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Abstract

Background Risk and Trading in a Full-Information Rational
Expectations Economy

In this paper we assume that investors have the same information, but trade due to the
evolution of their non-market wealth. In our formulation, investors rebalance their portfolios
in response to changes in their expected non-market wealth, and hence trade. We assume an
incomplete market in which risky non-market wealth is non-hedgeable and independent of
the market risk and thus represents an additive background risk. Investors who experience
positive shocks to their expected wealth buy more stocks from those who experience less
positive shocks.
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1 Introduction

It has long been a challenge for financial economists to explain trading in the context of
rational expectations asset pricing models. For example, in the complete markets Arrow-
Debreu model, agents choose state-contingent claims on the initial date, but do not trade
at subsequent dates, since they have already purchased claims that hedge against various
future outcomes; thus, there is no need for them to adjust their portfolio holdings as the
state of the world is revealed. This inability to explain trading in a rational model flies
in the face of evidence that there is a large volume of trading in various securities: bonds,
stocks, and increasingly in various types of contingent claims, such as options and futures
contracts.

Several attempts have been made in the literature in the past to explain trading by relaxing
some of the assumptions of completeness of markets and information available to agents in
the economy. One possibility is that when investors have asymmetric information, this gives
them an incentive to trade in order to profit from that information. However, as Grossman
and Stiglitz (1980) point out, the mere act of trading reveals the information possessed
by a particular agent and this gets reflected in market prices. While there may be some
“sand in the gears” introduced if the process of expectations formation is noisy, the central
intuition that prices reflect private information still prevails, reducing the motivation to
trade substantially.

This argument was taken one step further by Milgrom and Stokey (1982) who argue that
when the agents begin with a Pareto optimal allocation relative to their prior beliefs, they
do not trade upon receiving private information, even at equilibria that are less than fully
revealing, since “the information conveyed by price changes swamps each traders private
information.” This surprisingly general result arises because if the initial allocation is Pareto
optimal, there is no valid insurance motive for trading. The willingness of other traders to
take the opposite side implies at least to one trader that his own bet is unfavorable. Hence
no trade is acceptable to all traders. The Milgrom and Stokey propositions rely on two
crucial assumptions: a) that it is common knowledge that when a trade occurs it is feasible
and acceptable to all agents, and b) the agents beliefs are concordant, i.e., that they agree
about how the information should be interpreted.

Another strand of the literature that has provided a motivation for trading is on market
micro-structure, most prominently by Kyle (1985) and Glosten and Milgrom (1985). These
models try to explain the bid-offer spread in markets by appealing to asymmetric informa-
tion. However, a crucial assumption in such models is the existence of noise traders, who
trade for liquidity reasons, and these are not explicitly modeled. Furthermore, it is unclear
why in such models, investors trade for liquidity reasons in risky securities such as stocks,
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rather than trading bonds, unless some market imperfection is assumed. In the Milgrom
and Stokey sense, it must be the case that the allocation in these models is not ex-ante
Pareto optimal, and/or that the beliefs are not concordant.

The broad conclusion from the information-based literature on trading is that the Milgrom
and Stokey “no-trade” result will obtain, unless there is some market imperfection, signifi-
cant deviation from rational expectations equilibria or an exogenous reason to trade, such
as liquidity motivations.

In this paper, we explore an alternative motivation for trading, which is the existence
of non-marketable wealth. Non-marketable wealth may take many forms, but the most
obvious example is wealth arising from labor income. Human capital, which is the value
of future labor income, has been shown in many studies, both theoretical and empirical,
to have an influence on portfolio demand. Another example is housing wealth, which is a
significant component of the portfolios of households. Again, there is a extensive literature
documenting how housing wealth affects portfolio choice and, in turn, feeds back on to
the equilibrium prices of traded assets. The effect of non-market wealth is that it alters
the agents’ demand for the traded assets. An early example of this distortion is the work
of Bodie, Merton and Samuelson (1992) in the context of non-stochastic, positive non-
marketable wealth for an agent with constant relative risk aversion. They show that this
agent acts much like another agent with a lower, but increasing relative risk aversion.

The problem gets more complex when the non-marketable wealth has stochastic properties.
There is a extensive literature on background risk that studies the portfolio behavior of
agents with such non-marketable wealth, whose future cash flows are also stochastic. For
most common utility functions, the existence of background risk makes agents more risk
averse and hence reduces their demand for risky securities. [See, for example, Gollier and
Pratt (1996), Kimball (1993) and Eekhoudt, Gollier and Schlesinger (1996).] The natural
question is how the changes in the agents’ portfolio decisions affect the portfolio demand
and sharing rules of the marketable securities in equilibrium, a problem first analyzed by
Franke, Stapleton and Subrahmanyam (1998) [FSS].

We extend this framework to consider a multi-period version of the FSS framework. Fol-
lowing the outcome of the background risk in the intermediate period, agents adjust their
holdings of the marketable securities, to be in line with their new level of derived risk aver-
sion in the presence of the updated distribution of background wealth. If the outcomes of
the background risk are heterogeneous across agents, it creates a motivation for trading,
as different agents may wish to adjust their portfolio holdings in opposite directions. We
explore this simple intuition formally for investors with constant relative risk aversion in
our analysis.
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Section 2 presents the set up of the model and derives the portfolio demand for traded
state-contingent claims. Section 3 describes the evolution of the background risk over time
Section 4 derives optimal demand in the special case where all uncertainty of background
risk is resolved at time 1. Section 5 generalizes the results using an approximation. Section
6 presents our conclusions.

2 A Single-Period Model

In this section we derive the optimal demand for contingent claims for agents in a single-
period equilibrium economy. The results will provide the basic building block for our multi-
period trading model in later sections. The set-up of the model is similar to that in Franke,
Stapleton and Subrahmanyam (1998) [FSS].1 As in FSS, we assume that all agents maximize
the expected utility of wealth, w at the end of a single period. For agent i, wi = xi+yi, where
xi is a set of claims on a single aggregate market cash flow Xa and yi is the nonmarketable
income, e.g. labor income. In general, the non-marketable income yi = ai + ei, where ai is
a constant representing the expected value of non-market income, and ei is an independent,
zero-mean background risk. Each agent solves the following maximization problem:

max
xi

EXa [Ee[ui(wi)]], s.t. E[φ(Xa)xi] = E[φ(Xa)x̂i0], (1)

given an initial endowment of x, x̂i0. In (1), φ(Xa) is the forward pricing kernel. The budget
constraint states that the forward price of the chosen portfolio of claims has to equal the
forward value of the endowed claims. In FSS, agents have utility functions ui(wi) which
belong to the HARA class, excluding the exponential function. Here, we assume essentially
the same setup with

ui(wi) =
w1−γi
i

1− γi
. (2)

where γi is the coefficient of relative risk aversion. Utility for wealth is a power function,
exhibiting constant relative risk aversion, but the derived utility for xi is of the HARA form,
when the background risk ei does not exist.2

1However, we cannot simply use the results in FSS since in that paper they do not solve for the Lagrangian
multipliers, see λi below. Hence their results show that some investors buy and some sell contingent claims
but do not show how many are bought.

