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Abstract—Detection of salient objects from images is gaining 

increasing research interest in recent years as it can substantially 

facilitate a wide range of content-based multimedia applications. 

Based on the assumption that foreground salient regions are 

distinctive within a certain context, most conventional approaches 

rely on a number of hand designed features and their 

distinctiveness measured using local or global contrast. Although 

these approaches have shown effective in dealing with simple 

images, their limited capability may cause difficulties when 

dealing with more complicated images. This paper proposes a 

novel framework for saliency detection by first modeling the 

background and then separating salient objects from the 

background. We develop stacked denoising autoencoders with 

deep learning architectures to model the background where latent 

patterns are explored and more powerful representations of data 

are learnt in an unsupervised and bottom up manner. Afterwards, 

we formulate the separation of salient objects from the 

background as a problem of measuring reconstruction residuals 

of deep autoencoders. Comprehensive evaluations on three 

benchmark datasets and comparisons with 9 state-of-the-art 

algorithms demonstrate the superiority of the proposed work.   

 
Index Terms—salient object detection, stacked denoising 

autoencoder, background prior, deep reconstruction residual. 

 

I. INTRODUCTION 

ALIENT object detection aiming to discover the most 

important and informative parts in an image is gaining 

intensive research attention recently as it can serve as a base for 

a large number of multimedia applications such as image 

resizing, image montage, action analysis and visual recognition 

[1-4]. Based on the underlying hypothesis that the salient 

stimulus is distinct from its contextual stimuli, most existing 

saliency detection models need to solve two key problems: i) 

extract effective features to represent the image and, ii) develop 

an optimal mechanism to measure the distinctiveness over the 

extracted features. 

The performance of saliency detection models heavily relies 
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on the features (data representations) being used. In the last 15 

years, a variety of features have been proposed for the task of 

image saliency detection. The earliest saliency computation 

model by Itti et al. [5] proposed three biological plausible 

features including color, intensity, and orientation. In Judd et al. 

[6], besides Itti's three features, several new features were 

introduced to characterize image content, which include the 

local energy of the steerable pyramid filters, subband pyramids 

based features, 3D color histogram, and horizon line detector. 

As visual attention could be directed by specific objects, some 

detectors of face, car, and person were treated as features for 

detecting saliency [6, 7]. All these feature representations are 

hand-designed and require significant amounts of domain 

knowledge. However, hand-designed features in general suffer 

poor generalization capability for different images, especially 

due to the lack of thorough understanding of the biological 

mechanisms and principles of human visual attention as well as 

weak human intuition involved. A few recent approaches tried 

to learn better representations from natural scenes for saliency 

detection by using independent component analysis (ICA) [8], 

sparse coding [9, 10], and low-rank matrix recovery [11]. 

Nevertheless, due to the shallow-structured architectures used 

these methods still have limited representational power and are 

insufficient to capture high-level information and latent 

patterns of complex image data. To overcome such drawbacks, 

in this paper, we investigate the feasibility of learning more 

powerful representation directly from the raw image data itself 

in an unsupervised way for the task of saliency detection. 

The saliency or distinctiveness is typically measured by 

image contrast computation over features, where various 

contrast measures have been presented. Depending on the 

extent of context in which the contrast is calculated, these 

approaches can be classified into local-contrast based methods 

and global-contrast based methods. Local-contrast based 

methods estimate the saliency of an image pixel or an image 

patch by calculating the contrast against its local neighborhood, 

and some representative local methods include the 

center-surround difference [5, 6, 12, 13], incremental coding 

length [10], and self-resemblance [14]. Global-contrast based 

methods characterize the saliency of an image region as the 

uniqueness in the entire image. Previous literatures have 

proposed a variety of approaches to model the global contrast 

from different perspectives. To be specific, in [15] and [16] the 

global contrast is derived in the frequency domain with the 

hypothesis that salient regions are normally less frequent. Han 

et al. [9] and Zhang et al. [8] utilized the Gaussian models to 
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calculate the global contrast. Cheng et al. [17] proposed to 

model the global contrast on the region level where each 

region's contrast is generated by a weighted summation of the 

differences between itself and all other regions. Shen et al. [11] 

represented a whole image as a low-rank matrix with sparse 

noises where sparse noises denote the salient regions. 

