
SATISFIABILITY

Ryan Williams *
Computer Science Dept.

Carnegie Mellon University

Pittsburgh, PA 15213

ryanw@cs.emu.edu

Backdoors To Typical Case Complexity

Carla P. Gomes
Dept. of Computer Science

Cornell University

Ithaca, NY 14853

gomes@cs.Cornell.edu

Bart Selman
Dept. of Computer Science

Cornell University

Ithaca, NY 14853

selman@cs.Cornell.edu

Abstract

There has been significant recent progress in rea­
soning and constraint processing methods. In areas
such as planning and finite model-checking, cur­
rent solution techniques can handle combinatorial
problems with up to a million variables and five
million constraints. The good scaling behavior of
these methods appears to defy what one would ex­
pect based on a worst-case complexity analysis. In
order to bridge this gap between theory and prac­
tice, we propose a new framework for studying the
complexity of these techniques on practical prob­
lem instances. In particular, our approach incorpo­
rates general structural properties observed in prac­
tical problem instances into the formal complexity
analysis. We introduce a notion of "backdoors",
which are small sets of variables that capture the
overall combinatorics of the problem instance. We
provide empirical results showing the existence of
such backdoors in real-world problems. We then
present a series of complexity results that explain
the good scaling behavior of current reasoning and
constraint methods observed on practical problem
instances.

1 Introduction

Most interesting AI formalisms for reasoning, planning, and
learning have been shown to be worst-case intractable. In
the eighties and early nineties, such negative complexity re­
sults led to an extensive search for tractable subclasses of
the general formalisms. Unfortunately, these tractable sub­
classes were often too restrictive for real-world applications.
In the mid-nineties, we saw the emergence of a more practical
approach to computationally hard problems in A I , with the
introduction of fast satisfiability solvers and fast constraint
based reasoning methods [17]. For example, in planning we
saw the success of constraint-based planners, such as Graph-
plan [2] and SatPlan 113], and most recently, heuristic search

*Supported in part by an NSF Graduate Fellowship and the NSF
ALADDIN Center.

Research supported by AFOSR, Darpa, and the NSF.

based planners, e.g., [11; 8; 1]. Somewhat surprisingly, on
practical problem instances these methods scale well beyond
what one might expect based on a formal complexity anal­
ysis. In fact, current state-of-the-art SAT solvers can han­
dle problem instances, as they arise in finite model-checking
and planning, with up to a million variables and five million
clauses [15]. The success of these methods appears to hinge
on a combination of two factors: (1) practical combinato­
rial problem instances generally have a substantial amount
of (hidden) tractable sub-structure, and (2) new algorithmic
techniques exploit such tractable structure, through, e.g., ran­
domization and constraint learning.

These developments suggest that a standard worst-case
complexity analysis does not capture well the true complex­
ity of typical problem instances encountered in practical ap­
plications. Theoretical computer scientists have been well-
aware of the limitations of worst-case complexity results and
have explored alternatives, such as average-case complexity
and smoothed analysis [20]. In average-case analysis, one
studies the computational cost of solving problem instances
drawn from a predefined problem distribution. Such an anal­
ysis can provide valuable insights, as demonstrated by the
work on uniform random instance distributions (e.g. ran­
dom k-SAT). However, the relatively basic distributions for
which one can obtain average-complexity results appear to
be quite far removed from the instance distributions one en­
counters in practice. In fact, formally defining the distribution
of real-world problem instances is generally an open prob­
lem in itself. Smoothed analysis attempts to unify worst-case
and average-case, but suffers from limited applicability: it
works well on algorithms for problems defined over dense
fields such as the simplex algorithm, but the applicability of
smoothed analysis on discrete problem domains is unclear.

An alternative approach, which we wil l pursue in this pa­
per, is to identify special structural properties common to
known problem instances and rigorously show how clever
algorithms can exploit such properties. Informal insights
about what such special structure might be are currently al­
ready used in the design of, for example, branching and vari­
able choice heuristics in combinatorial search methods. A
common feature of these techniques is an understanding that
different groups of variables in a problem encoding often
play quite distinct roles. For example, at the highest level,

