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Abstract 

There has been significant recent progress in rea­
soning and constraint processing methods. In areas 
such as planning and finite model-checking, cur­
rent solution techniques can handle combinatorial 
problems with up to a million variables and five 
million constraints. The good scaling behavior of 
these methods appears to defy what one would ex­
pect based on a worst-case complexity analysis. In 
order to bridge this gap between theory and prac­
tice, we propose a new framework for studying the 
complexity of these techniques on practical prob­
lem instances. In particular, our approach incorpo­
rates general structural properties observed in prac­
tical problem instances into the formal complexity 
analysis. We introduce a notion of "backdoors", 
which are small sets of variables that capture the 
overall combinatorics of the problem instance. We 
provide empirical results showing the existence of 
such backdoors in real-world problems. We then 
present a series of complexity results that explain 
the good scaling behavior of current reasoning and 
constraint methods observed on practical problem 
instances. 

1 Introduction 

Most interesting AI formalisms for reasoning, planning, and 
learning have been shown to be worst-case intractable. In 
the eighties and early nineties, such negative complexity re­
sults led to an extensive search for tractable subclasses of 
the general formalisms. Unfortunately, these tractable sub­
classes were often too restrictive for real-world applications. 
In the mid-nineties, we saw the emergence of a more practical 
approach to computationally hard problems in A I , with the 
introduction of fast satisfiability solvers and fast constraint 
based reasoning methods [17]. For example, in planning we 
saw the success of constraint-based planners, such as Graph-
plan [2] and SatPlan 113], and most recently, heuristic search 
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based planners, e.g., [11; 8; 1]. Somewhat surprisingly, on 
practical problem instances these methods scale well beyond 
what one might expect based on a formal complexity anal­
ysis. In fact, current state-of-the-art SAT solvers can han­
dle problem instances, as they arise in finite model-checking 
and planning, with up to a million variables and five million 
clauses [15]. The success of these methods appears to hinge 
on a combination of two factors: (1) practical combinato­
rial problem instances generally have a substantial amount 
of (hidden) tractable sub-structure, and (2) new algorithmic 
techniques exploit such tractable structure, through, e.g., ran­
domization and constraint learning. 

These developments suggest that a standard worst-case 
complexity analysis does not capture well the true complex­
ity of typical problem instances encountered in practical ap­
plications. Theoretical computer scientists have been well-
aware of the limitations of worst-case complexity results and 
have explored alternatives, such as average-case complexity 
and smoothed analysis [20]. In average-case analysis, one 
studies the computational cost of solving problem instances 
drawn from a predefined problem distribution. Such an anal­
ysis can provide valuable insights, as demonstrated by the 
work on uniform random instance distributions (e.g. ran­
dom k-SAT). However, the relatively basic distributions for 
which one can obtain average-complexity results appear to 
be quite far removed from the instance distributions one en­
counters in practice. In fact, formally defining the distribution 
of real-world problem instances is generally an open prob­
lem in itself. Smoothed analysis attempts to unify worst-case 
and average-case, but suffers from limited applicability: it 
works well on algorithms for problems defined over dense 
fields such as the simplex algorithm, but the applicability of 
smoothed analysis on discrete problem domains is unclear. 

An alternative approach, which we wil l pursue in this pa­
per, is to identify special structural properties common to 
known problem instances and rigorously show how clever 
algorithms can exploit such properties. Informal insights 
about what such special structure might be are currently al­
ready used in the design of, for example, branching and vari­
able choice heuristics in combinatorial search methods. A 
common feature of these techniques is an understanding that 
different groups of variables in a problem encoding often 
play quite distinct roles. For example, at the highest level, 
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Table 1: Time bounds for solving CSPs in the various scenarios 
considered in this work. is an upper bound on the size of 
the smallest backdoor, where is the number of variables in the 
problem, is a fixed constant. Empirical results (Section 3) suggest 
that for practical instances the backdoor is often a relatively small 
fraction of or even of size log  

