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Background-Foreground Modeling Based on

Spatiotemporal Sparse Subspace Clustering
Sajid Javed, Arif Mahmood, Thierry Bouwmans, and Soon Ki Jung, Senior Member, IEEE,

Abstract—Background estimation and foreground segmenta-
tion are important steps in many high-level vision tasks. Many
existing methods estimate background as a low-rank component
and foreground as a sparse matrix without incorporating the
structural information. Therefore, these algorithms exhibit de-
graded performance in the presence of dynamic backgrounds,
photometric variations, jitter, shadows, and large occlusions. We
observe that these backgrounds often span multiple manifolds.
Therefore, constraints that ensure continuity on those manifolds
will result in better background estimation. Hence, we propose to
incorporate the spatial and temporal sparse subspace clustering
into the RPCA framework. To that end, we compute a spatial
and temporal graph for a given sequence using motion-aware
correlation coefficient. The information captured by both graphs
is utilized by estimating the proximity matrices using both
the normalized Euclidean and geodesic distances. The low-rank
component must be able to efficiently partition the spatiotem-
poral graphs using these Laplacian matrices. Embedded with
the RPCA objective function, these Laplacian matrices constrain
the background model to be spatially and temporally consistent,
both on linear and nonlinear manifolds. The solution of the
proposed objective function is computed by using the LADMAP
optimization scheme. Experiments are performed on challenging
sequences from five publicly available datasets and are compared
with 23 existing state-of-the-art methods. The results demonstrate
excellent performance of the proposed algorithm for both back-
ground estimation and foreground segmentation.

Index Terms—Background modeling, Foreground Detection,
Graph Regularization, Subspace Clustering, Robust Principal
Component Analysis.

I. INTRODUCTION

BACKGROUND estimation and foreground segmentation

originate in numerous applications in computer vision

including moving object detection [65], video surveillance [4],

visual object tracking [59], and salient motion detection [15].

Background modeling is mainly intended to efficiently and

accurately extract a model which describes the scene without

foreground objects. On the other hand, foreground detection

is intended for segmenting moving objects from the known

background model [2], [32], [35]. Both of these methods

become challenging in the presence of dynamic background,

changing lighting conditions, and jitter induced by the sensor.

Background modeling also suffers in the presence of occlusion

because of foreground objects. A number of techniques have

been proposed in literature that mostly address relatively

S. Javed and S. K. Jung are with Virtual Reality Laboratory, the
School of Computer Science and Engineering, Kyungpook National Uni-
versity, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea. (e-mail:
sajid@vr.knu.ac.kr, skjung@knu.ac.kr). (corresponding author: Soon Ki Jung)

A. Mahmood is with Department of Computer Science and Engineering,
Qatar University, Qatar. (email: arif.mahmood@qu.edu.qa)

T. Bouwmans is with Universite de La Rochelle, Laboratoire Mathema-
tiques, Image et Applications (MIA), 23 Avenue Albert Einstein, La Rochelle,
BP 33060-17301, France. (email: tbouwman@univ-lr.fr)

Sequence of input images

(a) (b) (c) (d) (e) 

Background model estimation using RPCA methods [35], [65]

Background model estimation using Proposed MSCL algorithm

Fig. 1. Estimated background examples in the SBM.net dataset [37]: (a)
Sequence ‘IMB01 from the category ‘intermittent object motion contains
redundant frames. (b) Sequence ‘camera parameter from the category ‘illu-
mination changes. (c) Sequence ‘People & Foliage from the category ‘clutter
has large occlusions. (d) Sequence ‘boulvardJam from the category ‘clutter
has dominant foreground. (e) Sequence ‘overpass from the category ‘dynamic
motion has always moving objects. In all of these cases, the proposed MSCL
algorithm has produced significant improvement.

simple scenarios for the estimation of background and/or

foreground component [2].

As an example, most methods perform well when the pixels

or regions of the background are visible for longer periods

in the training data. Furthermore, the performance of many

methods [11], [31], [57] degrades significantly in real-time

scenarios, especially if the background scene is visible for

short periods. Moreover, the performance of foreground detec-

tion methods is also effected by the dynamic pixels, such as

those caused by the rippling of water surface, swaying of trees,

and sudden variations in lighting conditions. Recently, Robust

Principal Component Analysis (RPCA) has been shown to

be an efficient framework for segregating background and

foreground components [7], [53]. In RPCA, Wright et al.

[53] considered background-foreground modeling as a matrix

decomposition problem:

B,F
min||B||∗+λ1||F||1 such that X = B + F, (1)

where X = [x1, x2, ..., xn] ∈ R
p×n is the input video sequence

of n frames, and each xi ∈ R
p denotes i-th frame. The

low-rank component B corresponds to the background model

whereas the locally deforming regions called foreground con-

stitute the sparse matrix F. This decomposition is achieved by
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Fig. 2. (a) and (c) Temporal graphs of the dynamic background sequences
‘Water Surface‘ and ‘Campus‘ from the I2R dataset [26]. (b) and (d)
Corresponding spatial graphs of the same sequences. The edges are removed to
avoid clutter. These graphs are plotted using three major principal components
of the geodesic space. The different colors indicate different clusters computed
using subspace spectral clustering in the geodesic space. The shapes of
different clusters as well as the individual graphs are nonlinear, indicating
that the background sequences span multiple nonlinear manifolds.

solving a convex optimization method [7]. In (1), ||·||∗ denotes

the nuclear norm, which is defined as the sum of all singular

values, and ||·||1 is the l1-norm. Nuclear norm enforces the

background images to be linearly correlated, and the l1-norm

constrains the foreground matrix to be sparse.

In many real scenarios, traditional RPCA methods [11],

[35], [65] suffer from some obvious limitations. For example,

many real-world scenarios contain redundant information in

the form of motionless frames, where foreground objects

remain static for long durations and then start moving. If

the redundant information is not properly handled, the outlier

regions will also appear in the estimated background (Fig. 1

(a)). Furthermore, sudden photometric variations of the back-

ground increase its rank; therefore, the low-rank background

model estimation fails (Fig. 1 (b)). If both background and

foreground coexist in each frame, the low-rank component

cannot efficiently capture the background model because of

abrupt changes (Fig. 1 (c)-(d)). In the case of some dynamic

background sequences, the low-rank component fails to esti-

mate the background model (Fig. 1 (e)). Given these common

real-world scenarios, the existing methods fail to achieve good

quality background-foreground models because of unrealistic

assumptions.

We observe that the real-world background sequences, as

shown in Fig. 1, may span one or more linear or nonlinear

manifolds. To investigate this fact, we applied sparse subspace

clustering on multiple dynamic background scenes. Nonlinear

shapes of the clusters in 3D principal-space of geodesic

distance may be observed in Fig. 2. In high dimensional

space, the frames in each cluster span different nonlinear

manifolds. Therefore, constraining the estimated low-rank B

to remain consistent with the subspace structure of the original

background significantly improves the background modeling

performance.

Compared to the traditional RPCA techniques, following

modifications are proposed in this study:

• Two graphs are constructed, namely, a temporal graph

over the background frames and a spatial graph over the

spatial background locations using motion-aware Corre-

lation Coefficient (CC) as a similarity measure to handle

the background modeling efficiently.

• For background models spanning linear subspaces, the

normalized Euclidean distance based proximity matrices

are directly computed from these graphs. Sparse coding

is used to linearly decompose each column of each prox-

imity matrix using the remaining columns as dictionary

items. The linear coefficients are used to recalculate a

new proximity matrix which is then used to compute the

sparse subspace based normalized Laplacian matrix [12].

