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Background subtraction from in-beam HPGe coincidence data
sets

D.C. Radford
AECL Research, Chalk River Laboratories,
Chalk River, Ontario, Canada K0J 1J0

Abstract: Algorithms for the subtraction of backgrounds from -y matrices and higher-
fold data sets, obtained from in-beam HPGe coincidence experiments with heavy-ion-induced
nuclear reactions, are described. The backgrounds are parameterized as the cross-products
of lower-dimensional projections of the data and a one-dimensional background spectrum.
A novel method of correcting for a mixture of different reaction channels in the complete
data set, by making use of one or more gates on background channels in the energy region

of the “E2 bump”, is presented. In many cases, this new method provides a significantly
better description of the background.



1. Introduction

Modern HPGe detector arrays have revolutionized in-beam v-ray studies, especially
for high-spin nuclear structure physics with heavy-ion fusion-evaporation reactions. In the
analysis of data from such arrays, one often creates two-dimensional histograms from double-
coincidence data, or three-dimensional histograms from triple-coincidence data, and then
proceeds to set “gates”, i.e. specify energies for all but one of the axes and inspect the
projection onto the remaining axis. More sophisticated procedures (e.g. refs [1,2]) may
attempt to perform least-squares fits directly to the multi-fold data to extract coincident
peak areas and energies. In either case, it is usually necessary to correct the data for
background counts underlying the peaks in the gate spectrum or fitted region, arising from
both Compton-scattered v rays and quasicontinuum transitions.

One common method for correcting for the background underlying a gate on a peak
is to set additional gates on background regions near the peak, and subtract a normalized
fraction of the resulting projection from that obtained with the primary gate. (In three- and
higher-fold data, combinations of peak and background gates are used.) In practise, however,
it is often not possible to find a background region free from weak contaminant peaks.
This procedure also introduces more statistical uncertainty into the results than is strictly
necessary, since the background spectrum has a similar number of counts to the primary
(peak) spectrum. In addition, this method does not remove all of the background counts
from the resulting spectrum; i.e. the result still contains counts from Compton-scattered
rays and quasicontinuum transitions in true coincidence with the peak. Therefore, when a
direct least-squares analysis of the peaks in a multi-fold data set is desired, this procedure
cannot be used, and some other method of determining the background must be found.

A second method that is commonly used for two-dimensional data is to subtract a
fraction of the total one-dimensional projection from the gated spectrum, normalized so
that the total counts subtracted corresponds to an estimate of the background counts in
the gate. This procedure does not have the problem of introducing additional statistical
uncertainty, but still does not remove coincident background counts from the spectrum.
Generalisations of this method to higher folds have also been made (e.g. ref. [3]).

Palameta and Waddington [4] have reported a method of subtracting the background
directly from two-dimensional -y histograms (“matrices”). The present paper reports a
prescription similar to that of ref. [4] but somewhat simpler. The limitations of this and
other prescriptions are discussed. In particular, for nuclei populated in heavy-ion fusion-
evaporation reactions, correlations of the background with the reaction channel (i.e. different
residual nuclei) can pose a significant problem. We therefore present an extension to the
basic method which allows a correction for the different reaction channels typically present
in a data set. Extensions to three- and higher-dimensional data sets are also given.

2. Principles of the method



In order to give a simple description of the method, we will begin by discussing two-
dimensional (2D) «-v data sets. Extensions to higher folds will be presented later.

Analysis of a y-y data set will typically begin with generating a “matrix”, or 2D
histogram of counts vs. energy vs. energy. This matrix is then usually symmetrised, so that
the two energy axes are equivalent.

Let the counts in such a data set be represented by M;;, where i and j indices are the

channels corresponding to the 4-ray energies. The one-dimensional (1D) projection of the
matrix is then

P;=2Mg,~ .
£

Let us divide the counts in this projection into a “background” spectrum b; and a “peak”
spectrum p;, such that

Pi=b+p;.