scenario with an exhaustive search of backdoor sets. We show 
that one obtains provably better search complexity when the 
backdoor contains up to a certain fraction of all variables. We 
then show that a randomized search technique, which in ef­
fect repeatedly guesses backdoor sets, provably outperforms 
a deterministic search. Finally, in our third scenario we con­
sider the availability of a variable selection heuristic, which 
provides guidance towards the backdoor set. This strategy 
can yet further reduce the search space. Table 1 gives a high-
level summary of the results. By exploiting restart strategies, 
we can identify a polynomially solvable case when the back-
door contains at most log(n) variables. We believe that this 
final scenario is closest to the behavior of current effective 
SAT and constraint solvers. Our formal analysis also sug­
gests several novel algorithmic strategies that warrant further 
empirical exploration. 

2 Hidden structure: Backbones and 
Backdoors 

Our approach and analysis applies both to SAT and CSP 
problems [17]. SAT is the abbreviation for the well-studied 
Boolean satisfiability problem. CSP is the abbreviation for 
the more general problem of constraint satisfaction. 

A CSP problem, C, is characterized by a set V = 
of variables, wi th respective domains  

(which list the possible values for each vari­
able) and a set of constraints. A constraint is defined on a 
subset of variables denoting the variables' simulta­
neous legal assignments. That is, if 
then the constraint defines a subset of the Cartesian product 

To simplify notation, we w i l l assume that 
all variables have the same domain D. We use d to denote 
the size of D. An assignment is a function from variables 
to D. A solution to a CSP is a complete variable assignment 
that satisfies all constraints. A partial assignment defines the 
values of a subset of the variables in V. SAT is a special case 
of CSP with only Boolean variables 
and constraints given in the form of clauses. A clause is a 
disjunction of literals and a literal is a Boolean variable or its 
negation. 

We use the notation to denote the simplified CSP 
obtained from a CSP, C, by setting the value of variable to 
value (A constraint involving is simplified by keeping 
only the allowed tuples that have assigned to Let  
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one can distinguish between dependent and independent vari­
ables. The dependent or auxiliary variables are needed to ob­
tain compact problem encodings but the true combinatorics 
arises from the independent variables; e.g., the independent 
variables in an encoding of a planning domain represent the 
various operators applicable in a given state of the world, 
whereas the dependent variables encode the consequences of 
selecting a particular operator. A plan search technique that 
branches purely on the independent variables can obtain sub­
stantial speedups over search methods that do not exploit vari­
able dependencies [4]. 

Another powerful intuition in the design of search methods 
is that one wants to select variables that simplify the prob­
lem instance as much as possible when these variables are 
assigned values. This intuition leads to the common heuristic 
of branching on the most constrained variable first. In terms 
of Boolean satisfiability, this amounts to, in effect, focusing 
in on the tractable substructure of the problem, namely the 
unit clauses (1-SAT structure) and the binary clauses (2-SAT 
structure). The true effectiveness of this approach arises from 
the fact that setting most constraint variables also simplifies 
higher arity clauses, which either become satisfied or in turn 
shrink themselves eventually to binary or unary clauses. 

These general insights have been incorporated in state-of-
the-art SAT and constraint solvers, and their effectiveness 
has been demonstrated empirically on a significant number 
of benchmark problems [18]. However, a more formal un­
derpinning explaining the practical success of these strate­
gies has been lacking. In this paper, we introduce a formal 
framework directly inspired by these techniques and present 
rigorous complexity results that support their effectiveness. 

Preview of results. We first introduce the notion of "back-
door" variables. This is a set of variables for which there is 
a value assignment such that the simplified problem can be 
solved by a poly-time algorithm, called the "sub-solver". The 
sub-solver captures any form of poly-time simplification pro­
cedure as used in current SAT/CSP solvers. We also con­
sider the notion of a "strong backdoor" where any setting 
of the backdoor variables leads to a poly-time solvable sub-
problem. The set of all problem variables forms a trivial back-
door set, but many interesting practical problem instances 
possess much smaller backdoors and strong backdoors. We 
wi l l study backdoors in several practical problem instances, 
and identify backdoors that contain only a fraction of the to­
tal number of variables. For example, the SAT encoding of a 
logistics planning problem ( l o g i s t i c s . d . c n f ) contains 
a backdoor wi th only 12 variables out of a total of nearly 
7,000 variables. When given a set of backdoor variables of 
a problem instance, one can restrict the combinatorial search 
by branching only on the backdoor variables and thus search 
a drastically reduced space. 