In spite of extensive efforts, local and global contrast based 

approaches still suffer from some drawbacks. First, these 

approaches normally can only highlight object boundaries but 

fail to detect the whole target region uniformly as shown in the 

examples given in Fig. 1. This problem may be alleviated in 

some global-contrast based methods while the results yielded 

are still unsatisfactory. Second, although the salient objects 

often present high contrast, the inverse might unnecessarily be 

true [11]. In many complex images (as shown in the third 

example of Fig. 1), the background contains small-scale 

high-contrast patterns which may lead to previous 

contrast-based methods fail in such cases. 

Essentially, the true aim of salient object detection is to find 

objects that are distinctive from the image background. It needs 

to calculate the contrast between the objects and the image 

background and then select those with high contrast as the 

salient objects. However, the local and global contrast-based 

methods do not identify which regions form the image 

background. They blindly assume the neighboring regions or 

the entire image to be the background and then calculate the 

contrast between each location and the assumed background. 

As their assumed background may not be the real one, the 

determined contrast also becomes incorrect, which in turn 

reduces the performance of saliency detection. To overcome 

these problems, a few emerging methods [18, 19] using 

background priors were proposed based on the idea of 

modeling the property of background first and thereby 

separating salient objects from the background. Specially, Wei 

et al. [18] exploited the boundary and connectivity priors about 

the background in natural images and detected saliency based 

on the geodesic distance. Considering that the salient object 

may be partially cropped on the boundary, this work adopts an 

existing saliency detection method [33] to compute the saliency 

of boundary patches and generates weights for the virtual 

background nodes. However, in some challenging images 

where the work [33] could not calculate the saliency of 

boundary patches precisely, the method of [18] is difficult to 

obtain satisfactory results. Yang et al. [19] modeled saliency 

detection as a manifold ranking problem and proposed a 

two-stage scheme for graph labelling. They represent the image 

as a close-loop graph with superpixels as nodes. In saliency 

detection, they first use the nodes on the image boundary as 

background seeds to rank other nodes in the graph. Then, in the 

second stage, they select the salient nodes from the detection 

results of the first stage and use them to refine the saliency of 

other nodes in the graph. On the assumption that the image 

boundary is mostly background, these methods result in a 

background template. As a result, the contrast between salient 

object and background can be precisely obtained. By 

incorporating background priors into traditional contrast-based 

methods, they show improved results in saliency detection. 

However, existing background prior based methods still 

have certain limitations. Typically, there are four scenarios 

where performing background prior based saliency detection as 

summarized below.  

1) The entire image boundary is a large and smoothly 

connected region (see the first row of Fig. 1);  

2) The regions defined within the image boundary look 

different whereas they may share certain latent pattern (see the 

second row of Fig. 1);  

3) The background is complex (for example, containing 

small-scale high-contrast patterns) and regions of image 

boundary are different as shown in the third row of Fig. 1;  

4) Salient objects significantly touch the image boundary and 

parts of them are wrongly considered as background as shown 

in the fourth row of Fig. 1. 

 As can be seen in Fig. 1, existing background prior based 

approaches [18] are effective for the first scenario and 

moderately effective for the second scenario. However, 

unsatisfactory  results are produced in dealing with the last two 

scenarios. In this paper, we propose a novel background prior 

based saliency detection framework using stacked denoising 

autoencoder (SDAE) with deep learning architectures. In the 

proposed work, SDAE is used to model image background. 

Rather than adopting hand-designed features as used in 

previous works [18, 19], the deep-structured SDAE is 

employed to learn more powerful representation directly from 

the raw image data in an unsupervised way, which also enables 

to capture the latent pattern of the input data hierarchically. It 

thus helps to deal with the second scenario (shown in the 

second row of Fig. 1) where the background regions share 

latent patterns. Then, the measure of contrast between salient 

objects and the background is formulated as the reconstruction 

residuals in the deep-structured SDAE. Different from the 

previous works [18, 19] which mainly focused on the way to 

calculate the similarity or distinctiveness between a certain 

image patch and the image boundary, the proposed work pays 

more attention to modeling the background regions. 

