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Abstract - Background subtraction is a widely used 
approoch for  detecting moving objects @om static 
cameras. Mony different methods have been proposed 
over the recent years and both the novice and the exprt  
can be confused about iheir benefits and limitations. In 
order to overcome this problem, this poper provides a 
review of ihe main methods and an original 
categorisotion based on speed, memoy requirements and 
accuracy, Such o review can effectively guide ihe 
designer to select the most suitoble meihod for  a given 
application in a principled way. Methods reviewed 
include parametric and non-porametric background 
density estimates and spatial correlation approaches. 

Keywords: background subtraction, moving object 
detection, parametric and non-parametric approach’zs, 
spatial correlation. 

1 Introduction 
Background subtraction is a widely used approach 

for detecting moving objects in videos from static 
cameras. The rationale in the approach is that of detecting 
the moving objects from the difference between the 
current frame and a reference frame, often called The 
“background image”, or “background model”. As a baric, 
the background image must be a representation of the 
scene with no moving objects and must be kept regularly 
updated so as to adapt to the varying luminarice 
conditions and geometry settings. More complex models 
have extended the concept of “background subtracticn” 
beyond its literal meaning. 

Several methods for performing background 
subtraction have been proposed in the recent literamre. 
All of these methods try to effectively estimate ihe 
background model from the temporal sequence of the 
frames. However, there is a wide variety of techniques 
and both the expert and the newcomer to this area can be 
confused about the benefits and limitations of each 
method. This paper provides a thorough review of Ihe 
main methods (with inevitable exclusions due to spwe 
restrictions) and an original categorisation based on 
speed, memory requirements and accuracy. 

The rest of the paper is organized as follows: Section 
2 describes the main features of each method reviewed. 
Section 3 presents the comparison of speed, memory 
requirements and accuracy, in this order. Conclusive 
remarks are addressed at the end of this paper. 

2 The reviewed approaches: 
from simple to complex 
The approaches reviewed in this paper range from 

simple approaches, aiming to maximise speed and limiting 
the memory requirements, to more sophisticated 
approaches, aiming to achieve the highest possible 
accuracy under any possible circumstances. All 
approaches aim, however, at real-time performance, hence 
a lower bound on speed always exists. The methods 
reviewed in the following are: 

’ Running Gaussian average 
. Temporal median filter 
. Mixture of Gaussians 
f Kernel density estimation (KDE) 
. Sequential KD approximation 
. Cooccurence of image variations 
. Eigenbackgrounds 

2.1 Running Gaussian average 
Wren et 01. in [l] have proposed to model the 

background independently at each (iJ) pixel location. The 
model is based on ideally fitting a Gaussian probability 
density function @do on the last n pixel’s values. In order 
to avoid fitting the pdf from scratch at each new frame 
time, t, a running (or on-line cumulative) average is 
computed instead as: 

,u, = 4 + (1 - a)P,., (1)) 

where I, is the pixel’s current value and ,u, the previous 
average; a is an empirical weight often chosen as a trade- 
off between stability and quick update. Although not 
stated explicitly in [l], the other parameter of the 
Gaussian pdf, the standard deviation cr,, can be computed 
similarly. In addition to speed, the advantage of the 
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nmning average is given by the low memory requirement: 
for each pixel, this consists of the two parameters (p, ,U,) 
instead of the buffer with the last n pixel values. 

At each f frame time, the I, pixel's value can then be 
classified as a foreground pixel if the inequality: 

holds; otherwise, I, will be classified as background. The 
name background subtraction used to commonly indicate 
this set of techniques actually derives from (2). 

Koller ef al. in [2]  remarked that the model in (1) is 
unduely updated also at the occurrence of such 
foreground values. For this reason, they propose to 
modify the model update as: 

where the binary value M is 1 in correspondence of a 
foreground value, and 0 otherwise. This approach is also 
known as selective background update. 

As the model in [I]  was proposed for intensity 
images, extensions can be made for multiple-component 
colour spaces such as (R,G,B), (Y,U,V), and others. 
Moreover, if real-time requirements constrain the 
computational load, the update rate of either ,U or ucan be 
set to less than that of the sample (frame) rate. However, 
the lower the update rate of the background model, the 
less a system will be able to quickly respond to the actual 
background dynamic. 