In general, finding a small set of backdoor variables for a 
problem instance is, however, itself a computationally hard 
problem. One contribution of this paper is that we formally 
show how the presence of a small backdoor in a problem pro­
vides a concrete computational advantage in solving it. We 
analyze three scenarios. First, we consider a deterministic 



be a partial assignment. We use to denote 
the simplified CSP obtained by setting the variables defined 
in In a SAT problem, this corresponds to simplifying the 
formula by fixing the truth values of some of the variables. 

Our goal is to capture structural properties of real world 
problem instances. We start by reviewing the concept of a 
backbone in a SAT/CSP problem, as introduced in [141. A 
variable is called a backbone variable if in all solutions to the 
CSP the variable is assigned the same value. Such variables 
are also called frozen variables [61. Backbone variables are 
useful in studying the properties of the solution space of a 
constraint satisfaction problem. 

Definition 2.1 [backbone] S is a backbone if there is a 
unique partial assignment : such that is 
satisfiable. 

We contrast this variable type with the kind we introduce, 
backdoors. Backdoors are variable subsets defined with re­
spect to a particular algorithm; once the backdoor variables 
are assigned a value, the problem becomes easy under that 
algorithm. (Note that contrarily to the backbone there can be 
different sets of backdoor variables.) 

To begin our exposition of backdoors, we define the sort of 
algorithms we have in mind. We will call them sub-solvers, 
as they solve tractable subcases of the general constraint sat­
isfaction problem. 

Definition 2.2 A sub-solver A given as input a CSP, C, sat-
isfies the following: 

(Trichotomy) A either rejects the input C, or "deter­
mines" C correctly (as unsatisfiable or satisfiable, returning 
a solution if satisfiable), 

(Efficiency) A runs in polynomial time, 

(Trivial solvability) A can determine if C is trivially true 
(has no constraints) or trivially false (has a contradictory 
constraint), 

(Selfreducibility) if A determines C, then for any vari­
able x and value v, then A determines  

For instance, A could be an algorithm that solves 2-SAT in­
stances but rejects all other instances. It is important to note 
that the results we wil l show in this paper are independent of 
a particular sub-solver; our results wil l hold for any A satis­
fying the above four properties. 

In what follows, let A be a sub-solver, and C be a CSP. 

We first consider a notion of "backdoor" that is suitable for 
satisfiable CSPs. 

Definition 2.3 [backdoor] A nonempty subset S of the vari­
ables is a backdoor in C for A if for some A 
returns a satisfying assignment of  

Intuitively, the backdoor corresponds to a set of variables, 
such that when set correctly, the sub-solver can solve the re­
maining problem. In a sense, the backdoor is a "witness" 
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to the satisfiability of the instance, given a sub-solver algo­
rithm.1 We also introduce a stronger notion of the backdoor 
to deal with both satisfiable and unsatisfiable (inconsistent) 
problem instances. 

Definition 2.4 [strong backdoor] A nonempty subset S of 
the variables is a strong backdoor in C for A if for all 

A returns a satisfying assignment or concludes 
unsatisfiability of  

In contrast to backbones which are necessarily set to a cer­
tain value, a (strong) backdoor S is sufficient for solving a 
problem. For example, when given the backdoor for a SAT 
problem, the search cost is of order (Simply check 
all possible assignments of This means if S is relatively 
small, one obtains a large improvement over searching the 
full space of variable/value assignments. 

We observe that independent variables are a particular kind 
of backdoor. As stated in they are a set S of variables 
for which all other variables may be thought of as defined in 
terms of S. For example, a maximal subset of independent 
variables in a SAT encoding of a hardware verification prob­
lem is a backdoor for unit propagation, as the other variables' 
values may be directly determined after setting the indepen­
dent ones [19]. 