• For backgrounds spanning nonlinear manifolds, Geodesic

Distance (GD) based proximity matrices are computed

for both graphs. For each matrix, we apply sparse coding

and compute the geodesic subspace based Laplacian

matrix [34]. The normalized Laplacian matrices com-

puted over both Euclidean and Geodesic distances are

embedded into the RPCA framework.

These graph-based regularization’s help us to overcome the

limitations of the existing methods [7], [31], [35], [65]. To the

best of our knowledge, this is the first study that integrates

the spatiotemporal clustering information into low-rank com-

ponent for improved background modeling.

We name the resulting algorithm as Motion-assisted Spa-

tiotemporal Clustering of Low-rank (MSCL). In the proposed

algorithm, we first detect a set of dynamic frames D within

the sequence X by eradicating motionless frames, which help

us in dealing with redundant data problem, as shown in Fig.

1 (a). For this purpose, we estimate the optical flow between

the consecutive frames and use it to generate a binary motion

mask, which assists us to obtain approximate knowledge on the

pixels of background and foreground components. The spatial

and temporal graphs are computed using motion-aware CC

[33], which includes pixels exhibiting motion less than a pre-

defined threshold. The use of CC-based regularization enforces

the background model to be invariant to lighting condition

variations and to enhance continuity on linear manifolds,

while GD-based regularization ensures the continuity of the

background model on nonlinear manifolds.

We solve our proposed objective function using the Lin-

earized Alternating Direction Method with Adaptive Penalty

(LADMAP) optimization because of its efficiency in using

less auxiliary variables with convergence guarantee [28], [30].

We evaluated our proposed algorithm on a new dataset Scene

Background Modeling.net (SBM.net) [37], which contains

8 challenging categories and 80 videos. We compared the

proposed MSCL algorithm with several existing state-of-the-

art methods. Our proposed algorithm outperforms these earlier

methods on almost all categories of the SBM.net dataset1.

Compared to existing methods, our algorithm generates bet-

ter foreground model; however, we do not explicitly constrain

the foreground, which may result in a noisy and dis-contiguous

1http://pione.dinf.usherbrooke.ca/results/
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(a) (b) (c) (d) (e) 

Highly dynamic input images  

Ground truth images

Foreground estimation by using traditional RPCA [35]

Foreground estimation by using our proposed MSCL algorithm

Foreground estimation by using our proposed MSCL-FL algorithm

Fig. 3. Results of foreground detection. (a)-(b) ‘Fall’ sequence from the CDnet
dataset, (c) ‘Overpass’ from the CDnet dataset, (d) ‘Waving Trees’ from the
Wallflower dataset, and (e) ‘Water Surface’ the from I2R dataset. From top
to bottom: (1) input images, (2) ground-truth images of the foreground, (3)
foreground estimation using RPCA methods [35], (4) estimated foreground
mask by using the proposed MSCL algorithm, and (5) results of the foreground
estimation by using our proposed MSCL-FL algorithm.

foreground (Fig. 3). Figs. 3 (a)-(e) show that although our pro-

posed algorithm estimated an outlier-free background model

in the case of highly dynamic background scenes, the fore-

ground pixels are not contiguous. Therefore, we propose to

enforce a post-processing step using Fused Lasso (FL) [47],

[54], [56] to strengthen the similarity among the neighboring

foreground pixels. FL penalizes the pixels not only by l1-

norm, but it also preserves the structure of the neighboring

pixels. We name this extended algorithm as MSCL-FL for

the detection of foreground objects. The proposed MSCL-FL

algorithm has shown better performance compared to state-

of-the-art methods including TVRPCA [8], 2P-RPCA [15],

DP-GMM [17], GRASTA [18], TLSFSD [19], SRPCA [39],

LSD [31], 3TD [35], MODSM [36], MLRBS [38], PAWCS

[42], SuBSENSE [43], BMTDL [44], GFL [54], GOSUS

[55], LR-FSO [56], RMAMR [57], BRTF [63], GoDec [64],

and DECOLOR [65] on publicly available datasets, such as

Change Detection (CDnet) 2014 [50], I2R [26], Background

Models Challenge (BMC) [49], and Wallflower [48].

The remaining content of this paper is organized as follows.

In Section II, related work is reviewed. In Section III, we

describe our method in detail. The experimental results are

discussed in Section IV. Finally, our conclusions and future

research directions are presented in Section V.

II. RELATED WORK

During the past few years, many research studies have

been carried out on background subtraction or foreground

detection [8], [11], [17], [20], [25], [42], [65] as well as

background initialization [2], [4], [13], [32], [57]. In back-

ground subtraction, the emphasis is to improve the accuracy of

foreground detection. On the other hand, the task of estimating

a foreground-free image is called background modeling. Many

surveys have also contributed to these topics [2], [3], [4], [32].

Gaussian Mixture Model (GMM) [45], [60] uses a mixture

of Gaussian probability density functions to model color

intensity variations at each pixel. Latest GMM enhancements

include bidirectional analysis [41] and minimum spanning tree

GMM [9]. Most GMM based methods suffer performance

degradation in complex dynamic scenes. Recently, deep Con-

volutional Neural Network (CNN) based methods have also

been proposed for foreground segmentation [5], [51], [61].

For instance, Wang et al. [51] proposed a simple and effective

CNN based method for estimating foreground regions. CNN

based methods work well in many complex situations however,

these methods require significant amount of labelled training

data which may not always be available. In contrast, our

proposed algorithm is unsupervised therefore do not require

labelled training data.

In the current study, we propose a novel algorithm for

background modeling, which draws inspiration from subspace

learning methods. Wright et al. [53] presented the first pro-

posal of RPCA to handle the outliers in data. Candeś et

al. [7] used RPCA for background-foreground separation.

RPCA-based approaches for background-foreground separa-

tion are not ideal for surveillance applications because these

approaches suffer from high computational complexity. More-

over, traditional RPCA implementations processed data in

batches. Many studies attempting to make the batch methods

faster have been reported in literature [8], [64], [65]. However,

batch methods are not real-time and mostly work offline. Some

online methods have also been reported to handle this problem,

while global optimality is still the challenging issue in these

approaches [18], [21], [55].

Many authors have contributed interesting studies in the

direction of enhancing only foreground detection2. For this

purpose, a number of constraints have been suggested [8],

[21], [31], [54], [65]. For example, Cao et al. [8] improved

the performance of foreground detection by proposing the total

variation regularized RPCA method. Zhao et al. [65] proposed

a markov random field constraint on the foreground matrix to

eliminate noise and small background movements. Although

the segmentation performance improved, the foreground re-

gions tend to be over-smoothed [31] because of neighboring

pixels smoothing constraints.

Unfortunately, research has not been focused in improving

low-rank background modeling3 [3]. Therefore, there is a

need to design a robust algorithm to recover background

components in real-life challenging scenarios [32], [37]. We

attempt to fill this research gap by proposing a novel notion

of encoding spatiotemporal similarity information in the com-

ponent of the background model. Our idea is motivated by

the recently proposed subspace clustering methods in [40],

[58], [62]. However, unlike these methods, we incorporate a

motion-aware CC and GD based spatiotemporal regularization

for clustering low-rank subspace. Our proposed method has

some similarity with RMAMR [57] because both methods

2http://wordpress-jodoin.dmi.usherb.ca/results2014/
3http://pione.dinf.usherbrooke.ca/results/
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Step 4: Matrix Decomposition
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F: Sparse 
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Fig. 4. Schematic illustration of the proposed MSCL algorithm for background estimation and foreground segmentation. Step (1) describes the motion
estimation module of sequence X, the creation of motion mask M, and detection of dynamic sequence D. Step (2) describes the construction of spatial and
temporal graphs and computation of correlation based and geodesic distance based proximity matrices. In step (3), sparse coding is applied on the proximity
matrices computed in step (2) and computation of normalized graph Laplacian matrices. Step (4) shows the decomposition of sequence D into B and F

components based on LADMAP optimization. In step (5), the FL constraints are employed on the foreground to ensure continuity.

use motion mask. However, RMAMR has not suggested the

spatiotemporal consistency constraints as we proposed using

Laplacian matrices of graph structures. Our proposed objective

function is novel and to the best of our knowledge, no similar

work has been proposed previously.