The details of how this is done need not greatly concern us here; the sensitivity of the
resulting 2D background to this partition is addressed below. For now, it will be sufficient
to imagine that an experimenter “draws” the 1D background b; below the peaks in the
projection in order to define the two spectra.

The second procedure mentioned above in the introduction (subtracting part of the 1D
projection) would then correspond to subtracting the 2D background

B;j = %b{ Pj

1
= -f(b,-b,- + bip;) , (1)

where
T:ZM;_.,-:ZP; (2)
iJ 1

is the total number of counts in the matrix. This 2D background is not symmetric, and
would be used for gates set on the i-axis and projected onto the j-axis.

As mentioned above, this does not remove the background counts in coincidence with
the peak of the gate. In order to do this, and to maintain symmetry, we extend the procedure
and use the following 2D background:

1
B; = ‘T'(bibj + bip; + pib;)
1
= (PP —pip;) - (3)

Figure 1 illustrates the use of this background for data from the reaction }24Sn + 3°Si
at 158 MeV, studied with the EUROGAM 1 spectrometer [5]. Shown are the total 1D



projection and “drawn” background spectra, together with two background-subtracted gates
on a 2D matrix. It is remarkable how well such a simple background is able to represent
the true observed background. Also shown is a background-subtracted spectrum generated
by setting both of the two gates together on a 3D cube and projecting the result onto the
third dimension; this is discussed in section 5, where the extension of equation 3 to three-
and higher-folds is presented.

For the study of E, — E, correlations in 7-v coincidences, the COR [6] method can be
used to generate a background with the same total number of counts (T') as the matrix; it
corresponds to the simple 2D background

1
T
No net counts remain in the matrix after this subtraction. The technique presented here

removes from such a 2D background the peak-peak part of the projection cross-product, and
can in that sense be considered a refinement of the COR treatment.

BGOR = _P.P; .

Our method is also related to that of Palameta and Waddington [4]. In our nomencla-
ture, their 2D background can be rewritten as:

Bf;w = (b,P; + P:bJ - Ab,b_,) .

Wl =

Here the 1D spectrum P is the projection of the matrix for the set K of all channels for
which P; — b; is zero within statistical errors (i.e. all channels containing no significant

peaks),

Pl=3 M;,

jekK

and the constants S and A are defined as

s = XH,

A = YRS

i€k

If we expand the set K to include all channels of the j-axis, then we get

Pl = P
S =T,
A =1,

and the background of Palameta and Waddington reduces to that of equation 3.

3. Sensitivity of the method to the background spectrum



The use of equation 3 requires the definition of the background spectrum b;. One can
define this spectrum simply by drawing a piecewise-linear curve below the visible peaks in
the total projection. Since this is clearly a subjective procedure, it is important to examine
the sensitivity of the final result to this 1D background spectrum.

A simple way of doing this is to define an alternative background spectrum, b}, for
example by multiplying b; by a factor 0.9. Thus we obtain

b; = 0.9%
i = B-b
= p.-+0.1b,-

1
By = (PP —pip})
= %(Pipj — pip; — 0.1p;b; — 0.15;p; + 0.014;b;)
0.1
= Bj— T(Pibj + bip; — 0.1b:b;) . (4)

Since the bulk of the counts are in the P;P; term, rather than the p;p; term, this
renormalization of b; has only a relatively minor effect on the resulting 2D background. This
can be illustrated by taking the same gates as in figure 1, but now using this renormalized
background; these spectra are shown in figure 2. It can be seen that even a relatively large
change in b; has quite a small effect, especially for the triples spectrum.

As can be seen from equation 4, a change in b; has a very small effect on the b;b; term
of B;;. However, the terms in p;b; and b;p; are more sensitive. Thus, for gates with very
small peak-to-background ratios, a poorly-defined 1D background will result in strong peaks
of the total projection being oversubtracted or undersubtracted.

Attempts have been made to develop techniques to automatically generate b; from P;.
These have not been very successful, in that the subjective technique of removing the peaks
by hand generally gives results at least as reliable as the automatic methods.

