2

1.3

1.4

1.5

S
tr

e
tc

h
 F

a
c
to

r 2-Spanner

GreedyEB

U
S
F
lig

ht
s

N
Y
C
T
ax

i

W
ik
is
pe

ed
ia

U
K
R
oa

d rp

U
K
R
oa

d p
p

U
K
R
oa

d r r

U
K
R
oa

d p
r

Lo
nd

on
T
ub

e

Dataset

0

50

100

%
 E

d
g
e
s
 c

o
v
e
re

d

2-Spanner

GreedyEB

U
S
Fl
ig
ht
s

N
Y
C
Ta

xi

W
ik
is
pe

ed
ia

U
K
R
oa

d rp

U
K
R
oa

d p
p

U
K
R
oa

d rr

U
K
R
oa

d p
r

Lo
nd

on
Tu

be

Dataset

1

1.1

1.2

1.3

S
tr

e
tc

h
 F

a
c
to

r

T-IGA

GreedyEB

U
S
F
lig

ht
s

N
Y
C
T
ax

i

W
ik
is
pe

ed
ia

U
K
R
oa

d rp

U
K
R
oa

d p
p

U
K
R
oa

d r r

U
K
R
oa

d p
r

Lo
nd

on
T
ub

e

Dataset

40

60

80

100

%
 E

d
g
e
s
 c

o
v
e
re

d T-IGA

GreedyEB

(a) (b) (c)

(f)(e)(d)

Fig. 7 Comparison of GreedyEB with PCSF, in terms of (a) stretch

factor (b) Percentage of edges covered. Comparison of GreedyEB with

2-spanner in terms of (c) stretch factor (d) Percentage of edges covered.

Comparison of GreedyEB with T-IGA, in terms of (e) stretch factor

(f) Percentage of edges covered. The four variants of UKRoad for the

different traffic log are indicated by UKRoadab where a indicates traf-

fic volume, b indicates (s, t) pairs (r random, p powerlaw). (In (b)

LondonTube is not plotted because of a mismatch in scale)

tages of GreedyEB compared to spanners is that spanners

cannot handle disconnected vertices. We also propose and

optimize a modified version of stretch factor in order to han-

dle disconnected vertices. Similar to PCSF, we first compute

a 2-spanner using a 2 approximation greedy algorithm and

compute the budget used. We then run GreedyEB for the

same budget. Figure 7c, d shows the performance of Greedy-

EB in terms of stretch factor and percentage of edges covered.

Our objective here is to compare the cost GreedyEB pays

in terms of stretch factor for allowing disconnected vertices.

We can clearly observe that even though we allow for discon-

nected pairs, GreedyEB performs slightly better in terms of

stretch factor and also produces a significantly sparser back-

bone.

Comparison with the algorithm of Toivonen et al. (T-IGA)

Next, we compare GreedyEB with the Iterative Global

Algorithm proposed in Toivonen et al. [19] (T-IGA), a frame-

work for path-oriented graph simplification, in which edges

are pruned while keeping the original quality of the paths

between all pairs of nodes. The objective here is to check how

well we perform in terms of graph sparsification. Figure 7e,

f shows the comparison in terms of stretch factor and per-

centage of edges covered. Similar to the above approaches,

we use the same budget as that used by T-IGA. We observe

that for most of the datasets, their algorithm works poorly in

terms of sparsification, pruning less than 20 % of the edges

(Fig. 7f). Our algorithm performs better in terms of both

the stretch of the final solution and sparseness of the back-

bone.

The above results comparing our work with the existing

approaches showcase the power of our algorithm in finding

a concise representation of the graph, at the same time main-

taining a low stretch factor. In all the three cases, GreedyEB

performs considerably better than the related work.

