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Abstract

In this study, an effective background initialization and foreground segmentation approach for bootstrapping video

sequences is proposed. First, a modified block representation approach is used to classify each block of the current

video frame into one of four categories, namely, “background,” “still object,” “illumination change,” and “moving

object.” Then, a new background updating scheme is developed, in which a side-match measure is used to

determine whether the background is exposed. Finally, using the edge information, an improved noise removal

and shadow suppression procedure with two morphological operations is adopted to enhance the final segmented

foreground. Based on the experimental results obtained in this study, as compared with three comparison

approaches, the proposed approach produces better background initialization and foreground segmentation

results.

Keywords: Background initialization, Foreground segmentation, Side-match measure, Block representation, Shadow

suppression

1. Introduction
The main purpose of foreground/background segmenta-

tion, a basic process of a computer vision application sys-

tem, is to extract some interesting objects (the foreground)

from the rest (the background) of each video frame in a

video sequence [1]. Background subtraction is a popular

foreground/background segmentation approach, which

detects the foreground by thresholding the difference be-

tween the current video frame and the modeled back-

ground in a pixel-by-pixel manner [2]. The correctness of

the modeled background is usually affected by three factors

[3]: (1) illumination changes; (2) dynamic backgrounds:

some “moving” objects, such as waving trees, fountains,

and flickering monitors, are not interested for a vision-

based surveillance system; and (3) shadows: foreground

objects often cast shadows, which are different from the

modeled background.

A background subtraction approach usually considers

three main issues: background representation, background

updating, and background initialization [1]. For the popu-

lar background subtraction approach called the Gaussian

background model, Stauffer and Grimson [4] presented a

pixel-wise background representation scheme using the

mixture of Gaussians (MoG) and pixel-wise background

updating to update the intensity mean and variance of

each pixel in real-time. The MoG-based methods are ef-

fective for dynamic background scenes with multiple

background variations, but they are sensitive to noise and

illumination changes. Several existing MoG-based approa-

ches are proposed to improve their performances by adap-

tation of some MoG parameters [5], such as the number

of components [6,7], weights, mean, and variance [8-11],

learning rate [8,9,12,13], and feature type [9,14-17], and by

smoothing among spatially and temporally neighboring

pixels using spatial and temporal dependencies [18]. In

general, a training duration without foreground objects

(non-bootstrapping) is required and some ghost (false

positive) objects may be detected when some foreground

objects change their motion status (static or moving)

suddenly.

Recently, the background subtraction methods fo-

cused on background initialization for bootstrapping

video sequences [19-24], in which a training duration

without foreground objects is not available in some

cluttered environments [3,19]. That is, background

initialization for bootstrapping video sequences can be

defined as follows: given a video sequence captured by a
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stationary camera, in which the background is occluded

by some foreground objects in each frame of the video se-

quence, the aim is to estimate a background frame without

foreground objects [22,24]. Background initialization for

bootstrapping video sequences (or simply background

initialization) is widely used in the intelligent video sur-

veillance systems for monitoring crowded infrastructures,

such as banks, subway, airports, and lobby.

Two simple background initialization techniques are

the pixel-wise temporal mean and median filters over a

large number of video frames [20,21]. For the pixel-wise

temporal median filter, it is assumed that for each pixel

within the estimation duration, the exposure of the

background must be more than that of the foreground.

Based on the block-wise strategy, Farin et al. [19] used a

block similarity matrix to segment the input video

frames into foreground and background regions, which

contain the block-wise temporal differences between any

video frame pair. Reddy et al. [22] proposed a block se-

lection approach using the discrete cosine transform

(DCT) among some neighboring blocks to estimate the

unconstructed parts of the background. This approach is

usually degraded by similar frequency content within a

block candidate set and error propagation if some blocks

in a video frame are erroneously estimated. Note that, to

obtain the processing results, the whole video sequence

should be available to Reddy et al.’s approach. Then, the

DCT is replaced by the Hadamard transform to reduce

the computation time for block selection [23]. In addition,

a block selection refinement step using spatial continuity

along block borders is added to prevent erroneous block

selection. Most block-wise background initialization ap-

proaches need large memories and are computationally

expensive. Furthermore, one free-background video frame

is usually obtained as its output during the “learning”

duration.

For the frame-wise strategy with temporal smoothing,

the first video frame of a video sequence is usually treated

as the initial background for background initialization.

Most background initialization approaches maintain a

modeled background by iterative updating with tem-

poral smoothing between each input video frame and

the modeled background. Liu and Chen [25] proposed a

background modeling method, in which the background

similarity using the mean and variance information is

adopted to identify the background image. Moreover,

Scott et al. [26] updated the mean and variance informa-

tion by Kalman filter updating equations for maintaining

the modeled background. Maddalena and Petrosino [27]

automatically generated the background model without

prior knowledge by using self-organizing artificial neu-

ral networks. Each color pixel is represented by n × n

weight vectors to form a neural map. It is claimed that

they can handle bootstrapping scenes containing dynamic

backgrounds, gradual illumination changes, and shadows.

Using the growing self-organizing map, Ghasemi and

Safabakhsh [28] generated a codebook for detecting mov-

ing objects in the dynamic background scenes. The major

advantage of the methods using variant self-organizing

maps [27,28] is low computational complexity. Chiu et al.

[29] proposed a pixel-wise color background modeling ap-

proach using probability theory and clustering. To esti-

mate the modeled background completely, a suitable time

duration is required, because each of the R, G, and B color

components is iteratively updated by increasing/decreas-

ing 1 in the range of 0–255. The main weakness for the

background initialization and foreground segmentation

approaches using the frame-wise strategy with temporal

smoothing is that the “erroneous” parts in the modeled

background are slowly updated. Furthermore, this type of

approaches can work properly only when the video se-

quence contains fast “moving” foreground objects so that

the background is exposed most of the time.