There are two key questions concerning backdoors: 

What is the size of the backdoor in practical problem 
instances? 

When taking into account the cost of searching for a 
backdoor set, can one still obtain an overall computa­
tional advantage in solving the CSP? 

We address these two key questions below. We will first 
show that practical problem instances can have surprisingly 
small backdoors. In the subsequent section, we show how 
even by taking into account the cost of searching for a back-
door, one can provably obtain an overall computational ad-
vantage by using the backdoor. As we wil l see, the magnitude 
of this improvement is, of course, a function of the size of the 
backdoor. 

3 Size of backdoors 

We did an empirical study of the size of backdoors in sev­
eral practical SAT instances, using the SAT solver Satz-rand, 
a randomized version of Satz [16]. Satz incorporates power­
ful variable selection heuristics and an efficient simplification 
strategy (i.e., a good sub-solver). We modified Satz-rand to 
trace the variables selected for branching, and to keep track of 
the minimum number of variables that need to be set before 
Satz-rand's simplification found a satisfying assignment effi­
ciently. (We are currently modifying this procedure to also 
handle unsatisfiable instances and find strong backdoors.) 

'Observe that any satisfiable CSP has a backdoor of size at most 
however, wc will see that significantly smaller backdoors arise 

in practice and give a computational advantage in search. 
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instance backdoor fract. 
logistics.d 6783 437431 12 0.0018 
3bitadd_32 8704 32316 53 0.0061 

pipe-01 7736 26087 23 0.0030 
qg_30_1 1235 8523 14 0.0113 
qg_35_1 1597 10658 15 0.0094 

Table 2: Size of backdoors for several practical SAT in­
stances. 

Table 2 summarizes our results. Our instances are from a 
variety of domains [18]. These instances are now well within 
the range of the fastest current solvers, such as Chaff [15]. 
However, they are non-trivial and cannot be solved with the 
previous generation of SAT solvers, e.g. Tableau [3]. Clearly, 
the new solvers are better able to discover and exploit hidden 
structure, such as small backdoors. In fact, as we can see from 
the table, these instances have fairly tiny backdoors. That is, 
only a very small fraction of all variables can be used to "un­
lock" a satisfying assignment. We conjecture that such small 
backdoors occur in many other real-world problem instances. 

4 Exploiting backdoors formally 

We will analyze three, increasingly powerful strategies: de-
terministic, randomized, and heuristic branching variable se­
lection. The first two are meant to work for any CSP where 
the instance has a small fraction of backdoor variables, with 
respect to the sub-solver. The randomized strategy gener­
ally outperforms the deterministic one with high probabil­
ity (1 - where is the number of variables). This 
reflects the performance gain found in practice when back­
tracking SAT solvers are augmented with randomization [15; 
9]. The third strategy yields tighter runtime bounds than the 
first two, but requires us to assume the existence of a good 
heuristic for choosing backdoor variables (which we find to 
be the case in practice). 

4.1 Determinist ic strategy 

The deterministic procedure may be construed as a gener­
alization of iterative deepening that runs over all possible 
search trees of each depth. We assume the algorithm has 
access to a particular sub-solver A running in (poly­
nomial) time, which defines the backdoor variables, and C is 
an arbitrary CSP instance. 

Algorithm 4.1 Given a CSP C with n variables, 
For  

For all subsets 5 of the variables with  
Perform a standard backtrack search (just on the vari­

ables in S) for an assignment that results in C being 
solved by sub-solver A. 

An analogous algorithm works for finding and exploiting 
strong backdoors in a CSP to prove unsatisfiability: simply 
keep track of whether all assignments to the variables in S 
result in C being a contradiction (as determined by A). Al l 
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of the following we wi l l say holds for strong backdoors and 
unsatisfiable CSPs under this modified algorithm. 

