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ABSTRACT Unmanned Aerial Vehicle Base Stations (UAV-BSs) are envisioned to be an integral component

of the next generation Wireless Communications Networks (WCNs) with a potential to create opportunities

for enhancing the capacity of the network by dynamically moving the supply towards the demand while

facilitating the services that cannot be provided via other means efficiently. A significant drawback of

the state-of-the-art have been designing a WCN in which the service-oriented performance measures

(e.g., throughput) are optimized without considering different relevant decisions such as determining the

location and allocating the resources, jointly. In this study, we address the UAV-BS location and bandwidth

allocation problems together to optimize the total network profit. In particular, a Mixed-Integer Non-Linear

Programming (MINLP) formulation is developed, in which the location of a single UAV-BS and bandwidth

allocations to users are jointly determined. The objective is to maximize the total profit without exceeding

the backhaul and access capacities. The profit gained from a specific user is assumed to be a piecewise-linear

function of the provided data rate level, where higher data rate levels would yield higher profit. Due to high

complexity of the MINLP, we propose an efficient heuristic algorithm with lower computational complexity.

We show that, when the UAV-BS location is determined, the resource allocation problem can be reduced to

a Multidimensional Binary Knapsack Problem (MBKP), which can be solved in pseudo-polynomial time.

To exploit this structure, the optimal bandwidth allocations are determined by solving several MBKPs in a

search algorithm. We test the performance of our algorithm with two heuristics and with the MINLP model

solved by a commercial solver. Our numerical results show that the proposed algorithm outperforms the

alternative solution approaches and would be a promising tool to improve the total network profit.

INDEX TERMS Aerial base station, backhaul, non-linear optimization, resource allocation, UAV, wireless

communications.

I. INTRODUCTION

Unmanned Aerial Vehicle Base Stations (UAV-BSs) are

expected to be used in the next generation Wireless Commu-

nications Networks (WCNs) for enhancing the capacity of the

network as well as expanding the coverage [1]. Although the

rapid deployment and mobility advantage of a UAV-BS has

the potential to substantially improve the Quality-of-Service

(QoS), there exist certain technical difficulties to be addressed
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such as resource management and channel modelling [2].

Among others, the location of the UAV-BSs play a key

role to assist the WCN since positioning UAV-BSs opti-

mally has vital importance when compared to terrestrial base

station positioning. In traditional terrestrial networks, base

stations are typically located with respect to long-term traffic

estimations. Even though these estimations vary in time,

installing new cells should be a cost-effective choice to meet

the demand. On the other hand, a UAV-BS’s location can

be adjusted to meet instantaneous demand or to enhance

the capacity of the WCN, yet, determining the optimal
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3-D locations of such vehicle remains as a challenging and

complex problem.

Not only does determining the locations of the UAV-BSs

improve the network performance, but also resource man-

agement should be jointly addressed to boost the benefit of

UAV-BSs. Similar to resource management strategies in clas-

sical wireless communications such as cache-enabled base

stations [3], it is a significant problem in UAV-assistedWCNs

to efficiently manage resources. Therefore, there has been

a number of attempts to jointly optimize the location and

resource allocation decisions [4]. Indeed, it is important to

take the finite backhaul capacity of the UAV-BSs in consid-

eration. Since the capacity is a significant concern for agility

and reliability, joint optimization of the location and alloca-

tion decisions is imperative for achieving realistic assessment

of the benefits of UAV-BSs.

In this study, we, specifically, address the aforementioned

drawbacks and consider a UAV-assisted WCN with a capac-

itated UAV-BS serving to users on the ground who are not

able to receive service from ground base stations (GBSs), e.g.,

due to high path loss. While serving the users, the backhaul

capacity of the UAV-BS and the available bandwidth of the

WCN are also considered in the problem setup. The objective

is to maximize the total system profit. In particular, the users

are assumed to be offered different data rate levels to improve

their satisfaction and each user is allowed to select at most

one of the offered options. This approach can also be used

as a new pricing model in the next generation WCNs since

the extent of the offered service type is a significant factor to

ensure both customer loyalty and satisfaction [5].

Moreover, many studies related to the UAV-BS location

have assumed that either the altitude or the projection of the

utilized UAV-BSs on the ground are fixed. Such approaches

are shown to transform the problem into a lower computa-

tional complexity case. However, such simplifications would

cause sub-optimal decisions. For instance, it is shown that

allowing the UAV-BSs to move both vertically and horizon-

tally boosts the network performance in terms of throughput,

resource utilization, and coverage [6]. Therefore, an agile

approach should be developed in which the assumptions that

leads to sub-optimality are avoided to have more realistic

results.

Although there have been some attempts to consider net-

work profit as an objective in 5G [4], this concept still needs

to be thoroughly analyzed as the next generation WCNs are

expected to embrace different pricing models. For instance,

congestion-based [7] or tiered pricing models [8] are shown

to be effective models to mitigate the burden on resource allo-

cation decisions in the networks by charging higher prices for

users whose demand are exhausting the network resources.

These results motivate us to employ a service-level-based

pricing model, where users are assumed to have different

willingness values for different service levels. The service

provider tends to serve users whose willingness values are

higher, with a single service level. By adopting a service-

level-based pricing model, the optimized resource allocations

are expected to increase the profit and efficiency of resource

management for service providers.

There exist different pricing models in the literature as

can be seen in [9], [10] and the references therein. Some of

thesemodels include dynamic schemes, in which buyers, e.g.,

users, and sellers, e.g. service providers, sequentially make

decisions on resource allocations and service provision, such

as auction-based or priority-based pricing [10]. Some other

models include static schemes, in which the prices of different

services are set at the beginning of a finite planning horizon

and the sellers provide the agreed service-levels to the buyers

with no update on the predefined prices until the planning

horizon terminates. In this study, a static service-level-based

pricing scheme is employed since the proposed systemmodel

captures a single snapshot of a finite time horizon.

A straightforward application of the proposed model can

be seen in scenarios where the exact values or at least the

distribution of user willingness values is known a priori, and a

service provider wishes to set the prices of different instanta-

neous data rate levels. In this case, the service provider would

determine the optimal subset of users to serve under a limited

backhaul capacity and set the prices of each data rate level

with respect to this optimal subset. Since a user is typically

assumed to accept a service if her/his willingness value is

greater than the service price [11], the service provider can

set the price of each data rate to the willingness value of the

user whose willingness value for that specific data rate level

is the minimum among the selected users, so that all users in

the selected subset are guaranteed to be served.

Note that the aim of this article is not to compare how

different pricingmodels perform. Instead, we provide an opti-

mization problem for a single network operator who compete

in a selfish market and offer a range of data rate levels to max-

imize its profit based on a static service-level-based pricing

model [10]. Nevertheless, we include different static pricing

models in the computational study and empirically show how

such models can affect the network profit. We summarize the

contributions of this article as follows:
• Backhaul-aware optimization: Our proposed system

considers both the backhaul and access capacities. Most

of the studies related to the UAV-BS location have stud-

ied uncapacitated UAV-BS or assumed only one of these

capacities, whichwould result in infeasible or unrealistic

solutions. Therefore, we include both capacities in our

problem setup so that the proposed model can be easily

applied to real-life cases.