III. PROPOSED ALGORITHM

In this section, we describe each step of the proposed MSCL

algorithm in detail. The system diagram of the proposed

MSCL algorithm is presented in Fig. 4. We first compute

the optical flow and create a binary motion mask. This

motion mask enables the removal of motionless video frames

from the input sequence. Then, spatial and temporal graphs

are constructed using the correlation coefficient. The sparse

linear decomposition is applied on each graph to estimate

the normalized graph Laplacian matrices both in geodesic and

correlation space. The four Laplacian matrices computed from

these graphs are then incorporated in the RPCA framework.

The proposed objective function is solved using the LADMAP

optimization scheme. Finally, the Fused Lasso (FL) regular-

ization is applied on the sparse component to enhance the

foreground detection.

A. Motion Estimation

We incorporate motion information in our proposed algo-

rithm by computing the dense optical flow [29] between each

pair of consecutive frames in the given sequence X. Using

motion information, we compute a motion mask M and a

sequence of dynamic frames D. Let xi and xi−1 be the two

consecutive frames in X at time t and t− 1, respectively. Let

vxi,k be the horizontal component of the motion vector and v
y
i,k

be the vertical component at position k computed between the

frames xi and xi−1. Let mi ∈ {0, 1} be the corresponding

motion mask, which is computed as

mi,k =

{

1, if
√

(vxi,k)
2 + (vyi,k)

2 < τ,

0, otherwise,
(2)

where τ is the threshold of motion magnitude, which is com-

puted adaptively as the average of all pixels in the motion field.

We select the threshold τ such that all pixels in X exhibiting

motion larger than τ definitely belong to the foreground. The

threshold τ is selected to be large enough so that the motion

should not result because of noise in the background.

To prepare matrix D by eradicating the motionless frames in

X using (2), the i-th frame in X is considered to be redundant

or motionless if all entries are 1 in the corresponding i-th
column of M; otherwise, if some entries are 0, then the frame

is considered as dynamic and is appended in matrix D. Using

this technique, the dimension of matrix X may be reduced

significantly depending on the number of motionless frames.

B. Mathematical Formulation

Given the sequence D ∈ R
p×c, where c is the number of

dynamic frames, we require that the corresponding matrix B

with singular vectors lie in a low-dimensional subspace by

minimizing the loss function defined in (1). Here, we define

a matrix M ∈ R
p×c4 as a concatenation of [m1,m2, ..,mc]

as computed by (2). We consider the pixel positions in D

corresponding to 0 values in M as missing data and the

remaining pixels as the observed data. The main objective is

to estimate these missing values using optimization as:

B,F
min||B||∗+λ1||F||1 such that M ◦ D = M ◦ (B + F), (3)

4For simplicity, we use the same notation M ∈ R
p×c for representing the

motion mask of only dynamic frames.
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where ‘◦’ denotes the element-wise product. The observed

M ◦ D data still contains a significant number of outliers,

which actually does not belong to the background. To handle

the missing values and outliers effectively in MSCL, we

incorporate spatiotemporal smoothness constraints into (3) by

encoding the pairwise similarities among the video frames

and pixels. We compute a temporal graph across columns of

D and a spatial graph across spatial locations of D using

motion-aware Correlation-Coefficient (CC). Based on CC-

based adjacency matrix, we compute another representation

called Geodesic Distance (GD)-based adjacency matrix.

For each adjacency matrix, we compute a normalized Lapla-

cian matrix, Lc
t ∈ R

c×c corresponding to the CC-based adja-

cency matrix and L
g
t ∈ R

c×c corresponding to the GD-based

adjacency matrix. Similarly, for the spatial graph, we compute

the normalized Laplacian matrices Lc
s ∈ R

p×p corresponding

to the CC-based adjacency matrix and Lg
s ∈ R

p×p corre-

sponding to the GD-based adjacency matrix. The CC-based

regularization enforces the background model to be invariant

to lighting condition variations and to enhance continuity

on linear manifolds. The GD-based regularization ensures

the continuity of the background model on the nonlinear

manifolds. We observed that the integration of both types of

regularization significantly improves the performance of the

background model. The proposed MSCL model is then re-

formulated as

min
B,F

||B||∗+Θc(B,F) + Θg(B,F) + λ1 ||F||1
such that M ◦ D = M ◦ (B + F),

(4)

where the functions Θc and Θg denote the spatiotemporal CC

and GD-based regularization. It is important to note that the

functions in (4) are explicitly related with D and B and can be

shown to be related with B and F as: Θc(B,D) = Θc(B,F +
B) = Θc(B,F).

Θc(B,F) =
γ1
2

Tr(B⊤Lc
sB) +

γ2
2

Tr(BLc
tB⊤),

Θg(B,F) =
γ3
2

Tr(B⊤Lg
sB) +

γ4
2

Tr(B⊤L
g
t B).

(5)

We constrain the background model B to minimize

tr(B⊤Lc
sB), tr(BLc

tB
⊤), tr(B⊤Lg

sB), and tr(BL
g
tB

⊤), which

is a spatiotemporal graph regularization. The parameters

λ1, γ1, γ2, γ3, γ4 > 0 assign relative importance to each of the

terms while optimizing (4). If parameters γ1, γ2, γ3, and γ4,

are equal to zero, then the model will degenerate to motion-

aware RPCA.

C. Temporal Graph Construction

For the sequence of dynamic frames D, we construct an

undirected weighted graph Gt = (Vt,At), such that the

vertices Vt correspond to the columns of D and At is the edge

weight matrix. First, we compute the pairwise motion-aware

correlation coefficient between frames (di, dj) [10] as

ρt(i, j) =

∑p
k=1 mi,j,k(di,k − d̄i)(dj,k − d̄j)

√

p
∑

k=1

mi,j,k[(di,k − d̄i)2 + (dj,k − d̄j)2]

,
(6)

where k is the pixel position and mi,j,k = mi,k ∧ mj,k is a

motion indicator computed from the motion masks of the two

frames, mi,j,k = 1 if both mi,k = 1 and mj,k = 1; otherwise,

it will be zero. d̄i is the mean of the frame di. The value of

ρt(i, j) ranges from −1 to +1, where +1 indicates a perfect

linear relationship and −1 is a perfect inverse relationship,

which may happen because of abrupt light intensity variations.

We compute the weight matrix At as normalized Euclidean

distance matrix:

At(i, j) =
√

2(1− ρt(i, j)). (7)

The proximity matrix Ac
t of the graph Gt is computed as

Ac
t = exp

(

−At/2σ
2
t

)

, (8)

where σ2
t is the smoothing factor that strengthens the fusion

between the adjacent pixels. We use σt as an average distance

among the nodes in Gt [40]. If Ac
t(i, j) > 0, then there is an

edge between nodes di and dj in Gt.