2Utility is of the Hypobolic Absolute Risk Averse (HARA) class if

ui(wi) =
(wi + ai)

1−γi

1 − γi
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Let λi be the Lagrangian multiplier associated with the budget constraint of investor i. The
Lagrangian multiplier is then:

L = ui(wi) + λi(E[φ(Xa)x̂i0]− E[φ(Xa)xi]). (3)

It follows that the first order condition of the optimization problem is:

Ee[(xi + ai + ei)
−γi ] = λiφ(Xa). (4)

Following Kimball (1990), we can define the precautionary premium ψi(xi) by the relation

Ee[(xi + ai + ei)
−γi ] ≡ [xi + ai − ψi(xi)]−γi (5)

Hence (xi + ai − ψi)
−γi is the certainty equivalent of Ee(xi + ai + ei)

−γi . Note that ψi
itself will be a function of xi and also depends on the distribution of ei. More specifically,
the function ψ(·) is decreasing and convex. The above result differs slightly from FSS in
that we allow the mean of the background risk to be non-zero. This difference is essential
for our setting because in the dynamic case, analyzed in sections 3 and 4, the mean of the
background risk will be non-zero after the initial date.

Substituting the above certainty equivalence into the first order condition:

[xi + ai − ψi]−γ = λiφ(Xa). (6)

and it follows that the demand for contingent claims is given by:

xi = (λi)
−1/γiφ(Xa)

−1/γi − ai + ψi. (7)

The optimal demand consists of three separate parts. The first term is the demand if the
expected non-marketable income is zero and the precautionary premium is also zero (i.e. the
background risk is zero). When the expected non-marketable income is positive (negative)
the demand is reduced (increased) in each state to compensate. This explains the second
term. The third term adjusts for the effect of the background risk.

To obtain the optimal demand, we need to solve for λi and the pricing kernel φ(Xa). It
turns out that it is more convenient to use the per capita term X, instead of the aggregate
Xa. Using the market clearing condition 1

I

∑
i xi = X, where I is the number of agents and

assuming γi = γ for all i, we have:3

X = λ−1/γφ(X)−1/γ −A+ ψ, (8)

3One could still keep the general form of different γi at this stage, but the resulting expression will be
quite complicated.
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where

ψ =
1

I

∑
i

ψi, (9)

A =
1

I

∑
i

ai, (10)

λ−1/γ =
1

I

∑
i

λ
−1/γ
i . (11)

Note that the aggregate ψ is a function of the state indexed by X and depends also on
the distribution {ei}i=1,...,n. This is essentially a representative agent version of equation
(7), assuming that all the γi’s are the same. note however that we do not assume that the
background risks are identical across all agents. Indeed, in the subsequent analysis we will
use the fact that ai and ψi vary across agents to create an incentive to trade. Initially, the
agents are all identical in terms of their original risk aversion. However, the realization of
the background risks can differ and consequently the derived risk aversion can be different.
This is the basic intuition behind the trading in our model.

It then follows, solving (8) for φ we find

φ(X) = (X +A− ψ)−γλ−1. (12)

now, substituting the solution of xi in (7) above back into the individual budget constraint

E[φ(X)xi] = E[φ(X)x̂i0],

it follows that:

E[φ(X)x̂i0] = E{φ(X)[λ
−1/γ
i φ(X)−1/γ − ai + ψi]}

= λ
−1/γ
i E[φ(X)

1− 1
γ ]− E[φ(X)ai] + E[φ(X)ψi]

Then we obtain the following:

λ
−1/γ
i =

E[φ(X)(x̂i0 + ai − ψi)]
E[φ(X)

1− 1
γ ]

(13)

or λi =

E[φ(X)(x̂i0 + ai − ψi)]
E[φ(X)

1− 1
γ ]


−γ

(14)
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Hence, the optimal individual investor demand is (using equation (12)):

xi =
E[φ(X)(x̂i0 + ai − ψi)]

E[φ(X)
1− 1

γ ]
φ(X)

− 1
γ − ai + ψi(xi) (15)

=
E[(X +A− ψ)−γ(x̂i0 + ai − ψi)]

E[(X +A− ψ)1−γ ]
(X +A− ψ)− ai + ψi. (16)

The expression for the demand for contingent claims in (16) is complex. If there were no
background risk for all investors, ψ would be zero and xi would be linear in X. However, in
general both ψ and ψi are convex functions implying a non-linear demand function. Also,
the optimal demand is implicit since ψi is a function of xi for each i.

Again, the optimal individual demand consists of three parts. The first term is linear in
per capita market cash flow. The coefficient depends on the expectation of the individual
precautionary premium. The second term is the adjustment for the non-zero expected
background risk, ai. The third term is the adjustment for individual precautionary premium.

3 The Evolution of Background Risk Over Time

So far, we have assumed that agents face a background risk ei which is resolved at the end
of a single period. As in FSS, ei has a zero mean and is independent of the market cash flow,
X. We now introduce a multiperiod model in which the risk, ei, evolves over time. This
is required to study trading volume in the following sections, since trading is essentially an
intertemporal issue.
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There are three dates, t = 0, 1, 2 in the model. These are represented in Figure 1 below.

t = 0

x̂i0, E0(ei) = 0 known

chosen xi0
φ0(X), ψ0, ψi0

t = 1

ξi = E1(ei) known

chosen xi1
φ1(X), ψ1, ψi1

t = 2

ηi = ei − ξi known

xi1, ei paid

Fig 1. The timeline

At time t = 0, each agent is endowed with x̂i0, which is a portfolio of marketable contingent
claims. Also, at t = 0 each agent knows about the distribution of the background risk ei,
which will be fully revealed at t = 2. The agent chooses a portfolio of marketable contingent
claims, at time 0, xi0, to maximize the expected utility of the wealth at time t = 2. The
maximization is given the pricing kernel φ0(X) and the precautionary premium ψi0. Note
that, all the payoffs, which include the payoff from the marketable contingent claims and
the background risk ei, are at t = 2.