1173

Table 1: Time bounds for solving CSPs in the various scenarios
considered in this work. is an upper bound on the size of
the smallest backdoor, where is the number of variables in the
problem, is a fixed constant. Empirical results (Section 3) suggest
that for practical instances the backdoor is often a relatively small
fraction of or even of size log

scenario with an exhaustive search of backdoor sets. We show
that one obtains provably better search complexity when the
backdoor contains up to a certain fraction of all variables. We
then show that a randomized search technique, which in ef­
fect repeatedly guesses backdoor sets, provably outperforms
a deterministic search. Finally, in our third scenario we con­
sider the availability of a variable selection heuristic, which
provides guidance towards the backdoor set. This strategy
can yet further reduce the search space. Table 1 gives a high-
level summary of the results. By exploiting restart strategies,
we can identify a polynomially solvable case when the back-
door contains at most log(n) variables. We believe that this
final scenario is closest to the behavior of current effective
SAT and constraint solvers. Our formal analysis also sug­
gests several novel algorithmic strategies that warrant further
empirical exploration.

2 Hidden structure: Backbones and
Backdoors

Our approach and analysis applies both to SAT and CSP
problems [17]. SAT is the abbreviation for the well-studied
Boolean satisfiability problem. CSP is the abbreviation for
the more general problem of constraint satisfaction.

A CSP problem, C, is characterized by a set V =
of variables, wi th respective domains

(which list the possible values for each vari­
able) and a set of constraints. A constraint is defined on a
subset of variables denoting the variables' simulta­
neous legal assignments. That is, if
then the constraint defines a subset of the Cartesian product

To simplify notation, we w i l l assume that
all variables have the same domain D. We use d to denote
the size of D. An assignment is a function from variables
to D. A solution to a CSP is a complete variable assignment
that satisfies all constraints. A partial assignment defines the
values of a subset of the variables in V. SAT is a special case
of CSP with only Boolean variables
and constraints given in the form of clauses. A clause is a
disjunction of literals and a literal is a Boolean variable or its
negation.

We use the notation to denote the simplified CSP
obtained from a CSP, C, by setting the value of variable to
value (A constraint involving is simplified by keeping
only the allowed tuples that have assigned to Let

SATISFIABILITY 1174

one can distinguish between dependent and independent vari­
ables. The dependent or auxiliary variables are needed to ob­
tain compact problem encodings but the true combinatorics
arises from the independent variables; e.g., the independent
variables in an encoding of a planning domain represent the
various operators applicable in a given state of the world,
whereas the dependent variables encode the consequences of
selecting a particular operator. A plan search technique that
branches purely on the independent variables can obtain sub­
stantial speedups over search methods that do not exploit vari­
able dependencies [4].

Another powerful intuition in the design of search methods
is that one wants to select variables that simplify the prob­
lem instance as much as possible when these variables are
assigned values. This intuition leads to the common heuristic
of branching on the most constrained variable first. In terms
of Boolean satisfiability, this amounts to, in effect, focusing
in on the tractable substructure of the problem, namely the
unit clauses (1-SAT structure) and the binary clauses (2-SAT
structure). The true effectiveness of this approach arises from
the fact that setting most constraint variables also simplifies
higher arity clauses, which either become satisfied or in turn
shrink themselves eventually to binary or unary clauses.

These general insights have been incorporated in state-of-
the-art SAT and constraint solvers, and their effectiveness
has been demonstrated empirically on a significant number
of benchmark problems [18]. However, a more formal un­
derpinning explaining the practical success of these strate­
gies has been lacking. In this paper, we introduce a formal
framework directly inspired by these techniques and present
rigorous complexity results that support their effectiveness.

Preview of results. We first introduce the notion of "back-
door" variables. This is a set of variables for which there is
a value assignment such that the simplified problem can be
solved by a poly-time algorithm, called the "sub-solver". The
sub-solver captures any form of poly-time simplification pro­
cedure as used in current SAT/CSP solvers. We also con­
sider the notion of a "strong backdoor" where any setting
of the backdoor variables leads to a poly-time solvable sub-
problem. The set of all problem variables forms a trivial back-
door set, but many interesting practical problem instances
possess much smaller backdoors and strong backdoors. We
wi l l study backdoors in several practical problem instances,
and identify backdoors that contain only a fraction of the to­
tal number of variables. For example, the SAT encoding of a
logistics planning problem (l o g i s t i c s . d . c n f) contains
a backdoor wi th only 12 variables out of a total of nearly
7,000 variables. When given a set of backdoor variables of
a problem instance, one can restrict the combinatorial search
by branching only on the backdoor variables and thus search
a drastically reduced space.

