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Abstract

This paper presents a novel background subtraction
method for detecting foreground objects in dynamic scenes
involving swaying trees and fluttering flags. Most methods
proposed so far adjust the permissible range of the back-
ground image variations according to the training samples
of background images. Thus, the detection sensitivity de-
creases at those pixels having wide permissible ranges. If
we can narrow the ranges by analyzing input images, the
detection sensitivity can be improved. For this narrowing,
we employ the property that image variations at neighbor-
ing image blocks have strong correlation, also known as
“cooccurrence”. This approach is essentially different from
chronological background image updating or morphologi-
cal postprocessing. Experimental results for real images
demonstrate the effectiveness of our method.

1. Introduction

Background subtraction is a convenient and effective
method for detecting foreground objects in the stationary
background. In real world scenes, however, especially in
the outdoor scenes, this restriction, i.e., stationary back-
ground, often turns out to be impractical because the back-
ground scenes are not stable. For example:

• illumination variations due to sunlight and weather
changes, or,

• background object motions, for instance, tree leaves
swaying and flags fluttering.

For carrying out desirable foreground detection even in
such a dynamic environment, two types of approaches have
been proposed:

• use the static background model having a permissible
range of the image variations at each pixel or local im-
age block.

• dynamically update the background model.

Most of the former methods set up the permissible range
according to the formulization of background variations
(e.g., illumination variations) [1, 2], or according to the sta-
tistical analysis of training samples of background images
[3, 4, 5, 6]. For instance, in Fig. 1, the range of background
image variations model is represented as the hatching re-
gion in feature space of each pixel or block. When the pixel
value or local image pattern is mapped to the outside of this
range, it is detected as a foreground object. As a result,
the detection sensitivity will be decreased at those pixels
having wide ranges [7]. This problem can be improved by
increasing the feature space dimension, but it is not realis-
tic, because it requires a large number of background image
training samples enough to span a high-dimensional space.

As for the latter approach, several chronological updat-
ing methods of the background image have been proposed
[5, 8, 9, 10]. In these method, linear prediction, and other
heuristic methods are employed, assuming that background
image variations are temporally continuous. Some of them
employ a special stabilization mechanism, e.g., Wiener fil-
ter [9]. Even though, none of these methods is free from
erroneous updating. Moreover, these methods can not adapt
the quick image variations, e.g., turning on and off the light.

We therefore propose a new method that improves de-
tection sensitivity by dynamically narrowing the ranges of
background image variations for every input image. This
narrowing does not require the temporal continuity of the
background images, but the cooccurrence of image varia-
tions at neighboring blocks (see Fig. 2). This approach is
essentially different from chronological background image
updating or morphological postprocessing based on object
shape. Our method has the following advantages: 1) since
our method utilize the spatial property of background image
variations, it is not affected by the quick image variations,
2) our method can be applied not only to the background
object motions, such as swaying tree leaves, but also to il-
lumination variations.
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Figure 1. Relation between the model of back-
ground image variations and input image.

In the discussions below, we first show that image vari-
ations at neighboring image blocks have the cooccurrence.
Then, we extend the background subtraction method [6] us-
ing eigen spaces for each local image block, and propose a
background subtraction method based on the cooccurrence
of image variations. Finally, we demonstrate the effective-
ness of our method by showing experimental results for real
images.

2. Cooccurrence of Image Variations

In this paper, we partition an image into a set of blocks
with N × N pixels and represent each block by an N 2 di-
mensional vector by scanning the block. Thus, each ele-
ment of a vector corresponds to the intensity value of the
pixel in a block. Hereafter, the image pattern (vector) of
time t in a block u is represented as i(u,t).

First of all, we examine our assumption that image vari-
ations at neighboring blocks have cooccurrence, using the
background image sequence including swaying trees, as
shown in Fig. 3. For that purpose, we analyze the prin-
cipal components of image patterns i(u,t) (t = 1, ..., τ) for
each block, and project them into 2-D eigen space spanned
by first and second principal components. As an example, a
distribution of the image patterns i(A,t), i(B,t) on blocks A
and B in the Fig. 3 is shown in Fig. 4. In subfigures (a) and
(b), point pairs observed within the same time interval are
colored with the same color.

As shown in this figure, points having the same colors are
almost solidified, and the ordering of colors are the same in
(a) and (b), although the right-and-left inversion. It is also
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Figure 2. Improvement of detection sensitiv-
ity by narrowing range of background image
variations.

confirmed by other experiment, that this property stands for
higher dimensional eigen space. Almost the same property
can be found not only in blocks A and B but in other neigh-
boring blocks. It is the same as fluttering flags.