At time t = 1, the agent receives information about her background risk, ξi, and revises
her expectation of ei to E1(ei) = ξi. Given this information and the revised distribution of
the background risk ei, she chooses a new portfolio of contingent claims given an updated
pricing kernel φ1(X) and a revised precautionary premium, ψi1. Then at time t = 2, the
agent receives more information about her background risk, ηi and both payments xi1 and
ei are paid to the agent.

Note that, in this model, the agent knows about part of the final payoff from the background
risk at t = 1. Thus, ξi is the conditional expectation at t = 1 of the background risk at
t = 2. However we should emphasize that even though the agent knows about ξi, she cannot
use it directly to trade the contingent claims because it is non-marketable. However, the
agent does change her optimal portfolio holdings of marketable claims at t = 1, given the
new information.

We now assume that there are two groups of agents, which are indexed as i = m,n. Without
loss of generality, we assume that the two groups are of equal size. For simplicity, we also
assume that ex ante at time t = 0, the distributions of ei are the same for the two groups
i = m,n.
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The trading that takes place at t = 1 depends on the cross-sectional realization of ξi across
the agents. If it happens that the outcome ξi is the same for both groups of investors, there
will be no trade . However, if the realization of ξi’s are different for the two groups, then
there will be trade. We proceed by first considering a special case where the precautionary
premia at t = 1 are zero for all investors. This is the case where there is full resolution of
uncertainty about ei at t = 1.

4 A Special Case: Full Resolution of Background Risk at
Time 1

In this section, we investigate the case where all the uncertainty of εi is resolved at t = 1. As
discussed above, in the general case the demand for contingent claims is an implicit function.
This is due to the fact that the demand is a function of the precautionary premium, but
the precautionary premium is a function of the demand itself. However, in the special case
where all the uncertainty of the background risk εi is resolved at t = 1, the precautionary
premium, ψi(xi), is zero at time 1. So, in this case, there is an explicit solution for the
optimal demand at time 1.

At time 0, all the investors are identical, and only differ in the resolution of the uncertainty
of ei. Since the investors are identical at t = 0 and since εi has the same distribution for
all i, the investors must hold the same portfolios at t = 0. That implies that the initial
demand xi = X, since X is the average allocation of claims across investors.

We now generate this to multi-state case. namely the realization of ξi can take multi-
values: ξi = ak, k = 1, . . . ,K. The only difference is when the realization of ξi across the
two agents are heterogeneous. Specifically, we assume (ξm, ξn) = (am, an), where am, an ∈
{a1, a2, . . . , aK}. The average per capita realization of background risk is A ≡ 1

2(am + an).
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The demand of two types at time t = 1 are:

x∗m1 =
E1[(X +A)−γ(X + am)]

E1[(X +A)1−γ ]
(X +A)− am (17)

= X +
∆mnE1[(X +A)−γ ]

E1[(X +A)1−γ ]
(X +A)−∆mn, (18)

x∗n1 =
E1[(X +A)−γ(X + an)]

E1[(X +A)1−γ ]
(X +A)− an (19)

= X − ∆mnE1[(X +A)−γ ]

E1[(X +A)1−γ ]
(X +A) + ∆mn, (20)

(21)

where

∆mn ≡
1

2
(am − an) = (am −A) = −(an −A). (22)

So from the above expression, we can see clearly that the deviation of the holdings of each
agent from their initial holding (xi,0 = X, i = m,n) is due to the difference between the
realization of two ξi. Specifically, for the two states (ξm, ξn) = (am, an), ∆mn = am − an.
Note that the demand for each agent is linear in X. This is true regardless of the size of the
aggregate shock A. In other words, the contingent claims can be obtained solely through
stock trading, where the stock pays the average X.

Some special cases now illustrate the nature of the trading result. First, it is quite possible
that ξm and ξn are positively correlated. If so, a positive realization am is likely to be
associated with a positive realization an. In the very special case that am = an, ∆mn = 0
and neither agent changes their holding, with xm,1 = xn,1 = X. The amount of trading
depends not only on ∆mn = 0 but also on the size of the aggregate shock, A. This is due

to the fact that the size of the coefficient E1[(X+A)−γ ]
E1[(X+A)1−γ ] depends on A, and in fact declines

as A increases.

[Qi, Marti look at spreadsheet Trading 1A Try changing the input A in cell B13]

4.1 Unequal M and N

In this section, we generalize the results to the case in which the number of agents in the
two groups are different. Specifically, let M and N denote the total number of the two
agents respectively, and define:

ρ ≡ M

N
. (23)
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It is easy to see that ρ ∈ (0, 1). With this definition, the aggregate variables are then:

A =
1

M +N
(Mam +Nan)

=
1

1 + ρ
(ρam + an) (24)

X =
1

M +N
(Mxm1 +Nxn1)

=
1

1 + ρ
(ρxm1 + xn1). (25)

Given this definition, the optimal demand becomes:

x∗m1 =
E1[(X +A)−γ(X + am)]

E1[(X +A)1−γ ]
(X +A)− am (26)

=
E1[(X +A)−γ(X +A−A+ am)]

E1[(X +A)1−γ ]
(X +A)− am

= X +A+
E1[(X +A)−γ(am −A)]

E1[(X +A)1−γ ]
(X +A)− am

= X +
∆aE1[(X +A)−γ ]

E1[(X +A)1−γ ]
(X +A)−∆a, (27)

x∗n1 =
E1[(X +A)−γ(X + an)]

E1[(X +A)1−γ ]
(X +A)− an (28)

= X − ρ∆aE1[(X +A)−γ ]

E1[(X +A)1−γ ]
(X +A) + ρ∆a, (29)

(30)

where

∆a ≡
1

1 + ρ
(am − an) = (am −A) = −1

ρ
(an −A). (31)

With the above results, we have the following observations:

• Suppose am > an. If there are a lot more m agents than n agents, namely ρ =
M/N →∞, it follows that:

∆a → 0, ρ∆a → am − an.

Thus x∗m1 → X and

x∗n1 → X − (am − an)E1[(X +A)−γ ]

E1[(X +A)1−γ ]
(X +A) + (am − an).
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This says that each m agent doesn’t change her holdings much from initial holdings
(xi0 = X), while each n agent does. The reason for this is very straight forward: Any
change in holdings of all m agents will need all n agents to take the other side of the
trade. Since there are a lot more m agents than n agents, each m agent does not need
to change much while each n agent need to change a lot.

