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ABSTRACT

Background modeling and subtraction is a basic component

of many computer vision and video analysis applications. It

has a critical impact on the performance of object tracking

and activity analysis. In this paper, we propose an effective

and adaptive background modeling and subtraction approach

that can deal with dynamic scenes. The proposed approach

uses a subspace learning method to model the background and

the subspace is updated on-line with a sequential Karhunen-

Loeve algorithm. A linear prediction model is also used to

make the detection more robust. Experimental results show

that the proposed approach is able to model the background

and detect moving objects under various type of background

scenarios with close to real-time performance.

Index Terms— Background Subtraction, Object Detec-

tion, Subspace Method

1. INTRODUCTION

In many computer vision applications such as real time track-

ing and video surveillance, one fundamental module is back-

ground subtraction - differentiating foreground objects from

the static parts of the scene. The information provided by

such module can be considered as a valuable low-level cue

to perform high-level tasks of motion analysis, like motion

estimation, tracking, etc.

A simple yet widely used background modeling algorithm

includes two parts: (1) maintaining the background pixel in-

tensity model, and (2) subtracting the new frame from the

background scene model and thresholding the difference value

to determine the foreground label map. This task looks like

fairly simple, but in real world applications, this approach

rarely works. Usually background is never static and varies by

time due to several reasons such as lighting changes, moving

background objects and non-stationary scenes. To overcome

these problems, it is crucial to build a stochastic representa-

tion of the background and continuously adapt it to the current

environmental conditions.

There have been many research projects on this topic try-

ing to build a statistical model of background that allow the

video surveillance system to detect the foreground objects.

For completely stationary background, the background inten-

sity can be well modeled by a Gaussian function. Pfinder

[2] uses a single Gaussian background model per pixel. The

pixel intensity is updated recursively by a linear adaptive fil-

ter to adapt to slow changes in the scene. In [3], each pixel

in the background is modeled by mixture of K Gaussians and

the model parameters are updated using an on-line Expecta-

tion Maximization (EM) algorithm. Gaussian mixture model

is more powerful than single Gaussian because in practice

background pixels sometimes have multiple appearance sur-

faces in different conditions. Although mixture of Gaussian

can converge to any arbitrary distribution provided enough

number of components, this is not computationally possible

for real time applications. Usually three to five components

are used per pixel. Another approach to estimate probabil-

ity distribution of background model is using nonparametric

Kernel Density Estimation [4]. This model keeps temporal

samples of intensity values per pixel and uses these samples

to estimate the density function. Although these pixel-based

techniques seem to be reasonable choices for background sub-

traction, they ignore the correlation of neighboring pixels and

are not computationally possible for real-time applications.

In [1], a PCA model is used to model the background. This

method exploits the correlation of pixels and offers less com-

putation. However, it fails to deal with dynamic background

because the PCA model is learned beforehand and fixed dur-

ing the detection procedure.

In this paper, we extend the work [1] and propose an ef-

fective and adaptive background modeling and subtraction

approach that can deal with dynamic scenes such as ocean

waves, waving trees, rain, moving clouds, etc. We use an on-

line subspace learning method to model the background and

updating the model with a sequential Karhunen-Loeve algo-

rithm. A linear prediction model is also used to make the

detection more robust.

The remainder of the paper is organized as follows. In

section 2, we present the background model and update mech-

anism. Experimental results are shown in Section 3, followed

by Section 4, which concludes the paper.

2. BACKGROUND MODEL

A subspace built by Principle Component Analysis is used

to model the background. This subspace can describes the

range of appearances such as lighting variations over the day,

weather variations, etc. This subspace is updated by an incre-
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mental method that updates the subspace of the background

model using a variant sequential Karhunen-Loeve algorithm

which in turns is based on the classis R-SVD method. Then

linear prediction model is employed to make the detection

more robust.