D. Spatial Graph Construction

Using motion-aware correlation coefficient, we compute a

spatial graph Gs = (Vs,As) such that Vs corresponds to

the rows of matrix D and As is the edge weight matrix

computed similar to At. The spatial graph Gs complements the

information captured by the temporal graph Gt. Given that Gs

encodes the notion of similarity among the spatial locations;

therefore, it will enforce smoothness on the patch level in spa-

tial dimensions in the low-rank model. Moreover, computing

the correlation coefficient among the rows of patches allows

the use of local information in the image sequence.

For each pixel in the first frame in D, we consider a patch

of size u×u pixels in the corresponding 2-D image. Therefore,

for each row of pixels in D, we obtain a row of patches

or patch-row having the size c × u × u. The motion-aware

correlation coefficient ρs(i, j) is computed between all pairs

of patch-rows resulting in a p×p matrix of correlations, which

is transformed to normalized Euclidean distance As by using

As(i, j) =
√

2(1− ρs(i, j)). Spatial proximity matrix Ac
s is

obtained by Ac
s(i, j) = exp

(

−As(i, j)/2σ
2
s

)

, where σ2
s acts

as a spatial smoothing factor computed as an average distance

among nodes in Gs.

E. Geodesic Distance Based Proximity Matrices

For the spatial and temporal graphs Gt = (Vt,At) and

Gs = (Vs,As), we compute all pairs of shortest distance

or Geodesic Distance (GD) [22], [23]. We obtain two more

proximity matrices A
g
t ∈ R

c×c and Ag
s ∈ R

p×p such that

the i-th column in these matrices corresponds to the geodesic

distances of the i-th node from the rest of the nodes in that

graph. These matrices will be used to construct regularization,

which makes the low-rank robust to the nonlinear variations

in spatial and temporal dimensions.

For the temporal graph Gt, the geodesic distance matrix P
g
t

is computed using At. For the spatial graph Gs, the geodesic

distance matrix Pg
s is computed using As. The geodesic

distance between two nodes is more meaningful than the

Euclidean distance computed in the image space because two

frames may have smaller Euclidean distance, while geodesic
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distance is larger along the nonlinear manifold. Using the

geodesic distance matrix Pg ∈ {P
g
t ,Pg

s}, we compute the

geodesic proximity matrices Ag ∈ {A
g
t ,Ag

s},

Ag = exp(−Pg ◦ Pg/2σ2
g), (9)

where σg ∈ {σs
g, σ

t
g} provides smoothing in the geodesic

space and computed as the average distance between the nodes

in the corresponding graphs. In general, if a node di is not

reachable from node dj , then Ag(i, j) = ∞ and P g(i, j) = 0.

F. Sparse Linear Coefficients Proximity Matrices

We observe that the columns of a proximity matrix A ∈
{Ac

t ,Ac
s,A

g
t ,Ag

s} span low dimensional subspaces compared

to the overall matrix dimensions because the size of the tempo-

ral proximity matrices Ac
t and A

g
t is the number of frames ×

number of frames. In case there is no change in the back-

ground, ideally, the rank of both of these matrices will be

1. However, given the dynamic nature of the background,

we observe that the rank of these matrices will be larger

than 1, but much smaller than the number of frames. In Fig.

3, we plot the temporal and spatial graphs of the dynamic

background sequences. Each graph contains multiple non-

linear clusters showing the presence of multiple manifolds.

Therefore, a better background model can be computed by

using subspace-based spectral clustering [12]. We compute the

proximity matrices by applying sparse linear decomposition

on the matrix A. The computation of normalized Laplacian

using sparse linear coefficients has been proposed in subspace

sparse spectral clustering [12], which may be reviewed for

more theoretical details.

Let ai be the i-th column of A, which is decomposed as

a linear combination of the rest of the matrix Â = A \ ai. Â

is the same as A except that the ai column is replaced by a

column of zeros. We find an optimal solution for sparse linear

coefficients αααi:

ααα
∗
i := argmin

αααi

(||ai − Âαααi||22+λ2||αααi||1), (10)

where λ2 gives a relative importance to the ℓ1 norm factor,

which approximates the ℓo norm actually required for spar-

sity. λ2 is automatically computed from the data [12]. The

sparse linear decomposition with l1-norm constraints given by

(10) is an unconstrained convex optimization problem also

known as the Least Absolute Selection and Shrinkage Operator

(LASSO) [46]. We solve this problem using a fast solution

available in the Least Angle Regression (LARS) framework

[12], which has the same asymptotic complexity as the simple

least squares regression.

Sparse linear decomposition is applied on each column

of A and the resulting αααi are arranged as columns result-

ing in a matrix of sparse linear coefficients E where E ∈
{Ec

t ,Ec
s,E

g
t ,Eg

s}.

G. Computing Normalized Laplacian Matrices

The matrices of linear coefficients may not be symmetric

E 6= E⊤, which is partially because the set of vectors used

to represent each vector ai ∈ A is slightly different from

the set used to represent aj ∈ A. We make this relationship

normalized and symmetric by taking the average of both

coefficients normalized by the maximum value of its own set

[12]:

E(i, j) = E(j, i) =
1

2

(∣

∣

∣

αi,j

max(αααi)

∣

∣

∣
+
∣

∣

∣

αj,i

max(αααj)

∣

∣

∣

)

. (11)

Using each normalized symmetric matrix E of sparse linear

coefficients, we compute a normalized graph Laplacian matrix

L where L ∈ {Lc
t ,Lc

s,L
g
t ,Lg

s}
L = I − W−1/2EW−1/2, (12)

where I is an identity matrix of the same size as E, W is the

degree matrix whose diagonal entries are given by W (j, j) =
∑

i E(i, j), and non-diagonal values are zero. The normalized

Laplacian matrices are used to constrain the background model

B, minimizing either the trace of B⊤L B or BLB⊤ depending

on the dimensions of L, as shown in the objective function

(4). In the following section, we present the solution of the

proposed objective function.

H. Proposed LADMAP Optimization

Model (4) is essentially a convex optimization problem,

which is solved using the Linearized Alternating Direction

Method with Adaptive Penalty (LADMAP) [27], [28], [52]. For

this purpose, the linear equality constraints in (4) are removed

by employing following augmented Lagrangian formulation:

L(B,F,Y, µ) = min
B,F

||B||∗+Θc(B,F) + Θg(B,F)

+ λ1||F||1+tr(Y(M ◦ (D − B − F)))

+
µ

2
||M ◦ (D − B − F)||2F ,

(13)

where Y ∈ R
p×c is a Lagrangian multiplier matrix and

µ > 0 controls the penalty for violating the linear constraints.

Optimizing directly the primary variables B, F, and Y, the

LADMAP method solves each variable iteratively one after

another. LADMAP uses less auxiliary variables without matrix

inversions and converges faster than the original ADM [52].

We derive the solutions to use the proximity operator of the

nuclear norm effectively and l1-norm in solving subproblems

including Laplacian terms.

Updating B: According to LADMAP, the linearization only

over the augmented quadratic penalty term in (12) solves

subproblems Bk+1 and Fk+1 (in this case, k is the iteration

index). By fixing F, the update for background Bk+1 at the

(k + 1)-th iteration is

Bk+1 = argmin
B

L(B,Fk,Yk, µk) = argmin
B

||B||∗+Θc(B,F)

+ Θg(B,F) + Tr(Yk(M ◦ (D − B − Fk)))

+
µk

2
||M ◦ (D − B − Fk)||2F

(14)

If γ1, γ2, γ3, γ4 > 0 in functions Θc and Θg , then optimiz-

ing subproblem Bk+1 does not lead to the exact solution.

Therefore, the convergence analysis provided in [28] is not

applicable. To use the closed-form solution to the proximity

operator of the nuclear norm, which is given by Singular Value

Thresholding (SVT) operator [6], we further linearize the
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graph regularization terms to simplify the subproblem Bk+1.