Fig. 1.  Some examples of saliency detection. (a) Input images. (b) Results 
from one local contrast method [5]. (c) Results from one global contrast 

method [15]. (d) Results from the background prior based method [18]. (e) 

Results from the proposed method. (f) Ground truth salient object masks. 
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Specifically, the sparsity is considered when training SDAE 

models, which is helpful to suppress the saliency of the 

background regions. Therefore, it is robust in handling the third 

scenario (shown in the third row of Fig. 1) where the most 

challenging task is to avoid mis-highlighting the small-scale 

high-contrast background regions in the saliency maps. In 

addition, the learning process of SDAE with the usage of 

stochastic corruption criteria is helpful to train a deep model for 

better robustness and feature representation.  Thus, the trained 

robust SDAE shows promising performance in these scenarios.  

Fig. 2 illustrates the workflow of the proposed framework. 

First, we down sample the original image to multiple scales to 

generate the multi-scale inputs. Afterwards, we explore the 

background prior via SDAE and detect salient regions by deep 

reconstruction residuals which can reflect the distinctness 

between the background and salient regions. Finally, post 

processes are applied to integrate the salient object detection 

results for each scale of input and generate the final saliency 

map by image organization refinement and region smoothing. 

The rest of the paper is organized as follows. Section II 

introduces the proposed approach in details. Section III 

presents experimental results with quantitative evaluation in 

comparison with a group of state-of-the-art approaches. Finally, 

several concluding remarks are drawn in Section IV. 

II. THE PROPOSED APPROACH  

In this section, we discuss the proposed method for salient 

object detection in details. It includes three subsections, which 

in turn introduce SDAE, the proposed salient detection 

framework, and two useful post-processing steps, respectively.  

A. Stacked Denoising Autoencoder (SDAE) 

Autoencoders are simple learning neural networks which aim 

to transform inputs into outputs with the least possible amount 

of distortion for learning latent patterns of the given data. While 

conceptually simple, they play an important role in machine 

learning and feature representation. More recently, 

autoencoders have taken center stage again in the “deep 

architecture” approaches [20-23], where autoencoders are 

stacked and pre-trained in an unsupervised fashion. These deep 

architectures have been shown to lead to state-of-the-art results 

on a number of classification and regression problems [24]. 

As a form of neural network, the classical autoencoder [24] is 

an unsupervised learning algorithm that applies 

back-propagation and sets the target values of the network 

outputs to be equal to the inputs. Specifically, it includes an 

encoding process and a decoding process. The encoding 

process uses an encoding function ( )f ,θ
i f

x  to take a 

nonlinear mapping from the visible input vector 
i

x  to a hidden 

representation vector 
i

y  by using an affine transformation with 

a projection matrix W  and a bias b . Normally, the sigmoid 

function 1 (1 ( ))sigm / expη η= + −˄ ˅  is used as the 

deterministic mapping as follows: 

( ) ( ) 
f

f , sigmθ= = +W
i i i

y x x b               (1) 

A decoding function ( )g ,θ
i g

y  is adopted to map the hidden 

representation 
iy  back to a reconstruction representation 

i
z  

through a similar transformation: 

( ) ( )
g

g , sigm ' 'θ= = +W
i i i

z y y b                  (2)               

After the decoding process, the obtained reconstruction is 

taken as a prediction of input 
i

x . The training of an 

autoencoder is to optimize the parameters ={ , } fθ W b  and 

={ , }' 'θ W
g

b  by minimizing the mean-squared reconstruction 

error between the training data and their reconstructed data via: 

arg , 
f g,

min L
θ θ

X Z˄  ˅                           (3) 

2

2

1

1
, 

2
X Z

m

i i

i

L || ||
=

= −∑˄ ˅ x z                     (4) 

where ={ }, ={ } [1, ]i i i m∈X Z ˈx z  denote all the training and 

reconstructed data, respectively. 

Stacked autoencoder (SAE) is a deep learning architecture of 

the classical autoencoders, which is built by stacking additional 

unsupervised feature learning layers, and can be trained using 

greedy methods for each additional layer. Specifically, once the 

first layer is trained, the hidden representation of the first layer 

can be treated as the input of the second layer. As a result, any 

number of the K layers in this deep architecture can be trained 

effectively. This deep architecture allows SAE to learn more 

complex mapping from the input to hidden representations and 

capture the latent patterns which reflects the most homogametic 

property shared among the training data. 