On the other hand, within some existing approaches

[30-34], temporal smoothing is not adopted in background

updating. Chein et al. [30] proposed a pixel-wise video

segmentation approach with adaptive thresholding to de-

termine each pixel as a moving or stationary one. Each

pixel in the modeled background is then replaced by the

corresponding pixel in the current video frame if the pixel

is detected as a stationary one for some time duration.

That is, this type of approaches might not work well in

illumination-changing environments. Verdant et al. [31]

proposed three analog-domain motion detection algo-

rithms in video surveillance, namely, the scene-based

adaptive algorithm, the recursive average with estimator

algorithm, and the adaptive wrapping thresholding algo-

rithm, in which background estimation and variance of

each pixel are computed with nonlinear operations to per-

form adaptive local thresholding. Lin et al. [32] used a

classifier to determine whether an image block belongs to

the background for block-wise background updating. The

classifier using two learning methods, namely, the sup-

port vector machine and column generation boost, is

trained by some training data, which are manually

labeled as foreground/background blocks before back-

ground initialization. In addition, some foreground pre-

diction approaches may segment accuracy foreground

without background modeling. For example, Tang et al.

[33] proposed a foreground prediction algorithm, which

estimates each pixel in the current video frame belonging

to the foreground one. Given a segmentation result (an

alpha matte) of the previous video frame as an opacity

map, the opacity values [0–1] in an opacity map are

propagated from the previous video frame to the current

video frame using the foreground prediction algorithm. It

was claimed that the foreground can be predicted accur-

ately in sudden illumination changes. Zhao et al. [34]
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proposed a learning-based background subtraction ap-

proach based on sparse representation and dictionary

learning. They made two important assumptions, which

enabled their approach to handle both sudden and gradual

background changes.

In this study, an effective background initialization and

foreground segmentation approach for bootstrapping vi-

deo sequences is proposed, which contains a block-wise

background initialization procedure and a pixel-wise fore-

ground segmentation procedure. First, a modified block

representation approach is used to classify each block of

the current video frame into one of four categories. Then,

a new background updating scheme is developed, in which

a side-match measure is used to determine whether the

background is exposed so that the modeled background

can be well determined. Finally, using the edge informa-

tion, an improved noise removal, and shadow suppression

procedure with two morphological operations is adopted

to enhance the final foreground segmentation results. The

main contributions of the proposed approach include: (1)

using motion estimation and correlation coefficient com-

putation to perform block representation (classification);

(2) developing four types of background updating for four

types of block representation; (3) using side-match meas-

ure to perform background updating of “moving object”

blocks; and (4) using a modified noise removal and sha-

dow suppression procedure to improve final foreground

segmentation results.

This article is organized as follows. In Section 2, the

proposed background initialization and foreground seg-

mentation approach is addressed. Experimental results

are described in Section 3, followed by concluding

remarks given in Section 4.

2. Proposed background initialization and
foreground segmentation approach
Figure 1 shows the framework of the proposed video back-

ground initialization and foreground segmentation ap-

proach for bootstrapping video sequences, which contains

four major processing steps, namely, block representation,

background updating, initial segmented foreground, and

noise removal and shadow suppression with two morpho-

logical operations. In Figure 1, the input includes the

current (gray-level) video frame It and the previous (gray-

level) video frame It–1 of a bootstrapping video sequence,

and the output includes the modeled background frame Bt

and the segmented foreground frame Ft, where i denotes

the frame number (index). Here, I(x,y)
t , I(x,y)

t−1 , B(x,y)
t , and

F(x,y)
t denote pixels (x,y) in It, It–1, Bt, and Ft, respectively.

Each video frame is W × H (pixels) in size, and each video

frame is partitioned into non-overlapping and equal-sized

blocks of size N × N (pixels). Let (i,j) be the block index,

where i = 0,1,2,. . .,(W/N) – 1 and j = 0,1,2,. . .,(H/N) – 1.

Here, b(i,j)
t = {I(iN+a,jN+b)

t : a, b = 0, 1, 2,. . .,N − 1}, b(i,j)
t−1 =

{I(iN+a,jN+b)
t−1 : a, b = 0, 1, 2,. . .,N − 1}, and ebti;jð Þ ¼

Bt
iNþa;jNþbð Þ : a; b ¼ 0; 1; 2; . . . ;N � 1

n o
, denote blocks

(i,j) in It, It–1, and Bt, respectively. In addition, let B̂
t
de-

note the initial modeled background frame and b̂ i;jð Þt ¼

B̂
t

iNþa;jNþbð Þ : a; b ¼ 0; 1; 2; . . . ;N � 1
n o

; denote block

(i,j) in B̂
t
.