2.1. Batch PCA

Let {Ii}i=1,2,···N be a given set of d dimensional column vec-

tor representations of the previous N observations by trans-

forming every image into a 1D vector. We can compute the

mean vector μb and subtract it from the input image to get

zero mean vector {Xi}i=1,2,··· ,N where Xi = Ii − μb. Then

we can obtain the covariance matrix:

Cb = E{XiX
T
i } ≈ 1

N
XXT (1)

where X = [X1, X2, · · · , XN ]. This covariance matrix can

be diagonalized as:

Lb = ΦT
b CbΦb (2)

where Φb is the eigenvector matrix of Cb and Lb is the diag-

onal matrix. Φb can be calculated through the singular value

decomposition (SVD) of X:

X = USV T (3)

The eigenvectors of Cb are the columns of U , while the ele-

ments of S are the square root of the corresponding eigenval-

ues. In order to reduce the dimensionality of the space, only

M eigenvectors correspond to the M largest eigenvalues are

stored, which leads to a d × M matrix ΦM .

2.2. Incremental Subspace Learning

The batch method is computationally inefficient and it might

not be possible to execute it at each frame. Therefore, we con-

sider a incremental subspace method based on the sequential

Karhunen-Loeve algorithm [5] to update the subspace.

Given a d × n matrix Ip = [I1, I2, · · · , In] where each

column Ii is an observation(a d dimensional image vector),

we can compute the singular value decomposition(SVD) of

Ip = UpΣpV
T
p . When a d × m matrix of new observa-

tions Iq = [In+1, In+2, · · · , In+m] is available, the R-SVD

algorithm efficiently computes the SVD of the larger matrix

Ir = [Ip|Iq] = UrΣrV
T
r as follows:

1. Compute the mean of Ir : Ir = n
n+mIp + m

n+mIq,

where Ip, Iq and Ir denote the means of Ip, Iq and Ir

respectively.

2. Compute E = [Iq−Ir1(1×m)|
√

nm
n+m (Ip−Iq)] where

1(1×m) is an m dimensional unit vector.

3. Using UpΣpV
T
p and E to obtain UrΣrV

T
r :

(a) Use an orthonormalization process (e.g., Gram-

Schmidt algorithm) on [Up|E] to obtain an or-

thonormal matrix U
′
= [Up|Ẽ].

(b) Let the matrix V
′
=

[
Vp 0
0 I(m+1)

]
where I(m+1)

is a m + 1 dimensional identity matrix. Then

Σ
′
= U

′T [Ip|E]V
′

=
[
UT

p

ẼT

]
[Ip|E]

[
Vp 0
0 I(m+1)

]

=
[
UT

p IpVp UT
p E

ẼTIpVp ẼT E

]
=

[
Σp UT

p E

0 ẼT E

]
.

4. Compute SVD of Σ
′
= Ũ S̃Ṽ T then the SVD of Ir is

UrΣrVr = U
′
(Ũ S̃Ṽ T )V

′T = (U
′
Ũ)S̃(Ṽ T V

′T ).

Based on the R-SVD method, the sequential Karhunen-

Loeve algorithm is able to perform the SVD computation of

larger matrix Ir = [Ip|Iq] efficiently using the smaller ma-

trices U
′
, V

′
and the SVD of smaller matrix Σ

′
. Note that

this algorithm enables us to store the background model for

a number of previous frames and perform a batch update in-

stead of updating the background model every frame.

2.3. Detection

We use linear prediction [6] to detect foreground. Let the cur-

rent frame be It, the previous P frames from the current frame

be It−1, It−2, · · · , It−P . The projections of the P frames

onto the subspace, I
′
t−1, I

′
t−2, · · · , I

′
t−P can be computed as:

I
′
t−i = ΦT

M (It−i − μb), i = 1, 2, · · · , P. (4)

Each element of the projection of current frame I
′
t can be pre-

dicted as:

I
′pred
t (s) =

P∑
i=1

aiI
′
t−i(s), s = 1, 2, · · · ,M (5)

The best fitting values of the coefficients of the linear esti-

mator, a1, a2, · · · , aP can be computed as the solution to the

linear system defined as follows, here s is omitted for conve-

nience :⎡
⎢⎢⎢⎢⎣

I
′
1 I

′
2 · · · I

′
P

I
′
2 I

′
3 · · · I

′
P+1

...
...

...
...

...
...