In the extreme case, suppose that are only one n agent and many m agent, then the
total trading volume is proportional to am − an.

• When ρ → ∞, A → am. As a result, the pricing kernel which is proportional to
X +A, will be only a function of am. This is also understandable: The population is
dominated by m agents, thus the prices are dominated by the realization of am.

• The above two observations imply that in an economy with mostly homogeneous
agents, a small amount heterogenous agent has not much effect on the prices, but the
trading volume effect is always finite.

5 The General Case

As we saw earlier, in the general case where there is unresolved background risk at time
1 the optimal demand cannot be solved analytically. The demand xi depends on the pre-
cautionary premium, which in turn depends on the demand. We solved the problem above
by considering a special case. We now analyze the general case, but with the use of an
approximation.

5.1 An Approximation for ψi.

We start with an approximation for ψi. From equation (5)

Ee(xi + ai + ei)
−γ ≡ (xi + ai − ψi)−γ (32)

Taking the Taylor expansion for the left hand side we have

Ee(xi + ai + ei)
−γ = (xi + ai)

−γEe

(
1 +

ei
xi + ai

)−γ

≈ (xi + ai)
−γEe

[
1− γ ei

xi + ai
+
γ(γ + 1)

2

(
ei

xi + ai

)2
]

= (xi + ai)
−γ
[
1 +

γ(γ + 1)σ2ei
2(xi + ai)2

]
.
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where, in the last step, we use the assumption that Eei = 0. Now, it follows that

(xi + ai − ψi)−γ = (xi + ai)
−γ
[
1 +

γ(γ + 1)σ2ei
2(xi + ai)2

]
and hence

xi + ai − ψi = (xi + ai)

[
1 +

γ(γ + 1)σ2ei
2(xi + ai)2

]−1/γ

≈ (xi + ai)

[
1−

(γ + 1)σ2ei
2(xi + ai)2

]

= xi + ai −
(1 + γ)σ2εi
2(xi + ai)

.

Which yields the approximate result for ψi:

ψ ≈
(1 + γ)σ2εi
2(xi + ai)

. (33)

Thus we have an approximate solution for ψi as a function of xi. As we can see, it satisfies
all the properties for the precautionary premium, ψi, as stated in FSS:

ψi > 0,
∂ψi
∂x

< 0,
∂2ψi
∂x2

> 0, (34)

∂ψi
∂σ

> 0,
∂2ψi
∂σ∂x

< 0,
∂3ψi
∂σ∂x2

> 0. (35)

Also the approximation has additional implications with respect to the constant mean
change in ai:

∂ψi
∂ai

< 0,
∂2ψi
∂a2i

> 0 (36)

Finally, the cross relationships on σ and ai are similar to those on σ and xi.

5.2 Optimal demand given the approximation for ψi

Recall the holdings of contingent claims by agents m or n are all xi0 = X, i = m,n at
t = 0. With a realization of (ξm, ξn) = (am, an) at time t = 1, the average A = 1

2(am + an).
Applying the demand equation the optimal demand of an agent in, say m, is:

xm1 =
E1[(X +A− ψ1)

−γ(X + am − ψm1)]

E1[(X +A− ψ1)1−γ ]
(X +A− ψ1)− am + ψm1,
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where

ψm1 =
(1 + γ)σ2η

2(xm1 + am)

ψn1 =
(1 + γ)σ2η

2(xn1 + an)

ψ1 =
1

2
(ψm1 + ψn1).

This follows since all agents inherit the average allocation X at t = 1. Also, ψm1 depends
only on the remaining (unresolved) background risk ση. For convenience, define:

p ≡ xm1 + am (37)

q ≡ xn1 + an. (38)

From these definitions we can rewrite the optimal demand for agent m as:

p =
E1[(X +A− ψ1)

−γ(X + am − ψm1)]

E1[(X +A− ψ1)1−γ ]
(X +A− ψ1) + ψm1, (39)

where

ψm1 =
(1 + γ)σ2η

2p
(40)

ψn1 =
(1 + γ)σ2η

2q
(41)

ψ1 =
(1 + γ)σ2η(X +A)

2pq
. (42)

ψ1 in (42) follows from the fact that X = 1
2(xm1 + xn1) and A = 1

2(am + an).

Similarly, the optimal demand for agent n is:

q =
E1[(X +A− ψ1)

−γ(X + an − ψn1)]
E1[(X +A− ψ1)1−γ ]

(X +A− ψ1) + ψn1. (43)

The optimal demands of the two types of agent are implicit in equations (39) and (43).
However, in the appendix we show, using approximations, that the following proposition
holds in the general case:
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Proposition 1

p = p∗ +
(1+γ)σ2

η

2

(
B1p(X +A) +B2p

1
(X+A)

)
(44)

q = q∗ +
(1+γ)σ2

η

2

(
B1q(X +A) +B2q

1
(X+A)

)
, (45)

where

B1p =
1

E1[(X +A)1−γ ]

[
E1

(
γ(X +A)−γ(X + am)

p∗q∗

)
− E1

(
(X +A)−γ

p∗

)

+ E1

[
(X +A)−γ(X + am)

] E1

(
(1−γ)(X+A)1−γ

p∗q∗

)
E1[(X +A)1−γ ]

 ,
B2p =

E1[(X +A)1−γ ]

E1[(X +A)−γ(X + am)]
− E1[(X +A)1−γ ]

E1[(X +A)−γ(X + an)]
.

and B1q = −B1p and B2q = −B2p.

Proof See Appendix

5.3 Unequal M and N Agents

In this section, we again consider the case in which there are unequal number of agents in
two groups. Applying the demand equation the optimal demand of an agent in, say m, is:

xm1 =
E1[(X +A− ψ1)

−γ(X + am − ψm1)]

E1[(X +A− ψ1)1−γ ]
(X +A− ψ1)− am + ψm1,

where

ψm1 =
(1 + γ)σ2η

2(xm1 + am)

ψn1 =
(1 + γ)σ2η

2(xn1 + an)

ψ1 =
1

M +N
(Mψm1 +Nψn1)

=
1

1 + ρ
(ρψm1 + ψn1)

A =
1

1 + ρ
(ρam + an),
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where ρ = M/N .

Again define:

p ≡ xm1 + am

q ≡ xn1 + an.