Experience has shown that including in b; the shoulders and/or peaks arising from
(n,n'y) events in the HPGe detector or surrounding material will generally result in an
improved background subtraction. Similarly, some experiments produce X-rays in strong
coincidence with virtually all peaks of the spectrum, due to internal conversion of v rays.

In such cases, leaving the X-ray peaks in the b; spectrum will remove an average X-ray
coincident intensity from the gated spectra.

4. Correction for multiple reaction channels
When nuclei are produced at high spin with heavy-ion fusion-evaporation reactions,

there are usually at least two or three strongly populated residues. For example, in the bom-
bardment of 1'*Cd with 210 MeV *8Ca, the dominant reaction channels are !4Cd(*®Ca,4n)'*8Er



and *Cd(*#Ca,5n)'*"Er, while weaker reaction channels include 3n and 6n evaporation, and
pzn evaporation.

If a residue is produced at higher spin, then more of the total energy is carried as
rotational energy, so that less of the energy brought in by the reaction was available for
the evaporation of particles. Thus, in the above example, !58Er is generally produced with
more angular momentum than !*Er. This extra angular momentum must then be removed
by 7-ray emission subsequent to the neutron evaporation, resulting in a higher average v-
ray multiplicity. For collectively-rotating nuclei, most of the extra v rays contribute to a
quasicontinuum “E2 bump” in the energy region between 1 and 1.5 MeV. Consequently, the
shape of this quasicontinuum v-ray spectrum also differs between reaction channels. In the
type of background subtraction described here, the quasicontinuum is considered to be part

of the “background” we are subtracting, and this will give rise to reaction-channel-dependent
effects.

This can be seen in figure 3, where spectra from gates on strong !*6~159Er ~-ray tran-
sitions are shown. The spectra on the left have been background-subtracted with the pro-
cedure of equation 3. In the region between about 1000 and 1500 keV there are serious
problems with the background; the 3n- and 4n-evaporation spectra are undersubtracted,
while the 5n and 6n are oversubtracted. Since we are subtracting an average background,
the reaction-channel dependence of the E2-bump strength is a serious problem.

The effect that gives rise to this problem, however, also points the way to a solution.
It is evident that setting a gate on background channels in the region of the E2-bump will
effectively distinguish the reaction channel of strong peaks in the spectrum. It should then
be possible to use this information to add a correction term to the background subtraction.

This is illustrated in figure 4. The top panel shows the total 1D projection and back-
ground from the data set of figure 3. Also shown is a wide gate on the E2-bump region
of the spectrum, from 1100 to 1600 keV, chosen to avoid strong peaks. When this gate is
applied to the 2D data, the projection spectrum shown in the middle panel results. A 1D
background can be drawn for this E2-bump-gated spectrum in the same way as for the total
projection. In the bottom panel, the E2-bump projection has had a fraction of the total
projection subtracted, with a normalization factor chosen to give a net counts of zero in
the difference spectrum. The difference in the background spectra, with the same normal-
ization coeflicient, is also shown. The positive (negative) peaks in the difference spectrum
correspond to transitions from the 3n and 4n (5n and 6n) evaporation residues. It is also

evident that the E2-bump is more intense in the E2-bump-gated projection than in the total
projection.

Let E be the set of channels included in the E2-bump gate(s), so that the E2-bump
projection spectrum is

S,' = Z M,‘j ’
jE€E



with a total counts of

C=Y5=YF.

i€E
Let us divide the counts in the E2-bump projection into background and peaks,
Si =38+t ’

and define the difference spectra of figure 4(c) as

C
D; = S5i— P
C
;. = b
€ b= 0
d,; = D — €3
_ 5 C

= TP

In order to simplify the discussion which follows, we consider an experiment where the

two primary reactions are (HI,zn) and (HIL,(z + 1)n). Let the 2D data, total projection and
background be:

a b
M; = M;+ M;
}Ji = Pia+1),'b
b; = b+0b

where the superscripts @ and b represent spectra that would be obtained from pure (HI,zn)
and (HIL(z 4 1)n) data sets, respectively. We define

™ = )} PP
St o= > M

JjEE

c* = Y st
where n = a,b. We also obtain

T = T*+7T

S; = S: + Sf

etc.