• Profit maximization: QoS-based optimization prob-

lems have covered a wide range of performance indi-

cators such as throughput, latency or coverage [12].

Although these indicators seem reasonable, there has

been little incentive for the network operators to increase

the willingness to use UAV-BSs. We deliberately adopt

the network profit as the objective function in the model

so as to motivate network operators.

• Efficient solution approach: We use MINLP tech-

niques to formulate the proposed model. Due to high
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complexity of this formulation, finding optimal solu-

tions is difficult. We develop an efficient heuristic algo-

rithm, which solves the problem within a reasonable

time. We also provide the complexity of this algorithm.

• Computational study: We perform an extensive com-

putational study in which we compare the performance

of our algorithm with two more heuristics and one of

the well-known MINLP solvers, the BARON solver

over synthetically generated data. Our numerical results

prove that our algorithm outperforms all three of the

solution approaches. Moreover, we present empirical

results to demonstrate the impact of pricing factors such

as the cost of bandwidth, and user attitude in terms of

willingness values, on various performance indicators

from network profit to throughput.

• Theoretical contributions: We provide two important

proofs regarding the concavity and unimodality of the

data rate function, which is utilized extensively in the

UAV-BS literature. More specifically, (i) we prove that

the data rate function is concave with respect to band-

width and (ii) we prove that the data rate function is

unimodal with respect to the UAV-BS altitude. These

results form the basis of proposed heuristic algorithm.

The rest of the paper is organized as follows. Section II

presents a literature overview on UAV-BS location prob-

lems. The system model and mathematical formulation of

the proposed system are given in Section III. In Section IV,

we propose the heuristic algorithm. Section V presents the

computational results and Section VI concludes the paper

with several future research directions. Proofs of concavity

and unimodality of the data rate function are presented in

Appendices A and B, respectively.

II. LITERATURE REVIEW

The opportunities brought by the UAV-BSs (such as enhanc-

ing capacity, improving QoS, extending coverage) are so

promising that despite the relatively recent appearance of

the topic, the literature on UAV-BSs has grown rapidly.

Especially, the location optimization problems have attracted

significant interest since they have a significant impact on

the network performance [13]. In this section, we present

a high-level overview of the UAV-BS location literature

and present the differences of our study from the existing

literature.

Recent studies on UAV-BS location have considered sev-

eral design challenges such as 3-D deployment, air-to-ground

channel modelling, and trajectory optimization. For instance,

[14] jointly minimizes the number of UAV-BSs and deter-

mines the locations in areas with different user densities.

In [15], a mathematical model is proposed for the single

UAV-BS location problem, in which the ratio of the altitude

of the UAV-BS to the radius of the area is used to reduce

the problem to a 2-D location problem. In [16], the location

of an uncapacitated UAV-BS is determined to satisfy differ-

ent QoS requirements of the users. In [17], the location of

multiple UAV-BSs is explored over a finite area to enhance

the coverage and lifetime of the UAV-BSs. In [18], a joint

optimization problem in which the locations of the multiple

UAV-BSs and the association of the users to the UAV-BSs

are determined while the network is assumed to store caching

information of the users. In [19], the minimum average data

rate provided to the users in a finite time horizon ismaximized

by jointly determining the trajectories of the UAV-BSs and

the user-UAV-BS associations such that the maximum hov-

ering distance is not violated. In [20], a deep reinforcement

learning model is developed to maximize the system reward,

which is found as the sum of sigmoid functions derived from

difference between offloaded tasks and energy consumption

of the UAV-BS. In fact, these studies, implicitly, assume that

the backhaul capacity does not create a bottleneck when

optimizing the UAV-BSs which is justifiable in some cases.

While there exists a number of studies that inves-

tigate backhaul-aware UAV-BS location optimization

[14], [21], [22], the network profit aspect of the UAV-BSs

have not been considered. In [21], the location of a single

UAV-BS is considered to maximize the coverage such that

the backhaul and access capacities are not exceeded. In [22],

the locations of multiple UAV-BSs are determined to pro-

vide wireless service to the users who have a predefined

delay-tolerance parameter. The resource allocation to the

users in this study is also considered and an exhaustive search

procedure is proposed to maximize a logarithmic utility func-

tion. However, in both studies, it is assumed that the users are

identical in terms of QoS requirement. Since individual users

are likely to have different requirement, a more realistic sce-

nario would be assuming different demand values for users.

While the literature on UAV-BS location is rich, there has

been surprisingly little work on investigating how pricing

schemes can boost the QoS in these networks. It is shown

in [23] through comprehensive user trials on the quality

perception that users are likely to pay for enhanced network

quality. Hence, paying more for better service can be consid-

ered as a typical customer tendency. Aligned with the model

we propose in this study, it is shown that a well-designed

pricing model, that does not depend only on flat-rate usage

but also depends on the diversity and quality of services, can

help network operators to improve profitability [24]. Pricing

models can also help network operators improve the QoS.

For instance, determining higher price levels for services that

cause congestion could help network operators take control

of excessive demand [25].

To date, various pricing models have been studied in

wireless networks [9]. Dynamic and static pricing schemes

have been used in various applications from user association

[26], [27] to spectrum allocation [8], [28] and interfer-

ence management [29]. We refer the interested readers to

[9] and [10] and references therein for more detailed pricing

models. We also refer the interested readers to Table 1 in [12]

to see optimization problems that include pricingmodels with

backhaul considerations in the problem setup.

Even though the existing studies have considered

many different aspects of pricing strategies in WCNs,
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similar studies in the UAV-assisted WCNs, however, have

been, mostly, overlooked in the literature. The related lit-

erature has been restricted to either uncapacitated network

structures or fixed service-levels. In [4], a heterogeneous

wireless network with UAV-BSs is designed to improve

network profit. In [11], the UAV-BSs are considered to serve a

number of given hotspots with random users and the optimal

pricing for a single service-level is studied. However, both the

backhaul and access capacities, and users’ QoS requirements

play significant roles for agile and reliable service provision.

Therefore, we include both capacities and include varying

QoS requirements in our system model.

The proposed model in this article covers the three

pillars of a well-designed WCN, which has not been jointly

considered to date: the UAV-BS deployment, backhaul and

service-based pricing model. Since the state-of-the-art in

UAV-assistedWCNs have mainly focused one or two of these

pillars, the existing models and solution approaches cannot

suit to a model in which all three pillars are combined. We,

therefore, develop a novel UAV-assisted system model in the

next sections and propose an efficient solution approach to

the developed model.

III. THE SYSTEM MODEL

In our model, we consider a UAV-assisted WCN which con-

sist of multiple GBSs and one UAV-BS. The UAV-BS has a

dedicated backhaul link with one of the GBSs to serve the

users on the ground. We assume that some of the users in

the network cannot be served by GBSs due to several reasons

(e.g., congestion in the wireless network or low channel

quality). The UAV-BS is used as a temporary service provider

for those users. The users are offered different data rate

options and allowed to select at most one option. The profit is

earned based on the selection of a specific user. Each user can

have a different willingness value to pay for the same service.