Thus

X +A =
1

1 + ρ
(ρp+ q). (46)

The optimal demand can thus be written as:

p =
E1[(X +A− ψ1)

−γ(X + am − ψm1)]

E1[(X +A− ψ1)1−γ ]
(X +A− ψ1) + ψm1, (47)

where

ψm1 =
(1 + γ)σ2η

2p

ψn1 =
(1 + γ)σ2η

2q

ψ1 =
(1 + γ)σ2η
2(1 + ρ)

(
ρ

p
+

1

q
)

=
(1 + γ)σ2η

2pq

[
1

1 + ρ
(ρq + p)

]
=

(1 + γ)σ2η
2pq

[
X +A+

1− ρ
1 + ρ

(p− q)
]

=
(1 + γ)σ2η

2pq
(X +A)(1 + ∆pq), (48)

and

∆pq ≡
1− ρ
1 + ρ

· p− q
X +A

(49)

=
1− ρ
1 + ρ

· (xm1 − xn1) + (am − an)

X +A
(50)

Thus the approximations are:

(X +A− ψ1)
−γ =

[
X +A−

(1 + γ)σ2η
2

X +A

pq
(1 + ∆pq)

]−γ
(51)
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= (X +A)−γ
[
1−

(1 + γ)σ2η
2pq

(1 + ∆pq)

]−γ
(52)

≈ (X +A)−γ
[
1 +

γ(γ + 1)σ2η
2pq

(1 + ∆pq)

]
, (53)

where the last step we use the approximation that σ2η/(pq) is small.

Similarly we obtain the approximation:

(X +A− ψ1)
1−γ ≈ (X +A)1−γ

[
1−

(1− γ2)σ2η
2pq

(1 + ∆pq)

]
. (54)

Thus:

1

E1

{
(X +A)1−γ

[
1− (1−γ2)σ2

η

2pq (1 + ∆pq)
]} ≈ 1

E1[(X +A)1−γ ]

1 +
E1

[
(1−γ2)σ2

η(X+A)1−γ

2pq (1 + ∆pq)

]
E1[(X +A)1−γ ]


(55)

Substituting these into the optimal demand function, it follows:

p ≈ E1

[
(X +A)−γ

(
1 +

γ(γ + 1)σ2η
2pq

(1 + ∆pq)

)(
X + am −

(1 + γ)σ2η
2p

)]

1

E1[(X +A)1−γ ]

1 +
E1

(
(1−γ2)σ2

η(X+A)1−γ

2pq (1 + ∆pq)

)
E1[(X +A)1−γ ]


(
X +A−

(1 + γ)σ2η(X +A)

2pq
(1 + ∆pq)

)

+
(1 + γ)σ2η

2p
. (56)

Then, under our assumption the terms σ4/p4, σ4/p3q, σ4/p2q2 → 0. Thus we have:

p ≈ E1

[
(X +A)−γ

(
X + am +

γ(1 + γ)σ2η(X + am)

2pq
(1 + ∆pq)−

(γ + 1)σ2η
2p

)]
(X +A)

E[(X +A)1−γ ]1−
(1 + γ)σ2η

2pq
(1 + ∆pq) +

E1

(
(1−γ2)σ2

η(X+A)1−γ

2pq (1 + ∆pq)

)
E1[(X +A)1−γ ]

+
(1 + γ)σ2η

2p

=

{
E1[(X +A)−γ(X + am)]

E1[(X +A)1−γ ]
(X +A)
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+
(1 + γ)σ2η(X +A)

2E1[(X +A)1−γ ]

[
E1

(
γ(X +A)−γ(X + am)

pq
(1 + ∆pq)

)
− E1

(
(X +A)−γ

p

)]}
1−

(1 + γ)σ2η
2pq

(1 + ∆pq) +
(1 + γ)σ2η

2

E1

(
(1−γ)(X+A)1−γ

pq (1 + ∆pq)
)

E1[(X +A)1−γ ]

+
(1 + γ)σ2η

2p

Further multiplying out the above expression, it follows:

p ≈ E1[(X +A)−γ(X + am)]

E1[(X +A)1−γ ]
(X +A)

+
(1 + γ)σ2η

2E1[(X +A)1−γ ]
(X +A)

[
E1

(
γ(X +A)−γ(X + am)

pq
(1 + ∆pq)

)
− E1

(
(X +A)−γ

p

)]

−
(1 + γ)σ2η

2pq

E1[(X +A)−γ(X + am)]

E1[(X +A)1−γ ]
(X +A)(1 + ∆pq)

+
(1 + γ)σ2η

2

E1

(
(1−γ)(X+A)1−γ

pq (1 + ∆pq)
)

E1[(X +A)1−γ ]

E1[(X +A)−γ(X + am)]

E1[(X +A)1−γ ]
(X +A) +

(1 + γ)σ2η
2p

(57)

=
E1[(X +A)−γ(X + am)]

E1[(X +A)1−γ ]
(X +A)

+
(1 + γ)σ2η

2E1[(X +A)1−γ ]

{[
E1

(
γ(X +A)−γ(X + am)

pq
(1 + ∆pq)

)

− E1

(
(X +A)−γ

p

)
+ E1

[
(X +A)−γ((X + am)

] E1

(
(1−γ)(X+A)1−γ

pq (1 + ∆pq)
)

E1[(X +A)1−γ ]

 (X +A)

− E1[(X +A)−γ(X + am)]
(X +A)

pq
(1 + ∆pq) +

E1((X +A)1−γ)

p

}
(58)

Finally, the approximate explicit solution is found by substituting p = p∗, q = q∗ to obtain

p ≈ p∗ +
(1 + γ)σ2η

2E1[(X +A)1−γ ]

{[
E1

(
γ(X +A)−γ(X + am)

p∗q∗
(1 + ∆p∗q∗)

)
− E1

(
(X +A)−γ

p∗

)

+ E1
[
(X +A)−γ(X + am)

] E1

(
(1−γ)(X+A)1−γ

p∗q∗ (1 + ∆p∗q∗)
)

E1[(X +A)1−γ ]

 (X +A)

− E1[(X +A)−γ(X + am)]
(X +A)

p∗q∗
(1 + ∆p∗q∗) +

E1((X +A)1−γ)

p∗

}

= p∗ +
(1 + γ)σ2η

2

{
B1p(X +A)− E1[(X +A)−γ(X + am)](X +A)

E1((X +A)1−γ)p∗q∗
(1 + ∆p∗q∗) +

1

p∗

}
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= p∗ +
(1 + γ)σ2η

2

[
B1p(X +A) +B2p

1

(X +A)

]
,

where

B1p =
1

E1[(X +A)1−γ ]

[
E1

(
γ(X +A)−γ(X + am)

p∗q∗
(1 + ∆p∗q∗)

)
− E1

(
(X +A)−γ

p∗

)

+ E1
[
(X +A)−γ(X + am)

] E1

(
(1−γ)(X+A)1−γ

p∗q∗ (1 + ∆p∗q∗)
)

E1[(X +A)1−γ ]

 ,
B2p =

E1[(X +A)1−γ ]

E1[(X +A)−γ(X + am)]
− E1[(X +A)1−γ ]

E1[(X +A)−γ(X + an)]
(1 + ∆p∗q∗).

