Bäcklund transforms of chiral fields

D. Kramer and G. Neugebauer
Friedrich-Schiller-Universität Jena, Theoretisch-Physikalisches Institut, Max-Wien-Platz 1, O-6900 Jena, Germany
T. Matos
Centro de Investigacion y de Estudios Avanzados, del I.P.N., Apartado Postal 14-740, Mexico 07000, D.F.

(Received 22 April 1991; accepted for publication 27 May 1991)
The action of the Bäcklund transformations on the axisymmetric chiral fields is investigated. In particular, it is calculated how the superpotential Γ associated with any chiral field is affected by the Bäcklund transformations.

I. INTRODUCTION

The axisymmetric chiral field equations are derivable from a two-dimensional variational principle with a Lagrangian L of the particular structure

$$
L=\nabla g \nabla g^{-1}
$$

the chiral field g being an $N \times N$ matrix. Examples are the stationary axisymmetric vacuum and electrovacuum fields in Gencral Relativity, where g is an clement of $\operatorname{SU}(1,1)$ and $\mathrm{SU}(2,1)$, respectively.

The linear problem associated with the nonlinear chiral field equations ${ }^{1}$ leads to the possibility to apply the polynomial method ${ }^{2}$ in order to generate new solutions from known (seed) solutions of the chiral field equations. This generation method corresponds to the Bäcklund transformations used in the theory of nonlinear evolution equations. ${ }^{3,4}$

There is a superpotential Γ defined in Eq. (6) below. For stationary axisymmetric vacuum gravitational fields, in the Lewis-Papapetrou form of the metric,
$\left.d s^{2}=(1 / f)\left[e^{2 \Gamma}\left(d \rho^{2}+d z^{2}\right)+\rho^{2} d \varphi^{2}\right)\right]-f(d t+\omega d \varphi)^{2}$
the superpotential Γ is one of the three gravitational potentials $f=f(\rho, z), \omega=\omega(\rho, z)$, and $\Gamma=\Gamma(\rho, z)$. Whereas the matrix g can be calculated from f and ω, the superpotential Γ is related to the conformal factor of the two-metric orthogonal to the group orbits in space-time.

In this paper we will derive explicit expressions for the change of Γ and g under Bäcklund transformations.

All our calculations are valid for principal chiral fields, i.e., the chiral fields are not a priori subject to special constraints. In physical applications, such constraints have to be imposed on g.

II. THE CHIRAL FIELD EQUATIONS AND THE ASSOCIATED LINEAR PROBLEM

By definition, a cylindrically symmetric or stationary axisymmetric chiral field is represented by an $N \times N$ matrix g satisfying the nonlinear partial differential equation

$$
\begin{equation*}
(1 / \rho)\left(\rho g_{, u} g^{-1}\right)_{, v}+(1 / \rho)\left(\rho g_{, v} g^{-1}\right)_{, u}=0 \tag{2}
\end{equation*}
$$

The chiral field g depends on the two variables u and v which
can be either real ($\bar{u}=u, \bar{v}=v$) for cylindrically symmetric fields or complex conjugate ($v=\bar{u}$) for stationary axisymmetric fields. The radial coordinate ρ is defined by $\rho:=(u+v) / 2$.

The nonlinear equation (2) is implied by the linear equations

$$
\begin{align*}
& \Psi_{, u}=\frac{1}{2}(1+\lambda) A \Psi, \quad A:=g_{, u} g^{-1} \\
& \Psi_{, v}=\frac{1}{2}\left(1+\lambda{ }^{-1}\right) B \Psi, \quad B:=g_{, v} g^{-1} \\
& \lambda:=(K-i v)^{1 / 2}(K+i u)^{-1 / 2} \tag{3}
\end{align*}
$$

K being a complex constant. For any given chiral field g one can calculate a corresponding $N \times N$ matrix function $\Psi(\lambda, u, v)$ with the normalization

$$
\begin{equation*}
\Psi(1)=g \tag{4}
\end{equation*}
$$

In this article, the dependence of Ψ on u and v is not explicitly indicated, $\Psi(\lambda) \equiv \Psi(\lambda, u, v)$.