This approach can be considered as a variation of ‘‘Paris

Metro Pricing’’ [9], in which the cumulative distribution

function ofwillingness of the users is assumed to be known by

the network operator instead of the exact willingness values.

Fig. 1 illustrates a sample representation of the considered

system with two data rate options: low and high. The willing-

ness values of the users to pay for the service are shown by

the number of $ icons in the figure. Although, the UAV-BS

can rapidly be deployed anywhere in the air to cover as many

users as possible, the availability of a backhaul link should

be considered carefully to provide a reliable connection.

We assume that each GBS has sufficient connection capacity

with the communications infrastructure to transmit the data

received from the UAV-BS to the core network. Therefore,

there is no congestion in the fixed infrastructure.

The presented model can be validated based on the idea

of enhancing the capacity as well as providing rapid supply

to difficult-to-predict situations such as crowded events and

activities. For instance, the area enclosed within the larger

circle in Fig. 1 is a potential use case of such a model. The

user distribution is not homogeneous, that is, some parts

FIGURE 1. Illustration of the considered WCN architecture.

of the region hosts more users than the rest of the region.

The UAV-BS can serve users in the congested areas more

efficiently than GBSs. The presence of a UAV-BS also allows

the network operators to utilize the idle capacity when the

demand is not as high as the supply in some regions. Hence,

the network operators can allocate the idle resources to the

UAV-BS to create a relay connection between the lightly

loaded GBS and the users who cannot be served directly by

that GBS.

In the rest of the paper, I = {1, . . . , n}, J = {1, . . . ,m} and
K = {1, . . . , s} denote the set of users, GBSs, and offered

data rate options, respectively. We assume that the service

area of the UAV-BS, Q ⊆ R
3, and the area in which users

are located, S ⊆ Q, are finite. We use X ∈ Q to denote

the location of the UAV-BS to be optimized. yui ∈ S and

y
g
j ∈ S denote the given locations of user i and GBS j,

respectively. Moreover, the available bandwidth of GBS j that

can be allocated to the UAV-BS is assumed to be b
g
j ≥ 0.

The horizontal and vertical distances between two points,

x, y ∈ Q, are found as r = ||L(x − y)|| and h = ||M (x − y)||,
respectively, where L and M are linear transformations from

R
3 toR2 andR, respectively, and ||·|| is the l2 norm. Through-

out this article, unless otherwise specified, we use boldface

capital letters to denote matrices and lower-case letters to

denote vectors consisting of scalar parameters or variables

denoted by the same letter (e.g., bg ∈ R
m is the vector whose

components are b
g
j ≥ 0 for j ∈ J and Yu ∈ R

n×3 is the

matrix whose components are yui ∈ S for i ∈ I ). Moreover,

the decision variables are denoted by upper-case letters, while

the parameters are denoted with lower-case letters.

A. CHANNEL MODEL

There exist various air-to-ground channel models proposed

in the literature [30]. However, the most widely employed

model is presented in [31], therefore, we adopt this model.

According to this model, there exist two propagation regimes

such that the users in the first regime can have Line-of-Sight

(LoS) connections and the users in the second regime have

Non-Line-of-Sight (NLoS) connections and can maintain

their connections due to the mechanisms of electromagnetic

wave propagation which can be used to convey information

beyond the obstructions (e.g., reflection and diffraction).

The probability of LoS is defined as a function of the

locations of the UAV-BS and the users (i.e., PLoS : Q× S →
[0, 1]). This probability for a specific user located at yu ∈ S

154576 VOLUME 8, 2020



C. T. Cicek et al.: Backhaul-Aware Optimization of UAV-BS Location and Bandwidth Allocation

when the UAV-BS is located at X ∈ Q can be calculated as

PLoS(X , yu) =
1

1+ αe−β(θ (X ,yu)−α)
, (1)

where α and β are environment-specific constant parame-

ters and θ (X , yu) = (180/π ) arctan(h(X , yu)/r(X , yu)) is the

elevation angle. Then, the pathloss between a specific user

located at yu ∈ S and the UAV-BS located at X ∈ Q is defined

as

Lu(X , yu) = 10 log10

(

4π fcd(X , yu)

c

)η

+ µLoSPLoS(X , yu)

+µNLoSPNLoS

= 10 log10

(

4π fcd(X , y)

c

)η

+ µLoSPLoS(X , yu)

+µNLoS(1− PLoS(X , yu))

= A+ 10η log10 d(X , yu)+ BPLoS(X , yu), (2)

where d(X , yu) = ||X − yu|| is the distance between X ∈ Q
and yu ∈ S, A = 10η log10(4π fc/c) + µNLoS, and

B = µLoS − µNLoS are constant parameters with fc denoting

the carrier frequency in Hz, c denoting the speed of light

in m/s, η denoting the path-loss component, µLoS and µNLoS

denoting the associated excessive pathloss in dB with prob-

abilities PLoS and PNLoS, respectively, and PNLoS = 1 −
PLoS [31]. Note that the first term in the first equation in (2)

denotes the free-space pathloss.

Unlike the users, the GBSs are generally located at

carefully determined and advantageous locations. This

enables them to communicate with the UAV-BSs through

a much better channel. Therefore, the backhaul link is

assumed to always have LoS communication with the GBSs,

i.e., PLoS = 1. Then, the pathloss between the UAV-BS

located at X ∈ Q and a GBS located at yg ∈ S is calculated

as

Lg(X , yg) = A+ 10η log10 d(X , yg)+ B. (3)

B. PROBLEM FORMULATION

We consider point-to-point wireless connections between the

UAV-BS and the GBSs. This connection is assumed not to

interfere with user links of the UAV-BS. To facilitate such an

assumption, reversed time-division duplexing is employed to

avoid interference between the backhaul and user links, such

that, during downlink of GBS, UAV-BS is in the uplink mode.

However, when GBS is in the uplink mode, users may largely

be affected by the GBS due to the self-interference. To avoid

this, orthogonal frequency channels are used in the backhaul

and user links [32].

The objective in the proposed model is to maximize the

network profit by jointly determining the UAV-BS loca-

tion and allocation of the available bandwidth to the users

subject to the backhaul and access capacities. We first

give the definitions of the data rate and backhaul capacity

and then introduce the associated Mixed-Integer Non-Linear

Programming (MINLP) formulation.

For a specific user located at yu ∈ S, the actual data rate,
when the allocated bandwidth is equal to Bu ∈ [0,Bmax]

(in Hz) from the UAV-BS located at X ∈ Q, where Bmax is

the maximum bandwidth amount that can be allocated to a

user in practice, can be found as

R(X , yu,Bu) = Bu log2

(

1+ 10S
u(X ,yu,Bu)

)

, (4)

where Su(X , yu,Bu) = [pd −Lu(X , yu)− 10 log10 B
u−ωN]/

10 is the received signal-to-noise ratio (SNR) of user i (in dB)

with pd and ωN denoting the transmit power of the UAV-BS

and a noise figure, respectively. Note that the data rate func-

tion, R, is concave with respect to Bu (see Appendix A for

the proof) and unimodal with respect to the altitude of the

UAV-BS (see Appendix B for the proof). This geometry will

become a significant component of the solution approach we

propose in Section IV.