 
Fig. 2.  The workflow of the proposed framework. 
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The stacked denoising autoencoder (SDAE) [25] is an 

extension of the SAE. It builds a deep architecture by stacking 

multiple layers of the denoising autoencoder (DAE) which 

reconstructs the input into a corrupted and partially destroyed 

version. By introducing stochastic corruption to the training 

samples, SDAE can avoid over-fitting and achieve better learnt 

features, where non-trivial features are robust to input noise and 

useful for the further tasks. For a two-layered SDAE, it is done 

by first corrupting the initial input ∈ Xix  into ɶ
i

x  by using a 

stochastic mapping = ( )qD |ɶ ɶ
i i i

x x x . According to [24, 25], 

= ( )qD |ɶ ɶ
i i i

x x x  is implemented by randomly selecting a 

fraction (10% in this paper) of the input data and forcing them 

to be zero. In the bottom layer, corrupted input ɶ
i

x  is then 

mapped to a hidden representation 
1 1 1

( )
f

f ,θ= ɶ
˄˅ ˄˅ ˄˅

i i
y x  from 

which we reconstruct a 
1 1 1 1

( )
g

g ,θ=˄ ˅ ˄ ˅ ˄ ˅ ˄ ˅

i i
z y . 

Once the bottom layer is trained, the hidden representation of 

the bottom layer 1˄ ˅
i

y  is henceforth used as the input of the 

second layer ˄2˅
i

x  to train a new denoising autoencoder as 

follows: 

( )qD |=ɶ ɶ
2˄˅ 2˄˅ 2˄˅

i i i
x x x                               (5) 

2
( )

f
f ,θ= ɶ

˄ ˅ ˄2˅ ˄2˅ ˄2˅

i i
y x                              (6) 

2 2
( )

g
g ,θ= ɶ

˄ ˅ ˄2˅ ˄ ˅ ˄2˅

i i
z y                              (7) 

Note that SDAE still minimizes the reconstruction loss 

between a clean input X  and its reconstruction representation 

Z . It thus forces the learning of a far more clever mapping than 

the identity, e.g.  extracting useful features for denoising [25]. 

Motivated by the physiological evidence that describing 

patterns with less active neurons minimizes the probability of 

destructive cross talk, a regularization term that penalizes a 

deviation of the expected activation of the hidden units 

(representation vector) from a fixed (low) level ρ  is applied to 

constrain the sparsity to the target activation function [26]. By 

taking a single layer autoencoder for example, the target 

activation function with sparsity constraint can be written as:   

    arg
f g

sparsity j
,

ˆmin L , , ,
θ θ

ρ ρX Z˄  ˅                         (8)  

1

+ KL( || )X Z X Z
N

j j

j

sparsity
ˆ ˆL , , , L ,ρ ρ β ρ ρ

=
= ∑˄ ˅ ˄ ˅           (9)   

1
KL( || ) log (1 )log

1
j

j j

ˆ
ˆ ˆ

ρ ρρ ρ ρ ρ
ρ ρ

−= + −
−

             (10) 

where β  is the weight of the sparsity penalty, N  is the 

number of features in the weight matrix, ρ  is the target 

average activation of the hidden units, and 
1

= [ ]
m

j i= j i
ˆ mρ ∑ y  

is the average activation of  the j th  hidden unit 
j

y  over the 

m  training data. The Kullback-Leibler divergence KL( )⋅  

provides the sparsity constraint. As in sparse coding, a 

non-redundant over-complete feature set is learned when ρ  is 

small. Here we set =0 05.ρ  as suggested in [26]. Usually, 

training a DAE is straightforward, where the back-propagation 

algorithm can be used to compute the gradient of the objective 

function [26, 27], and the same target activation function can be 

used in all the layers when training SDAE. As the labels of the 

input data are not needed in the training process above, the 

layer-wise training step is actually unsupervised. 

B. Saliency Detection via Deep Reconstruction Residual  

As we mentioned in Section I, local and global 

contrast-based methods lack the ability to precisely compute 

the contrast between foreground objects and the background. 