Note that g and, consequently, the matrices A and B defined in (3) do not depend on λ.

To show that the linear problem (3) implies the chiral field equation (2), one has to consider the integrability condition $\Psi_{, u, v}=\Psi_{, v, u}$ and to use the formulas
$\lambda_{, u}=(1 / 4 \rho)\left(\lambda^{2}-1\right) \lambda, \quad \lambda_{, v}=(1 / 4 \rho)\left(\lambda^{2}-1\right) / \lambda$,
which follow from the definition of λ as given in (3). The integrability condition, which must be true separately for the terms with different powers of λ, leads to (2), without any further restrictions.

As mentioned in the Introduction, for any chiral field g, there is an associated superpotential Γ defined by

$$
\begin{equation*}
\Gamma_{, u}=\frac{1}{4} \rho \operatorname{Tr} A^{2}, \quad \Gamma_{, v}=\frac{1}{4} \rho \operatorname{Tr} B^{2} \tag{6}
\end{equation*}
$$

One can easily verify that the integrability condition $\Gamma_{, u, v}=\Gamma_{, v, u}$ holds as a consequence of the chiral field equation (2).

Starting with the linear equations (3) and using (5) one derives the expressions ${ }^{5}$

$$
\begin{align*}
& A=(1 / 2 \rho) \lim _{\lambda \rightarrow \infty}\left(\lambda^{2} \Psi^{\prime} \Psi^{-1}\right) \\
& B=-\frac{1}{2 \rho} \lim _{\lambda \rightarrow 0}\left(\Psi^{\prime} \Psi^{-1}\right), \quad \Psi^{\prime}:=\frac{\partial \Psi}{\partial \lambda} \tag{7}
\end{align*}
$$

It is the aim of this paper to calculate Γ, for a special class of solutions to (2), from (6) and (7).

III. THE POLYNOMIAL METHOD

Suppose we have at hand a seed solution g_{0} to (2) and the associated solution Ψ_{0} to the linear problem (2). Then we try to generate a new solution Ψ by means of the ansatz ${ }^{2}$

$$
\begin{equation*}
\Psi=T \Psi_{0}, \quad T=q_{n} P_{n}(\lambda) \tag{8}
\end{equation*}
$$

where $P_{n}(\lambda)$ is a matrix polynomial in λ of degree n,

$$
\begin{equation*}
P_{n}(\lambda)=\sum_{s=0}^{n} a_{s} \lambda^{s} \tag{9}
\end{equation*}
$$

with λ-independent $N \times N$ matrix coefficients a_{s}. The scalar term q_{n} can be appropriately chosen as

$$
\begin{equation*}
q_{n}=\kappa(K)(K+i u)^{n / 2} \tag{10}
\end{equation*}
$$

The matrix Ψ constructed in this way must again satisfy linear equations of the form (3). This behavior is guaranteed if the coefficients a_{s} in (9) are determined from the following set of algebraic equations:

$$
\begin{align*}
& P_{n}\left(\lambda_{i}\right) \Psi_{0}\left(\lambda_{i}\right) C_{i}=0 \tag{11a}\\
& P_{n}(-1)=I \tag{11b}
\end{align*}
$$

C_{i} being constant N-dimensional column eigenvectors. The operation (8)-(11) is called the n-fold Bäcklund transformation (BT) because it corresponds to the BT in the theory of nonlinear evolution equations. ${ }^{4}$

Equation (11a) means that the λ_{i} 's are the $N n$ zeros of $\operatorname{det} P_{n}(\lambda)$ provided that $\Psi_{0}\left(\lambda_{i}\right)$ is regular and $\operatorname{det} \Psi_{0}\left(\lambda_{i}\right) \neq 0$. (The zeros λ_{i} have to be prescribed.) Under these conditions one infers that the new Ψ generated from Ψ_{0} by the BT (8)-(11) satisfies (3). The proof runs as follows. ${ }^{6}$