If the E2-bump gate on each of the individual reaction channels is well-reproduced

by the background, then the spectra S can be well represented by a fraction of the total
projections P,



We therefore obtain
C

D; = S;—TP;
a b C a b
= S¢+5; _T(Pg‘ + F))
_C_, Cbb C°+C"¢ b
= il (R R)
CaTb - CbTG b a a b
- W—(T Pt -T ‘Ps) (5)
= (TbPia - TuPib)f (6)
d = (T°p? —T°p))f (M
e = (T —T°Bt)f, (8)
where
CaTb _ CbTu
f - TTuTb . (9)

For this two-reaction-channel data set, a more correct version of equation 3 would give
the 2D background

1 a a a,. a 1
Bj; = ga(PP} — pip5) + m (POP — pi}) - (10)
With some algebra (see Appendix) we can now combine equations 3, 6, 7 and 10 to get

1
B;; = Bij + (DiD; — didj) (11)
where
(CaTb _ CbTa)Z
TTeT . (12)

We can evaluate the constant F' by taking the sum of the difference spectrum D; over the
E2-bump gate(s) E,

F = f2TT°T =

CeT® — C*T
D; = ) —me—(T°P? - T°F})
..EZE ‘EEE TTaT®
CaTb_ Cch b va a vb
= ~pegr—(I'C° - T°C")
= F. + (13)

Thus we are able to eliminate the need to know the individual evaporation-residue projections’
in order to make use of equation 11.

The effect of using this improved background subtraction procedure is shown on the
right-hand side of figure 3. The new method does not yield perfect results, especially in
this case for the 6n reaction channel, presumably due to the fact that we have more than



two reaction channels populated in the experiment. Nevertheless, there is a very significant
improvement, especially in the region of the E2 bump.

When one sets gates on transitions in the energy range of the E2 bump, the effects of
the new method are still more striking. Figure 5 presents spectra from a single gate at 1340
keV, and from a double gate at 1340 keV and the 3n 4 ray at 208 keV, with the background
subtracted using the standard procedure ((b),(d)) or the improved procedure ((a),(c)). The
data set and backgrounds used are the same as those of figures 3 and 4. The 1340 keV
transition belongs to the 4n reaction channel and not to the 3n channel, but it would be
impossible to draw that conclusion based on figure 5 (b),(d).

An alternative and perhaps more intuitive way of viewing this correction term is to

consider the difference spectrum D; as a gate on a matrix where the background of equation 3
has already been subtracted. That is,

D; = ) (M;— By)

JjEE
1
= Si—5 > (P:P; — pip;)
jeE
C
~ S;— =P 14
§:— =P (14)

since the gate F is assumed to include only background channels. We then use this projection

D; and its peak and background spectra d;, e; in the same way as for equation 3, except that
we also need to replace the total counts

T=>) P
with
F=)D;.
icE
This then corrects the matrix for background correlations remaining in the E2 bump after

the first background subtraction. Presumably, we could repeat this procedure for a second

problem area, using the matrix which has been background-subtracted with equation 11 and
a different gate.