In addition, we examined the case where sunlight
changes, using a background image sequence for 24 hours
(0.5frame/min). For example, a distribution of the im-
age patterns i(A,t), i(B,t) on blocks A and B in Fig. 5 is
shown in Fig. 6. As shown in this figure related to sunlight
changes, the same color points form solidified clusters, and
the ordering of colors are the same correctly.

From these examples, we can assume that image varia-
tions at neighboring image blocks have strong correlation.

3. Background Subtraction Method

Here, we explain the background subtraction method
based on the cooccurrence of image variations mentioned
above. This method can be regarded as narrowing the back-
ground image variations by estimating the background im-
age pattern in each image block from the neighboring image
patterns in the input image.

3.1. Background Image Variations Model

First, our proposed method learns the background image
patterns i(u,t) (u ⊂ U ; t = 1, ..., τ). Here, U is all divided
blocks, and τ is learning time. To compress the dimension
of image patterns (N2), image patterns are projected into a
low dimensional eigen space spanned by several principal
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Figure 4. Distribution of image patterns on
blocks A and B in Fig. 3. (In subfigures (a)
and (b), point pairs observed within the same
time interval are colored with the same color.)

components [6]. The cooccurrence of image variations be-
tween two neighboring image blocks can be regarded as a
nonlinear mapping, which is learned from examples. That
is, pairs of image patterns at neighboring image blocks are
stored and the mapping for new input can be estimated by
interpolating these pairs. The algorithm is summarized as
follows.

1. In block u, covariance matrix Su is computed from
the image patterns i(u,t) of the background image se-
quence and the average pattern īu.

Su =
1

τ

τ
∑

t=1

(i(u,t) − īu)(i(u,t) − īu)T (1)

2. Covariance matrix Su is decomposed into its eigen val-
ues λu(k) (k = 1, ..., N2) and eigen vectors eu(k).

Su · eu(k) = λu(k) · eu(k) (2)

3. Eigen Space Eu = [eu(1), ..., eu(K)] consists of K
eigen vectors with a large eigen value. In this case, the
dimension K of eigen spaces is common to all blocks.
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Figure 5. Two blocks examined in sunlight
changes evaluation.
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Figure 6. Distribution of image patterns on
blocks A and B in Fig. 5. (In subfigures (a)
and (b), point pairs observed within the same
time interval are colored with the same color.)

4. Image patterns i(u,t) of a background image sequence
in block u are transformed into points in the eigen
space and memorized with observation time.

z(u,t) = Eu
T · (i(u,t) − īu) (3)

3.2. Estimation of Pattern from Neighboring Block

Since image variations at neighboring blocks have cooc-
currence, the image pattern of a certain block can be esti-
mated from the image patterns of neighboring blocks. In
this paper, the difference between the estimated pattern and
an actual image pattern is used as one of the measures of
“background-likelihood”. In addition, we don’t use simul-
taneous probability of patterns among neighboring image
blocks as a measure of background-likelihood, because it
is necessary to learn image patterns in the feature space of
a double dimension, and is not realistic, as Chapter 1 de-
scribed.

The cooccurrence relation of image patterns at neighbor-
ing blocks is usually a nonlinear mapping. Thus, we ap-
proximate an input pattern by the linear sum of the learn-
ing patterns located nearby, and estimate an image pattern
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Figure 7. Estimation of a neighboring pattern.
(L nearest learning patterns z(A,tl) for the in-
put pattern ẑA are searched in the eigen space
of block A, L learning patterns z(B,tl) occurred
simultaneously with them are picked up in the
eigen space of block B, and the pattern z∗

(B,A)

is estimated by linear interpolation of the pat-
terns z(B,tl) in the eigen space of block B.)

at a neighboring block from the coefficient and the cooc-
currence relation of learning image patterns known before-
hand.

Such a local linear interpolation and local linear trans-
formation from space to space is dealt with by reference
[11]. In this research, to recover the 3D shape of an un-
folded book surface from a scanner image, the local linear
interpolation is performed in an “intensity eigen space”. An
“intensity eigen space” and a “shape eigen space” are asso-
ciated by local linear transformation, and a shape is recov-
ered in consideration of the error in interpolation and trans-
formation. Therefore, we estimate the image pattern of a
certain block from the image pattern of a neighboring block
using the method of reference [11]. The algorithm estimat-
ing the image pattern of block B from the image pattern of
block A is as follows. (See Fig. 7)

1. New input patterns îA, îB are transformed into the
points ẑA, ẑB in each eigen space Eu using the average
pattern īu of learning patterns.