The expression

$$
\begin{align*}
Y(\lambda): & =\lambda \Psi_{0,} \Psi^{-1} \operatorname{det} P_{n} \\
& =\lambda\left[P_{n, v}+\frac{1}{2}(1+\lambda-1) P_{n} B_{0}\right]\left(P_{n}^{-1} \operatorname{det} P_{n}\right) \tag{12}
\end{align*}
$$

is a matrix polynomial in λ of degree $N n+1$. From (11a) and (8) one gets

$$
\begin{align*}
& \kappa_{i}^{-1} \Psi\left(\lambda_{i}\right) C_{i}=0, \quad i=1 \cdots N n \\
& \lambda_{i}:=\left(K_{i}-i v\right)^{1 / 2}\left(K_{i}+i u\right)^{-1 / 2}, \quad \kappa_{i}:=\kappa_{i}\left(K_{i}\right) \tag{13}
\end{align*}
$$

The comparison of (13) with the identity

$$
\begin{equation*}
\kappa_{i}{ }^{-1} \Psi\left(\lambda_{i}\right) \kappa_{i} \Psi^{-1}\left(\lambda_{i}\right) \operatorname{det} P_{n}\left(\lambda_{i}\right)=0 \tag{14}
\end{equation*}
$$

shows that the columns of $\kappa_{i} \Psi^{-1}\left(\lambda_{i}\right) \operatorname{det} P_{n}\left(\lambda_{i}\right)$ are proportional to C_{i}. Using this fact one obtains from (13) after differentiation with respect to v (the C_{i} 's are constants)

$$
\begin{equation*}
\left[\kappa_{i}{ }^{-1} \Psi\left(\lambda_{i}\right)\right]_{, v} \kappa_{i} \Psi^{-1}\left(\lambda_{i}\right) \operatorname{det} P_{n}\left(\lambda_{i}\right)=0 \tag{15}
\end{equation*}
$$

which yields $Y\left(\lambda_{i}\right)=0$, i.e., the polynomials $Y(\lambda)$ and $\operatorname{det} P_{n}(\lambda)$ have the same zeros $\lambda_{i}, i=1 \cdots N n$. Hence, the polynomial $Y(\lambda) / \operatorname{det} P_{n}(\lambda)$ is Inear in λ, and $\Psi_{, 0} \Psi^{-1}$ is linear in λ^{-1}. Similarly, it turns out that $\Psi_{, u} \Psi^{-1}$ is linear in λ :

$$
\begin{align*}
& \Psi_{, u} \Psi^{-1}=\alpha+\beta \lambda \\
& \Psi_{, u} \Psi^{-1}=\gamma+\delta \lambda-1 \tag{16}
\end{align*}
$$

Finally, from (11b) one finds $\alpha=\beta \equiv \frac{1}{2} A$ and $\gamma=\delta \equiv \frac{1}{2} B$, and we conclude that Ψ satisfies the linear problem (3). According to (4) one can assign to Ψ the new chiral field g generated from g_{0} by the $\mathrm{BT}(8)-(11)$.

The BT method described in this section generates from any seed g_{0} a new chiral field g which contains the additional parameters K_{i} corresponding to the zeros λ_{i} of $\operatorname{det} P_{n}(\lambda)$, and C_{i}.

IV. THE CALCULATION OF THE SUPERPOTENTIAL Γ

Now we will derive an expression for the superpotential Γ defined in (6) in terms of the seed potential Γ_{0}, and the constants K_{i} and C_{i} arising from the BT (8)-(11). For the class of chiral fields generated in this way, one can calculate the corresponding superpotential Γ algebraically whereas otherwise the calculation of Γ leads to line integrals, see (6).