In general, finding a small set of backdoor variables for a
problem instance is, however, itself a computationally hard
problem. One contribution of this paper is that we formally
show how the presence of a small backdoor in a problem pro­
vides a concrete computational advantage in solving it. We
analyze three scenarios. First, we consider a deterministic

be a partial assignment. We use to denote
the simplified CSP obtained by setting the variables defined
in In a SAT problem, this corresponds to simplifying the
formula by fixing the truth values of some of the variables.

Our goal is to capture structural properties of real world
problem instances. We start by reviewing the concept of a
backbone in a SAT/CSP problem, as introduced in [141. A
variable is called a backbone variable if in all solutions to the
CSP the variable is assigned the same value. Such variables
are also called frozen variables [61. Backbone variables are
useful in studying the properties of the solution space of a
constraint satisfaction problem.

Definition 2.1 [backbone] S is a backbone if there is a
unique partial assignment : such that is
satisfiable.

We contrast this variable type with the kind we introduce,
backdoors. Backdoors are variable subsets defined with re­
spect to a particular algorithm; once the backdoor variables
are assigned a value, the problem becomes easy under that
algorithm. (Note that contrarily to the backbone there can be
different sets of backdoor variables.)

To begin our exposition of backdoors, we define the sort of
algorithms we have in mind. We will call them sub-solvers,
as they solve tractable subcases of the general constraint sat­
isfaction problem.

Definition 2.2 A sub-solver A given as input a CSP, C, sat-
isfies the following:

(Trichotomy) A either rejects the input C, or "deter­
mines" C correctly (as unsatisfiable or satisfiable, returning
a solution if satisfiable),

(Efficiency) A runs in polynomial time,

(Trivial solvability) A can determine if C is trivially true
(has no constraints) or trivially false (has a contradictory
constraint),

(Selfreducibility) if A determines C, then for any vari­
able x and value v, then A determines

For instance, A could be an algorithm that solves 2-SAT in­
stances but rejects all other instances. It is important to note
that the results we wil l show in this paper are independent of
a particular sub-solver; our results wil l hold for any A satis­
fying the above four properties.

In what follows, let A be a sub-solver, and C be a CSP.

We first consider a notion of "backdoor" that is suitable for
satisfiable CSPs.

Definition 2.3 [backdoor] A nonempty subset S of the vari­
ables is a backdoor in C for A if for some A
returns a satisfying assignment of

Intuitively, the backdoor corresponds to a set of variables,
such that when set correctly, the sub-solver can solve the re­
maining problem. In a sense, the backdoor is a "witness"

SATISFIABILITY

to the satisfiability of the instance, given a sub-solver algo­
rithm.1 We also introduce a stronger notion of the backdoor
to deal with both satisfiable and unsatisfiable (inconsistent)
problem instances.

Definition 2.4 [strong backdoor] A nonempty subset S of
the variables is a strong backdoor in C for A if for all

A returns a satisfying assignment or concludes
unsatisfiability of

In contrast to backbones which are necessarily set to a cer­
tain value, a (strong) backdoor S is sufficient for solving a
problem. For example, when given the backdoor for a SAT
problem, the search cost is of order (Simply check
all possible assignments of This means if S is relatively
small, one obtains a large improvement over searching the
full space of variable/value assignments.

We observe that independent variables are a particular kind
of backdoor. As stated in they are a set S of variables
for which all other variables may be thought of as defined in
terms of S. For example, a maximal subset of independent
variables in a SAT encoding of a hardware verification prob­
lem is a backdoor for unit propagation, as the other variables'
values may be directly determined after setting the indepen­
dent ones [19].

There are two key questions concerning backdoors:

What is the size of the backdoor in practical problem
instances?

When taking into account the cost of searching for a
backdoor set, can one still obtain an overall computa­
tional advantage in solving the CSP?

We address these two key questions below. We will first
show that practical problem instances can have surprisingly
small backdoors. In the subsequent section, we show how
even by taking into account the cost of searching for a back-
door, one can provably obtain an overall computational ad-
vantage by using the backdoor. As we wil l see, the magnitude
of this improvement is, of course, a function of the size of the
backdoor.

3 Size of backdoors

We did an empirical study of the size of backdoors in sev­
eral practical SAT instances, using the SAT solver Satz-rand,
a randomized version of Satz [16]. Satz incorporates power­
ful variable selection heuristics and an efficient simplification
strategy (i.e., a good sub-solver). We modified Satz-rand to
trace the variables selected for branching, and to keep track of
the minimum number of variables that need to be set before
Satz-rand's simplification found a satisfying assignment effi­
ciently. (We are currently modifying this procedure to also
handle unsatisfiable instances and find strong backdoors.)