... I
′
n−1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

aP

· · ·
a2

a1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

I
′
P+1

I
′
P+2

· · ·
I

′
n

⎤
⎥⎥⎦ (6)

The pseudo-inverse solution for the above least squares esti-

mation problem has a P × P and a 1 × P matrix with com-

ponents of the form:∑
i

I
′
i(s)I

′
i+k(s), k = 0, 1, · · · , P + 1 (7)
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For on-line updating the linear prediction model, it is only

necessary to maintain the projection vectors of prior P frames,

I
′
t−1, I

′
t−2, · · · , I

′
t−P and update all the P 2 + P components.

Then the current frame It can be predicted as:

Ipred
t = (ΦMΦT

M )−1ΦMI
′pred
t + μb. (8)

Finally, difference between the predicted frame and the cur-

rent frame are computed and thresholded, the foreground points

are detected at the location (x,y): |It(x, y)−Ipred
t (x, y)| > T ,

where T is a given threshold.

2.4. The Proposed Method

Put the initialization, detection and subspace update modules

together, we obtain the adaptive background modeling algo-

rithm as follows:

1.Construct an initial subspace: From a set of N train-

ing images of background {Ii}t=1,2,···N , the average image

μb is computed and mean-subtracted images X are obtained,

then the SVD of X is performed and the best M eigenvectors

are stored in an eigenvector matrix ΦM .

2.Detection: For an incoming image It, the predicted

projection I
′pred
t is first computed then it is reconstructed as

Ipred
t , foreground points are detected at location (x,y) where

|It(x, y) − Ipred
t (x, y)| > T .

3.Update the subspace: Store the background model for

a number of previous frames and perform a batch update of

the subspace using sequential Karhunen-Loeve algorithm.

4. Go to step 2.

3. EXPERIMENTS

In order to confirm the effectiveness of the proposed method,

we conduct experiments using two different image sequences.

The first is the scene of the ocean front which involves waving

water surface, blowing grass, illumination changes, etc. The

second is the scenario of the fountain which involves long

term changes due to fountaining water, illumination changes

and waving tree leaves. In order to reduce complexity, the

images are divided into equal size blocks and each block is

updated and detected individually in our experiments.

Two widely-used method, Mixture of Gaussians[3] and

Kernel Density Estimation [4] are employed to compare with

the proposed method. Simple spatial and temporal filtering

was used for all algorithms. Examples of detection results are

shown in Figure 1 and Figure 2. From the comparisons, we

can see that the proposed method outperformed the Mixture

of Gaussians and Kernel Density Estimation.

Figure 3 shows ROC curves formed by gradually chang-

ing the threshold value used for processing. The horizontal

axis shows the rate of incorrect detections in the background,

and the vertical axis shows the rate of correct detections of

foreground, where the true data of the person region was cre-

ated manually. The ROC curves showed that the proposed

method is more effective than the others in dynamic scenes

involving the background image variations.

Our current implementation of the proposed method in

MATLAB runs about 5 frames per seconds on a Pentium IV

3GHz processor and can certainly be improved to operate in

real-time.

4. CONCLUSION

In this paper, we proposed an effective and adaptive back-

ground subtraction approach that (1) updates the subspace on-

line using the sequential Karhunen-Loeve algorithm; (2) em-

ploys linear prediction model for foreground detection. The

advantage of the proposed approach is its ability to model

complex background. We claim that the proposed method

is able to model the background and detect moving objects

under various type of background scenarios and with close to

real-time performance.

(a)

(b)

(c)

(d)

Fig. 1. (a) Original Images. Detection results using (b) Mix-

ture of Gaussians model, (c) Kernel Density Estimation, (d)

Proposed method.
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(a)

(b)

(c)

(d)

Fig. 2. (a) Original Images. Detection results using (b) Mix-

ture of Gaussians model, (c) Kernel Density Estimation, (d)

Proposed method.
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Fig. 3. Receiver-Operator Characteristic(ROC) curves for (a)

the first sequence and (b) the second sequence for (i) Mixture

of Gaussians,(ii) Kernel Density Estimation, and (iii) Pro-

posed method.
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