First we determine A and B according to (7) from the seed quantities A_{0} and B_{0},

$$
\begin{align*}
& A_{0}=(1 / 2 \rho) \lim _{\lambda \rightarrow \infty}\left(\lambda^{2} \Psi_{0}^{\prime} \Psi_{0}^{-1}\right) \\
& B_{0}=-(1 / 2 \rho) \lim _{\lambda \rightarrow 0}\left(\Psi_{0}^{\prime} \Psi_{0}^{-1}\right) \tag{17}
\end{align*}
$$

The relations (8)-(10) link the new Ψ with the original Ψ_{0} and the term q_{n} in (10) can be chosen in the form

$$
\begin{equation*}
q_{n}=\prod_{i=1}^{n}\left(\frac{1-\lambda_{i}^{2}}{\lambda^{2}-\lambda_{i}^{2}}\right)^{1 / 2} \tag{18}
\end{equation*}
$$

where the product is formed with n of the $N n$ zeros λ_{i}. From (8) it follows that the quantity $\Psi^{\prime} \Psi^{-1}$ in (7) reads

$$
\begin{equation*}
\Psi^{\prime} \Psi^{-1}=P_{n}^{\prime} P_{n}^{-1}+P_{n} \Psi_{0}^{\prime} \Psi_{0}^{-1} P_{n}^{-1}+q_{n}^{\prime} q_{n}^{-1} \tag{19}
\end{equation*}
$$

To calculate A from (7) it is convenient to introduce $\tilde{q}_{n}:=\lambda^{n} q_{n}$ and the polynomial (in λ^{-1}) $\widetilde{P}_{n}:=\lambda^{-n} P_{n}$ with the limits

$$
\begin{align*}
& \lim _{\lambda \rightarrow \infty} \widetilde{P}_{n}=a_{n}, \quad \lim _{\lambda \rightarrow \infty} \lambda^{2} \widetilde{P}_{n}^{\prime} \widetilde{P}_{n}^{-1}=-a_{n-1} a_{n}^{-1} \\
& \lim _{\lambda \rightarrow \infty} \lambda^{2} \tilde{q}_{n}^{\prime} \tilde{q}_{n}^{-1}=0 \tag{20}
\end{align*}
$$

On the other hand, the calculation of B from (7) requires the limit $\lambda \rightarrow 0$ of (19); one obtains
$\lim _{\lambda \rightarrow 0} P_{n}=a_{0}, \quad \lim _{\lambda \rightarrow 0} P_{n}^{\prime} P_{n}^{-1}=a_{1} a_{0}^{-1}, \quad \lim _{\lambda \rightarrow 0} q_{n}^{\prime} q_{n}^{-1}=0$.
Using the limits (20), (21) one derives from (7) and (19) the relations

$$
\begin{align*}
& A=a_{n} A_{0} a_{n}^{-1}-(1 / 2 \rho) a_{n-1} a_{n}^{-1} \\
& B=a_{0} B_{0} a_{0}^{-1}-(1 / 2 \rho) a_{1} a_{0}^{-1} \tag{22}
\end{align*}
$$

and the terms $\rho \operatorname{Tr} A^{2}$ and $\rho \operatorname{Tr} B^{2}$, which occur in the definition (6) of the superpotential Γ, are given by

$$
\begin{align*}
\rho \operatorname{Tr} A^{2}= & \rho \operatorname{Tr} A_{0}^{2}-\operatorname{Tr}\left(A_{0} a_{n}^{-1} a_{n-1}\right) \\
& +(1 / 4 \rho) \operatorname{Tr}\left(a_{n}^{-1} a_{n-1}\right)^{2} \\
\rho \operatorname{Tr} B^{2}= & \rho \operatorname{Tr} B_{0}^{2}-\operatorname{Tr}\left(B_{0} a_{0}^{-1} a_{1}\right) \\
& +(1 / 4 \rho) \operatorname{Tr}\left(a_{0}^{-1} a_{1}\right)^{2} \tag{23}
\end{align*}
$$