123

226 Int J Data Sci Anal (2016) 1:215–227

Fig. 8 NYC backbone using a Greedyand b GreedyEB

Fig. 9 Qualitative analysis of

the real Internet network. The

figure on the left shows network

traffic in the Abeline dataset,

and the one on the right shows

the backbone discovered by the

GreedyEB algorithm. As in

Fig. 1, the traffic shown is an

interpolation along the shortest

path between the

source–destination pairs

Traffic in Abeline network Backbone discovered by GreedyEB

(a) (b)

Fairness Though we claim that our approach performs bet-

ter, we need to keep in mind that there might be differences

between these algorithms. PCSF does not optimize for stretch

factor. Spanners and T-IGA do not have a traffic log ((s, t)

pairs). They also do not try to optimize stretch factor. For

this section, we were just interested in contrasting the perfor-

mance of our approach with existing state-of-the-art methods

and show how our approach is different and better at what

we do.

5.3 Case study #1: NYCTaxi

The backbone of the NYC taxi traffic, as discovered by our

algorithms Greedy and GreedyEB, is shown in Fig. 8. We

see that both backbones consist of many street stretches in the

mid-town (around Times Square) while serving lower-town

(Greenwich village and Soho) and up-town (Morningside

heights). We also note that there are stretches to the major

transportation centers, such as the LaGuardia airport, the

World Financial Center Ferry Terminal and the Grand Central

Terminal, as well as to the Metropolitan museum. Comparing

the Greedy and GreedyEB backbones, we see that Greedy-

EB emphasizes more on the traffic to lower-town, and ignores

the northern stretch via Robert Kennedy bridge, as it is

less likely to be included in many shortest paths. The case

study reiterates the advantages of using edge-betweenness to

guide the selection of the backbone to include edges which

are likely to be used more and is consistent with the well-

123

Int J Data Sci Anal (2016) 1:215–227 227

established notion of Wardrop Equilibrium in Transportation

Science that users (in a non-cooperative manner) seek to min-

imize their cost of transportation [20].

5.4 Case study #2: Abeline

We carry out a qualitative analysis on the Abilene dataset.

The results of applying the Greedy algorithm are shown in

Fig. 9.8 The results provide preliminary evidence that the

backbone produced by our problem can be tightly integrated

with software defined networks (SDN), an increasingly

important area in communication networks [11]. The objec-

tive of SDN is to allow a software layer to control the routers

and switches in the physical layers based on the profile and

shape of the traffic. This is precisely what our solution is

accomplishing in Fig. 9. The design of data-driven logi-

cal networks will be an important operation implemented

through an SDN and will help network designers manage

traffic in real time.

6 Conclusions

We introduced a new problem, BackboneDiscovery,

to address a modern phenomenon: These days not only

is the structural information of a network available but

increasingly, highly granular functional (activity) informa-

tion related to network usage is accessible. For example,

the aggregate traffic usage of the London Subway between

all stations is available from a public Web site. The Back-

boneDiscovery problem allowed us to efficiently combine

structural and functional information to obtain a highly

sophisticated understanding of how the Tube is used (see

Fig. 1). From a computational perspective, the Backbone-

Discovery problem has elements of both the k-spanner and

the Steiner forest problem and thus requires new algorithms

to maintain low stretch and connectedness between impor-

tant nodes subject to a budget constraint. We compare our

algorithm with other similar algorithms and show how our

algorithm is different and performs better for our setting. Our

case studies show the application of the proposed methods for

a wide range of applications, including network and traffic

planning.

Though our algorithm makes use of shortest paths, in prac-

tice, any other types of paths could be incorporated into our

algorithm. We leave this generalization for future analysis.

The use of harmonic mean not only allows us to handle

disconnected (s, t) pairs, but also makes our stretch factor

measure more sensitive to outliers. For future work, we would

also incorporate a deeper theoretical analysis of the algorithm

and the stretch factor measure.

8 The two nodes in Atlanta have been merged.

References

1. Boldi, P., Vigna, S.: Axioms for centrality. CoRR abs/1308.2140

(2013)

2. Bonchi, F., De Francisci Morales, G., Gionis, A., Ukkonen, A.:

Activity preserving graph simplification. DMKD 27(3), 321–343

(2013)

3. Brandes, U., Pich, C.: Centrality estimation in large networks. IJBC

17(7), 2303–2318 (2007)

4. Butenko, S., Cheng, X., Oliveira, C.A., Pardalos, P.M.: A new

heuristic for the minimum connected dominating set problem on

ad hoc wireless networks. Cooper. Syst. 3, 61–73 (2004)

5. Casado, M., Freedman, M.J., Pettit, J., Luo, J., Gude, N., McK-

eown, N., Shenker, S.: Rethinking enterprise network control.