The backhaul capacity of a UAV-BS located at X ∈ Q,

when it has a backhaul link with a GBS located at yg ∈ S, can
be found as

C(X , yg) = bg log2

(

1+ 10S
g(X ,yg)

)

, (5)

where Sg(X , yg) = [pg−Lg(X , yg)−10 log10 b
g−ωN]/10 is

the SNR of the UAV-BS with pg denoting the transmit power

of the GBS. Recall that the available bandwidth at GBSs, bg,

is assumed to be known a priori.

Slightly abusing the notation, we use Ri = R(X , yui ,B
u
i )

and Cj = C(X , y
g
j , b

g
j ) to denote the actual data rate of

user i ∈ I and the backhaul capacity provided to UAV-BS

from GBS j ∈ J when the UAV-BS is located at X ∈ Q,

respectively. We introduce the binary variable, Zj ∈ {0, 1},
to indicate whether or not the UAV-BS has a back-

haul link with GBS j, and the piece-wise linear function,

ui(Ri) : R→ R, to denote the profit gained when user i ∈ I
is served with data rate Ri ≥ 0. Consequently, the MINLP

formulation is defined as

P : max
X∈Q, Z∈{0,1}m
Bu∈[0,Bmax]n

5(X ,Bu) =
∑

i∈I
ui(Ri)

subject to:
∑

i∈I
Ri ≤

∑

j∈J
CjZj, (6)

∑

i∈I
Bui ≤

∑

j∈J
b
g
j Zj, (7)

∑

j∈J
Zj = 1. (8)

The objective function in P maximizes the total network

profit, constraints (6) and (7) ensure that the backhaul and

access capacities are not exceeded, respectively, while con-

straint (8) requires the UAV-BS to have a backhaul link with

exactly one GBS.

C. PRICING MODEL

As explained in Section I, we adopt a Paris Metro Pricing

model, in which users are assumed to have different willing-

ness values to pay for different data rate options. Therefore,
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the profit gained from user i ∈ I is modeled as

ui(Ri) =











0, Ri < δ1

φik , δk ≤ Ri < δk+1, k = 1, . . . , s− 1

φis, δs ≤ Ri
, (9)

where δk denotes the k th data rate option in K , and φik
denotes the willingness value of user i ∈ I to pay for the

data rate option k ∈ K . The φ values are assumed to be an

ascending order (i.e., φi1 ≤ φi2 ≤ . . . ≤ φis), thus, providing

higher data rate to a specific user would yield higher profit.

This approach is based on the fact that the price of a ser-

vice, generally, increases when its quality is improved [23].

Moreover, each user is assumed to have different willingness

values for the same option, so that a diverse population can be

represented.

Note that each user has a single bandwidth amount to be

served with a specific data rate since the data rate function is

concave in Bu. As K has a finite number of data rate options,

i.e., s < ∞, and the u function has a piece-wise structure,

where the profit gained from a user does not change for a

finite range of data rate values, allocating more bandwidth

to a user after satisfying a specific data rate option in K

does not yield additional profit until the next data rate option

is satisfied. For instance, there would be no difference in

the profit between allocating more bandwidth to provide

1.1 Mbps instead of 1 Mbps to a user unless the u function

has different values at 1 Mbps and 1.1 Mbps data rates. Since

the objective of (P) is to maximize the total network profit,

bandwidth allocations are determined by providing the least

amount of bandwidth to users for each data rate option so that

remaining bandwidth can be allocated to some other users to

improve network profit. Therefore, the bandwidth allocations

are upper bounded, implicitly, in (P).

P is a complex problem to solve since it includes a

non-convex constraint set as well as binary and continuous

variables. In fact, it belongs to the NP-complete problem class

since relaxing the backhaul capacity constraint (6) and fixing

the bandwidth allocations would reduce the problem to the

maximal covering location problem which is known to be

NP-hard [33]. Therefore, in the next section, we propose an

iterative solution approach with lower complexity.

IV. SOLUTION APPROACH

In this section, we propose a heuristic algorithm in which

P is solved in an iterative manner. Note that the backhaul

capacity can be explicitly found when the UAV-BS location

is fixed, which substantially decreases the complexity of the

problem. We exploit this relaxation and develop an efficient

algorithm in which the altitude and the horizontal coordinates

of the UAV-BS are searched and at each fixed altitude several

resource allocation problems are optimally solved for some

fixed coordinates.

A. PRELIMINARIES

Let C j(X ) be the actual backhaul capacity received from

GBS j given the UAV-BS location, X ∈ Q. We introduce

the binary variable, Tik ∈ {0, 1}, to indicate whether or not

user i ∈ I is served with data rate option k ∈ K . There does

not exist a closed form expression to determine the required

bandwidth to serve a user located at yu ∈ S for a fixed data

rate value, δ. However, since we proved thatR is concave with

respect to Bu, this bandwidth can be explicitly found with

a line search algorithm (e.g., bisection search). Let B
u

ik (X )

denote the required bandwidth to serve user i ∈ I with data

rate option k ∈ K when the UAV-BS location is given as

X ∈ Q. Then, P can be reduced to the following Integer

Linear Programming (ILP) formulation,

P(X ) : max
T∈{0,1}n×s

Z∈{0,1}m

∑

i∈I

∑

k∈K
φikTik

subject to:
∑

i∈I

∑

k∈K
δkTik ≤

∑

j∈J
C j(X )Zj, (10)

∑

i∈I

∑

k∈K
B
u

ik (X )Tik ≤
∑

j∈J
b
g
j Zj, (11)

∑

k∈K
Tik ≤ 1, i ∈ I , (12)

∑

j∈J
Zj = 1. (13)

The objective function in P maximizes the total network

profit for a fixed UAV-BS location. Constraints (10) and (11)

ensure that the backhaul and access capacities are not

exceeded. Constraints (12) stipulate that each user can only be

served with at most one data rate option, while constraint (13)

guarantees that the UAV-BS has a backhaul link with exactly

one GBS.

The most important advantage of P is that the formulation

is now free of the non-convex data rate and backhaul capacity

functions. In this way, instead of determining the actual data

rate values of users with the location and allocation variables,

the problem is altered to an assignment problem in which

the data rate options are assigned to users regarding their

profit values. Note that, P can be solved separately for each

GBS j ∈ J . The optimal solution is found when the UAV-BS

has a backhaul link with the GBS that provides the highest

backhaul capacity, i.e., the highest value in the right-hand side

in (10). This would allow the UAV-BS to serve more users in

case all other variables are fixed. Therefore, it is sufficient

to solve this relaxed problem by setting the Z variable corre-

sponding to the GBS that yields the highest backhaul capacity

for the given UAV-BS location to 1 and all other Z variables

to 0.

Let j∗(X ) be the GBS providing the highest backhaul

capacity for a given X , i.e., j∗(X ) = argmaxj∈J C(X , y
g
j , b

g
j ).