Inspired by the success of [18], this paper develops the 

framework along the pipeline of modeling the background and 

thereby separating salient objects from the background. We 

follow the basic rule of photographic composition and assume 

that the image boundary is mostly background. Then, the 

contrast between salient object and the background can be more 

precisely obtained. Specifically, we separately define four 

boundaries for each image as shown in side-specific SDAE 

training of Fig. 2. The height of two horizontal boundaries is 

then percent of the image height and their width is the image 

width. Similarly, the width of two vertical boundaries is then 

percent of the image width and their height is the image height. 

To valid the assumption that the image boundary is mostly 

background, we compute the percentage of foreground pixels 

(labeled in the ground truth) within the defined image 

boundaries in two widely used databases (the SOD database [40] 

and the SED dataset [50]). The statistic result shows that, for 

most images, only less than 10% of pixels in the image 

boundary are foreground pixels, which demonstrates that our 

assumption is reasonable. For the small number of foreground 

patches, the learning process of SDAE could decrease their 

influence by minimizing the objective function with the 

reconstruction error term when modeling the background.  

As shown in Fig. 2, the proposed framework mainly consists 

of three components: multi-scale inputs generation, salient 

region detection via deep reconstruction residual, and post 

processing. According to [28, 29], scale is an important factor 

for identifying objects of different sizes. Similar to [28], we use 

five scales as 
1 1 1 1 1

{ , }
2 3 4 5 6

, , ,  of the original image size to 

generate multi-scale inputs. It is more sensitive to small objects 

at the large scale whereas it is more likely to highlight the inner 

regions of large objects at the small scale. 

Afterwards, we model the background using SDAEs 

described in last subsection and then detect saliency by deep 

reconstruction residuals for each scale. Specifically, we 

construct four deep residual maps based on four boundaries 

(Side-specific deep reconstruction residual maps shown in Fig. 

2) and integrate them for the final map, which is referred to as 

the separation/combination (SC) approach [19]. Specifically, 

each image boundary is divided into patches of 6 6×  pixels 

with an overlapping of 2 pixels in each direction. Afterwards, 

we establish the SDAE model with a visible (input) layer with 

6 6 3=108× ×  visible units and two hidden layers. According to 
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[30], setting the same size for all layers can generally achieve 

good results. As the number of units in the visible layer is 108, 

we set each hidden layer to have 100 hidden units, which is 

approximately equal to the number of units in the visible layer. 

As pointed out in [31, 32], data preprocessing plays an 

important role in many deep learning algorithms. In our 

approach, we perform Zero-phase Component Analysis ( ZCA) 

whitening suggested in [32] to make the input data less 

redundant. ZCA whitening is implemented by using PCA to 

make the input vectors to be uncorrelated and then enabling 

them to have covariance equal to the identity matrix. In the 

unsupervised training phase, we gradually train the SDAE 

model layer by layer to learn the feature representation and 

extract latent patterns for image boundaries by optimizing the 

objective function in (8-10) for each layer. 

Next, we calculate the deep reconstruction residuals for each 

patch in the image as shown in Fig. 3. Specifically, for each 

input patch 
i

x , its feature representation 
1˄ ˅

i
y , 

2˄ ˅

i
y  and 

reconstruction vector 
1˄˅

i
z , 

2˄ ˅

i
z  are obtained by using (5-7) with 

the trained projection matrixes and biases 
1 1 1

={ , }
f

θ W
˄ ˅ ˄ ˅ ˄ ˅

b , 

2 2 2
={ , }

f
θ W

˄ ˅ ˄ ˅ ˄ ˅
b , 

1 1 1
={ , }

' '

g
θ W

˄ ˅ ˄ ˅ ˄ ˅
b , and  

2 2 2
={ , }

' '

g
θ W

˄ ˅ ˄ ˅ ˄ ˅
b . 

The deep reconstruction residuals are defined as: 

2 2 2

2

1
=

2
r r || ||= −˄ ˅ ˄2˅ ˄ ˅d

i i i i
x z                 (11) 

Here we use the deep reconstruction residual   rather than the 

shallow reconstruction residual, which is generated by only 

using one layer denoising autoencoder, to measure the saliency. 

This is because the feature representation in the deep layer 

captures more intrinsic and latent patterns of the image 

boundary, which generally leads to more promising saliency 

detection results in line with human perception (see Fig. 3). 