Note the procedure uses only polynomial time for CSPs 
with a constant sized backdoor. We are interested in the case 
where a backdoor of size exists, for some  
almost everywhere. The following gives a simple runtime 
bound in terms of and  

The theorem implies that when small backdoors (or strong 
backdoors) are present, a substantial speedup almost always 
results. For example: 

In our exposition of heuristic branching variable selection, 
we will see an improvement on this (a poly-time bound). For 
a visual representation of the deterministic strategy's runtime, 
when d — 2 and backdoors of size are considered, see 
Figure 1. This graph also indicates the following corollary in 
the case of SAT (proof omitted): 

Corollary 4.2 For Boolean formulas with a backdoor of size 
at most n/4.404, Algorithm 4.1 solves the formula in 
time, where c 2. 

As we have seen in the previous section, in practice, back-
doors can be quite tiny of the variables, 
for l o g i s t i c s . d. c n f ) . Therefore, these results have real 
bearing on the improved solvability of real-world CSPs. 

4.2 Randomized strategy 

Better performance results from adding randomization. This 
speed-up formally verifies a well-known fact about real-world 
solvers: augmenting a solver with randomization can dramat­
ically improve performance [9; 10]. 

Again, we assume a sub-solver A is on tap, with runtime 
Let be a poly-time computable function on N 

that bounds the backdoor size, and b be a parameter to be 
later determined. The idea is to repeatedly choose random 
subsets of variables that are larger than searching these 
subsets for a backdoor. 



Algorithm 4.2 Given a CSP C with variables, 

Repeat times (and at least once): 

Randomly choose a subset S of the variables, 
of size Perform a standard backtrack 
search on variables in S. If C is ever solvable by 
A, return the satisfying assignment. 

As before, an analogous algorithm works for general (sat-
isfiable or unsatisfiable) CSPs with strong backdoors: if every 
leaf in the search tree ends with A reporting unsatisfiability, 
then the C is unsatisfiable. 

The algorithm as stated requires a priori knowledge of 
This may be corrected by choosing a constant 

then running the algorithm assuming a backdoor of size 1. If 
that fails, run it again assuming a backdoor of size a, then a 2 , 

etc., until a solution to C is found. 

Theorem 4.2 If C has a backdoor of size Algorithm 
4.2 finds a satisfying assignment with probability approach­
ing 1. 

Proof. Given there is a -sized backdoor in C, the 
probability that a randomly chosen S of size 
contains the entire backdoor is at least 

Setting the probability that backtracking re­

sults in A finding a solution is at least  

due to the self-reducibility property of A. 
Repeating this experiment times, the al­
gorithm succeeds with probability at least   

One can show that the algorithm runs in 
time. It 

remains to choose b to minimize this expression. As b 
depends directly on we evaluate two natural cases for 

When B(n) =. klogu for some constant k, the runtime 
is for some constant For 
large the runtime is optimized when is constant; it is 

an improvement over the deterministic bound. 

When for some constant we can show 
the runtime is minimized when resulting in a 

time bound. For 
example, when d = 2 (the case of SAT), and 
the following holds. 
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Corollary 4.3 For Boolean formulas with at most 
backdoor variables, Algorithm 4.2 solves the formula in 

time, where c 2. 

In the Corollary, c is a function of A:. See Figure 1. 

Figure 1: Improved exponential time. When d = 2 (SAT) and 
the size of the backbone is a constant fraction of the number of vari­
ables the runtime of Alg. 4.1 (deterministic) and 
4.2 (randomized) is of the form (vertical axis) is a function 
of k. The top curve gives c as a function of k for the deterministic 
procedure. The bottom curve gives c for the randomized procedure. 
Note that for the randomized algorithm performs expo­
nentially better than whereas such an exponential improvement 
for the deterministic algorithm does not occur until  

4.3 Heurist ic strategy 

So far, we have considered general systematic and ran­
domized search strategies for finding and exploiting back-
doors. However, practical combinatorial solvers generally 
use heuristics to guide the variable selection process. As 
noted in the introduction, a common principle is to first 
branch on variables that simplify an instance the most. In 
effect, this means such heuristics steer the variable choice 
towards variables in a backdoor set. We will now formally 
analyze such heuristic guidance. 