Using the expression for x∗m1, x
∗
n1, we can obtain explicit expression for ∆p∗q∗ :

∆p∗q∗ =
1− ρ
1 + ρ

(x∗m1 + am)− (x∗n1 + an)

X +A

=
1− ρ
1 + ρ

E1[(X+A)−γ(X+am)]
E1[(X+A)1−γ ] (X +A)− E1[(X+A)−γ(X+an)]

E1[(X+A)1−γ ] (X +A)

X +A

=
1− ρ
1 + ρ

(am − an)E1[(X +A)−γ ]

E1[(X +A)1−γ ]

=
(1− ρ)∆aE1[(X +A)−γ ]

E1[(X +A)1−γ ]

p = p∗ +
(1+γ)σ2

η

2

(
B1p(X +A) +B2p

1
(X+A)

)
(59)

q = q∗ +
(1+γ)σ2

η

2

(
B1q(X +A) +B2q

1
(X+A)

)
, (60)

6 Numerical Examples

In this section, we will numerically analyze the effects of background risk on the trading
the prices using the demand function we derived in the previous section.

6.1 The Effects of Heterogeneous Agents on Prices and Trading

At time t = 1, with a representative agent with per capita supply of contingent claims X
and expected mean of the future background risk of A, the pricing kernel is :
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φ1 =
(X +A− ψ1a)

−γ

E1[(X +A− ψ1a)−γ ]
, (61)

where

ψ1a =
(1 + γ)σ2η
2(X +A)

.

Comparing this with the pricing kernel of the two types of agents case, the latter has the
pricing kernel:

ψ1 =
(1 + γ)σ2η

2pq
(X +A)(1 + ∆pq)

≈
(1 + γ)σ2η

2p∗q∗
(X +A)(1 + ∆p∗q∗)

=
(1 + γ)σ2η

2

(E1[(X +A)1−γ ])2

E1[(X +A)−γ(X + am)]E1[(X +A)−γ(X + an)]

1

X +A
(1 + ∆p∗q∗)

=
(1 + γ)σ2η

2

(E1[(X +A)1−γ ])2

(E1[(X +A)1−γ ])2 + (1− ρ)∆aE1[(X +A)−γ ]E1[(X +A)1−γ ]− ρ∆2
a(E1[(X +A)−γ ])2

1

X +A
(1 + ∆p∗q∗),

where the last step we use the fact that A = (ρam + an)/(1 + ρ).

A special case of the above expression is when ρ = 1. Then it becomes:

ψ1 =
(1 + γ)σ2η

2

(E1[(X +A)1−γ ])2

(E1[(X +A)1−γ ])2 −∆2
a(E1[(X +A)−γ ])2

1

X +A
.

So the heterogeneity of the agents has two effect on the pricing kernel:

1. It causes precautionary saving motive to be larger than an otherwise homogeneous
agent system. The larger the difference between the shocks to background risk, the
larger the effect.

2. The overall effect of heterogeneity is unclear, since A, ρ,∆a are not independent. When
we discuss this in the following numerical examples, we need to make sure that the
correct comparative static results are used.

So ψ1 determines the price effect of heterogeneous agent, while ψM − ψ1 (and ψN − ψ1)
determines the actual demand (trading) of each agent.
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6.2 Full Resolution at time t = 1

This is the case in which the optimal demand of agents are linear in the average per capita
supply X. We will explore the following results:

6.2.1 M = N

When there are equal number of two types of agents, ρ = M/N = 1. We want to study
the effects of different A. Also as noted before, the demand (thus the trade) is a function
of ∆a = 1

2(am − an).

The following three figures illustrate the function values of ψ1, ψM1, ψM1−ψ1, φ, xM1, xM1−
X. The common parameters are: There are 12 states of X, which starts at 2 and increases
by one each. γ = 2.

Figure 1-3 illustrate the effect of ∆a while holding A fixed. As we can see that there is not
much change in pricing kernel, while there are still tradings between two agents. Figure
4 illustrate the effect of A while holding ∆a fixed. Here both pricing kernel and trading
change.

6.2.2 M 6= N

Figure 4a is the case for different ρ: here we fix A = 0.5 and change ρ (and an as well, while
holding am fixed). Without the effect from A, changing ρ has no effect on the demand.

6.3 General Case

In the general case, we again want to study the effect of different A. First we study the
case in which M = N or ρ = 1, then we study the general case of different rho. Note there
are four parameters here: (am, an, A, ρ), which are related by

A =
ρam + an
ρ+ 1

.

We also have:

∆a =
am − an

1 + ρ
.

So we can study different comparative static results.



Background Risk and Trading 21

6.3.1 M = N

When we fix ρ = 1, we can study two effects: The effect of A while fixing ∆a and the effect
of ∆a while fixing A. The common parameters are: There are 12 states of X with initial
value of 2 and increasing each by one. ση = .5 and γ = 2.

First let us look the case in which we fix am = −3, and we change A = .5, 0,−.5. This
is achieved by changing an = 4, 3, 2, with corresponding ∆a = −3.5,−3,−2.5. And this is
Figure 5.

6.3.2 M 6= N

This is the most general case. Let us start with a case that we fix am = −3, an = 1, and
we change ρ. As a result, A changes as well. This is the case in which individual agents’
shock are fixed while the number of the agents are different. Figure 6 illustrate this. In the
following we hold am = −3 fixed.

The effect of above is a mixed effect from two fronts: one from changing in A and the other
from changing in ρ. So we present the case of these two separately.

To illustrate the effect of A, Figure 7 shows the effect of A for fixed ρ = 1/2.

To illustrate the effect of ρ, Figure 8 shows the effect of ρ for fixed A = 0.