2.1. Initial modeled background processing

As the illustrated example shown in Figure 2, a sequence

of initial modeled background frames B̂
t
(t = 1,2,. . .) will

be obtained in the initial modeled background processing

procedure. At the beginning (t = 1), each block b̂ i;jð Þ1 of

size N × N (pixels) in B̂
1
is set to “undefined” (labeled in

black), as shown in Figure 2l. Then, the initial modeled

background frame B̂
t
(t = 2,3,. . .,19) is obtained based

on the “updated” modeled background frame Bt–1 (see

Section 2.3) and the block motion representation frame

R̂
t
. Each block of size N × N (pixels) in R̂

t
is determi-

ned as either a “static” block (labeled in blue) or a “mo-

ving” block (labeled in red) by motion estimation (see

Section 2.2) between two consecutive (gray-level) video

frames It–1 and It of the bootstrapping video sequence,

as shown in Figure 2g–k. For one “undefined” block

b̂ i;jð Þt � 1 in B̂
t�1

, if its corresponding block in R̂
t
is

Initial segmented

foreground

Noise removal and

shadow suppression

with two morphological

operations

Current framePrevious frame

Block

representation

Background

updating
Background

initialization

t
I1t

I

Foreground

segmentaion

Initial segmented

foreground t
F̂

Background t
B

Foreground t
F

-

Figure 1 The framework of the proposed video background

initialization and foreground segmentation approach.

Hsiao and Leou EURASIP Journal on Image and Video Processing 2013, 2013:12 Page 3 of 19

http://jivp.eurasipjournals.com/content/2013/1/12



determined as a “static” block, i.e., its motion vector is

(0,0), the “static” block b̂ i;jð Þt in B̂
t
is duplicated from the

corresponding block b(i,j)
t in It. Then, each “static” block

b̂ i;jð Þt in B̂
t
will perform the background updating pro-

cedure (see Section 2.3) to obtain ebti;jð Þ in Bt Otherwise,

the “undefined” block b̂ i;jð Þt � 1 in B̂
t�1

will remain as

the “undefined” block b̂ i;jð Þt in B̂
t
. That is, each “un-

defined” block b̂ i;jð Þt will not participate the background

updating procedure until b̂ i;jð Þt is determined as a

“static” block. As shown in Figure 2, each block in R̂
t
is

determined by motion estimation between two consecu-

tive (gray-level) video frames, It–1 and It, of the boot-

strapping video sequence. Each block in the initial

modeled background frame B̂
2
is based on B1 and R̂

2
, in

which some blocks in B̂
2
are still “undefined” (labeled in

black). The initial modeled background frame B̂
3

is

obtained based on B2 and R̂
3
. R̂

4
, R̂

5
,. . ., and R̂

19
in the

illustrated example can similarly be obtained. Note that,

in the illustrated example shown in Figure 2, each initial

modeled background frame B̂
t
(t = 1,2,. . .,18) contains

at least one “undefined” block.

Finally, as shown in Figure 2q, the initial modeled

background frame B̂
19

contains no “undefined” block.

Here, for the illustrated example shown in Figure 2, the

performance index T1(=19) is defined as the frame index

for initial modeled background processing. Afterwards,

the initial modeled background frame B̂
t
(t = 20,21,. . .)

is duplicated from the “updated” modeled background

frame Bt–1, i.e., B̂
t
¼ Bt�1 (t = 20,21,. . .) [35].

2.2. Block representation

As the illustrated example shown in Figure 3, in the

proposed block representation approach, each block of

the current video frame It is classified into one of the

four categories, namely, “background,” “still object,” “il-

lumination change,” and “moving object.” In Figure 3b,

each block of the block representation frame Rt for It is

labeled in four different gray levels. The block represen-

tation frame Rt is obtained based on the two consecutive

video frames, It and It–1, and the initial modeled back-

ground frame B̂
t
by the proposed block representation

approach (as shown in Figure 4), in which motion esti-

mation and correlation coefficient computation are used

to perform block representation (classification).

Motion estimation is performed between the two con-

secutive video frames, It and It–1 using a block matching

algorithm so that each block in It is determined as either

“static” or “moving.” In this study, the sum of absolute

differences (SAD) is used as the cost function for block

matching between block b(i,j)
t in It and the corresponding

block in It–1 and the search range for motion estimation

is set to ±N/2 [35,36]. For a block in It, if the minimum

SAD, Dmv(u,v), for motion vector (u,v), is smaller than

Background

Still object

Moving object

Illumination change

(a) t
I (b) t

R (c)

Figure 3 An illustrated example of block representation: (a) the

current video frame; (b) the block representation frame; (c)

templates for different blocks in (b).

(a) 1
I (b) 2

I (c) 3
I (d) 7

I (e) 8
I (f) 19

I

(g) 2
R̂ (h) 3

R̂ (i) 7
R̂ (j) 8

R̂ (k) 19
R̂

(l) 1
B̂ (m) 2

B̂ (n) 3
B̂ (o) 7

B̂ (p) 8
B̂ (q) 19

B̂

Figure 2 An illustrated example of initial modeled background processing: (a)-(f) the original video frames; (g)-(k) the block motion

representation frames; (l)-(q) the initial modeled background frames.
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90% of the SAD for the null-vector (0,0), Dmv(0,0), the

block is determined as a “moving” block; otherwise, it is

determined as a “static” block [19,35].

On the other hand, the correlation coefficient CB(i, j)

between block b(i,j)
t in It and block b̂ i;jð Þt in the initial

modeled background frame B̂
t
is computed as

CB i; jð Þ ¼

X
b
t
i;jð Þ � μ

b
t
i;jð Þ
�j jb̂

t

i;jð Þ
� μb̂

t
i;jð Þ

����
����

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
jbti;jð Þ � μ

b
t
i;jð Þ
j2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
jb̂

t

i;jð Þ
� μb̂

t

i;jð Þ

2j

r

ð1Þ

where μb is the mean of the pixel values in block b. As

shown in Figure 4, based on CB(i,j) and the threshold

THCB a “static” block can be further classified into either

a “background” block (if CB(i,j) ≥ THCB) or a “still ob-

ject” block (otherwise), whereas a “moving” block can be

further classified into either an “illumination change”

block (if CB(i,j) ≥ THCB) or a “moving object” block

(otherwise). Afterwards, four different block represen-

tations are obtained.