ẑu = Eu
T · (̂iu − īu), (4)

where u = A, B.

2. In the eigen space of block A, L learning pat-
terns z(A,t1), z(A,t2), ..., z(A,tL) near the ẑA are picked
up, then each pattern is subtracted by the aver-
age pattern z̄A, and matrix ZA is computed. If
z(A,t1), z(A,t2), ..., z(A,tL) surround ẑA, you may set L
to K + 1, i.e., the eigen space dimension +1.

ZA =
[

z(A,t1) − z̄A, ..., z(A,tL) − z̄A

]

(5)

3. The coefficient vector Ψ = [α1, α2, ..., αL] of linear
interpolation to ẑA is computed by the expression be-
low. This expression is derived from consideration of
the error of the local linear interpolation in the eigen
space and the local linear transformation from eigen
space to eigen space (following Step 5) in reference
[11].

Ψ = (ZT
A · ZA + ς2

AKI)−1 · ZT
A · (ẑA − z̄A), (6)

where

ς2
A = ν · tr

[

ZT
A · ZA

]

KL
(7)

when ν denotes a certain small positive number.

4. In the eigen space of block B, L learning pat-
terns z(B,t1), z(B,t2), ..., z(B,tL) that occurred simul-
taneously with z(A,t1), z(A,t2), ..., z(A,tL) above are
picked up. The average pattern z̄B is then computed.

5. The pattern z∗

(B,A), which should be inputted in block
B, is estimated from the above linear interpolation co-
efficient and the cooccurrence relation of learning im-
age patterns in block A and B.

z∗(B,A) = z̄B +

L
∑

j=1

αj · (z(B,tj) − z̄B) (8)

Here, the distance between this estimated pattern
z∗(B,A) and the actual image pattern (point projected
in the eigen space) ẑB is used as one of the measures
of background-likelihood in block B.

3.3. Calculation of Background-likelihood

Background subtraction is performed by calculating
background-likelihood in each block. However, in this pa-
per, we use the following two probability to dynamically
narrow the range of background image variations in a fo-
cused block. Furthermore, when the product1of such prob-
ability is low, we judge that the block belongs to the fore-
ground object.

1This measure is adopted as the only realization method for narrowing
the range of background image variations model appropriately, and is not
for calculating the simultaneous occurrence probability of two phenomena.



• Probability P1 of background-likelihood when judging
only based on the input pattern in the focused block.

• Probability P2 of background-likelihood when judging
based on the patterns estimated from some neighbor-
ing blocks.

Now, let C denotes the focused block. The probability
P1 of background-likelihood of an input pattern (strictly,
a point projected in eigen space) ẑC is defined as follows
using L learning patterns z(C,t1), z(C,t2), ..., z(C,tL) near the
input pattern in the eigen space.

P1(ẑC) =
1

L

L
∑

j=1

1√
2πσC

exp

{

−
(ẑC − z(C,tj))

2

2σ2
C

}

, (9)

where σ2
C is constant.

Expression (9) assumes an isotropic normal distribution
around each learning pattern point.

On the other hand, let Dj (j = 1, ..., 8) denote the eight
neighboring blocks of the focused block C. The probability
P2 is defined as follows2.

P2(ẑC) =
1

8

8
∑

j=1

P (ẑC |z∗(C,Dj)
) (10)

Here, probability P (ẑC |z∗(C,Dj)
) denotes background-

likelihood of an input pattern ẑC to the pattern z∗

(C,Dj)
es-

timated from neighboring block Dj , and is defined as fol-
lows.

P (ẑC |z∗(C,Dj)
) =

1
(√

2π
)K |Φ|

·

exp











(

ẑC − z∗(C,Dj)

)T

Φ−1
(

ẑC − z∗(C,Dj)

)

2











(11)

Expression (11) assumes a K dimensional normal dis-
tribution around the estimated pattern z∗

(C,Dj)
. In addi-

tion, Φ denotes the covariance matrix of the learning pat-
terns3 z(C,t′

1
), z(C,t′

2
), ..., z(C,t′

L
), which are used to estimate

z∗(C,Dj)
.

2The summation in P2 is the heuristics introduced for stability.
Since the background-likelihood probabilities calculated from neighbor-
ing blocks independently may have wide variations, we got the average of
them for the stabilization.