'Observe that any satisfiable CSP has a backdoor of size at most
however, wc will see that significantly smaller backdoors arise

in practice and give a computational advantage in search.

1175

instance backdoor fract.
logistics.d 6783 437431 12 0.0018
3bitadd_32 8704 32316 53 0.0061

pipe-01 7736 26087 23 0.0030
qg_30_1 1235 8523 14 0.0113
qg_35_1 1597 10658 15 0.0094

Table 2: Size of backdoors for several practical SAT in­
stances.

Table 2 summarizes our results. Our instances are from a
variety of domains [18]. These instances are now well within
the range of the fastest current solvers, such as Chaff [15].
However, they are non-trivial and cannot be solved with the
previous generation of SAT solvers, e.g. Tableau [3]. Clearly,
the new solvers are better able to discover and exploit hidden
structure, such as small backdoors. In fact, as we can see from
the table, these instances have fairly tiny backdoors. That is,
only a very small fraction of all variables can be used to "un­
lock" a satisfying assignment. We conjecture that such small
backdoors occur in many other real-world problem instances.

4 Exploiting backdoors formally

We will analyze three, increasingly powerful strategies: de-
terministic, randomized, and heuristic branching variable se­
lection. The first two are meant to work for any CSP where
the instance has a small fraction of backdoor variables, with
respect to the sub-solver. The randomized strategy gener­
ally outperforms the deterministic one with high probabil­
ity (1 - where is the number of variables). This
reflects the performance gain found in practice when back­
tracking SAT solvers are augmented with randomization [15;
9]. The third strategy yields tighter runtime bounds than the
first two, but requires us to assume the existence of a good
heuristic for choosing backdoor variables (which we find to
be the case in practice).

4.1 Determinist ic strategy

The deterministic procedure may be construed as a gener­
alization of iterative deepening that runs over all possible
search trees of each depth. We assume the algorithm has
access to a particular sub-solver A running in (poly­
nomial) time, which defines the backdoor variables, and C is
an arbitrary CSP instance.

Algorithm 4.1 Given a CSP C with n variables,
For

For all subsets 5 of the variables with
Perform a standard backtrack search (just on the vari­

ables in S) for an assignment that results in C being
solved by sub-solver A.

An analogous algorithm works for finding and exploiting
strong backdoors in a CSP to prove unsatisfiability: simply
keep track of whether all assignments to the variables in S
result in C being a contradiction (as determined by A). Al l

1176

of the following we wi l l say holds for strong backdoors and
unsatisfiable CSPs under this modified algorithm.

Note the procedure uses only polynomial time for CSPs
with a constant sized backdoor. We are interested in the case
where a backdoor of size exists, for some
almost everywhere. The following gives a simple runtime
bound in terms of and

The theorem implies that when small backdoors (or strong
backdoors) are present, a substantial speedup almost always
results. For example:

In our exposition of heuristic branching variable selection,
we will see an improvement on this (a poly-time bound). For
a visual representation of the deterministic strategy's runtime,
when d — 2 and backdoors of size are considered, see
Figure 1. This graph also indicates the following corollary in
the case of SAT (proof omitted):

Corollary 4.2 For Boolean formulas with a backdoor of size
at most n/4.404, Algorithm 4.1 solves the formula in
time, where c 2.

As we have seen in the previous section, in practice, back-
doors can be quite tiny of the variables,
for l o g i s t i c s . d. c n f) . Therefore, these results have real
bearing on the improved solvability of real-world CSPs.

4.2 Randomized strategy

Better performance results from adding randomization. This
speed-up formally verifies a well-known fact about real-world
solvers: augmenting a solver with randomization can dramat­
ically improve performance [9; 10].

Again, we assume a sub-solver A is on tap, with runtime
Let be a poly-time computable function on N

that bounds the backdoor size, and b be a parameter to be
later determined. The idea is to repeatedly choose random
subsets of variables that are larger than searching these
subsets for a backdoor.

Algorithm 4.2 Given a CSP C with variables,

Repeat times (and at least once):

Randomly choose a subset S of the variables,
of size Perform a standard backtrack
search on variables in S. If C is ever solvable by
A, return the satisfying assignment.

As before, an analogous algorithm works for general (sat-
isfiable or unsatisfiable) CSPs with strong backdoors: if every
leaf in the search tree ends with A reporting unsatisfiability,
then the C is unsatisfiable.