2.2 Temporal median filter 
Various authors have argued that other forms of 

temporal average perform better than that shown in (1). 
Lo and Velastin in [3] proposed to use the median value 
of the last n frames as the background model. Cucchiara 
et al. in [4] argued that such a median value provides an 
adequate background model even if the n frames are sub- 
sampled with respect to the original frame rate by a factor 
of 10. In addition, [4] proposed to compute the median on 
a special set of values containing the last n, sub-sampled 
frames and w times the last computed median value. This 
combination increases the stability of the background 
model. 

The main disadvantage of a median-based approach 
is that its computation requires a buffer with the recent 
pixel values. Moreover, the median filter does not 
accommodate for a rigorous statistical description and 
does not provide a deviation measure for adapting the 
subtraction threshold. 

2.3 Mixture of Gaussians 
Over time, different background objects are likely to 

appear at a same (ij) pixel location. when this is due to a 
permanent change in the scene's geometry, all the models 
reviewed so far will, more or less promptly, adapt so as to 
reflect the value of the current background object. 
However, sometimes the changes in the background 
object are not permanent and appear at a rate faster than 
that of the background update. A typical example is that 
of an outdoor scene with trees partially covering a 
building: a same (ij) pixel location will show values from 
tree leaves, tree branches, and the building itself. Other 
examples can be easily drawn from snowing, raining, or 
watching sea waves from a beach. In these cases, a single- 
valued background is not an adequate model. 

In [ 5 ] ,  Stauffer and Grimson raised the case for a 
multi-valued background model able to cope with 
multiple background objects. Actually, the model 
proposed in [SI can be more properly defined an image 
model as it provides a description of both foreground and 
background values. 

Stauffer and Grimson in [SI describe the probability 
of observing a certain pixel value, x, at time f by means of 
a mixture of Gaussians: 

with each of the K Gaussian distributions deemed to 
describe only one of the ObServahk background or 
foreground objects. In practical cases, K is set to be 
between 3 and S. Gaussians are multi-variate to describe 
red, green and blue values. If these values are assumed 
independent, the co-variance matrix, Z;, simplifies to 
diagonal. In addition, if the standard deviation for the 
three channels is assumed the same, it further reduces to a 
simpler 2 , ~  

For (4) to become a model of the background alone, 
a criterion is required to provide discrimination between 
the foreground and background distributions. In [ 5 ] ,  it is 
given like this: fnst, all the distributions are ranked based 
on the ratio between their peak amplitude, o,, and 
standard deviation, ui. The assumption is that the higher 
and more compact the distribution, the more is likely to 
belong to the background. Then, the first B distributions 
in ranking order satisfying 

with T an assigned threshold, are accepted as background. 
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At each t frame time, two problems must be 
simultaneously solved a) assigning the new obseried 
value, x,, to the best matching distribution and b) 
estimating the updated model parameters. These 
concurrent problems can he solved by an expectatim- 
maximisation (EM) algorithm working on the buffer of 
the last n frames. However, as this would prove extremely 
costly, the matching is approximated in these tenns: 
amongst all distributions satisfying 

the first in ranking order is accepted as a match for x,. 
Furthermore, parameters ( ~ ; , ~ p ~ , ~  q,) are updated only for 
this matching distribution and by using simple on-line 
cumulative averages similar to that of (2). If no match is 
found, the last ranked distribution is replaced by a new 
one centered in x, with low weightand high variance. 

Amongst the many papers stemming from [5], that 
from Wayne Power and Schoonees is suggested to the 
reader as it elegantly describes the theoretical framework 
supporting the Stauffer-and-Grimson approach, while at 
the same time providing useful corrections [6]. 

2.4 Kernel Density Estimation 
An approximation of the background pdf can be 

given by the histogram of the most recent valnes 
classified as background values. However, as the number 
of samples is necessarily limited, such an approximation 
suffers from significant drawbacks: the histogram, as a 
step function, might provide poor modeling of the tme, 
unknown pdf, with the “tails” of the true pdf ofien 
missing. In order to address such issues, Elgammal et a/. 
in [7] have proposed to model the background distribution 
by a non-parametric model based on Kemel Density 
Estimation (KDE) on the buffer of the last n background 
values. KDE guarantees a smoothed, continuous version 
of the histogram. 