Then, omitting the Z variables and associated constraint (13),
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P can be reformulated as

P j∗(X ) : max
T∈{0,1}n×s

5(T|X ) =
∑

i∈I

∑

k∈K
φikTik

subject to: Constraints (12),
∑

i∈I

∑

k∈K
δkTik ≤ C j∗(X ), (14)

∑

i∈I

∑

k∈K
B
u

ik (X )Tik ≤ b
g

j∗(X )
. (15)

The resulting P j∗(X ) is also an ILP formulation, which can

be efficiently solved by commercial solvers such as CPLEX

or GUROBI. In fact, this problem is known as ‘‘Multidi-

mensional Binary Knapsack Problem’’ (MBKP), which can

be solved in pseudo-polynomial time via dynamic program-

ming techniques [34]. In MBKP, the problem is to select

a subset of items subject to multiple capacity constraints.

The objective is to maximize the total utility of the selected

items that have specific utility values such that none of the

capacity constraints are exceeded. Regarding our formulation

in P j∗(X ), items can be considered as user-data rate pairs,

i.e., T variables, while there exist two types of capaci-

ties, i.e., constraints (14) and (15). Therefore, items can be

selected until either backhaul or access capacity is fulfilled.

By exploiting the structure explained above and our proof

of the unimodality of the data rate function with respect to the

UAV-BS altitude, we propose an iterative heuristic algorithm

in the following subsection.

B. HEURISTIC ALGORITHM

We proved that the data rate function is unimodal with respect

to the UAV-BS altitude. As a consequence of this fact, our

heuristic algorithm uses a line search over the range of alti-

tudes. At each altitude level, another search algorithm is

used in which the revised relaxed formulation, P , is used to

determine the optimal bandwidth allocations. The summary

of the algorithm is given in Algorithm 1.

We utilize the well-known ‘‘Golden Section Search’’

(GSS) algorithm to search the optimal altitude of the

UAV-BS. Before explaining the details of the algorithm,

we provide a brief description of the GSS. The GSS algorithm

is typically used to find the global minimum or maximum

of a unimodal function by iteratively searching the function

domain. Suppose we are given a function, f : R → R, that

is assumed to have a single maximum within [q,w], where

q,w ∈ R and −∞ < q < w < +∞. Then, two interior

points are selected by using the golden ratio, γ =
√
5−1
2 .

The first point, x1, is equal to q + γ (q − w), and the second

point, x2, is equal to w − γ (q − w). If f (x1) ≥ f (x2), then

it is sufficient to say that the global maximum is between

x2 and w and the same procedure continues within [x2,w],

otherwise, the search continues within [q, x1]. This recursive

procedure continues until the range size drops below a prede-

fined approximation threshold, ǫg. As a result, the center of

the final range is determined to be the maximum of f .

Algorithm 1 Finds the UAV-BS Location and the Bandwidth

Allocations of the Users
Input: Yu, Yg, K , φ, ǫg, hl , hu.

1: while hu − hl ≥ ǫg do

2: h1← hl + γ (hu − hl), h2← hu − γ (hu − hl).
3: (X1,B

u

1)← Algorithm 2(Yu,Yg,K , φ,S(h1)).

4: (X2,B
u

2)← Algorithm 2(Yu,Yg,K , φ,S(h2)).

5: if 5(X1,B
u

1) ≥ 5(X2,B
u

2) then

6: hl = h2.

7: else

8: hu = h1.

9: end if

10: end while

11: h∗ = (hu + hl)/2.
12: (X

∗
,B
∗
)← Algorithm 2(Yu,Yg,K , φ,S(h∗)).

13: return X
∗
, B
∗
.

Based on the above procedure, our algorithm determines

two solutions at each iteration for the original problem by

fixing the UAV-BS altitude to two different levels. Let hl and

hu denote the minimum and maximum altitudes to which the

UAV-BS can be located, respectively. The two altitude levels

are determined as h1 and h2, i.e., h1 = hl + γ (hu − hl)

and h2 = hu − γ (hu − hl). For each altitude level, a grid

search algorithm, which is summarized in Algorithm 2,

is applied to determine the best UAV-BS location and opti-

mal bandwidth allocations at the corresponding altitude

(Lines 3-4 in Algorithm 1). Let B1 and B2, respectively,

denote the optimal allocation decisions at X1 and X2, which

are the best locations at altitudes h1 and h2, respectively.

These locations and decisions are used to determine the direc-

tion of the GSS. If X1 yields a higher profit than X2 with the

corresponding bandwidth allocations, then the altitude range

is updated as [h2, hu], otherwise, this range is updated to

[hl, h1]. The GSS algorithm terminates whenever the size of

this range drops below ǫg. Note that as a last step, the relaxed

problem is solved once more, where the UAV-BS altitude is

equal to the center of the final altitude range (Lines 11-12 in

Algorithm 1), and the best solution found at this altitude is

reported.

In Algorithm 2, for a fixed altitude level, h, a grid set,

S(h), is generated by dividing S into Q smaller grids,

Algorithm 2 Searches the Horizontal Plane for a Fixed

UAV-BS Altitude

Input: Yu, Yg, K , φ, S(h).

1: for s̃q ∈ S(h) do

2: j∗ = argmaxj∈J C(s̃q, y
g
j , b

g
j ).

3: Solve P j∗ (s̃q). Let T
∗
q be the optimal solution. Set

�q← 5(T∗q|s̃q).
4: end for

5: q∗← argmaxq=1,...,Q �q.

6: return s̃q∗ , B
u
(q∗).
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i.e., S(h) = {sq ⊆ S : h = h, q = 1, . . . ,Q}, with
s̃q denoting the center of grid q. For each grid, the relaxed

problem,P , is solved, where the UAV-BS location is assumed

as the center of the corresponding grid, i.e., X = s̃q,

q = 1, . . . ,Q. Then, the objective function values attained

from all grids are compared and the center of the grid that

yields the highest profit is returned as the best objective

function value for h. In this algorithm,�q denote the objective

function value attained from grid sq.

C. CONVERGENCE AND COMPUTATIONAL COMPLEXITY

The developed algorithm terminates after a finite number of

iterations since the altitude range is assumed to be finite.

Suppose that the initial altitude range is [hinitl , hinitu ]. Then,

after each iteration, this range gets narrower by a constant

rate, γ ≈ 0.618, thus, after k iterations, the altitude range is

decreased to (hinitu − hinitl ) × γ k . As k goes to infinity, this

range goes to 0. Since ǫg > 0, the algorithm converges after

a finite number of iterations.

From the computational perspective, we solve several

MBKPs in each iteration, whose complexity depends on

the number of items and the capacities [34]. As we have

n × s items for each problem and two capacities, C and bg,

the complexity of solving a single MBKP is O(ns(C + 1)

(bg + 1)). The number of MBKPs to be solved for each fixed

altitude is determined by Q. Note that providing a dense

grid structure would improve the solution accuracy, while it

may substantially decrease the computational performance

and vice versa. As a result, the overall complexity of our

algorithm is O(R−Qns(C + 1)(bg + 1)), where R− is the

number of iterations to achieve ǫg approximation, i.e.,R− =
min{R ∈ Z+ : (hinitu − hinitl )γR ≤ ǫg}, where Z+ denotes the

non-negative integers.