2.3. Background updating

By background updating, each block b̂ i;jð Þt in the initial

modeled background frame B̂
t
can be updated to obtain

the corresponding block ebti;jð Þ in the modeled background

frame Bt as follows. Both the “background” and “illumin-

ation change” blocks are updated by temporal smoothing,

i.e., block ebti;jð Þ in Bt is updated as the linearly weighted

sum of block b̂ i;jð Þt in B̂
t
and block b(i,j)

t in It. On the

other hand, both the “still object” and “moving ob-

ject” blocks are updated by block replacement.

(a) Background: the modeled background block eb
t

i;jð Þ in

Bt is updated by

eb
t

i;jð Þ ¼ α:b̂ i;jð Þt þ 1� αð Þ:bti;jð Þ ð2Þ

where α, the updating weight, is empirically set to 0.9

in this study.

(b) Still object: the modeled background block eb
t

i;jð Þ in

Bt is updated by

ebti;jð Þ ¼ b
t
i;jð Þ; if Count i;jð Þ≥THstill;

ebti;jð Þ ¼ b
^ t

i;jð Þ; otherwise;

8
<
: ð3Þ

where Count(i,j) is the number of times that b(i,j)
t in It is

successively determined as a “still object” block

previously, and THstill is a threshold for the time

duration (in terms of the number of frames) that a “still

object” block will learn to be a “background” block.

That is, if an object (or a block b(i,j)
t in It) does not

“move” for a sufficient time duration, it will become

some part of the background. As the illustrated

example shown in Figure 5, the marked block b(11,13)
33 in

I33 is detected as a “still object” block (in R33) for a

sufficient time duration (THstill = 20). Then, its

corresponding block eb
33

11;13ð Þ in B33 will be updated

(replaced) by b(11,13)
33 in I33.

(c) Illumination change: the modeled background block
eb
t

i;jð Þ in Bt is similarly updated by Equation (2).

(a) 33
I (b) 33

R (c) 33
B̂ (d) 33

B

Figure 5 An illustrated example of background updating for a “still object” block: (a) the original video frame; (b) the block

representation frame; (c) the initial modeled background frame; (d) the modeled background frame.
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Figure 4 The flowchart of the proposed block representation approach.
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(d) Moving object: the modeled background block eb
t

i;jð Þ

in Bt is updated by

ebti;jð Þ ¼ b
t
i;jð Þ; if SM b

t
i;jð Þ

� �
< SM b

^ t

i;jð Þ

� �

ebti;jð Þ ¼ b
^ t

i;jð Þ; otherwise;

8
<
:

ð4Þ

where SM(b(i,j)
t ) and SM b̂

t

i;jð Þ

� �
denote the side-match

measures for block b(i,j)
t from It embedded in B̂

t
and

that for block b̂ i;jð Þt “embedded” in B̂
t
, respectively, as

shown in Figure 6. The side-match measure (or the

boundary match measure) [37,38] is widely used in

various image/video error concealment algorithms due

to its good trade-off in complexity and visual quality.

SM(b(i,j)
t ) is defined as the sum of squared differences

between the boundary of the embedded block b(i,j)
t from

It and the boundaries of the four neighboring blocks

b̂ i�1;jð Þt; b̂ iþ1;jð Þt; b̂ i;j�1ð Þt; and b̂ i;jþ1ð Þt; in B̂
t
(Figure 6a),

i.e.,

SM b
t
i;jð Þ

� �
¼

XN�1

b¼0

B̂
t

iN�1;jNþbð Þ � I tiN ;jNþbð Þ

� �2

þ
XN�1

b¼0

B̂
t

iNþN ;jNþbð Þ � I tiNþN�1;jNþbð Þ

� �2

�
XN�1

a¼0

B̂
t

iNþa;jN�1ð Þ � I tiNþa;jNð Þ

� �2

þ
XN�1

a¼0

B̂
t

iNþa;jNþNð Þ � I tiNþa;jNþN�1ð Þ

� �2

ð5Þ

Similarly, SM b̂
t

i;jð Þ

� �
is defined as the sum of squared

differences between the boundary of block b̂ i;jð Þt and the

boundaries of its four neighboring blocks b̂ i�1;jð Þt;

b̂ iþ1;jð Þt; b̂ i;j�1ð Þt; and b̂ i;jþ1ð Þt; in B̂
t
(Figure 6b), i.e.,

SM b
^ t

i;jð Þ

� �
¼

XN�1

b¼0

B̂
t

iN�1;jNþbð Þ � B̂ iN ;jNþbð Þt
� �2

þ
XN�1

b¼0

B̂
t

iNþN ;jNþbð Þ � B̂ iNþN�1;jNþbð Þt
� �2

�
XN�1

a¼0

B̂
t

iNþa;jN�1ð Þ � B̂ iNþa;jNð Þt
� �2

þ
XN�1

a¼0

B̂
t

iNþa;jNþNð Þ � B̂ iNþa;jNþN�1ð Þt
� �2

:

ð6Þ

Note that if a block in Rt is determined as a “moving

object” block two times consecutively, the correspon-

ding modeled background block ebti;jð Þ in Bt is updated by

Equation (4). The side-match measure uses the camou-

flage of each “moving object” block to search the more

suitable modeled background block so that we can speed

up the background updating procedure. As the illustrated

example shown in Figure 7, two marked blocks b(12,9) and

b(11,10) in both I12 and I13 are detected as two “moving ob-

ject” blocks in both R12 and R13 consecutively. Thus, their

corresponding blocks eb1312;9ð Þ and eb1311;10ð Þ in B13 will be

updated (replaced) by blocks b(12,9)
13 and b(11,10)

13 in I13,

respectively.