6.4 Overall Intuition

Qi Note: This is just my take from discussion with Dick and observation of the
figures.

There are three parameters that are of interests to our paper: The average aggregate shock
A, and two heterogeneity parameter ∆a and ρ.

A has effect on the pricing kernel, the optimal demand (thus trading) changes accordingly.
However, the heterogeneity is the key here, without which there won’t be a trade. The
change of the prices for different X cause the different demand of the agent. Overall, the
agent who receive a negative background shock am < 0 tends to buy more at the low X
state and sell at the high X state. If overall A is high, the prices of high X will be low,
thus agent M sells less of high X.

Different ∆a cause the difference in trade because the larger the ∆a, the poor M is. She
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will desire more at the low X state. To do so requires selling high X.

Different ρ cause the difference in trade because it changes the difference between ψM1 and
average ψ1. In the extreme case, for example when ρ→ 0, namely there are infinite amount
N agents, then ψ1 is quite close to ψN1. The economy is dominated by agent N . However
M will take on the trades from each N agent. This is definitely different from the case in
which M takes on the trade from one agent N .

7 Conclusion

There is an extensive literature on background risk, which arises from stochastic cash flows
generating non-marketable wealth. Since this risk cannot be directly hedged, it affects the
derived risk aversion of the individual agent. Generally speaking, as documented by several
researchers and synthesized by Gollier (2001), in the presence of background risk, agents
generally become more risk-averse in their derived utility functions, and thus, behave like
a more risk-averse agent would, in the absence of such a risk. This, in turn, influences the
demand for insurance.

There has been rather less attention devoted to the pricing of securities and sharing rules
in equilibrium, when agents in the economy face background risk. A notable early paper is
by FSS, who analyze the equilibrium in such an economy, and derive the portfolio demand
of individual agents in this equilibrium. The agents take into account their non-marketable
background risk in optimally determining their demand for the marketable assets. Specifi-
cally, FSS show that agents with background risk depart from the linear sharing rule that
characterizes behavior in complete markets, and may buy or sell non-linear contingent claims
such as options.

In this paper, we take the presence of background risk and its influence on risk taking in
a different direction. We explore how the prices of assets are determined in equilibrium by
the interplay of portfolio demands across agents in the economy, which take into account
the background risks they face. If the agents face different background risks, it is reasonable
to expect that their portfolio demands will differ: this is the argument first made by FSS.
We extend this argument to the multi-period setting and derive the changes in the portfolio
demand of different agents as the background risk is revealed over time. To the extent that
these changes differ across agents, it establishes a motive for trading, even in the presence
of symmetric (full) information across agents.

The equilibrium we obtain turns out to be fairly complex, since portfolio demands depend
on the changed derived risk aversion of agents in the presence of background risk, which



Background Risk and Trading 23

in turn, depends on the portfolio holdings. We break this circularity by considering special
cases of the evolution of background risk, as well as by using some approximations. We
confirm these results by numerical computations.

We have thus been able to derive a theory of trading in the presence of full information,
without running afoul of the powerful no-trade results of Grossman and Stiglitz (1980) and
milgrom and Stokey (1982) in the context of asymmetric information models. We believe
our theory can be extended in several directions to separate the trading in linear (stocks
and bonds) versus non-linear (options) claims. Potentially, our theory is testable, if one can
quantify the influences of background risks such as human and housing wealth. This could
be of interest to researchers in asset pricing, where the focus is mainly on returns, but could
also be related to the aspects of trading analyzed in this paper.
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8 Appendix: Derivation of Demand Equations: The General
Case

In this appendix, we derive the demand equations in the general case.

First, we look at the terms in the pricing kernel using the above definition of p and q:

(X +A− ψ1)
−γ =

[
X +A−

(1 + γ)σ2η
2

X +A

pq

]−γ
(62)

= (X +A)−γ
[
1−

(1 + γ)σ2η
2pq

]−γ
(63)

≈ (X +A)−γ
[
1 +

γ(γ + 1)σ2η
2pq

]
, (64)

where the last step we use the approximation that σ2η/(pq) is small.

Similarly we obtain the approximation:

(X +A− ψ1)
1−γ ≈ (X +A)1−γ

[
1−

(1− γ2)σ2η
2pq

]
. (65)

Thus:

1

E1

{
(X +A)1−γ

[
1− (1−γ2)σ2

η

2pq

]} ≈ 1

E1[(X +A)1−γ ]

1 +
E1

[
(1−γ2)σ2

η(X+A)1−γ

2pq

]
E1[(X +A)1−γ ]

 (66)

Substituting these into the optimal demand function, it follows:

p ≈ E1

[
(X +A)−γ

(
1 +

γ(γ + 1)σ2η
2pq

)(
X + am −

(1 + γ)σ2η
2p

)]

1

E1[(X +A)1−γ ]

1 +
E1

(
(1−γ2)σ2

η(X+A)1−γ

2pq

)
E1[(X +A)1−γ ]


(
X +A−

(1 + γ)σ2η(X +A)

2pq

)

+
(1 + γ)σ2η

2p
. (67)
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Then, under our assumption the terms σ4/p4, σ4/p3q, σ4/p2q2 → 0. Thus we have:

p ≈ E1

[
(X +A)−γ

(
X + am +

γ(1 + γ)σ2η(X + am)

2pq
−

(γ + 1)σ2η
2p

)]
(X +A)

E[(X +A)1−γ ]1−
(1 + γ)σ2η

2pq
+
E1

(
(1−γ2)σ2

η(X+A)1−γ

2pq

)
E1[(X +A)1−γ ]

+
(1 + γ)σ2η

2p

=

{
E1[(X +A)−γ(X + am)]

E1[(X +A)1−γ ]
(X +A)

+
(1 + γ)σ2η(X +A)

2E1[(X +A)1−γ ]

[
E1

(
γ(X +A)−γ(X + am)

pq

)
− E1

(
(X +A)−γ

p

)]}
1−

(1 + γ)σ2η
2pq

+
(1 + γ)σ2η

2

E1

(
(1−γ)(X+A)1−γ

pq

)
E1[(X +A)1−γ ]

+
(1 + γ)σ2η

2p

Further multiplying out the above expression, it follows:

p ≈ E1[(X +A)−γ(X + am)]

E1[(X +A)1−γ ]
(X +A)

+
(1 + γ)σ2η

2E1[(X +A)1−γ ]
(X +A)

[
E1

(
γ(X +A)−γ(X + am)

pq

)
− E1

(
(X +A)−γ

p

)]