The algorithm as stated requires a priori knowledge of
This may be corrected by choosing a constant

then running the algorithm assuming a backdoor of size 1. If
that fails, run it again assuming a backdoor of size a, then a 2 ,

etc., until a solution to C is found.

Theorem 4.2 If C has a backdoor of size Algorithm
4.2 finds a satisfying assignment with probability approach­
ing 1.

Proof. Given there is a -sized backdoor in C, the
probability that a randomly chosen S of size
contains the entire backdoor is at least

Setting the probability that backtracking re­

sults in A finding a solution is at least

due to the self-reducibility property of A.
Repeating this experiment times, the al­
gorithm succeeds with probability at least

One can show that the algorithm runs in
time. It

remains to choose b to minimize this expression. As b
depends directly on we evaluate two natural cases for

When B(n) =. klogu for some constant k, the runtime
is for some constant For
large the runtime is optimized when is constant; it is

an improvement over the deterministic bound.

When for some constant we can show
the runtime is minimized when resulting in a

time bound. For
example, when d = 2 (the case of SAT), and
the following holds.

SATISFIABILITY

Corollary 4.3 For Boolean formulas with at most
backdoor variables, Algorithm 4.2 solves the formula in

time, where c 2.

In the Corollary, c is a function of A:. See Figure 1.

Figure 1: Improved exponential time. When d = 2 (SAT) and
the size of the backbone is a constant fraction of the number of vari­
ables the runtime of Alg. 4.1 (deterministic) and
4.2 (randomized) is of the form (vertical axis) is a function
of k. The top curve gives c as a function of k for the deterministic
procedure. The bottom curve gives c for the randomized procedure.
Note that for the randomized algorithm performs expo­
nentially better than whereas such an exponential improvement
for the deterministic algorithm does not occur until

4.3 Heurist ic strategy

So far, we have considered general systematic and ran­
domized search strategies for finding and exploiting back-
doors. However, practical combinatorial solvers generally
use heuristics to guide the variable selection process. As
noted in the introduction, a common principle is to first
branch on variables that simplify an instance the most. In
effect, this means such heuristics steer the variable choice
towards variables in a backdoor set. We will now formally
analyze such heuristic guidance.

Restart Strategies for Heuristic Search. By incorporat­
ing the notion of a variable choice heuristic into our frame-
work, our results are further sharpened. We consider the case
where a randomized depth-first search (DFS) solver with a
sub-solver A is running on an instance C having a backdoor
of size B. The solver chooses variables to branch on accord­
ing to a heuristic H, which has a success probability of at
least of choosing a backdoor variable at any point in
the search. We will use the notation (DFS,H,.4) to denote
a solver with the above properties.

Informally, a restart strategy is simply a policy that restarts
a solver after running it for a specified amount of time, until
a solution is found. Our main result here gives a condition
under which a polynomial time restart strategy exists for DFS
solving CSPs with small backdoors.

Theorem 4.3 If the size of a backdoor of a CSP C is B

1177

1178

for some constant c, then (DFS,H,A) has a restart
strategy that solves C in polynomial time.

Proof. Since the probabil i ty of choosing a backdoor vari­
able is at l e a s t t h e probabil i ty that we consecutively
choose them is The probabil i ty of choosing the cor­
rect solution wi th only a polynomial amount of backtracking
i n the DFS i s a t l e a s t f o r some constant Sup­
pose for some constant c. Then
by restarting the solver after every steps (where
is the runtime of A), there is probabil i ty in each run that
the backdoor w i l l be found wi th in a amount of back­
tracking, and set correctly. From this one can show that the
above inequality holds precisely w h e n f o r
some constant c.

An analogous result holds for strong backdoors. It turns
out that the given bound on D is asymptotically t ight; we w i l l
not prove that here. When the variable domain size is constant
(e.g. SAT, 3-coloring, etc.), we have the fo l lowing. Let / be
any poly-t ime computable function on the natural numbers.

Coro l la ry 4.4 Given CSPs w i t h b a c k d o o r for

which H has success probability has a
polynomial time restart strategy.

When the success probabil i ty is constant, then CSPs wi th
O (l o g n) backdoors can be solved using a polynomial t ime
restart strategy on (DFS ,H ,A) . This result is the best possible
in terms of backdoor size, as it would take super-polynomial
time to search for a solution among backdoor vari­
ables. The heuristic search runtime when is
sti l l exponential, but this exponential drops dramatically as

decreases, even when compared to the previous two al­
gorithms. That is, the runtime is on the order of where

(recall is the domain size and is success
probabil i ty).