According to Lemma 2.1 in [1], the trace norm of any graph

regularization terms, e.g., γ1

2 tr(B⊤Lc
sB) in (12) can be upper

bounded by its proximal approximation which describes the

local linearization of γ1

2 tr(B⊤Lc
sB) at Bk. Then, the solution

of (14) leads to the following problem after applying simple

linear algebra as

Bk+1 = argmin
B

||B||∗+
η1
2

×
∥

∥

∥

∥

M ◦ (B − Bk) +
H

η1

∥

∥

∥

∥

2

F

(15)

For our convenience, we denote







































η1 = µk + ρ1,

ρ1 = γ1||Lc
s||+γ2||Lc

t||+γ3||Lg
s||+γ4||Lg

t ||
H = −(M ◦ D)Ỹk +ρρρ2,

ρρρ2 = γ2BkLc
t + γ4BkL

g
t + [γ1B⊤

k Lc
s + γ3B⊤

k Lg
s]

⊤,

B̃k = (M ◦ Bk)−
1

η1
[−(M ◦ D)Ỹk +ρρρ2],

(16)

To solve Bk+1, first we need to compute the parameter µk and

matrix Ỹk as



























µk+1 = µk + ρ0µmax

µmax =
max{γ2||Lc

t ||+γ4||Lg
t ||, γ1||Lc

s||+γ3||Lg
s ||}

||M ◦ D||2−λ1

Ỹk = Yk + µkM ◦ (D − Bk − Fk),

Yk+1 = Yk + µkM ◦ (D − Bk+1 − Fk+1)

(17)

where ρ0 is constant and the regularization e.g., ‖Lc
s‖ is known

as the spectral norm of a matrix Lc
s, which is the largest

singular value of matrix Lc
s. The Bk+1 has the following

closed-form solution as

Bk+1 = UTτ (Σ)V⊤,where(U,Σ,V⊤) = SVD(B̃k) (18)

where Σ is the singular value matrix of B̃k. The operator

Tτ (·) is the SVT [6], which is defined by element-wise τ
thresholding of Σ. Especially, let σi be the i-th diagonal

element of Σ, then Tτ (Σ) is a diagonal matrix defined by

Tτ (Σ) = diag({(σi)− τ}+), where a+ is the positive part of

a+ = max(0, a).

Updating F: When B is fixed, to update Fk+1, we derive from

(13) the following sub-problem:

Fk+1 = argmin
F

L(Bk+1,F,Yk, µk)

= argmin
F

λ||F||1+Tr(Y(M ◦ (D − Bk+1 − F)))

+
µk

2
||M ◦ (D − Bk+1 − F)||2F

(19)

The closed-form solution of the above problem is

Fk+1 = Sλ/µk

(

M ◦ (D − Bk+1) +
Ỹk

µk

)

(20)

where Sτ (·) is the shrinkage operation [27] defined by

Sτ (F) = sgn(F) ◦ max{|F|−τ1, 0}. (21)

Algorithm 1: Proposed MSCL for B modeling

Input: X ∈ R
p×n

Initialization: D,M ∈ R
p×c using (2), Lc

t, L
g
t ∈ R

c×c,

and Lc
s, Lg

s ∈ R
p×p using (12), B0 = F0 = 0, γ = 10,

ǫ1 = 10−4, ǫ2 = 10−5, µ0 = 0.1, ρ0 = 1.1, µmax using

(17)

while not converged (k = 0, 1, ..) do

1. Compute Ỹk using (17)

2. Update Bk+1, Fk+1 in parallel using (18), (20)

3. Update Yk+1 and µk+1 according to (17).

4. Check convergence: according to (22).
end

Output: B∗,F∗

Convergence Condition: According to the KKT condition,

the following criterion is defined for the sub-optimality of the

solution of problem (4)

‖M ◦ (D − Bk+1 − Fk+1)‖ /‖M ◦ D‖ < ǫ1and

max{ρ3, ρ4} ≤ ǫ2,where ρ3 = µk ‖M ◦ (Fk+1 − Fk)‖ ,

ρ4 =
µk + 2ρ1√

λ1

‖M ◦ (Bk+1 − Bk)‖ ,
(22)

where ǫ1 and ǫ2 are the appropriate tolerances. Based on

the stopping criteria defined in (22), the sequences (B,F,Y)
generated by the revised LADMAP converges to an optimal

solution of problem (4). Algo. 1 describes the summary of

MSCL.

I. Foreground Detection

The additional constraints on the low-rank matrix enhanced

the quality of the background model and improved the fore-

ground detection. Often, the foreground is relatively smaller

and sparser compared to the background. Consequently, min-

imizing the foreground term by imposing the l1 norm on F

makes the estimation even more sparser. We observe that with-

out considering the spatial connectivity among the adjacent

foreground pixels, especially in dynamic backgrounds, it is

difficult to obtain precise foreground segmentation (Fig.3).

To improve the foreground segmentation, we constrain the

foreground pixels by employing Fused Lasso (FL) [47] as

a post-processing step. We name the resulting algorithm as

MSCL-FL for foreground detection, which is robust against

dynamic background scenes. In MSCL-FL, it is assumed that

if a pixel belongs to the foreground, then its neighbors would

also belong to the foreground. The overall goal of MSCL-FL

is to minimize the following energy function as:

||F||FL=
c

∑

k=1

{||f(k)||1+β
∑

(i,j)∈N

w
(k)
ij |f (k)

i − f
(k)
j |}, (23)

where f(k) is the k-th vector of F and N is the spatial

neighborhood system, i.e., (i, j) ∈ N when both pixels i
and j are spatially connected. The first term ||f||1 is the

observed data term that connects each pixel to background

and foreground nodes. The second term is known as the

smoothness term, which represents the relationship between
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Fig. 5. AGE measure (minimum is best) using different values of parameters
γ1,γ2,γ3, and γ4. An experiment performed on “CameraParameter” sequence
of the SBM.net dataset [37].

adjacent pixels i and j. β is a scalar parameter and wij is the

adaptive weighting factor that stabilizes the fusion between

pixels as w
(k)
ij = exp−||d(k)i − d

(k)
j ||22/2σ2, where d is the

pixel intensity of k-th frame and σ is the spread of the

Gaussian function. The smoothness term encourages the same

labeling to similar neighboring pixels. The energy function

(23), which is nonconvex, is difficult to solve especially if the

dimensionality is large. Therefore, we use the fast parametric

flow method [14], [54].

IV. EXPERIMENTS

We performed extensive experiments on five publicly avail-

able video datasets including Scene background modeling.net

(SBM.net) [37], Change Detection.net (CDnet) 2014 [50],

Background Models Challenge (BMC) [49], I2R [26], and

Wallflower [48]. The results are compared with 23 state-of-

the-art methods, such as TVRPCA [8], RMR [11], 2P-RPCA

[15], RFSA [16], DP-GMM [17], GRASTA [18], TLSFSD

[19], our previous algorithm MAGRPCA [20], LSD [31], 3TD

[35], MODSM [36], MLRBS [38], SRPCA [39], PAWCS

[42], SuBSENSE [43], BMTDL [44], GFL [54], GOSUS

[55], LR-FSO [56], RMAMR [57], BRTF [63], GoDec [64],

and DECOLOR [65], using original author implementations.

Background models are compared using Average Gray-level

Error (AGE), percentage of Error Pixels (pEPs), Percentage of

Clustered Error Pixels (pCEPs), Multi Scale Structural Simi-

larity Index (MSSSIM), Color image Quality Measure (CQM),

and PSNR [32], [37]. We aim to minimize AGE, pEPs, and

pCEPs for more accurate background model recovery while

maximizing MSSSIM, PSNR, and CQM.