In [7], the background pdf is given as a sum of 
Gaussian kemels centered in the most recent n 
background values, xi: 

Likewise (4), this model seems to be dealing with a 
sum of Gaussians. However, differences are substantial: 
in (4), each Gaussian describes a main “mode” of the pdf 
and is updated over time; here, instead, each Gaussian 
describes just one sample data, with n in the order of 100, 
and Z; is the same for all kemels. If background values are 
not known, unclassified sample data can be used in th,:ir 
place; the initial inaccuracy will be recovered along model 

updates. Based on (7), classification of X, as foreground 
can be straightforwardly stated ifP(xJ < T 

Model update is obtained by simply updating the 
buffer of the background values in fifo order by se/ective 
update (see Sect. 2.1): in this way, “pollution” of the 
model (7) by foreground values is prevented. However, 
complete model estimation also requires the estimation of 
4 (which is assumed diagonal for simplicity). Tbis is a 
key problem in KDE. In [7] ,  the variance is estimated in 
the time domain by analysing the set of differences 
between two consecutive values. 

The model proposed in [7] is actually more complex 
than what outlined so far. First, in order to address the 
issue of the time scale, two similar models are 
concurrently used, one for long-term and the other for 
short-term memory. Second, the long-term model is 
updated with a blind update mechanism so as to prevent 
undesired exclusion from the model of incorrectly 
classified background pixels. Furthermore, it addresses 
explicitly the problem of spatial correlation in the 
modeling of values from neighbouring pixel locations as 
descrihed hereafter. 

All the approaches at Sects. 2.1-2.3 model 
independently single pixel locations. However, it is 
intuitive that neighbouring locations will exhihit spatial 
correlation in the modeling and classification of values. 
To exploit this property, various morphological operations 
have been used for refining the binary map of the 
classified foreground pixels. In [7], instead, this same 
issue is addressed at the model level, by suggesting to 
evaluate P(xJ also in the models from neighbouring 
pixels and use the maximum value found in the 
comparison against T. 

2.5 Sequential Kernel Density 
approximation 

Mean-shift vector techniques have recently been 
employed for various pattem recognition problems such 
as image segmentation and tracking [S, 91. The mean- 
shift vector is an effective gradient-ascent technique able 
to detect the main modes of the tme pdf directly from the 
sample data with a minimum set of assumptions (unlike 
the Stauffer-and-Grimson approach, the number of modes 
is unrestricted). However, it has a very high 
computational cost since it is an iterative technique and it 
requires a study of convergence over the whole data 
space. As such, it is not immediately applicable to 
modeling background pdfs at the pixel level. 

There have been recent approaches trying to solve 
this problem. In [lo], Piccardi and Jan propose some 
computational optimisations promising to mitigate the 
computational drawback. Moreover, in a recent paper 

3101 



from Han et a/., the mean-shift vector is used only for an 
off-line model initialisation [Il l .  In this step, the initial 
set of Gaussian modes of the background pdf is detected 
from an initial sample set. The real-time model update is 
instead provided by simple heuristics coping with mode 
adaptation, creation, and merging. In their paper, Han et 
a/. compared the pdf obtained with their method against 
that of a KDE approach over a 500-frame test video, 
fmdmg a low mean integrated squared error in the order 
of IOd; this justifies the name of sequential Keme/ 
Density approximation (SKDA) that the authors gave to 
their method. Over the test video in [l I], the number of 
modes showed to vary between 3 and 11, with an average 
of 8. 

2.6 Cooccurrence of image variations 
Seki et a/. in [I21 try to go beyond the idea of mere 

chronological averages by exploiting spatial cooccurrence 
of image variations. Their main statement is that 
neighbouring blocks of pixels belonging to the 
background should experience similar variations over 
time. Although this assumption proves h u e  for blocks 
belonging to a same background object (such as an area 
with tree leaves), it will evidently not hold for blocks at 
the border of distinct background objects (this is likely the 
cause of several false detections shown in [12], Figs. 13- 
14, appearing at the borders of different background 
objects). 

The method in [I21 can be summarised as follows: 

- instead of working at pixel resolution, it works on blocks 
of N x N pixels treated as an N2-component vector. This 
trades off resolution with better speed and stability. 