Restart Strategies for Heuristic Search. By incorporat­
ing the notion of a variable choice heuristic into our frame-
work, our results are further sharpened. We consider the case 
where a randomized depth-first search (DFS) solver with a 
sub-solver A is running on an instance C having a backdoor 
of size B. The solver chooses variables to branch on accord­
ing to a heuristic H, which has a success probability of at 
least of choosing a backdoor variable at any point in 
the search. We will use the notation (DFS,H,.4) to denote 
a solver with the above properties. 

Informally, a restart strategy is simply a policy that restarts 
a solver after running it for a specified amount of time, until 
a solution is found. Our main result here gives a condition 
under which a polynomial time restart strategy exists for DFS 
solving CSPs with small backdoors. 

Theorem 4.3 If the size of a backdoor of a CSP C is B  
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for some constant c, then (DFS,H,A) has a restart 
strategy that solves C in polynomial time. 

Proof. Since the probabil i ty of choosing a backdoor vari­
able is at l e a s t t h e probabil i ty that we consecutively 
choose them is The probabil i ty of choosing the cor­
rect solution wi th only a polynomial amount of backtracking 
i n the DFS i s a t l e a s t f o r some constant Sup­
pose for some constant c. Then 
by restarting the solver after every steps (where 
is the runtime of A), there is probabil i ty in each run that 
the backdoor w i l l be found wi th in a amount of back­
tracking, and set correctly. From this one can show that the 
above inequality holds precisely w h e n f o r 
some constant c.   

An analogous result holds for strong backdoors. It turns 
out that the given bound on D is asymptotically t ight; we w i l l 
not prove that here. When the variable domain size is constant 
(e.g. SAT, 3-coloring, etc.), we have the fo l lowing. Let / be 
any poly-t ime computable function on the natural numbers. 

Coro l la ry 4.4 Given CSPs w i t h b a c k d o o r for 

which H has success probability has a 
polynomial time restart strategy. 

When the success probabil i ty is constant, then CSPs wi th 
O ( l o g n ) backdoors can be solved using a polynomial t ime 
restart strategy on (DFS ,H ,A ) . This result is the best possible 
in terms of backdoor size, as it would take super-polynomial 
time to search for a solution among backdoor vari­
ables. The heuristic search runtime when is 
sti l l exponential, but this exponential drops dramatically as 

decreases, even when compared to the previous two al­
gorithms. That is, the runtime is on the order of where  

(recall is the domain size and is success 
probabil i ty). 

Fo rma l Discovery of Heavy-Tai ls in Heur is t ic Search. 
We briefly outline our theoretical results connecting the 
heuristic search model described earlier wi th heavy-tailed 
runtime phenomena found empirical ly 19]. It was conjec­
tured that "cr i t ical ly constrained" variables were a cause of 
the heavy-tailed behavior. We can prove that small sets of 
backdoor variables lead to runtime profiles that are bounded 
from below by heavy-tails. 

The analysis that achieves this result introduces a self-
similar binary tree structure, which we call a variable choice 
tree. Such trees recursively model a heuristic's selection of 
backdoor variables; as more backdoor variables are chosen, 
the resulting search cost is much lower. It turns out that back­
tracking solvers wi th variable choice heuristics can be mod­
eled precisely by these variable choice trees, when the size of 
a backdoor in the instance is small. Analysis of these trees 
leads to the fo l lowing: 

Theorem 4.4 (Heavy-tail lower bound) If the backdoor size 
of an CSP C is then the runtime distribution of 
(DFS,A,H) on C is lower-bounded by a Pareto-Levy distri-
bution, when the success probability of H is constant. 

5 Conclusions 

We have formalized the idea of backdoor variables in 
CSP/SAT instances. Backdoor variables can be used to sig­
nificantly reduce the search needed in solving CSP/SAT prob­
lems. We showed that practical instances can have surpris­
ingly small backdoors. We also provided a detailed formal 
analysis demonstrating that one can obtain a concrete com­
putational advantage by exploit ing such backdoors. 
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