It should be emphasized that the problems presented by the E2-bump are not re-
stricted to the background-subtraction method of equation 3. Any method that treats the
background as a fraction of some spectrum (such as the total 1D projection) is prone to this
problem, unless that spectrum is derived directly from background gates set close to the gate
of interest. It is also worth noting that the results presented here are not very sensitive to
the actual gate(s) used to generate the E2-bump projection. The main criterion is simply a
sensitivity to the reaction-channel dependence of the E2 bump strength. While it is a good

idea to exclude strong peaks, weak peaks such as those in figure 4(a) can be included with
no observable effects.
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For residual nuclei that do not exhibit strong collective rotation at the spins at which
they are populated, there is no strong E2 bump. For these cases, the variation of the intensity
of the E2 bump with reaction channel is not as evident, and may be absent altogether for some
reactions. For example, a comparison of the gates shown in figure 1 with those in figure 3
shows that the effect is less pronounced for the noncollective nuclei 14814°Gd (although a close
inspection reveals that spectrum figure 1(b) is slightly oversubtracted in the region 1.0 — 1.6
MeV, and that of figure 1(c) slightly undersubtracted). In cases where no reaction-channel
fractionation is observed, the use of equation 11 over that of equation 3 is not necessary, and
may in fact degrade the overall quality of the background subtraction.

5. Extension to triples and higher folds

The new spectrometers such as GAMMASPHERE and EUROGAM gain increased
sensitivity by making use of high-fold coincidences to reduce the peak-to-background ratio for
7-ray coincidences. Since the background is reduced by more than an order of magnitude over
that of double coincidences, one might conclude that background subtraction of quadruple-
or quintuple-coincidence data should be less important. It must be remembered, however,
that the goal of these instruments is to make use of the increased sensitivity to search for and
examine transitions or cascades which are an order of magnitude weaker than those observed
with earlier instruments. Thus the peak-to-background ratio at the limit of sensitivity is
approximately unchanged, and the background will have to be treated properly in order to
correctly extract information from the new high-fold data sets.

The procedures described here can be easily extended to triples and higher-fold coin-
cidences. Figures 1, 2 and 3 show results for double gates on triples data sets, obtained
with the extensions to equations 3 and 11 that are given below. Extensions of the Palameta-
Waddington technique to triples and higher folds are derived in reference [7]. Crowell et
al. [3] have also developed a high-fold background-subtraction algorithm which is in some
respects similar to that of equations 15 and 16 below, except that they replace the spectrum
b; with estimates of the background levels derived directly from the high-fold data in the
region of the gate. They also do not subtract the background counts in coincidence with the
(n-1)-fold peak portion of the gate on n-fold data.

The extension of equation 3 is straightforward. We consider an n-fold cross-product of

the 1D projection, keeping all terms that include at least one power of the spectrum b. For
example,

F;P;P, PiP;Pk

+ pipibe + pibipe + bipipk
+ pibjbr + b;pibi + b;bipr
+

bibsby .
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To get the three-dimensional background B;;:, we drop the first term, replace the pp terms
with the corresponding background-subtracted 2D projection (in order to include the proper

coincidence relationships) and divide by powers of T' (to get the correct dependence on the
total number of events),

1
Bij = T [ (Mij — Bij)be + (M — Bix)bj + (Mji — Bji)b; ]

1
+ﬁ [ pibjbi + bipjbi + b;b;py
-}-b;bjbk ] .

By expanding B;; etc. through equation 3, we get

1

B,'jk = T [ M,'jbk + Mgkbj + Mjkb.' ]
1

+ﬁ [ -—P,'bjbk — b,‘ijk - b;bij

+b:bibe | . (15)

Similarly, for quadruple coincidences, we obtain

1

Bijlu = 7 [ Cijibt + Cijibe + Cirab; + Ciud; |
1
+E.,; [ —M;jbkbz - M;kbjbl - Mjkbgbz - Mabjbk - Mjlb.'bk - Mklb,'bj ]
1
+ﬁ [ Pibsbiby + b;P;biby + b;b; Piby + bbb Py

—bibibehr |, (16)

where Cjj;. is the three-dimensional (3D) projection of the 4-dimensional (4D) data set. For
completeness, we rewrite equation 3 in the same form as equations 15 and 16,

B = % [ Pubj+ biP;
—bb; .

We see that in order to calculate the background, we require all of the projections of
order less than the coincidence fold, in addition to the 1D background spectrum. The same
is true for the extension of equation 11, except that in that method we also require all the
E2-bump-gated projections and the corresponding 1D background spectrum.