3Generally, the patterns z(C,t′
1
), z(C,t′

2
), ..., z(C,t′

L
) are not necessar-

ily the same as z(C,t1), z(C,t2), ..., z(C,tL) which are used by expression
(9), because the former is chosen as the cooccurrence patterns from the
neighboring block Dj to estimate z∗

(C,Dj)
, and the latter is chosen as the

patterns located near the ẑC . That is, selection criteria differ.

Figure 8. Example of input image.

Figure 9. Sway of trees (intensity enhanced).

4. Experiments

To confirm the effectiveness of the above proposed
method, we conducted experiments using various image se-
quences including Fig. 8. The detection target is a person4,
the image size is 320 × 240 pixels, and the gray level is
quantized into 8 bit. Each block size is 8 × 8 pixels, where
every two neighboring blocks overlap each other by four
pixels horizontally or vertically5. The background image
variations are learned from hundreds image in which a per-
son does not exist. Figure 9 shows the difference between
one particular image and the averaged image in the image
sequence shown in Fig. 8. As shown in this figure, the im-
age sequence contains tree swaying, some sunlight change,
and some camera shaking.

Below, we explain the experiment procedure, making the
case of the sequence of Fig. 8 into an example.

First, to determine the dimensions of the eigen space,
we changed the dimension K gradually and investigated the
ratio of effective blocks in which the cumulative contribut-
ing ratio to the Kth principal components becomes 90% or
more. Figure 10 shows the result, where if the dimension K
is set to 15, the ratio of effective blocks will become about
90%. Therefore, the dimension is set as K = 15 in the

4In some sequences, we composed the person in the background im-
ages.

5The overlapping of blocks is not necessary for the detection. It is for
improving the spatial resolutions of the detection results.
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Figure 10. Ratio of effective blocks to the di-
mension K of eigen space.
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Figure 11. Error of estimated pattern to the
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following experiments6.
Next, to verify whether the number L of neighbor points

used for estimation of image pattern is appropriate at K+1,
we investigated the error (Euclidean distance in the eigen
space) of the actual pattern and the pattern estimated from
the neighboring block using an image that is not used for
background learning. Figure 11 shows the average value of
the error in all blocks, when changing L from 2 to 30. As
shown in this figure, the error is small around of L = 16.

Based on the above, we set K = 15, L = 16 and verify
the performance of the proposed method, where we use the
three methods shown below for comparison.

[Method 1] The method in reference [6]. In this

6If a scene changes, the number of dimensions decided under the same
conditions will change. However, the value is from several dimensions to
dozens of dimensions in general.
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Figure 12. Performance evaluation using ROC
curves.

method, the distributions of the image pat-
terns are learned in the eigen spaces con-
structed for each block, and the background
subtraction using the Mahalanobis distances
is performed.

[Method 2] The method using the probability P1

defined in expression (9), i.e., does not use
the cooccurrence of background image vari-
ations.

[Method 3] The proposed method.

Figure 12 shows ROC curves formed by gradually
changing the threshold value used for processing. The hor-
izontal axis shows the ratio of incorrect detections in the
background, and the vertical axis shows the ratio of correct
detections of a person, where the true data of the person re-
gion was created manually. Since the curve of the proposed
method is positioned to the upper left of the other curves as
shown in this figure, the proposed method is more effective
than the others in dynamic scenes involving the background
image variations. In addition, the difference among meth-
ods 2 and 3 shows the effect by the use of cooccurrence.

Finally, we show examples of the detection results of
each method for various image sequences including Fig. 8.
Figure 13 shows the results under the False Positive Ratio of
3%. Comparing with methods 1 and 2, the proposed method
3 missed far fewer detections of the person region. In addi-
tion, Fig. 14 shows the results under the True Positive Ratio
of 85%. As shown in this figure, the proposed method dis-
played few incorrect detections in the background.



(a) Input images

(b) Results by method 1

(c) Results by method 2

(d) Results by method 3 (proposed method)

Figure 13. Detection results under the False Positive Ratio of 3%. (In proposed method 3, the holes
within the person region become small.)

5. Conclusions

In this paper, we propose a novel background subtrac-
tion method for detecting objects in dynamic scenes. We
first verified that image variations at neighboring blocks
have cooccurrence. We then proposed a method that eval-
uates the background-likelihood based on the cooccurrence
for dynamically narrowing the permissible range of back-
ground image variations. Finally, we demonstrated the ef-
fectiveness of our method by showing experimental results
for real images.

Future works include improving the preciseness and
computational speed. For example, our method can be ex-
tended to more precise method by enlarging the definition

of neighboring block.
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