The solution of the proposed model (4) requires parameters

λ1, γ1, γ2, γ3, and γ4. We use λ1 = 1/
√

max(p, c), where p
is the number of pixels and c is the number of dynamic frames

in matrix D [7]. In our experiments, we used γ1 = γ2 = γ3 =
γ4 = 10. We empirically verified that further tuning of these

parameters may yield some improvement in accuracy (Fig. 5).

However, to make the experiments repeatable, all results are

reported with the same value given previously. The parameter

µk in (12) is initialized with 0.1 and then adjusted adaptively

in the later iterations. For the construction of Gs on image

patches, we used the patch size of 5×5 pixels. The parameters
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Fig. 7. Average performance on each metric of MSCL with existing methods
on the overall SBM.net dataset.

required by the LADMAP are used as recommended by the

original authors [28], [30], [58]. In addition, we used the

PROPACK library [24] for LADMAP implementation.

A. Evaluation of MSCL on SBMI Dataset

We evaluated our proposed MSCL algorithm on the

SBM.net dataset, which contains 8 challenging categories and

80 videos (Fig. 6). In contrast to the existing datasets, the

SBM.net comprises complex scenes in which no foreground-

free images are available and the background is largely oc-

cluded by foreground objects. More details can be found at

http://scenebackgroundmodeling.net. On the average, our algo-

rithm outperformed all existing methods in terms of 6 accuracy

measures included in the study [37] (Figs. 7 and 8). The MSCL

outperformed all existing methods in three categories, namely,

‘Basic’, ‘Clutter’, and ‘Illumination changes’ (Fig. 8). A visual

comparison of the estimated background model with 10 best

performing methods over 8 selected sequences (one sequence

per category) is illustrated in Fig. 6.

In Fig.8, we present only 5 noteworthy methods and analyze

their average performance on each category using the AGE

metric, which is the l1-norm of the difference of ground

truth and the estimated background image. Lower AGE value

denotes better background estimation. For the ‘Basic’ category,

only MSCL and RMR produced good results, while the

remaining methods exhibit some discrepancies in the form

of outliers because background pixels are mostly visible all

the time in these sequences, although there are no frames

containing complete background. In the challenging sequences

of ‘Clutter’ category, the background remains largely occluded

by the foreground objects. Fig. 8 shows that the proposed

algorithm attains, on the average, the best accuracy in terms of

AGE value. In the compared methods, overwhelming outliers

of foreground objects were incorporated into the estimated

background model (Fig. 6, 3rd row).

For ‘Jitter’ sequences, most of the methods perform good

estimation of the background component. In this case, the

proposed MSCL algorithm has shown the best performance.

RMAMR and MAGRPCA also use motion information; there-
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m)

Fig. 6. Qualitative results of the proposed method. (a) 8 images from the input sequences, (b) ground truth images, (c) estimated background model by the
proposed MSCL, (d) RMAMR, (e) RMR, (f) DECOLOR, (g) 3TD, (h) MAGRPCA, (i) RFSA, (j) GRASTA, (k) GOSUS, (l) BRTF, and (m) GoDec. From
top to bottom: each input sequence is selected from each category. (1)sequence ‘511’ from ‘Basic’, (2) ‘advertisementBoard’ from ‘Background Motion’, (3)
‘boulevardJam’ from ‘Clutter’, (4) ‘badminton’ from ‘Jitter’, (5) ‘AVSS2007’ from ‘Intermittent Motion’, (6) ‘CameraParameter’ from ‘Illumination Changes’,
(7) ‘BusStopMorning’ from ‘Very Long’, and (8) ‘CUHK Square’ from ‘Very Short’.
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fore, these methods also show better performance. For com-

plex dynamics as presented by the sequences in the ‘Back-

ground Motion’ category, all methods have shown relatively

poor performance because of the sudden change in the back-

ground in the presence of foreground objects, which always

remain visible. In this category, MSCL is in the middle of

the spectrum obtaining an AGE score of 11.21, while the best

performing competitor DECOLOR obtained 10.5. Note that

the previous version of our proposed algorithm MAGCPCA

has obtained the best accuracy at 10.07, which shows that

the inclusion of the correlation coefficient-based regularization

has caused some degradation in this case, while the overall

accuracy has significantly increased.

In the ‘Intermittent Motion’ category, some foreground objects

remain motionless and then start moving, creating outlier in the

background. Our algorithm considered the motionless frames

as redundant and removed them, which helped in reducing

the outliers. This step is only useful for this category, while

in other cases, this step has no effect. Fig. 8 demonstrates

that majority of the methods failed to cope with incorporated

outliers because of motionless foreground objects. Only MSCL

and RMR methods effectively handled these outliers in the

final estimation of background. The proposed MSCL provides

the best performance in terms of AGE measure. For sequences

that belong to the ‘Illumination Changes’ category, Fig. 8

shows that the proposed algorithm has exhibited significant im-

provement over current methods, which have shown degraded

performance. The performance of the proposed algorithm is

improved because of the use of the correlation coefficient for

the computation of adjacency matrices, which are robust to

illumination variations. All of the compared methods have

shown relatively good performance on ‘Very Long’ and ‘Very

Short’ categories.

Considering all categories of the SBM.net dataset,

on the average, the MSCL obtained an AGE score

of 5.95 and has been ranked as the best performer

(http://scenebackgroundmodeling.net). The improved perfor-

mance is attributed to the spatiotemporal regularization, which

was able to handle the outliers effectively and ensured smooth-

ness of the background model on temporal and spatial mani-

folds.

B. Importance of Different Regularizations

To find the relative contribution of different regularizations

in (4), we conduct a series of experiments. Setting all γ’s= 0
results in LADMAP based RPCA, γ2 = γ4 = 0 results in

spatially regularized RPCA, γ1 = γ3 = 0 results in tempo-

rally regularized RPCA, γ1 = γ2 = 0 results in nonlinear

spatiotemporal regularized RPCA, and γ3 = γ4 = 0 results in

linear spatiotemporal regularized RPCA. In addition, we also

implemented the proposed objective function without using

the Sparse Subspace Clustering (SSC) [12]. Fig. 9 shows the

comparison of these variants with the proposed algorithm with

the full objective function on six different sequences from the

SBM.net dataset. In all sequences, the performance of RPCA

has remained the least (shown in black) and the performance

of the proposed MSCL has remained the best (shown in red).

The performance of MSCL without SSC (shown in green) has

remained poor compared to the proposed MSCL with only

spatial, only temporal, and both spatiotemporal constraints.

In the case of the cluttered scene (Fig.9(a)), the temporal

regularization (shown in blue) has performed better compared

to spatial regularization (shown in magenta) because of the

presence of more outliers along the rows of matrix D. In
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Linear Manifold (linear change in lighting condition)
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Non-linear Manifold (cluttered scene: abrupt changes)
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Fig. 9. Performance of estimated background model with only RPCA, spatial regularization, only temporal regularization, only correlation coefficient based
spatiotemporal regularizations, only geodesic distance based spatiotemporal regularizations, and without spatiotemporal sparse subspace clustering.

TABLE I
COMPARISON OF AVERAGE F1 SCORE ON CDNET DATASET.