Similar to [29], we first assign the patch-level deep residual to 

each pixel within the corresponding patch and then sum the 

deep residuals of each pixel assigned from multiple overlapped 

patches to generate the pixel-level deep residual map. 

After normalization, the deep reconstruction residual map 

topR , bottomR , 
left

R , and 
right

R  are obtained based on the SDAE 

models for the top, bottom, left and right image boundary 

subsets, respectively. Finally, the four residual maps are 

linearly combined to generate the saliency map 
R

S . 

=R top bottom left rightS R R R R+ + +˄ ˅/4             (12) 

C. Post Processing  

As discussed above, we compute saliency map 
R

S  at five 

different image scales to account for scale changes in salient 

objects. To integrate salient regions in different scales, we use 

the average value of the five single scale saliency maps to 

generate the multi-scale integrated saliency map 
R

S . Then this 

map is normalized to the range of [0, 1]. To further refine the 

results, two post-processing steps are adopted on the basis of 

the image organization priors and the region property as 

presented in details below. 

1) Image organization refinement 

After obtaining the integrated saliency map 
R

S , we observe 

that although most integrated saliency maps can separate 

salient regions from the background, there are still some cases 

where the highlighted regions contain several undesired 

background regions (such as the branches shown in the first 

row of Fig. 4) or omit a bit of real foreground regions (such as 

some parts of the coral shown in the second row of Fig. 4). 

According to the visual organization rules in [33], these cases 

can be refined by considering the visual contextual effect. As a 

result, we propose to use an image organization refinement 

approach with two components to tackle this problem. 

In the first component, as suggested by [34], which states 

that the salient pixels tend to group together, as they typically 

correspond to real objects in the scene, we propose to use a 

self-adaptive threshold ( )
R

t = mean S  to obtain the salient 

cluster firstly. Then the center of the salient cluster 
cm

G  is 

computed, and its location is placed using a Gaussian with 

=10000cσ  as suggested in [34] to modify the salient values 

Fig. 3.  The process to generate deep reconstruction residual map. 
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according to their distance to the salient cluster center. 

In the second component, to deal with the case where 

highlighted regions omit a bit of real foreground, we follow [35] 

to include the immediate context by weighting the saliency 

value of each pixel based on their distance to the high salient 

pixel locations. This is because the context of the dominant 

objects is as essential as the objects themselves [35]. To encode 

immediate context information, high salient pixel locations 

=
R

S tΦ >  are found and the saliency value at all pixel 

locations are weighted by their distance to Φ . 

Finally, the whole image organization refinement is 

implemented by integrating these two components via: 

64

2

( , )

2

( ( ) ( ))
exp( )

( ( ) ( ))
            + exp( )

c

OR R

y N p l

cm

R

l p l G
S p S p

l p l G
S p

σ

σ

∈ Φ

−
= × −

−
× −

∑( ) ( )

( )

c

c

   (13) 

where 
64

( )
c

G N p,∈ Φ  is the 64 nearest neighbor of pixel p  

in Φ , ( )l ⋅  is the normalized image coordinate of pixels, and 

OR
S  is the saliency map after the organization refinement. 

cm
G  

indicates the center of the salient cluster. 

2) Region smoothing 

In order to highlight the entire salient object uniformly and 

recover more edge information, inspired by [35], we refine the 

saliency of each pixel using the region information. 

Specifically, a graph based segmentation algorithm [36] is used 

to decompose the image into a number of small regions and the 

final saliency of each region is calculated by the average 

saliency value of all the pixels within it. Examples of region 

smoothing results are shown in the fifth column of Fig. 4. 

III. EXPERIMENTS  

To evaluate the performance of the proposed salient object 

detection framework, we compared it with 9 state-of-the-art 

approaches, which have been published within last 3 years and 

in top journals or conferences. These approaches include SVO 

[37], RC [17], CBS [38], CNTX [33], GS-G [18], GS-S [18], 

BLSM [39], PD [34] and GBMR [19]. For the work of [18], we 

used both the grid patch based geodesic saliency (GS-G) and 

the superpixel based geodesic saliency (GS-S) in our 

comparison. To obtain the performance of these 9 methods, we 

adopted either the author-provided implementations or 

author-provided saliency maps.  