IEEE/ACM Trans. Netw. 17(4), 1270–1283 (2009)

6. Chawla, S., Garimella, K., Gionis, A., Tsang, D.: Discovering the

network backbone from traffic activity data. In: Proceedings of 20th

Pacific-Asia Conference, PAKDD 2016, pp. 409–422. Springer,

Berlin (2016)

7. Das Sarma, A., Gollapudi, S., Najork, M., Panigrahy, R.: A sketch-

based distance oracle for web-scale graphs. In: WSDM (2010)

8. Du, N., Wu, B., Wang, B.: Backbone discovery in social networks.

Proceedings of the IEEE/ACM conference on Web Intelligence, pp

100–103 (2007)

9. Giannotti, F., Nanni, M., Pinelli, F., Pedreschi, D.: Trajectory

pattern mining. In: Proceedings of the 13th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining,

pp. 330–339. ACM (2007)

10. Hajiaghayi, M., Khandekar, R., Kortsarz, G., Nutov, Z.: Prize-

collecting steiner network problems. In: Integer Programming and

Combinatorial Optimization, pp. 71–84. Springer, Berlin (2010)

11. Kim, H., Feamster, N.: Improving network management with soft-

ware defined networking. IEEE Commun. Mag. 51(2), 114–119

(2013)

12. Marchiori, M., Latora, V.: Harmony in the small world. Phys. A

285, 539–546 (2000)

13. Mathioudakis, M., Bonchi, F., Castillo, C., Gionis, A., Ukkonen,

A.: Sparsification of influence networks. In: KDD (2011)

14. Misiolek, E., Chen, D.Z.: Two flow network simplification algo-

rithms. IPL 97, 197–202 (2006)

15. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cam-

bridge University Press, Cambridge (2007)

16. Newman, M., Girvan, M.: Finding and evaluating community struc-

ture in networks. Phys. Rev. 69, 113–126 (2004)

17. Potamias, M., Bonchi, F., Castillo, C., Gionis, A.: Fast shortest path

distance estimation in large networks. In: CIKM (2009)

18. Ruan, N., Jin, R., Wang, G., Huang, K.: Network backbone discov-

ery using edge clustering. arXiv:1202.1842 (2012)

19. Toivonen, H., Mahler, S., Zhou, F.: A framework for path-oriented

network simplification. In: IDA (2010)

20. Wardrop, J., Whitehead, J.: Correspondence. some theoretical

aspects of road traffic research. In: ICE: Engineering Divisions,

p. 767 (1952)

21. West, R., Pineau, J., Precup, D.: Wikispeedia: An online game

for inferring semantic distances between concepts. In: IJCAI, pp.

1598–1603 (2009)

22. Williamson, D., Shmoys, D.: The Design of Approximation Algo-

rithms. Cambridge University Press, Cambridge (2011)

23. Zheng, Y., Zhang, L., Xie, X., Ma, W.Y.: Mining interesting loca-

tions and travel sequences from gps trajectories. In: Proceedings of

the 18th International Conference on World Wide Web, pp. 791–

800. ACM (2009)

24. Zhou, F., Mahler, S., Toivonen, H.: Network simplification with

minimal loss of connectivity. In: IDA (2010)

123

http://arxiv.org/abs/1202.1842

	Backbone discovery in traffic networks
	Abstract
	1 Introduction
	2 Problem definition
	3 Related work
	4 Algorithm
	4.1 The greedy algorithm
	4.2 Speeding up the greedy algorithm
	4.3 Edge-betweenness centrality

	5 Experimental evaluation
	5.1 Quantitative results
	5.2 Comparison to existing approaches
	5.3 Case study #1: NYCTaxi
	5.4 Case study #2: Abeline

	6 Conclusions
	References