2.4. Initial segmented foreground

Based on the modeled background frame Bt performing

background updating, as an illustrated example shown in

t

ji ),(b

( - )
2)( ),(

t

jiSM b

t

ji ),1(b̂ t

ji ),1(b̂

t

ji )1,(b̂

t

ji )1,(b̂

t

ji ),(b̂

( - )
2)ˆ( ),(

t

jiSM b

t

ji ),1(b̂ t
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Figure 6 The side-match measures SM(b(i,j)
t ) and SM(b(i,j)

t )of a “moving object” block in background updating.
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Figure 8, the initial (binary) segmented foreground frame

F̂
t
can be obtained as

F̂
t
¼

1; if I t � Bt
≥THisf ;

0; otherwise;

�
ð7Þ

where THisf is a threshold, which is empirically set to 15

in this study.

2.5. Noise removal and shadow suppression with two

morphological operations

As shown in Figure 8, F̂
t
usually contains some frag-

mented (noisy) parts and shadows. To obtain the precise

segmented foreground frame Ft, a noise removal and

shadow suppression procedure is adopted, which com-

bines the shadow suppression approach in [39] and the

edge information extracted from It with F̂
t
being the

(binary) operation mask.

Let F̂St be the S (saturation) component of the original

video frame (frame t) represented in the HSV color

space and F̂Et be the gradient image of It using the Sobel

operator [40] with F̂
t
being the (binary) operation mask.

The segmented foreground frame �F
t
is defined as

�F
t
¼

1; if F̂
t
\ F̂

t

S≥σ F̂ S
t

� �� �
[ F̂

t

E≥THE

� �
;

0; otherwise;

(

ð8Þ

where \ and [ denote the logical AND and OR operators,

respectively, σ F̂ S
t is the standard deviation of F̂St , and

THE is a threshold. Here, THE is empirically set to 120 in

this study. Figure 9 shows an illustrated example

performing the noise removal and shadow suppression

procedure. By applying the shadow suppression approach

in [39], the “second” (binary) segmented foreground frame

(shown in Figure 9b) is obtained based on F̂
t
(shown in

Figure 8c) and F̂St≥σ F̂ S
t (shown in Figure 9a). Based on

the “second” (binary) segmented foreground frame (shown

in Figure 9b), combining the gradient image F̂Et of It

(shown in Figure 9c) preserving the edge information in

the initial (binary) segmented foreground frame F̂
t
, the

segmented foreground frame �F
t
(shown in Figure 9d) is

obtained by Equation (8). Finally, the final segmented fore-

ground frame (shown in Figure 9e) is obtained as Ft with

two morphological (erosion and dilation) operations [40].

3. Experimental results
In this study, experimental results are performed using

Borland C++ on Intel Core 2 Quad CPU 2.4 GHz

Microsoft Windows XP platform. Six bootstrapping video

sequences, selected from three benchmark datasets,

namely, ATON (http://cvrr.ucsd.edu/aton/shadow/index.

html), PETS2006 (http://www.cvg.rdg.ac.uk/PETS2006/

data.html), and BPI [24], are used in this study, which are

listed and categorized in Table 1. In Table 1, the six boot-

strapping video sequences are categorized as jiggled

(a) (b) (c)

(d) (e) 

Figure 9 An illustrated example for noise removal and shadow

suppression: (a) F̂
S
t≥σ

F̂
S
t, (b) F̂

t

\(F̂
S
t≥σ

F̂
S
t); (c) F̂

E
t≥TE; (d) F

t,

(e) Ft with two morphological (erosion and dilation) operations.

(a) t
I (b) t

B (c) t
F̂

Figure 8 An illustrated example of initial segmented foreground:

(a) the current video frame; (b) the modeled background frame;

(c) the initial segmented foreground frame.

(a) 12
I (b) 12

R (c) 12
B

(d) 13
I (e) 13

R (f) 13
B

Figure 7 An illustrated example of background updating for

two “moving object” blocks: (a) and (d) are two original video

frames; (b) and (e) are the corresponding block representation

frames; (c) and (f) are the corresponding modeled background

frames.
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capture, shadow effect, and heavy clutter. The video

frames in Table 1 are 320 × 240 in size.

To evaluate the performance of the proposed approach,

three comparison approaches, namely, MoG [4], Reddy

background estimation (Reddy) [22], and self-organizing

background subtraction (SOBS) [27], are implemented in

this study. In MoG and Reddy, only the gray-level compo-

nent of each video frame is employed, in SOBS, the H, S,

and V components of each video frame are employed, and

in the proposed approach, the gray-level video frames are

used and additionally the S component is only used for

shadow suppression. Note that, for the SOBS approach,

each SOBS high-resolution video frame (3 W × 3H pixels)

is downsampled to a video frame of the original resolution

(W × H pixels) by local averaging.