Categories DECOLOR 3TD DP-GMM 2P-RPCA LSD SuBSENSE PAWCS BMTDL TVRPCA SRPCA RMAMR LR-FSO GFL GoDec GRASTA GOSUS MSCL MSCL-FL

Baseline 0.92 0.88 0.92 0.92 0.92 0.95∗ 0.94 0.88 0.84 0.82 0.89 0.80 0.83 0.77 0.66 0.90 0.87 0.94

Dynamic Background 0.70 0.75 0.81 0.78 0.71 0.81 0.89 0.75 0.55 0.84 0.82 0.74 0.74 0.58 0.35 0.79 0.85 0.90∗

Camera Jitter 0.77 0.72 0.74 0.81 0.78 0.81 0.81 0.72 0.63 0.78 0.75 0.76 0.78 0.48 0.43 0.82 0.83 0.86∗

Shadow 0.83 0.68 0.81 0.80 0.81 0.89∗ 0.89∗ 0.81 0.71 0.77 0.73 0.69 0.82 0.51 0.52 0.84 0.82 0.86

Thermal 0.70 0.78 0.81 0.76 0.75 0.81 0.83 0.79 0.69 0.79 0.75 0.80 0.76 0.62 0.42 0.80 0.82 0.86∗

Intermittent Object Motion 0.59 0.55 0.54 0.65 0.67 0.65 0.77 0.69 0.57 0.80 0.66 0.63 0.59 0.38 0.35 0.74 0.80 0.84∗

Bad Weather 0.76 0.79 0.82 0.75 0.79 0.86 0.81 0.77 0.78 0.75 0.70 0.79 0.76 0.66 0.68 0.77 0.83 0.88∗

Average 0.75 0.73 0.77 0.78 0.77 0.82 0.84 0.77 0.68 0.79 0.75 0.74 0.75 0.57 0.48 0.80 0.83 0.88∗

the simple case (Fig.9(b)), the spatial constraints have mostly

performed better. In varying lighting conditions (Fig.9(c)), the

spatial constraints performed better because they were not

affected by the abrupt intensity variations. In the case of jitter

(Fig.9(d)), the spatial constraints performed better because of

the abrupt motion of the camera, which degraded the inter-

frame similarity, but retained the high intra-frame similarity.

In the case of linear light intensity variations (Fig.9(e)),the

correlation performed better, while in the case of nonlinear

variations with abrupt changes (Fig.9(f)), the geodesic distance

performed better because in this case, the correlation coeffi-

cient was not able to handle the nonlinear changes. Therefore,

in some cases, spatial regularization performed better, while

in other cases, the performance of temporal regularization

was better. However, the proposed MSCL algorithm integrated

the strengths of different regularization schemes and achieved

better performance compared to the individual regularization.

C. Evaluation of MSCL-FL for Foreground Detection

The main objective of the MSCL algorithm is to extract the

background model for complex scenes. However, we have also

observed improvements in the foreground detection. In this

section, we compare the performance of MSCL and MSCL-

FL algorithms with 20 existing methods on three publicly

available datasets using the F1 score as the performance

measure [17], [15], [65].

1) CDnet 2014 dataset [50] consists of eleven categories

of videos and provides ground truth for each sequence. We

only test seven challenging categories, namely, ‘Baseline’,

‘Dynamic Background’, ‘Camera Jitter’, ‘Intermittent Object

Motion’, ‘Thermal’, ‘Shadows’, and ‘Bad Weather’. These

videos were captured using low-resolution IP cameras as

well as thermal cameras. The spatial resolution varies from

320× 240 to 720× 576. The level of noise and compression

artifacts also vary across videos. Table I shows the quantitative

results of all the compared methods. Fig. 10 presents the visual

results of the proposed MSCL-FL algorithm only.

The category Baseline contains four simple videos (Fig.10a).

As shown in Table I, all of the compared methods (excluding

GRASTA) produce an average F1 score of around 90%.

Therefore, the Baseline category does not pose a challenge

for most of the compared methods.

The Dynamic Background category contains six challenging

videos (Fig.10b) depicting outdoor scenes. This is the most

difficult among all categories for mounted camera object

detection, which contains sequences exhibiting dynamic back-

ground motions. Most state-of-the-art methods including DE-

COLOR, 3TD, 2P-RPCA, LSD, and BMDTL, generate noisy

foreground segments because of highly dynamic background

regions. Therefore, the performance of these methods de-

graded compared to the proposed MSCL-FL algorithm (Table

I). Given that no additional constraints are considered on

the low-rank matrix; therefore, the FL-based methods, such

as LR-FSO and GFL, also show a degraded performance

(Table I), while very few methods, such as DP-GMM and

RMAMR, attain a comparable performance of 80%. The

PAWCS and the proposed algorithms MSCL and MSCL-FL

are the best performers for these dynamic sequences. The

proposed spatiotemporal continuity in the MSCL algorithm

improves the foreground detection among all the compared

algorithms. However, the fusion of neighboring information
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Fig. 10. Qualitative results of the proposed MSCL-FL algorithm on each category of CDnet 2014 dataset [50]. From left to right: the visual results of
(a) Baseline, Camera Jitter, and Bad Weather categories, (b) Dynamic Background and Intermittent Object Motion categories, and (c) Thermal and Shadow

category.
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Fig. 11. Visual results of the proposed MSCL-FL algorithm over 9 sequences of BMC dataset [49]. From left to right: 9 videos are presented. From top to
bottom: input frames, ground truth images, and visual results of the proposed algorithm are presented.

in the proposed MSCL-FL algorithm improves by 4% of the

F1 score. The proposed MSCL-FL algorithm achieves 90%
average F1 score, which is larger than the current state-of-

the-art methods.

The category Camera Jitter contains one indoor and three

outdoor videos (Fig.10a). The compared methods generate

noisy foreground mask resulting in a low F1 score because

of jitter. One of the strengths of the MSCL-FL is to handle

effectively the fast motion of the background caused by camera

jitter and fast moving foreground objects. The comparison be-

tween MSCL-FL and GOSUS (structured sparsity constraints

with RPCA) demonstrates that the performance gained by

the proposed method is not a general feature of RPCA, but

it is a combined result of the spatiotemporal regularization,

the optimization method, and the foreground pixel labeling

process using FL. The Shadows category comprises six videos

(Fig.10c) exhibiting both strong and faint shadows. For 3TD,

LR-FSO, GoDec, and GRASTA methods, this category poses a

big challenge (TableI). SuBSENSE, PAWCS, and MSCL-FL

have achieved promising performance as compared to other

methods. We observe that some hard shadows on the ground

(Fig.10c, Cubicle sequence) are still a major limitation of

the top performing algorithms. The Thermal category consists

of five sequences captured by the far-IR camera (Fig.10c).

Color saturation is the main challenge in this category, which

degrades the performance of DECOLOR, 2P-RPCA, TVR-

PCA, RMAMR, GoDec, LSD, RMAMR, GFL, and GRASTA

methods (TableI). The spatiotemporal regularization combined

with the FL constraint in MSCL-FL are able to discriminate

the background-foreground pixels effectively in the presence

of color saturation.