Using the format of equation 15, the triples version of equation 11 reduces to

1
Bé_,'k = Bijk + —f [ ]V,'_,-e,e + Nikej + N’-ke'- ]
1
+t7m [ —Qiejen — eiQjen — eieiQu

U
+oeiejen ]. (17)
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where

Ni = ) (Cijr — Bijz)
keE

C 1
= 2 Cijp — 5 Myj — =(Dib; + b:D;) (18)
keE

Q: = ) Ny
JEE
1
= Z Z C,'_.,'k — T(CS.' +CD; + Fbj)
JEE k€E
C?

= Y Y Ciyr- l(2c'D.- + —P: + Fb;) (19)
JFEE kcE T T

v =YQ

i€E

= 2> > Cim— -11:(3C'F + %i) (20)

i€E jeE keE

are the E2-bump-gated projections of the background-subtracted cube. Using the arguments
of the previous section and algebra similar to that of the Appendix, one can show that the
correct 3D background for our data set with two reaction channels reduces to equation 17.

Similarly, the quadruples version of equation 11 is

Bi;u = Biju + ?17_ [ Gijrei + Gijier + Gine; + Gine; |
+% [ —Oijerer — Oirejer — Ojueier — Oyejer — Ojieier — Opese; |
+% [ Riejerer+ e;Rjerer + e;ejRre; + e;ejer Ry
—peeiee |, (21)

where

Gije = Y (Hiju — Biju)
leE

Nj = Y Gis
keE

Q= Y Ny
JEE

V.= >

i€E

are the E2-bump-gated projections of the background-subtracted 4D data set (hypercube)
H,'ju.

Hackman and Waddington [7] have developed a very elegant notation of using operators
to describe the process of background subtraction. In our case, the operator for the standard
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background subtraction is

for each dimension. Thus, for example,

b; b; 3
BiBiM;; = (1- T ;)(1 —7 zj:)Mu

b; b; b; b;

= M;— =P;— 1P+ =2

TP’ TP+TTT
M;; — B;; .

Similarly,
BiBiBrCijk = Ciji — Bijk

etc. The operator to apply the additional E2-bump correction is

E,'Zl—%iz

for each dimension, so that
«€ififiMi; = M;; — Bj;

€i€;€kBiBiPrCije = Cije — Biji
etc.

One final remark should be made about background subtraction for triples and higher-
fold data. We have assumed throughout the discussion here that the quasicontinuum part
of the background is uncorrelated, that is, that the 2D background-background coincidences
are well-described by the tensor cross-product of the 1D background spectrum b; (with the
exception of the E2 bump). While this turns out to be a reasonable approximation, it has
long been known (e.g. ref [6]) that there is often a valley along the diagonals of the data;
events where E,; ~ E,; are slightly less likely than expected from uncorrelated backgrounds.
For 2D data, this problem can be alleviated to some extent by using local backgrounds.

This valley is even deeper along the major diagonal (E,; =~ E,; = E.,;3) in triples data,
so at first it might be expected that the 3D background from the prescriptions described in
this paper would be poorer in this respect than that for 2D data. This, however, turns out
not to be the case. Referring to equation 15, one sees that the 2D correlations for i ~ j,
i~ k and j ~ k are included in the terms M;;b, M;:b; and M;:b;, respectively. Experience
indicates that these terms tend to cancel the background correlations in the 4-y-v cube.

6. Conclusion
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Background-subtraction algorithms for in-beam HPGe coincidence data have been pre-
sented. The backgrounds are parameterized as the cross-products of lower-dimensional pro-
jections of the data and a one-dimensional background spectrum. A novel method of cor-
recting for a mixture of different reaction channels in the complete data set is described.
This method makes use of one or more gates on background channels in the energy region of

the “E2 bump”, and provides a significantly better description of the background for nuclei
exhibiting strong collective rotation at high spins.