3.1. Parameter setting

THstill in Equation (3) is a threshold for the time dur-

ation (in terms of the number of frames) that a “still ob-

ject” block will learn to be a “background” block. If an

object (or a block b(i,j)
t in It) does not “move” for a

sufficient time duration THstill it will be treated as some

part of the background. If THstill is set to a small value,

the modeled background frame Bt will easily be

disturbed by moving objects in each bootstrapping video

sequence. On the contrary, if THstill is set to a large

value, the modeled background frame Bt might not be

updated immediately. As the illustrated example shown

in Figure 10, the modeled background frames Bt with

THstill = 20 and THstill = 40 are illustrated, where

performance index T1 is defined as the frame index for

initial modeled background processing (Section 2.1) and

it is identically set to 21 for both THstill = 20 and THstill =

40. If performance index T2 is defined as the frame index

for constructing the free (“true”) modeled background

frame, for the illustrated example shown in Figure 10, T2 =

152 for THstill = 20, whereas T2 = 128 for THstill = 40. The

two performance indexes (T1 and T2) for different

thresholding values THstill of four bootstrapping video

sequences, namely, “Highway-1,” “Highway-2,” “S1-T1-C-

3,” and “S1-T1-C-4,” are illustrated in Figure 11.

Actually, THstill depends on the sizes of moving

objects, the velocities of moving objects, and the frame

rate (frames per second, fps) of each bootstrapping video

sequence. Let At be the minimum bounding rectangle of

a moving object in frame It and At-FR be the minimum

bounding rectangle of the moving object in frame It-FR

where FR (fps) is the frame rate of a bootstrapping video

sequence. Note that the time difference between the two

frames, It-FR and It, is 1 s. Here, the moving object is

roughly determined as “high-motion” if At-FR and At do

not contain any overlapping part. Otherwise, the moving

object is roughly determined as “low-motion.” In this

study, if a bootstrapping video sequence contains “high-

motion” moving object(s), then (FR/2) ≤ THstill ≤ FR.

Otherwise, FR ≤ THstill ≤ (FR + FR/2). The threshold

values THstill for the six video sequences, namely,

“Highway-1,” “Highway-2,” “S1-T1-C-3,” “S1-T1-C-4,”

“Vignal,” and “Granguardia,” by the proposed approach

are empirically set to 15, 15, 35, 35, 20, and 20,

respectively.

Table 1 The six bootstrapping video sequences and their categories

Video sequences Benchmark and category Video sequences Benchmark and category

ATON PETS2006

15 fps 25 fps

Jiggled capture Shadow effect

“Highway-1” “S1-T1-C-4”

ATON BPI

15 fps 18 fps

Jiggled capture Heavy clutter

“Highway-2” “Vignal”

PETS2006 BPI

25 fps 18 fps

Shadow effect Heavy clutter

“S1-T1-C-3” “Granguardia”
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3.2. Subjective comparisons

For background initialization, Figures 12, 13, 14, 15, 16,

and 17 illustrate some frames of the six bootstrapping

video sequences (a) and the corresponding modeled

background frames Bt by Reddy (b), SOBS (c), and the

proposed approach (d) with block size of 16 × 16. For

the Reddy approach, given a video sequence of T video

frames, each video frame is divided into non-overlapping

blocks of size 16 × 16. Agglomerative clustering back-

ground estimation is applied in a block-by-block manner.

Background areas are iteratively filled by selecting the

most appropriate (smooth) candidate blocks. For the

(a) (b)

(c) (d)

Highway-1

0

50
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200

10 15 20 25 30 35 40 45 50

TH still

t

T1 T2-T1

Highway-2
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200

10 15 20 25 30 35 40 45 50

TH still

t

T1 T2-T1

S1-T1-C-3

0

50

100

150

200

10 15 20 25 30 35 40 45 50

TH still

t

T1 T2-T1

S1-T1-C-4

0

100

200

300

400

10 15 20 25 30 35 40 45 50

TH still

t

T1 T2-T1

Figure 11 The performance indexes (T1 and T2) of four bootstrapping video sequences with different thresholding values THstill: the

performance indexes (T1 and T2) of “Highway-1” (a); “Highway-2” (b); “S1-T1-C-3” (c); and “S1-T1-C-4” (d).
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I

(a) Sequence “S1-T1-C-3”

1
B

21
B

58
B

78
B

100
B

128
B

152
B

(b) t
B with stillTH =20

1
B

21
B

58
B

78
B

100
B

128
B

152
B

(c) t
B with stillTH =40

Figure 10 An illustrated example for frames I1 I21, I58, I78, I100, I128, and I152 of the bootstrapping video sequence “S1-T1-C-3” (a) and

the corresponding modeled background frames Bt with T1 = 21, THstill = 20, (b) and THstill = 40 (c).
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Reddy approach, a bootstrapping video sequence with a

large number of video frames is required to obtain the free

(“true”) modeled background frame, due to some blocks

in each video frame might be erroneously estimated based

on the corresponding candidate block set in the frequency

domain. For the SOBS approach, the modeled background

frame Bl = Il. Then, each subsequent modeled background

frame Bt is obtained by pixel-wise background updating.

The SOBS approach can obtain the modeled background

frame of a bootstrapping video sequence with suitable par-

ameter values [27]. However, as a pixel-based approach, to

obtain the free (“true”) modeled background frame, it

needs a long time duration to eliminate the foreground

objects in Bl Based on our experimented results, the

performance indexes T2 for the six video sequences by

the SOBS approach are 220 for “Highway-1,” 306 for

“Highway-2,” 305 for “S1-T1-C-3,” 335 for “S1-T1-C-4,”

>260 for “Vignal,” and >450 for “Granguardia,” respecti-

vely. For each bootstrapping video sequence, the proposed

approach can obtain the free (“true”) modeled background

frame “completely” after T2 The performance indexes

T2 for the six video sequences, namely, “Highway-1,”

“Highway-2,” “S1-T1-C-3,” “S1-T1-C-4,” “Vignal,” and

“Granguardia,” by the proposed approach are 80, 48, 62,

236, 205, and 414, respectively, which are indeed less than

the corresponding values by the SOBS approach.