Evaluations were constructed on three publicly available 

benchmark datasets including the ASD dataset [13, 16], the 

SOD dataset [40] and, the SED dataset [50]. The ASD dataset 

consists of 1,000 images with manually labeled ground truth. 

To our best knowledge, this dataset is one of the largest test sets 

for salient object detection whose ground truth is in the form of 

manually labeled accurate object contours instead of rough 

bounding boxes. The SOD dataset consists of 300 images, 

which generally contain complex background and multiple 

salient objects with vague appearance. Some images contain 

foreground objects with very similar color to the background, 

which makes it difficult to be precisely separated. For many 

images, even the ground truth annotated by multiple subjects 

shows inconsistency. Consequently, it has been regarded as the 

most challenging dataset for salient object detection by a recent 

survey paper [41]. Another challenging dataset is the SED 

dataset, which contains 100 images with one salient object and 

complex background and another 100 images with two salient 

objects. The SED dataset also provides accurate 

human-labelled ground truth for each image. These three 

benchmark datasets have been widely utilized by a variety of 

saliency detection approaches for performance evaluation. 

Fig. 5 illustrates a number of saliency maps yielded by using 

the proposed method and the 9 state-of-the-art algorithms. The 

subjective evaluations by comparing with the ground truth 

suggest that the proposed method can yield saliency maps 

correctly and robustly in all three datasets. It can be observed 

that, compared with PD, GBMR, GS-S, GS-G, BLSM, and 

CNTX, the proposed method can highlight salient region more 

uniformly. Compared with SVO and RC, our approach can 

achieve higher distinctness between foreground regions and 

background regions. In the next subsections, further 

comprehensive experiments are designed for both parameter 

analysis and quantitative performance assessment. 

A. Evaluation Metrics 

By following previous works of [9, 12, 15, 16, 34, 41-43], 

four metrics are adopted in our experiments to quantitatively 

measure the performance of saliency map, which include the 

receiver operating characteristic (ROC) curve, area under the 

ROC curve (AUC), precision recall (PR) curve, and the average 

precision (AP). ROC and AUC are generated by classifying the 

pixels in a saliency map into salience or non-salience by 

varying the quantization threshold within the range [0, 255]. 

The resulting false positive rate versus true positive rate at each 

threshold value forms the ROC curve. Similarly, PR and AP are 

generated using the precision rate and the true positive rate (or 

the recall rate). The precision PR E , true positive rate TPR  

and false positive rate FPR  values are respectively defined by 

 =  
| SF GF | | SF GF | | SF GB |

PRE = TPR FPR =
| SF | | GF | | GB |

∩ ∩ ∩
 (14) 

where SF , GF  and GB  denote the set of segmented 

 
Fig. 4.  Experimental results of some examples after each step in the proposed 

method. 
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foreground pixels after a binary segmentation using a certain 

threshold, the set of ground truth foreground pixels and the set 

of ground truth background pixels, respectively. 

To further evaluate the performance of the proposed method 

for salient object segmentation, we report the performance in 

segmenting the saliency map using a self-adaptive threshold. 

Observing the Gaussian-like distributions of the saliency value 

in the proposed saliency maps, an adaptive threshold 

T = +µ σ  as suggested in [44] is used to segment the saliency 

maps. Here, µ  and σ  are the mean saliency value and the 

standard deviation of the saliency map, respectively. For each 

segmented foreground binary map 
T

SF  under the adaptive 

threshold T , we follow [51] to evaluate it by using the 

weighted F-measure. =| |
T

E G SF−  denotes the absolute error 

of detection, where G  is the column-stack representation of 

the binary ground truth. In order to take into consideration both 

the dependency between pixels and the location of the errors, a 

weighting function is applied to the errors as 

= ( )
w

E min E,E ⋅A Β . As defined in [51], the matrix A  

captures the dependency between foreground pixels based on 

the Euclidean distance and the matrix Β  assigns importance 

weights to false detections according to their distance from the 

foreground. Then, the weighted true positive 
w

TP , the 

weighted false positive 
w

FP  and the weighted false negative 

w
FN  can be calculated by 

 
Fig. 5.  A number of comparison results of ours, 9 state-of-the-art approaches, and the ground truth. From the left to the right, the first four examples are from the 

ASD dataset, the middle four examples are from the SOD dataset, and the last two examples are from the SED dataset. 
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=
w w