V. COMPUTATIONAL RESULTS

In this section, a detailed computational study is performed to

evaluate the performance of the developed algorithm in terms

of solution accuracy and computational efficiency. We also

provide some powerful insights on how service-based pric-

ing can boost the network profit. All simulations are per-

formed for a suburban area of 1500 m×1500 m on an

Intel i7-6700 CPU @3.40 GHz, 64-bit, 8GB RAM

Windows 10 computer, where the communication and other

simulation parameters are given in Table 1 as suggested in

[14] and [22] for urban environment.

A. BENCHMARKING TOOLS

For comparison, we use the optimal solutions (or the

best feasible) attained from the well-known MINLP solver,

the BARON solver [35], provided on the NEOS platform [36]

with 1-hour time limit and two other heuristic approaches.

Both our algorithm and heuristic algorithms are coded in

Python v3.6.

For the first heuristic algorithm, namely ‘‘HeuristicR’’,

the UAV-BS location is randomly determined in Q and opti-

mal bandwidth allocations are determined by solving P at

TABLE 1. Simulation parameters for suburban environment.

this random location. To smooth the randomization effect,

we use the best objective function values attained after

50 replications. For the second heuristic algorithm, namely

‘‘HeuristicF’’, instead of a random location, the UAV-BS is

located to a fixed point, where the horizontal coordinates

are determined as the weighted average coordinates of user

locations and the altitude is determined as the quarters of the

altitude range yielding four different altitudes. Consequently,

the optimal bandwidth allocations are determined by solving

P at these four fixed locations and the location yielding the

highest profit value is selected as the UAV-BS location.

B. DATA GENERATITON

We assume that the GBSs are uniformly located in S and the

UAV-BS altitude range is between 50 and 500 meters. The

users are assumed to be located according to a Poisson Point

Process (PPP). To apply PPP, the users are randomly located

to specific parts of the region on S with a random number of

parent nodes and clustering rate. For instance, if the number

of parent nodes is 5 and the clustering rate is 70% for an

instance with 100 users, then 70 users are located in close

proximity of uniformly selected 5 different points while the

remaining 30 users are located uniformly in S. The offered

data rate options are given in Table 2. The willingness values

of the users are determined in a way that higher data rate

values yield higher profit, i.e., φik = φik−1 + (δk − δk−1) ×
U (0, 1), k = 2, . . . , s with φi1 = δ1×U (0, 1), where U is the

uniform random distribution.

TABLE 2. Data rate options.

Since the locations of users and GBSs, and the willingness

values are determined randomly, we simulate all instances

with 10 replications. Performances are reported based on the

average of the replications for each instance. Each instance

refers to a single number of users and data rate option

set, thus, 21 different instances, i.e., n ∈ {50, 75, 100,
125, 150, 175, 200} and |K | ∈ {2, 3, 4}, are generated and
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FIGURE 2. The normalized network profit with respect to different number of users for data rate options (a) {1, 2} (b) {1, 2, 4} (c) {1, 2, 4, 8} (Mbps).
The GSS, BARON, HeuristicF and HeuristicR algorithms are represented by the circle, square, pentagon and triangle markers, respectively.

all the random numbers in the replications are generated by

scipy.random libraries.

C. PERFORMANCE ANALYSIS

Fig. 2 depicts the change in the normalized objective function

values for all solvers with respect to different number of

users for each data rate option set. The average CPU time

of our algorithm is 255.1 seconds, while it decreases to

29.4 and 6.3 seconds for HeuristicR and HeuristicF, respec-

tively. The BARON solver reports the optimal solutions for

only instances with 50 users and 2 data rate options, thus,

we can only report the objective function values of the best

feasible solutions whenever possible.

Fig. 2 clearly shows that our algorithm outperforms all

other solvers in terms of total profit. The HeuristicR is the

worst performing algorithm because of the insufficient tol-

erance of avoiding local optima in determining the UAV-BS

location. In addition, the BARON solver suffers from increas-

ing number of binary variables. Since the BARON solver

uses a branch-and-bound technique over the binary variables,

increasing number of these variables would significantly

increase the number of branches and it would be ineffi-

cient to solve resulting non-convex optimization problem

even after fixing some of the binary variable values on each

branch. Note that our algorithmfinds the optimal solutions for

those instances for which the BARON also finds the optimum

(2 instances and 20 replications).

An interesting result observed from Fig. 2 is that the

HeuristicF performance is better than that of HeuristicR
although it is outperformed by our algorithm and BARON.

The main drawback of HeuristicF is that it is not always

the best alternative to locate the UAV-BS to a central point,

instead, optimally determining the location aligned with

bandwidth allocations leads to a higher network profit. Nev-

ertheless, the CPU times of HeuristicF is lower than the others

which suggests that it can be employed to find a fast primal

solution for large-scale problems.

HeuristicF performance worsens with the number of data

rate options. This is due to the trade-off between allocat-

ing more bandwidth to the users who yield higher profit in

return and following a fairer allocation where the available

bandwidth is allocated according to the central position of

the UAV-BS. Since the objective in our case is the network

profit, the latter is advantageous. We have also observed that

HeuristicF performance further worsens with higher cluster-

ing rates and parent node numbers since the weighted average

location is unlikely to represent the overall dispersion of the

users in such cases. Therefore, exploring the horizontal plane

(e.g., grid search) appears to be a reasonable approach to

improve the network profit.

In Fig. 3, we present the change in coverage and total

profit attained with respect to different data rate options. Note

that the coverage is defined as the ratio of the total data rate

provided to covered users over the maximum total data rate

(i.e., n × δs). Fig. 3 shows that there exists a significant

trade-off between improving the coverage and increasing

network profit. As the likelihood of having more users with

higher willingness values increases with more users, our

algorithm prefers allocating the available bandwidth to those

users who bring more profit which, in turn, leads to lower

coverage.

FIGURE 3. The change in the coverage and normalized total profit with
respect to number of users for different data rate options. The solid and
dashed lines indicate the coverage and profit, respectively. The data rate
sets with 2, 3 and 4 options are depicted by the circle, square and triangle
markers, respectively.

Fig. 4 verifies that designing a service-level-based pricing

model improves the network profitability, substantially. Fig. 4

illustrates the change in the total profit between the solution

found by our algorithm for the original problem in which

more than one option is offered and a variant of the original
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FIGURE 4. The improvement in the total profit with respect to number of
users for different data rate options. The data rate sets with 2, 3 and
4 options are shown by the blue, orange and green bars, respectively.

problem where users are assumed to be offered a single data

rate (that is equal to the average data rate offered in the

original problem) and the profit gained from a specific user

is assumed to be equal to the average willingness value of

the corresponding user. The figure implies that the improve-

ment level would increase with increasing number of users.

For instance, offering three data rate options to 50 users

(e.g., 1, 2 and 4 Mbps) instead of offering a single option

(e.g., 2.33 Mbps) improves the total profit by 44.6%. This

value escalates to 49.9% when the number of users increases

to 200. Note that this outcome is valid for the assumption

proposed in our system model that users are willing to pay

more for improved service. Nevertheless, this assumption is

highly likely to occur in real-life cases since a customer does

not consider only the price but also does pay attention to the

service quality [5], [23].