For foreground segmentation, Figures 18, 19, 20, 21,

22, and 23 illustrate some segmented foreground frames

Ft by MoG (a), Reddy (b), SOBS (c), and the proposed

approach (d). For Reddy, SOBS, and the proposed ap-

proach, the segmented foreground frames are obtained

by background subtraction of the corresponding boot-

strapping video sequences shown in Figures 12, 13, 14,

15, 16, and 17, whereas, for MoG, the segmented fore-

ground frames are obtained by the pixel-wise MoG

method in [4]. For SOBS, the contents of red rectangles

in the segmented foreground frames indicate the ghost

objects. As shown in Figures 18, 19, 20, 21, 22, and 23,

the segmented foreground frames of the MoG approach

are usually good for bootstrapping video sequences

containing some dynamic background, but the seg-

mented foreground frames of the MoG approach may

obtain fragmented (noisy) foreground objects for boot-

strapping video sequences containing some low-motion

moving objects and some noisy background due to

jiggled capture. The SOBS approach may obtain good

segmented foreground objects without shadow. How-

ever, each modeled background frame Bt of the SOBS
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(d) Proposed

Figure 12 Some background initialization results Bt of frames I1, I20, I40, I60, I80, and I100 of the bootstrapping video sequence

“Highway-1” (a) by Reddy (b), SOBS (c), and the proposed approach (d) with block size 16 × 16 and THstill = 15.
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Figure 14 Some background initialization results Bt of frames I1, I20, I40, I60, I80, and I100 of the bootstrapping video sequence “S1-T1-C-

3” (a) by Reddy (b), SOBS (c), and the proposed approach (d) with block size 16 × 16 and THstill = 35.
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Figure 13 Some background initialization results Bt of frames I1, I20, I40, I60, I80, and I100 of the bootstrapping video sequence

“Highway-2” (a) by Reddy (b), SOBS (c), and the proposed approach (d) with block size 16 × 16 and THstill = 15.
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Figure 16 Some background initialization results Bt of frames I1, I140, I180, I200, I220, and I240 of the bootstrapping video sequence

“Vignal” (a) by Reddy (b), SOBS (c), and the proposed approach (d) with block size 16 × 16 and THstill = 20.
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Figure 15 Some background initialization results Bt of frames I1, I80, I150, I200, I240, and I260 of the bootstrapping video sequence “S1-T1

-C-4” (a) by Reddy (b), SOBS (c), and the proposed approach (d) with block size 16 × 16 and THstill = 35.
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Figure 18 Some foreground segmentation results Ft of frames I1, I20, I40, I60, I80, and I100 of the bootstrapping video sequence

“Highway-1” by MoG (a), Reddy (b), SOBS (c), and the proposed approach (d) with T2 = 80.
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Figure 17 Some background initialization results Bt of frames I1, I50, I100, I200, I330, and I420 of the bootstrapping video sequence

“Granguardia” (a) by Reddy (b), SOBS (c), and the proposed approach (d) with block size 16 × 16 and THstill = 20.
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Figure 20 Some foreground segmentation results Ft of frames I1, I20, I40, I60, I80, and I100 of the bootstrapping video sequence “S1-T1

-C-3” by MoG (a), Reddy (b), SOBS (c), and the proposed approach (d) with T2 = 62.
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Figure 19 Some foreground segmentation results Ft of frames I1, I20, I40, I60, I80, and I100 of the bootstrapping video sequence

“Highway-2” by MoG (a), Reddy (b), SOBS (c), and the proposed approach (d) with T2 = 48.
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Figure 22 Some foreground segmentation results Ft of frames I1, I140, I180, I200, I220, and I240 of the bootstrapping video sequence

“Vignal” by MoG (a), Reddy (b), SOBS (c), and the proposed approach (d) with T2 = 205.
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Figure 21 Some foreground segmentation results Ft of frames I1, I80, I150, I200, I240, and I260 of the bootstrapping video sequence

“S1-T1-C-4” by MoG (a), Reddy (b), SOBS (c), and the proposed approach (d) with T2 = 236.
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approach may preserve some foreground objects in Il

resulting in some ghost objects in the segmented fo-

reground frame Ft. The proposed approach has good

foreground segmentation results for bootstrapping video

sequences, i.e., good segmented foreground objects

(without shadow and ghost objects) can be obtained

after T2.

Table 2 lists the average processing times (s) of

obtaining a segmented foreground frame for the six

bootstrapping video sequences by MoG, Reddy, SOBS,

and the proposed approach with block size 16 × 16.

Note that the average processing times (s) of obtaining a

segmented foreground frame for the six video sequences

are evaluated by 100 bootstrapping video frames. The

average frame processing times of each comparison ap-

proach (except Reddy) for different bootstrapping video

sequences are similar. However, the average frame

processing times of Reddy for different video sequences

are not similar, which are influenced on the complexity

(contents) of video sequences. Table 3 lists the average

frame processing times (s) of the three processing steps,

namely, block representation, background updating, and

foreground segmentation, for the six bootstrapping video

sequences by the proposed approach with block size 16

× 16. Note that foreground segmentation contains initial

segmented foreground (processing time ≈ 0 second) and

noise removal and shadow suppression with two mor-

phological operations. The average frame processing

times (0.488 and 0.124 seconds) for the two processing

steps, namely, block representation and foreground seg-

mentation, depend on the total number of blocks/pixels

of a bootstrapping video frame, which are relatively

stable. On the other hand, the average frame processing

time of the processing step, namely, background updat-

ing, depends on temporal smoothing and block replace-

ment for various block representations, which is

relatively small. As the results listed in Table 3, motion

estimation of block representation using a block

matching algorithm constitutes the major part of the

processing time of a bootstrapping video sequence by

the proposed approach, which may be greatly reduced

by parallel implementation.
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Figure 23 Some foreground segmentation results Ft of frames I1, I50, I100, I200, I330, and I420 of the bootstrapping video sequence

“Granguardia” by MoG (a), Reddy (b), SOBS (c), and the proposed approach (d) with T2 = 414.