Fo rma l Discovery of Heavy-Tai ls in Heur is t ic Search.
We briefly outline our theoretical results connecting the
heuristic search model described earlier wi th heavy-tailed
runtime phenomena found empirical ly 19]. It was conjec­
tured that "cr i t ical ly constrained" variables were a cause of
the heavy-tailed behavior. We can prove that small sets of
backdoor variables lead to runtime profiles that are bounded
from below by heavy-tails.

The analysis that achieves this result introduces a self-
similar binary tree structure, which we call a variable choice
tree. Such trees recursively model a heuristic's selection of
backdoor variables; as more backdoor variables are chosen,
the resulting search cost is much lower. It turns out that back­
tracking solvers wi th variable choice heuristics can be mod­
eled precisely by these variable choice trees, when the size of
a backdoor in the instance is small. Analysis of these trees
leads to the fo l lowing:

Theorem 4.4 (Heavy-tail lower bound) If the backdoor size
of an CSP C is then the runtime distribution of
(DFS,A,H) on C is lower-bounded by a Pareto-Levy distri-
bution, when the success probability of H is constant.

5 Conclusions

We have formalized the idea of backdoor variables in
CSP/SAT instances. Backdoor variables can be used to sig­
nificantly reduce the search needed in solving CSP/SAT prob­
lems. We showed that practical instances can have surpris­
ingly small backdoors. We also provided a detailed formal
analysis demonstrating that one can obtain a concrete com­
putational advantage by exploit ing such backdoors.

References
[1] F. Bacchus and F. Kabanza. Using temporal logics to express

search control knowledge for planning. AIJ 116, 2000.
[2] A. Blum and M. Furst. Fast planning through planning graph

analysis. Proc. IJCAI-95, 1636-1642, 1995.

13] J. Crawford. Tableau SAT solver, www.informatik.tu-
darmstadt.de/AI/SATLIB/

[4] A. Gerevini and I. Serina. Planning as Propositional CSP:
from Walksat to Local Search. CONSTRAINTS, to appear.

[5] H. Chen, C, Gomes, and B. Selman. Formal models of heavy-
tailed behavior in combinatorial search, Proc. CP'OJ, 408-
422,2001.

[6] J. Culberson and I. P. Gent. Well out of reach: why hard prob­
lems are hard, Tech Report APES-13-1999, APES Research
Group, 1999.

[7] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity
and expressive power of logic programming, ACM Computing
Surveys 33(3): 374-425, 2001.

[8] I I . Geffner. Perspectives on Artificial Intelligence Planning,
Proc. AAAI, 1013-1023, 2002.

[9] C. Gomes, B. Selman, N. Crato, and I I . Kautz. Heavy-Tailed
Phenomena in Satisfiability and Constraint Satisfaction Prob­
lems, J Autom. Reasoning 24: 67-100, 2000.

[10] C. Gomes, B. Selman, and H. Kautz. Boosting Combinatorial
Search Through Randomization, Proc. AAAI'98, 1998.

[I l] J. Hoffman and B. Nebel. The FF Planning System, JAIR
14:253-302,2001.

[12] H. Kautz, D. McAllester, and B. Selman. Exploiting Variable
Dependency in Local Search, Proc. IJCAI, 1997.

[13] H. Kautz and B. Selman. Planning as satisfiability, Proc. 10th
European Conf. on Al, 359-363, 1992.

[14] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and
L. Troyansky, Determining Computational Complexity from
Characteristic 'Phase Transitions', Nature 400: 133-137,
1999.

[15] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an Efficient SAT Solver, Proc. DAC, 2001.

[16] C M . Li and Anbulagan. Heuristics based on unit propagation
for satisfiability problems, Proc. IJCAI, 366-371, 1997.

[17] S. Russell and P. Norvig. Artificial Intelligence: A Modern
Approach, 2nd ed., Prentice Hall, 2002.

[18] SAT benchmarks. http://www.lri.frrsimon/satex/satex.php3
[19] J. P. M. Silva, Search Algorithms for Satisfiability Problems

in Combinatorial Switching Circuits, Ph.D. Thesis, Dept. of
EECS, U. Michigan, 1995.

[20] D. Spielman and S.-H. Teng. Smoothed Analysis: Why the
Simplex Algorithm Usually Takes Polynomial Time, Proc.
STOC, 296-305, 2001.

SATISFIABILITY