−
(1 + γ)σ2η

2pq

E1[(X +A)−γ(X + am)]

E1[(X +A)1−γ ]
(X +A)

+
(1 + γ)σ2η

2

E1

(
(1−γ)(X+A)1−γ

pq

)
E1[(X +A)1−γ ]

E1[(X +A)−γ(X + am)]

E1[(X +A)1−γ ]
(X +A) +

(1 + γ)σ2η
2p

(68)

=
E1[(X +A)−γ(X + am)]

E1[(X +A)1−γ ]
(X +A)

+
(1 + γ)σ2η

2E1[(X +A)1−γ ]

{[
E1

(
γ(X +A)−γ(X + am)

pq

)

− E1

(
(X +A)−γ

p

)
+ E1

[
(X +A)−γ((X + am)

] E1

(
(1−γ)(X+A)1−γ

pq

)
E1[(X +A)1−γ ]

 (X +A)

− E1[(X +A)−γ(X + am)]
(X +A)

pq
+
E1((X +A)1−γ)

p

}
(69)
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Finally, the approximate explicit solution is found by substituting p = p∗, q = q∗ to obtain

p ≈ p∗ +
(1 + γ)σ2η

2E1[(X +A)1−γ ]

{[
E1

(
γ(X +A)−γ(X + am)

p∗q∗

)
− E1

(
(X +A)−γ

p∗

)

+ E1
[
(X +A)−γ(X + am)

] E1

(
(1−γ)(X+A)1−γ

p∗q∗

)
E1[(X +A)1−γ ]

 (X +A)

− E1[(X +A)−γ(X + am)]
(X +A)

p∗q∗
+
E1((X +A)1−γ)

p∗

}

= p∗ +
(1 + γ)σ2η

2

{
B1p(X +A)− E1[(X +A)−γ(X + am)](X +A)

E1((X +A)1−γ)p∗q∗
+

1

p∗

}

= p∗ +
(1 + γ)σ2η

2

[
B1p(X +A) +B2p

1

(X +A)

]
,

where

B1p =
1

E1[(X +A)1−γ ]

[
E1

(
γ(X +A)−γ(X + am)

p∗q∗

)
− E1

(
(X +A)−γ

p∗

)

+ E1
[
(X +A)−γ(X + am)

] E1

(
(1−γ)(X+A)1−γ

p∗q∗

)
E1[(X +A)1−γ ]

 ,
B2p =

E1[(X +A)1−γ ]

E1[(X +A)−γ(X + am)]
− E1[(X +A)1−γ ]

E1[(X +A)−γ(X + an)]
.

Similarly,

q = q∗ +
(1 + γ)σ2η

2

[
B1q(X +A) +B2q

1

(X +A)

]
,

where

B1q =
1

E1[(X +A)1−γ ]

[
E1

(
γ(X +A)−γ(X + an)

p∗q∗

)
− E1

(
(X +A)−γ

q∗

)

+ E1
[
(X +A)−γ(X + an)

] E1

(
(1−γ)(X+A)1−γ

p∗q∗

)
E1[(X +A)1−γ ]


B2q =

E1[(X +A)1−γ ]

E1[(X +A)−γ(X + an)]
− E1[(X +A)1−γ ]

E1[(X +A)−γ(X + am)]
.

p = p∗ +
(1+γ)σ2

η

2

(
B1p(X +A) +B2p

1
(X+A)

)
(70)
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q = q∗ +
(1+γ)σ2

η

2

(
B1q(X +A) +B2q

1
(X+A)

)
, (71)
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Figure 1. ρ = 1, A = 0

This figure shows the effect of different ∆a while fixing A = 0. The solid line corresponds to ∆a = −1, the

dashed line corresponds to ∆a = −2, and the dotted line corresponds to ∆a = −3.
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Figure 2. ρ = 1, A = 0.1

This figure shows the effect of different ∆a while fixing A = 0.1. The solid line corresponds to ∆a = −1,

the dashed line corresponds to ∆a = −2, and the dotted line corresponds to ∆a = −3.
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Figure 3. ρ = 1, A = −0.1

This figure shows the effect of different ∆a while fixing A = −0.1. The solid line corresponds to ∆a = −1,

the dashed line corresponds to ∆a = −2, and the dotted line corresponds to ∆a = −3.
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Figure 4. ρ = 1,∆a = −1

This figure shows the effect of different A while fixing ∆a = −1. The solid line corresponds to A = 1, the

dashed line corresponds to A = 0, and the dotted line corresponds to A = −1.

ψ1 ψM1

2 4 6 8 10 12 14
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

ψM1 − ψ1 φ1

2 4 6 8 10 12 14
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

8

xM1 xM1 −X

2 4 6 8 10 12 14
2

3

4

5

6

7

8

9

10

11

12

2 4 6 8 10 12 14
−6

−5

−4

−3

−2

−1

0

1



Background Risk and Trading 33

Figure 4A. Full resolution, A = 0.5

This figure shows the effect of different ρ while fixing ρ = 5. The solid line corresponds to A = 1, the dashed

line corresponds to ρ = 1, and the dotted line corresponds to ρ = 1/5.
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Figure 5. General Case: ρ = 1

This figure shows the effect of different A while fixing am = −3. The solid line corresponds to an = 4, A = 0.5,

the dashed line corresponds to an = 3, A = 0, and the dotted line corresponds to an = 2, A = −0.5.
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Figure 6. General Case: am = 2, an = −2

This figure shows the effect of holding individual shocks am, an fixed while the number of agents are changing.

The solid line corresponds to ρ = 3, the dashed line corresponds to ρ = 1, and the dotted line corresponds

to ρ = 1/3.
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Figure 7. General Case: ρ = 1/2 changing an, thus changing A

This figure shows the effect of holding ρ = 1/2 fixed while the number of agents are changing. The solid line

corresponds to A = .5, the dashed line corresponds to A = 0, and the dotted line corresponds to A = −.5.
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Figure 8. General Case: A = 0 changing ρ and an

This figure shows the effect of holding A = 0 fixed while the number of agents are changing. The solid line

corresponds to ρ = 5, the dashed line corresponds to ρ = 1, and the dotted line corresponds to ρ = 1/5.
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Figure 9. General Case: A = 0.5 changing ρ and an

This figure shows the effect of holding A = 0.5 fixed while the number of agents are changing. The solid line

corresponds to ρ = 5, the dashed line corresponds to ρ = 1, and the dotted line corresponds to ρ = 1/5.
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