D. PRICING ANALYSIS

In this section, instead of comparing the performance of

different solution approaches, we present insights on how

different willingness values and pricing models affect the

network performance. First, we vary the willingness values

of users by incorporating different probabilistic factors into

the procedure that we have already applied in the preceding

analyses. Second, we revise the pricing model by adding a

new cost factor corresponding to the allocated bandwidth.

In particular, we modify the utility function defined in Eq. (9)

such that the allocated bandwidth has a negative impact on the

profit gained from a specific user. We then resolve the same

instances that are used in the preceding analyses and present

the results. Since our algorithm is shown to outperform all

other approaches, the comparison is based on only results

obtained by our algorithm.

1) EFFECT OF WILLINGNESS VALUES

Note that all the previous analyses are based on the assump-

tion that willingness values of users are determined with a

piece-wise increasing function since it is assumed that higher

willingness values can be perceived as a tendency to the better

service-level. We keep this assumption but with a difference,

where, instead of using only uniform distribution, we con-

sider the normal, log-normal, and gamma distributions to

generate random numbers in the willingness values of users.

It is suggested in [9] that Paris Metro Pricing can be

simulated with known probability distributions of willing-

ness values although the exact values are not known. Hence,

we employ the normal distribution to represent a user pop-

ulation with no aggressive differences, while the log-normal

distribution allows us to represent aggressivemarginal values.

The gamma distribution is, on the other hand, selected to

allow us to combine both approaches.

Table 3 shows how different distributions are included

in data generation, where N (µ, σ ) and L(µ, σ ) are normal

and log-normal distributions with mean µ and standard

deviation σ , respectively, while G(α, β) is the gamma distri-

bution with shape parameter α and rate parameter β. All other

parameters such as user locations and pathloss parameters

remain unaltered.

TABLE 3. Methods used to determine willingness values.

We also include a base scenario in our analysis, where all

users are assumed to have a single willingness value regard-

less of the data rates offered. For this case, each instance gen-

erated in Section V-C is modified as if each user is associated

with the average of willingness values. Fig. 5 illustrates the

change in the coverage, profit, and data rate per allocated

bandwidth amounts with respect to different distributions for

each number of users. Since, especially, the random variables

generated by the log-normal distribution are significantly

greater than those generated by the normal and gamma dis-

tributions, all figures are presented after normalization.

Fig. 5 clearly shows that log-normal distribution yields the

highest profit values, while the base scenario results in the

highest average data rate values. Coverage values follow

the same trend for all distributions with slight differences

which do not appear to be statistically significant. This result

shows that unifying willingness values result in increasing

coverage and average data rate values which confirms that

there is no additional revenue in allocating more bandwidth

to a specific user when no marginal profit is expected, hence,

the access capacity is allocated more uniformly. Moreover,

offering different service levels to a population which is

unlikely to pay more for additional data rate does not seem

to be a fruitful approach. Instead of offering new services
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FIGURE 5. Illustration of the impact of different willingness distributions on (a) coverage, (b) profit per allocated bandwidth and (c) data rate per
allocated bandwidth. The Gamma, Log-normal, Normal, Uniform distributions and the base scenario are depicted by the circle, downward
triangle, upward triangle, leftward triangle and rightward triangle markers, respectively.

in such case, investing in the access capacity appears to be

promising in serving more users.

An interesting result from our analysis is that when users

are expected to have diverse willingness values as it is

represented in the log-normal case, offering new services

with higher quality is preferable. Although increasing trend

in the network profit is obvious with all distributions

(see Fig. 4 and Fig. 5b), the log-normal distribution results

in the highest improvement since the marginal difference is

expected to be higher.
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FIGURE 6. Illustration of the impact of bandwidth cost on (a) network profit, (b) throughput, (c) number of served users
and (d) utilization. In the first two and last rows, the circle, downward triangle, upward triangle and leftward triangles
depict 0, 10−6, 20−6 and 30−6 values of λ, respectively. In the third row, the same λ values are shown by blue, orange,
green and red bars, respectively.
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2) EFFECTS OF INCORPORATING THE COST OF BANDWIDTH

TO THE PROFIT MODEL

It is assumed in Eq. (9) that the utility gained from a user

is defined as a function of data rate, only. In the following,

we relax this assumption and add a cost factor to profit model.

There exist a number of methods in the literature, in which

the profit (or utility in our case) function includes the costs

related to resource utilization, i.e., the resource allocated to

users, such as bandwidth [4] or energy [37]. Since our model

requires the available bandwidth to be allocated, we modify

the original utility function by adding the cost of bandwidth.

In particular, u function is modified as

ui(Ri,Bi) =











0, Ri < δ1

φik − λBi, δk ≤ Ri < δk+1, 1 ≤ k < s,

φis − λBi, δs ≤ Ri,
(16)

where λ is the unit cost of bandwidth. Observe that Eq. (16)

is a generalization of Eq. (9) since Eq. (16) can be reduced to

Eq. (9) when λ = 0.

Note that the objective function of both P and corre-

sponding sub-problems should also be accordingly modified.

However, our algorithm does not need a major update since

fixing the UAV-BS location in each iteration, i.e., X , would

allow us to determine explicitly the required bandwidth

amounts, B
u

ik (X ), for each data rate option k ∈ K to serve

user i ∈ I , and include these values as parameters in the

sub-problems. In particular, it is sufficient to modify only the

objective function in P j∗(X ) as

5(T|X ) =
∑

i∈I

∑

k∈K

(

φik − λB
U

ik (X )
)

Tik .

We resolve the instances generated in Section V-C

with uniform willingness values for different values of λ,

i.e., λ ∈ {10−6, 20−6, 30−6}, to analyze the effects of band-

width cost on the network performance. Fig. 6 shows the

change in the network profit, throughput, i.e., total data rate

provided, number of served users and bandwidth utilization

for different λ values with respect to number of users. Note

that λ = 0 in the figures depicts the results that have been

found previously.

It is clear that λ has a shifting effect (i.e., shifting the profit

down) on the network profit as illustrated in Fig. 6a which

shows that the network profit decreases with increasing unit

cost values regardless of the number of users and the data

rates offered. However, this shift is not observed in terms

of throughput. Fig. 6b shows that offering more data rate

options decreases the negative impact of bandwidth cost in

terms of throughput as it can be observed that the variation of

throughput values reduces with increasing data rate options

for each number of users value among different λ values.

A significant impact of the new profit model can be

observed in terms of resource utilization. Fig. 6c and 6d

together show that higher bandwidth costs have a negative

impact on the total number of served users as well as on the

bandwidth utilization. Note that the utilization values are the

ratio of total allocated bandwidth to the available bandwidth.

In fact, the algorithm prefers to allocate bandwidth to users

who are likely to yield higher profit and prevents allocating

excess capacity to those whose willingness do not satisfy the

incurred cost. Offering higher data rate options is preferable

in such cases as it encourages the users who can upgrade

their service-levels, which in return create opportunities for

other users who would not be served otherwise. Such an

outcome can be observed in Fig. 6d that average utilization

increases from 85.3% to 92.8% when 4 and 8 Mbps options

are included in the data rate options.