The prescriptions for background subtraction described here are simple, fast and re-
liable. The results seem to be reasonably insensitive to the particulars of the chosen back-
ground spectra and to the gate used to generate the E2-bump correction terms.

I'thank John Simpson, Mark Riley and co-workers for the use of the EUROGAM 1 data

set from the reaction of **Cd with 210 MeV “®Ca, and G. Hackman and J.C. Waddington
for very helpful discussions.

Appendix. Algebra for the E2-bump correction in two dimensions

We have (from equation 10)

1 a a a,_ a 1
B; = (PP —p.-p,-)+~(P-"P!’—p?p'})
1

a 1 .. 1
B"J' + TaPaP + TbePb T‘p‘PJ - -ﬁpipj prth) + TplPJ .

Collecting the terms of type PP together and making use of equations 6, 9 and 12, we
get

1

ﬁP“P" + TbePb TPPj = TaP"P“ + TbeP" TPian - TP,-"P,-
= TT“P“(TP“ T°P;) + —%Pf(TP}’ —T*P;)
= %P‘(T”P;‘ - T°P})+ T}ﬂ P(T*P; — T*Pf)
= ffl’_lTﬂ_P"aDj ffZ}T"PbD
= e TP — TP,
- sz;"“pr iDj
= %D“Dj .
Similarly, collecting the terms of type pp together, we have
TaPiP + %;p?p'} - %pepj -;-,didj

and thus

1
B;; = Bij + 7(DiD; — did) .
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Figure Captions

Figure 1. Spectra from the reaction 124Sn + 39Sj at 158 MeV, studied with the EUROGAM
1 spectrometer [5]. Shown are: (a) the total 1D projection and background spectra; (b),(c)
two background-subtracted gated spectra from a 2D matrix; and (d) background-subtracted

double-gated spectrum generated by setting the two gates together on a 3D cube and pro-
jecting the result onto the third dimension.

Figure 2. Spectra from the same data set and identical gates as for figure 1, but using a 1D
background spectrum which has been renormalized by a factor of 0.9. Shown are: (a) the
total 1D projection and remormalized background spectra; (b),(c) background-subtracted
gated spectra from a 2D matrix; and (d) background-subtracted double-gated spectrum.

Figure 3. Gated spectra from the reaction of 11*Cd with 210 MeV %8Ca, taken with the
EUROGAM 1 spectrometer. The background has been subtracted using the standard pro-
cedure of equation 3 (left-hand side, (a}-(f)), or using the improved procedure of equation 11
(right-hand side, (g)-(1)). (a),(g): Gate on the 443 keV transition in 1**Er. (b),(h): Double
gate on the 443 and 522 keV transitions in **Er. (c),(i): Gate on the 527 keV transition
in "¥7Er. (d),(j): Double gate on the 527 and 622 keV transitions in *"Er. (e),(k): Double

gate on the 464 and 556 keV transitions in *°Er. (f),(1): Double gate on the 452 and 543
keV transitions in 15¢Er.

Figure 4. Ilustration of the E2-bump correction for improved background subtraction.
The spectra are from the reaction of 114Cd with 210 MeV 8Ca, taken with the EUROGAM
1 spectrometer. Shown are: (a): Total 1D projection and background. Also shown are the
limits of the gate set on the E2-bump region, used to produce the spectrum in (b). (b): Gated
E2-bump 1D projection and background. (c): Normalized differences of the projections and
backgrounds of parts (b) and (a). The normalization factor was chosen to be the ratio of

the total counts in the projections, i.e. to give zero net counts in the projection difference.

Figure 5. (a),(b): Double-gated spectra from gates at 1340 keV and 208 keV. These
transitions belong to different nuclei and are not in true coincidence. (c),(d): Spectra from
a single gate set at 1340 keV. The background has been subtracted using the improved
procedure of equation 11 ((a),(c)), or the standard procedure of equation 3 ((b),(d)). The
data set and backgrounds are identical to those of figures 3 and 4. Strong peaks in the
spectra are labelled by the reaction channel.
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