The Intermittent Object Motion category includes six videos

(Fig.10b), which contain ghosting artifacts in the detected

motion. All compared methods except SRPCA were not able

to handle this challenge and obtained a low F1 score. The pro-

posed MSCL-FL was able to handle the challenge of ghosting
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TABLE II
COMPARISON OF AVERAGE F1 SCORE ON EACH VIDEO OF BMC 2012 DATASET [49] (SEE FIG. 11)

Videos DECOLOR 3TD DP-GMM LSD TVRPCA SRPCA RMAMR LR-FSO GFL GoDec GRASTA MSCL MSCL-FL

001 0.77 0.79 0.72 0.79 0.76 0.79 0.78 0.71 0.78 0.75 0.81 0.80 0.84∗

002 0.71 0.76 0.69 0.80 0.67 0.74 0.71 0.66 0.74 0.73 0.85∗ 0.78 0.84

003 0.65 0.70 0.75 0.94 0.68 0.83 0.78 0.70 0.61 0.93 0.78 0.96∗ 0.88

004 0.85 0.83 0.80 0.88 0.82 0.81 0.79 0.72 0.88 0.83 0.76 0.86 0.90∗

005 0.74 0.79 0.71 0.73 0.77 0.80 0.76 0.66 0.80 0.70 0.68 0.79 0.83∗

006 0.80 0.82 0.68 0.80 0.69 0.69 0.65 0.78 0.74 0.78 0.59 0.74 0.80∗

007 0.70 0.73 0.65 0.81 0.71 0.70 0.64 0.54 0.69 0.67 0.75 0.76 0.78∗

008 0.78 0.81 0.78 0.84 0.79 0.84 0.80 0.80 0.81 0.76 0.84 0.89∗ 0.85

009 0.90 0.85 0.79 0.92 0.88 0.86 0.82 0.82 0.83 0.89 0.87 0.86 0.94∗

Average 0.76 0.78 0.73 0.83 0.75 0.78 0.74 0.71 0.76 0.78 0.77 0.82 0.86∗

TABLE III
COMPARISON OF AVERAGE F1 SCORE ON I2R [26] AND WALLFLOWER [48] DATASETS. BOLD FACE NUMBER REPRESENTS BEST PERFORMING METHOD.

Datasets DECOLOR 3TD DP-GMM LSD TLSFSD TVRPCA SRPCA RMAMR LR-FSO MLRSBS MODSM GFL RFSA GRASTA MSCL MSCL-FL

I2R 0.74 0.72 0.70 0.75 0.76 0.69 0.80 0.75 0.69 0.76 0.76 0.85∗ 0.71 0.54 0.82 0.84

Wallflower 0.59 0.75 0.78 0.75 N/A 0.61 0.85 0.80 0.74 N/A 0.73 0.84 0.54 0.33 0.86 0.92∗

artifact effectively. The large margin obtained by the proposed

algorithms is attributed to the removal of the motionless frames

and the encoding of spatiotemporal regularization in the low-

rank background model. The Bad Weather category contains

six videos (Fig.10a). The moving rain streaks or snowflakes

must remain part of the background model. All compared

methods except SuBSENSE and PAWCS were not able to

handle this challenge efficiently. In the proposed MSCL-FL

algorithm, the information of neighboring pixels was useful

in handling the isolated moving parts of the background, such

as snowflakes and rain streaks.

On the average, on CDnet dataset, the MSCL-FL obtained

88% F1 score, which is significantly larger than the existing

best-performing methods including GOSUS, SuBSENSE, and

PAWCS. The performance of other methods has remained low

(Table I).

2) Background Models Challenge (BMC) 2012 Dataset:

In BMC dataset [49], we compare our results on 9 real

videos including challenges, such as the presence of dynamic

backgrounds, cast shadows, lighting conditions, intermittent

foreground object motion, and bootstrapping. For fair com-

parison, the automatic evaluation tool by the original authors

is used to compute the F1 score. Fig. 11 presents the visual

results of the proposed MSC-FL algorithm. Table II shows

the average F1 score of 11 compared methods. The MSCL-

FL algorithm has achieved the best performance over videos

001, 004, 005, 006, 007, and 009, while the MSCL algorithm

obtained the best results for 003 and 008. These results are

attributed to the small size of the foreground objects, which

hindered FL from distinguishing these pixels efficiently. The

average F1 score obtained by the proposed MSCL-FL is 86%,

LSD is 83%, and MSCL is 82%, while all other compared

methods are significantly lower.

3) I2R Dataset: We have also reported the performance of

the proposed algorithms on the I2R dataset [26]. This dataset

comprises 9 complex background videos including crowded

foreground (Bootstrap, Shopping Mall, Escalator, and Airport

Hall), dynamic background (Campus, Curtain, Fountain, and

Water Surface), and drastic illumination variations (lobby).

The proposed algorithms are compared with 14 state-of-the-

art methods in Table III. On the average, GFL obtained

the best performance of 0.85 while our proposed MSCL-FL

obtained 0.84. All other compared methods exhibited degraded

performance for these videos. In some cases, the MSCL

performs better than MSCL-FL because of the over-smoothing

induced by the FL.

4) Wallflower Dataset [48] consists of 6 challenging videos

including Waving Trees, Moved Object, Light Switch, Time of

Day, Camouflage, and Foreground Aperture. We compare our

proposed algorithms with 12 state-of-the-art methods. On the

average, the MSCL-FL outperformed the existing algorithms

by a significant margin (TableIII). The GFL obtained signif-

icantly low performance of 0.84 compared to 0.92 obtained

by MSCL-FL. It is because in the presence of camouflage

sequence GFL failed to accurately detect moving foreground

objects (Fig.3 in [54]). Also in the bootstrap sequence because

of cluttered foreground objects GFL suffered from over-

smoothing. The closely located distinct objects were merged

into single object. While the proposed MSCL-FL algorithm

was able to obtain good performance in all cases.

D. Execution Time Comparison

Execution times are compared on a machine with Intel core

i7 processor and 8GB RAM. The computational cost of our

proposed algorithm is mainly determined by the LADMAP

[28]. Let k denote the number of iterations and r be the

lowest rank for matrix B. The construction of spatiotemporal

CC-based graph Laplacians needs O(p2c + pc2). For spa-

tiotemporal GD-based graph Laplacians, we use Johnson’s

algorithm [23], which requires O(c log(c)+p log(p)+(c+p)e)
time complexity, where e denotes edges. In each iteration for

solving Alg. (1), SVT is applied to update the low-rank matrix

B whose total complexity is O(rc2) when we use partial SVD.

Similarly, the soft thresholding operation to update the matrix

F has a complexity of O(pc). Therefore, the cost of LADMAP

iterations is O(krc2 + kpc). The dominant computational

complexity is O(p2c) if p > c and O(pc2) if c > p. We have

also compared the computational time of the proposed MSCL

algorithm. For this purpose, we selected a highway sequence

with 50 frames of size 320× 240. The overall time taken by

MSCL is 39.8 sec, which includes 20 sec taken by the optical

flow computation and 19.8 sec by the rest of the algorithm. On
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the same sequence, GRASTA, DECOLOR, RFSA, RMAMR,

3TD, BSLSD, and GFL took 86, 291, 72, 30, 106, 71, and 66

sec, respectively. The execution time of the proposed algorithm

can be further enhanced by using GPU or CPU based parallel

implementation. Moreover, a faster optical flow computation

method will also make the overall process faster.

V. CONCLUSION

In this study, an algorithm based on RPCA with spa-

tiotemporal sparse spectral clustering based regularization

is presented for efficient background modeling. To reduce

outliers, motionless frames are removed. The regularization

enforced the background model to be continuous on the

low dimensional multiple manifolds both in the spatial and

temporal dimensions, which is achieved by constructing two

graphs to encode the temporal and spatial similarities. The

objective function is efficiently solved using LADMAP. The

major advantage of the proposed algorithm is its capacity to

generate an accurate background model even in the presence of

occlusions, clutter, jitter, and abrupt intensity variations. Large

scale experimental evaluations on five datasets demonstrated

that the proposed algorithm achieved the best performance

compared to existing methods. However, videos captured from

moving and PTZ cameras and online processing remain open

challenges. We plan to investigate the possibility of extending

the proposed algorithm to scenes that are more crowded and

to those recorded using a moving camera by further extending

the notion of data similarity using coarse-to-fine strategy.
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