Table 2 The average frame processing times (s) for the

six bootstrapping video sequences by MoG, Reddy, SOBS,

and the proposed approach with block size 16 × 16

MoG Reddy SOBS Proposed

Average 0.068 ± 0.004 0.403 ± 0.252 0.389 ± 0.025 0.615 ± 0.024
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3.3. Objective comparisons

For foreground segmentation, to perform objective

comparisons between the three comparison approaches

(MoG, SOBS, and the proposed approach), the “base-

line” category of “changedetection.net” video dataset [41]

is employed. For MoG, SOBS, and the proposed ap-

proach, both the input video sequences and the

processing results are processed in a frame-by-frame

manner. On the other hand, for Reddy, to obtain the

processing results, the whole video sequence should be

available to Reddy. Therefore, Reddy is excluded in the

following comparisons. Let TP be number of true

positives, TN be number of true negatives, FN be num-

ber of false negatives, and FP be number of false

positives. The four evaluation metrics, namely, FPR,

FNR, PWC, and FM, are employed in this study, which

are defined as [41]

1. false positive rate (FPR): FP/(FP + TN),

2. false negative rate (FNR): FN/(TN + FP),

3. percentage of wrong classifications (PWC):

100 × (FN + FP)/(TP + FN + FP + TN),

4. f-measure (FM): 2 × (PR × RE)/(PR + RE).

Table 4 lists the objective performance comparisons by

four evaluation metrics, FPR, FNR, PWC, and FM, for

the four video sequences in the “baseline” category of

“changedetection.net” video dataset by MoG, SOBS, and

the proposed approach. Table 5 lists the objective per-

formance comparisons by four evaluation metrics, FPR,

FNR, PWC, and FM, for the four video sequences in the

“baseline” category of “changedetection.net” video

dataset by the proposed approach with different block

sizes (8 × 8, 16 × 16, and 32 × 32). In Tables 4 and 5,

the best evaluation metrics FPR, FNR, PWC, and FM

are marked in bold font. Note that the smaller FPR and

FNR values respond the better performances, whereas

the larger PWC and FM values respond the better

performances. Here, for a fair comparison, the proposed

approach does not perform the two morphological

operations in the noise removal and shadow suppression

procedure. Based on the experimental results listed in

Table 4, in general, the foreground segmentation results

of the proposed approach are better than those of MoG

and SOBS. On the other hand, based on the experimen-

tal results listed in Table 5, the foreground segmentation

results of the proposed approach using three different

block sizes (8 × 8, 16 ×16, and 32 × 32) are substantially

similar. The average frame processing times of the

proposed approach using three different block sizes (8 ×

8, 16 × 16, and 32 × 32) are 0.256, 0.615, and 2.166

seconds, respectively. To reduce the average frame

processing time of the proposed approach, block size

8 × 8 is recommended.

For background initialization, including the evaluation

of foreground masks, we can also evaluate the perform-

ance of the estimated background. In this study, the

PSNR value of the estimated background, with respect-

ive to one “free” background (the groundtruth), is

employed. The “free” background (the groundtruth) is

synthesized by the “static” parts in different frames of

the whole bootstrapping video sequence. The average

PSNR values of SOBS and the proposed approach for

the “baseline” category of “changedetection.net” video

dataset [41] are 26.46 and 28.96 dB, respectively.

Table 4 Objective performance comparisons by four

evaluation metrics FPR, FNR, PWC, and FM for the four

video sequences in the “baseline” category of

“changedetection.net” video dataset by MoG, SOBS, and

the proposed approach

FPR FNR PWC FM

MoG 0.0158 0.0169 3.0802 0.5998

SOBS 0.0577 0.0007 5.5604 0.5076

Proposed 0.0043 0.0174 2.0448 0.6997

Table 5 Objective performance comparisons by four

evaluation metrics FPR, FNR, PWC, and FM for the four

video sequences in the “baseline” category of

“changedetection.net” video dataset by the proposed

approach with different block sizes (8 × 8, 16 × 16, and

32 × 32)

FPR FNR PWC FM

8 × 8 0.0043 0.0174 2.0448 0.6997

16 × 16 0.0044 0.0178 2.0942 0.6992

32 × 32 0.0049 0.0189 2.2429 0.6730

Table 3 The average frame processing times (s) of the three processing steps, namely, block representation,

background updating, and foreground segmentation, for the six bootstrapping video sequences by the proposed

approach with block size 16 × 16

Background initialization Foreground
segmentation

Block representation Background updating

Average 0.488 ± 0.0243 0.002 ± 0.0005 0.124 ± 0.0026
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4. Concluding remarks
In this study, an effective background initialization and

foreground segmentation approach for bootstrapping

video sequences is proposed, in which a modified block

representation approach, a new background updating

scheme, and an improved noise removal and shadow

suppression procedure with two morphological ope-

rations are employed. Based on the experimental results

obtained in this study, as compared with MoG [4],

Reddy [22] and SOBS [27], the proposed approach has

better background initialization and foreground segmen-

tation results. In addition, bootstrapping video sequen-

ces with jiggled capture, shadow effect, and heavy clutter

can be well handled by the proposed approach.
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