Learning phase: 

- for each block, a certain number of time samples is 
acquired; the temporal average is fust computed and the 
differences between the samples and the average are 
called the image variations; 

- the N2 x N’ covariance matrix is computed with respect 
to the average and an eigenvector transformation is 
applied reducing the dimensions of the image variations 
from N2 to K. 

C/assij?cation phase for the current block 

- a neighbouring block, U, is considered, with its current 
input value; the corresponding current eigen image 
variation is computed, called z”; 

- the L-nearest neighbours to tu in the eigenspace, zed, are 
found and zu expressed as their linear interpolation; 

- the same interpolation coefficients are applied to the 
values of the current block, b, which have occurred at 
the same time of the z(“,~,; this provides an estimate, z‘b, 
for its current eigen image variation zb; 

- the rationale of the approach is that 4 and - Ib  should be 
close if b is a background block; to measnre closeness, a 
cumulative probability over the 8-neighbouring blocks is 
used (the reader can refer to [I I ]  for further details). 

In [l I], it is not specified whether the learning phase 
should be repeated over time to guarantee model update. 
As this model is based on variations, it is likely to show a 
natural robustness to limited changes in the overall 
illumination level. However, a certain update rate would 
be needed to cope with more extended illumination 
changes. 

2.7 Eigenbackgrounds 
The approach proposed by Oliver et al. in [I31 is 

also based on an eigenvalue decomposition, but this time 
applied to the whole image instead of blocks. Such an 
extended spatial domain can extensively explore spatial 
correlation and avoid the tiling effect of block 
partitioning. 

The method in [I31 can be summarised as follows: 

Leaming phase: 

- a samples of n images is acquired, each image with p 
pixels; the average image, pb, is then computed and all 
images mean-subtracted; 

- t he  covariance matrix is computed and the hest M 
eigenvectors stored in an eigenvector matrix, OmMa, of 
size Mxp.  

Classijicafion phase: 

- Every time a new image, I, is available, it is projected 
onto the eigenspace as I’ = 

- I’ is then back projected onto the image space as I” = 
&m 1’ + pb. Since the eigenspace is a good model for 
the static parts of the scene, but not for the small moving 
objects, I” will not contain any such objects; 

- Foreground points are eventually detected at locations 
where I I - I” I > T. 

(I - ,U& 

The above procedure can be subject to variations 
improving its efficiency, but following a similar rationale. 
In [13], however, it is not explicitly specified what images 
should be part of the initial sample, and whether and how 
such a model should be updated over time. 

3 Performance analysis 
This section presents a comparative performance 

analysis based on speed, memory requirements and 
accuracy. Table 1 shows a synopsis of the results. 
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3.1 Speed 
The fastest amongst the methods reviewed is 

certainly the Gaussian average, where, for each pixel, the 
classification is just a thresholded difference and the 
background model update adapts just one or two 
parameters. We define this time complexity as O(1). Ille 
median filter has a similar classification cost, hut model 
update can be approximated as linear in the number of 
samples, n, (ns is usually sub-sampled from the :%I1 
sample set, n). The corresponding complexity can be 
stated as O(nJ. The Mixture of Gaussians method has 
O(m) complexity, with m the number of Gaussian 
distributions used, typically in the order of 3-5. liar 
classifying a new pixel, the KDE model computes its 
value in the Gaussian kernels centered on the p a s  n 
frames, thus raising O(n) complexity, with n typically as 
high as 100. However, efficient implementation through 
the Fast Gauss transform can limit the actual execution 
time [14]. The model update has similar complexity, 
although it is likely to be performed at rates significantly 
lower than the frame rate. The SKDA method has O(ni + 
1) complexity, where m is the number of modes of the 
approximated pdf. This value is not set a priori and 
depends on the actual data samples. However, in [I I ]  this 
was shown to vary between 3 and 11 in a test video. The 
complexity for the cooccurrence-of-image-variations 
method can be estimated as O(8 * (n + L' + L)LW), where 
n is accounted for searching the nearest neighbours 
amongst the n variations, L' is the estimated cost for 
computing the interpolation coefficients, and L, that for 
applying them to the current block; amongst these, the 
dominant cost is either n or L'. The I? denominator 
spreads the cost over the pixels in a block. However, the 
reader should be reminded that this method works at 
block instead of pixel resolution, and that the cost for 
updating the model has not been taken into account. 
Finally, the eigenbackground method has an estimated 
complexity per pixel of O(M), where M is the number of 
the best eigenvectors. Here as well, possible cc~sts 
associated with the model update have not ben 
considered. 