TP E G⋅(1- )                              (15) 

=
w w

FP E G⋅(1- )                            (16) 

=
w w

FN E G⋅                                  (17) 

Finally, the weighted precision 
w

PRE , the weighted recall 

w
REC , and the weighted F-measure 

w
Fα  for the segmented 

foreground binary map can be obtained by: 

w

w

w w

TP
PRE

TP FP
=

+
  

w

w

w w

TP
REC

TP FN
=

+
          (18)                                  

2

2
(1+ )

w w

w

w w

PRE REC
F

PRE REC
α α

α
⋅

=
⋅ +

                     (19) 

where α  is set to 1 as suggested in [45-47] to balance the 

determined precision and recall measures. 

B. Parameters Analysis and Model Evaluation 

In this section, we analyze the effect of a few key parameters 

in the proposed model on performance. Here we conducted the 

evaluation on the SOD and SED datasets. In SDAE, the weight 

of the sparsity penalty β  in (9) is a parameter to balance 

squares error term and the sparsity penalty term. Essentially, 

the tradeoff parameter β  has a notable influence on the 

saliency detection performance. In this paper, we empirically 

generated the saliency map using the proposed approach by 

varying β  between 0 and 0.3. Fig. 6 illustrates AUCs and APs 

with different values of β . As can be seen, the proposed 

algorithm is reasonably sensitive to β  and SDAE can work 

well under a range of parameter settings from 0.0001 to 0.001. 

In all subsequent experiments, β  was fixed at 0.0005. Some 

examples of the experimental results obtained under different 

β  are also given in Fig. 7. From the second and the third 

column of Fig. 7, we can see that for the images with clustered 

background, the sparsity is an essential element for suppressing 

the saliency of the background regions. However, if the sparsity 

constraint is set too big, it normally leads to less stable and 

discontinuous detection results (as shown in the forth column of 

Fig. 7). Similar phenomenon is also discovered in [48, 49].  

To demonstrate the effectiveness of the KL divergence used 

in the sparsity constraint, we also compared our SDAE model 

with the SDAE models without the KL divergence term and 

using less hidden nodes. Experimental results are shown in 

Table I. As can be seen from the results, the use of KL 

divergence can improve the model performance. It should be 

mentioned that in above experiments (results shown in Fig. 6 

and Table I), we only used the SDAE model without 

multi-scale inputs and post processing steps to evaluate the 

effect of the sparsity constraint clearly. 

Besides sparsity, the denoising criterion, multi-scale inputs, 

and post processing (i.e. the image organization refinement 

(OR) and region smoothing (RS)) are three other critical factors 

in the proposed framework. In order to show the effect of these 

factors on performance, we compared the proposed approach 

 
Fig. 6.  AUCs and APs with different sparsity penalty weights. 

  

TABLE I 

DEMONSTRATION OF THE EFFECTIVENESS OF THE KL DIVERGENCE 

 100 hidden nodes 
with the KL 

divergence term 

( =0 0005.β ) 

100 hidden 
nodes without 

the KL 
divergence term 

50 hidden nodes 
without the KL 

divergence term 

S
O

D
 

AUC 0.8673 0.8489 0.8262 

AP 0.6738 0.6515 0.6001 

S
E

D
 AUC 0.9240 0.9042 0.8895 

AP 0.8128 0.7818 0.7538 

 

 

 
Fig. 7.  Some experimental results obtained under different parameter setting.

  

Fig. 8.  AUCs and APs of different models. 
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approaches is twofold. First, instead of using traditional 

hand-designed features, the proposed algorithm adopted SDAE 

with deep structures to learn more powerful representations for 

saliency computation. Second, the proposed work casted 

separation of salient objects from the background as a problem 

of calculating reconstruction residual of SDAE. 

Comprehensive experiments on three publicly available 

benchmarks have demonstrated the effectiveness of the 

proposed work. To the best of our knowledge, this work might 

be among the earliest efforts to explore the feasibility of deep 

learning for salient object detection.  

For the further work, we tend to extend the proposed work in 

the following directions. First, we improve the proposed work 

by combining a number of top-down cues. Second, the 

proposed method can be extended to saliency detection in 

dynamic videos and many other applications such as image 

retrieval, image categorization, and image collection 

visualization. 
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