VI. CONCLUSION

UAV-BS location problems have attracted significant interest

in both industry and academia due to their potential to bring

unprecedented advantages like rapid deployment, dynamic

coverage extension, and on-demand capacity increase. Most

of the studies to date have focused on improving QoS while

the backhaul aspect and new pricing models are, mostly,

overlooked. In this study, we address both the capacity aspect

of QoS and a new pricing model based on different service

levels. A novel mathematical model is developed and an effi-

cient two-phase solution procedure, that combines GSS and

grid search, is proposed for jointly optimizing the UAV-BS

location and bandwidth allocations to the users to maximize

the network profit. The proposed algorithm is shown to be

capable of significantly improving the network profit.

This study can be extended by considering the temporal

dimension of the problem since users typically relocate in

time and the willingness values of the users, possibly, change

at different time intervals. Such dynamics can lead to changes

in the location, the hovering time, and the trajectory of the

UAV-BS which necessitates the design of dynamic pricing

policies. Another extension can be to combine energy-related

performancemetrics with the backhaul capacity since energy-

efficient operation of UAV-BS is required to increase service

time of the UAV-assisted WCNs. Covering all users with the

minimum number of UAV-BSs by considering new pricing

models and backhaul capacity is also an interesting future

research avenue.

APPENDIX A

PROOF OF CONCAVITY OF DATA RATE FUNCTION WITH

RESPECT TO BANDWIDTH

In this appendix, we prove that the data rate function is con-

cave with respect to bi. By definition, a function is concave

if the second derivative of the function is non-negative.

Recall that the data rate function is defined as

R(X , yu,Bu) = Bu log2

(

1+ 10S
u(X ,yu,Bu)

)

,

where Su(X , yu,Bu) = [pd −Lu(X , yu)− 10 log10 B
u−ωN]/

10. Since we will prove the concavity for only bandwidth, Bu,

we can assume that the other variables are fixed, i.e., X =
X , yu = y. After a number of algebraic manipulations,
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we have

R(Bu) = Bu log2

(

1+
2

Bu

)

, (17)

where 2 = 10pd−L
u(X ,y)−ωN−1 > 0 is a fixed term. Having

taken the second derivative of (17) with respect toBu, we have

R′′(Bu) = −
22

log(2)Bu(Bu +2)2
. (18)

Since Bu > 0, R′′(Bu) < 0 always holds. �

APPENDIX B

PROOF OF UNIMODALITY OF DATA RATE FUNCTION

In this appendix, we prove that the data rate function is

unimodal with respect to the UAV-BS altitude. By definition,

a function, f : R → R, is unimodal if there exists an

m ∈ R such that for some value, δ ∈ R, it is monotoni-

cally increasing (decreasing) for δ ≤ m and monotonically

decreasing (increasing) for δ ≥ m. In this case, the maximum

(minimum) value of f (·) is f (m) and there are no other local

maxima (minima). If the function is differentiable, proving

that the derivative of the function is equal to 0 at a single point

in its domain proves its unimodality. Here we will make use

of this property.

Recall the data rate function is defined as

R(X , yu,Bu) = Bu log2

(

1+ 10S
u(X ,yu,Bu)

)

,

where Su(X , yu,Bu) = [pd −Lu(X , yu)− 10 log10 B
u−ωN]/

10. Since we will prove the unimodality for only UAV-BS

altitude, h, we can assume that the other variables are fixed,

i.e., yu = y,Bu = B, r(X , yu) = r . After a number of

algebraic manipulations, we have

R(h) = B log2 f (h), (19)

where f (h) = 1 +
(

r2 + h2
)− η

2 m(h), m(h) = KN g(h) ≥ 0,

N = 10
µNLoS−µLoS

10 ≥ 0, K = B
−1 (

4π fc
c

)−η

10
pd−µNLoS−σN

10 ≥ 0, g(h) = 1
1+αpsθ (h)

∈ (0, 1], p = eαβ ≥ 0,

s = e−β ≥ 0, and θ (h) = 180
π

arctan
(

h
r

)

∈ [0, 90].

Having taken the first derivative of R with respect to h,

we have

R′(h) =
Bf ′(h)

log(2)f (h)
, (20)

where we denote a partial derivative with ‘‘ ′ ’’, e.g.,

f ′(h) = ∂f (h)
∂h

. Note that the denominator in (20) is non-

negative, since f (·) is a product of two non-negative values

plus 1. For a given bandwidth of B ≥ 0, this derivative can

only be 0 if f ′(h) = 0. The first derivative of f (h) can be found

as

f ′(h)=
(

r2 + h2
)− η

2

[

m′(h)− ηh
(

r2+h2
)−1

m(h)

]

. (21)

Since we assume h > 0, the first term in (21) is also

greater than 0. Therefore, f ′(h) = 0 holds if the expression in

brackets is 0. Before proceeding, we first derive m′(h) as

m′(h) = K log(N )N g(h)g′(h). (22)

By substituting (22) into the expression in the brackets

in (21), we have

K log(N )N g(h)g′(h)− ηh
(

r2 + h2
)−1

KN g(hd ) ?= 0

⇐⇒ KN g(h)

(

log(N )g′(h)− ηh
(

r2 + h2
)−1

)

?= 0

⇐⇒ log(N )g′(h)
?= ηh

(

r2 + h2
)−1

. (23)

The last transformation in (23) follows since both K and N

are greater than 0. Before proceeding, we first derive g′(h) as

g′(h) =
αβpsθ (h)θ ′(h)
(

1+ αpsθ(h)
)2

, (24)

where θ ′(h) = 180r

π
(

r2+h2
) . By substituting θ ′(h) into (24) and

then (24) to (23), we have

log(N )180rαβpsθ(h)

π
(

1+ αpsθ (h)
)2 (

r2 + h2
)

?=
ηh

(

r2 + h2
)

⇐⇒
180(µNLoS − µLoS)rαβpsθ(h)

ηπ
(

1+ αpsθ (h)
)2

?= h

⇐⇒
Asθ (h)

(

1+3sθ(h)
)2

?= h

⇐⇒ Aq(h) = h
(

1+ 23q(h)+ (3q(h))2
)

⇐⇒ q(h)(A− 23h)
?= h

(

1+ (3q(h))2
)

, (25)

where A = 180(µNLoS−µLoS)rαβp
ηπ

≥ 0, 3 = αp ≥ 0,

and q(h) = sθ(h) ∈ (0, 1]. For simplicity we use Q(h) =
q(h)(A − 23h) and W (h) = h

(

1+ (3q(h))2
)

to denote the

left and right-hand side in (25). Since θ (h) is a monotonically

increasing function in h and β > 0, q(h) = sθ (h) = e−βθ(h)

is a monotonically decreasing function in h. When h starts to

increase from 0, Q(h) monotonically decreases from A to 0.

On the other hand, W (h) is a monotonically increasing func-

tion which increases from 0 to the maximum altitude, h+,
when h increases. This implies that there can be found at

most one h = h where Q
(

h
)

= W
(

h
)

which proves the

unimodality of R with respect to h. �

Also it is straightforward to show that R(·) monotonically

increases for h < h and monotonically decreases for h > h,

which implies that R(·) has its maximum value when h = h.
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