Table 1. Background subtraction methods and perfonnr.nce 
analysis (refer to text for symbol explanation). 

3.2 Memory requirements 
For some of the methods reviewed, the memory 

complexity per pixel is the same as the time complexity. 
Where this is intuitive, we will not enter into details. The 
memory complexity for the cooccurrence-of-image- 
variations can be estimated as O(n&), where n is the 
number of variations in the training model and K their 
dimension. Again, the I? denominator spreads the cost 
over the pixels in a block. As the ratio & is by 
definition largely less than 1, the estimated complexity 
tnrns out less than O(n). At classification time, the 
eigenbackground method requires a memory complexity 
per pixel O(M), with M the number of the best 
eigenvectors. However, at training time the method 
requires allocation of all the n training images, with an 
O(n) complexity. 

3.3 Accuracy 
An extensive accuracy analysis is not possible in the 

scope of this paper, as it would require agreement on an 
experimental benchmark or a complex theoretical 
comparison. Here we limit the discussion to analyse the 
main model features and categorise each approach as 
providing limited, intermediate, or high (L, M, H) 
accuracy. 

The methods with a background model based on a 
single scalar value can guarantee adaptation to slow 
illumination changes, hut cannot cope with multi-valued 
background distributions. As such, they will be prone to 
errors whenever those situations arise. However, if such 
errors connect into relatively small blobs, they can be 
removed from the classified image by an adequate size 
filter. Moreover, post-processing based on foreground 
object classification and tracking can always recover 
errors performed at the background subtraction level. 

For the approximation of a multimodal distribution, 
both parametric and non-parametric methods have been 
applied successfully. Consequently, both the Mixture of 
Gaussians and KDE approaches can model well the 
background pdf in general cases. In addition, in [7] the 
proposed KDE temporal model is complemented by a 
double time scale, spatial correlation and a combination of 
blind and selective update. These features are able to 
mitigate undesired artefacts such as ghosts and deadlocks. 

Mean-shift methods can effectively model a multi- 
modal distribution without the need for assuming the 
number of modes a priori. However, their computational 
cost is very high. In the SKDA approach, they are used 
only in an initial stage. The model update is provided by 
heuristics for adapting, creating and merging the modes. 
[I I] shows that SKDA proves a good approximation of a 
KDE model. 
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Examples of the accuracy achievable by the method 
based on the cooccurrence of image variations can he 
found in [12]. Differently from the other methods, this 
method works at block resolution in blocks of N x N 
pixels, thus limiting the accuracy achievable at pixel level. 
In addition, blocks located at the border of different 
background objects might not exhibit significant 
cooccurrence thus risking to be misclassified. 

We experimented the eigenbackgronnd method with 
a training set with n = 20 recent images and M = 3 
eigenbackgrounds. The quality of results was good but 
seemed to significantly depend on the images used for the 
training set. When the current image contained a moving 
object in the same position as in a training image, the 
projection in the eigenspace did not remove it completely. 
In [13], however, the authors report good results with 
lower computational load than a Mixture of Ganssians 
approach. 

4 Conclusions 
In this paper, we have presented a review of the 

most relevant background subtraction methods. This 
original review allows the readers to compare the 
methods’ complexity in terms of speed, memory 
requirements and accuracy, and can effectively guide 
them to select the best method for a specific application in 
a principled way. 

Amongst the methods reviewed, simple methods 
such as the nnming Gaussian average or the median filter 
offer acceptable accuracy while achieving a high frame 
rate and having limited memory requirements. Methods 
such as Mixture of Ganssians and KDE prove very good 
model accuracy. KDE has a high memory requirement (in 
the order of a 100 frames) which might prevent easy 
implementation on low-memory devices. SKDA is an 
approximation of KDE which proves almost as accurate, 
but mitigates the memory requirement by an order of 
magnitude and has lower time complexity. Methods such 
as the cooccurrence of image variations and the 
eigenhackgrounds explicitly address spatial correlation. 
They both offer good accuracy against reasonable time 
and memory complexity. However, practical 
implementation of the cooccurrence method imposes a 
trade off with resolution. 
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