The linear algebraic equations (11a) for the matrices a_{0}, \ldots, a_{n} can be written in the form

$$
\begin{equation*}
a_{n}^{-1}\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) \mathbb{D}=-\left(\Psi_{1}, \Psi_{2}, \ldots, \Psi_{n}\right) \mathbf{\Lambda}^{n} \tag{24}
\end{equation*}
$$

where the following definitions are used. The elements of the
$n N \times n N$ block matrices \mathbb{D} and Λ,

$$
\begin{align*}
& \mathbf{D}:=\left(\begin{array}{ccc}
\Psi_{1} & \cdots & \Psi_{n} \\
\Psi_{1} \Lambda_{1} & \cdots & \Psi_{n} \Lambda_{n} \\
\vdots & \ddots & \vdots \\
\Psi_{1} \Lambda_{1}^{n-1} & \cdots & \Psi_{n} \Lambda_{n}^{n-1}
\end{array}\right), \tag{25}\\
& \mathbf{\Lambda}:=\left(\begin{array}{cccc}
\Lambda_{1} & 0 & \cdots & 0 \\
0 & \Lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \Lambda_{n}
\end{array}\right) \tag{26}
\end{align*}
$$

are the $N \times N$ matrices Λ_{k} and $\Psi_{k}(k=1 \cdots n)$ defined by

$$
\begin{align*}
& \Lambda_{h}:=\left(\begin{array}{cccc}
\lambda_{(k-1) N+1} & 0 & \cdots & 0 \\
0 & \lambda_{(k-1) N+2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{k N}
\end{array}\right),(27) \tag{27}\\
& \Psi_{k}:=\left(\Psi_{0}\left(\lambda_{(k-1) N+1}\right) C_{(k-1) N+1}, \cdots, \Psi_{0}\left(\lambda_{k N}\right) C_{k N}\right) . \tag{28}
\end{align*}
$$

Note that the C 's are column vectors.
The $n N$ zeros λ_{i}, and the corresponding eigenvectors C_{i}, are arbitrarily ordered into n sets of N elements each. The brackets in (24) denote block row vectors.

Because of (5) and

$$
\begin{align*}
& \Psi_{0 . u}=\frac{1}{2}(1+\lambda) A_{0} \Psi_{0}, \\
& \Psi_{0, r}=\frac{1}{2}(1+1 / \lambda) B_{0} \Psi_{0}, \tag{29}
\end{align*}
$$

the block matrix \mathbb{D} satisfies the relations

$$
\begin{align*}
& \mathbb{D}_{. u}=\frac{1}{2} \mathbb{A}_{0} \mathbb{D}(\boldsymbol{\Lambda}+\mathbb{I})+(1 / 4 \rho) \operatorname{ND}\left(\boldsymbol{\Lambda}^{2}-\mathbb{I}\right), \\
& \mathbb{D}_{.^{\prime \prime}}=\frac{1}{2} \mathbb{B}_{0} \mathbb{D}\left(\boldsymbol{\Lambda}^{-1}+\mathbb{I}\right)-(1 / 4 \rho) \operatorname{ND}\left(\boldsymbol{\Lambda}^{-2}-\mathbb{I}\right), \tag{30}
\end{align*}
$$

where the block diagonal matrices $\mathbb{A}_{0}, \mathbb{B}_{0}, N, \mathbb{I}$ are defined by

$$
\begin{align*}
& \mathbf{A}_{0}:=\left(\begin{array}{cccc}
A_{0} & 0 & \cdots & 0 \\
0 & A_{0} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & A_{0}
\end{array}\right), \\
& \mathbf{B}_{0}:=\left(\begin{array}{cccc}
B_{0} & 0 & \cdots & 0 \\
0 & B_{0} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & B_{0}
\end{array}\right) \\
& \mathbf{N}:=\left(\begin{array}{ccccc}
0 & 0 & 0 & \cdots & 0 \\
0 & I & 0 & \cdots & 0 \\
0 & 0 & 2 I & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & (n-1) I
\end{array}\right), \\
& \mathbf{I}:=\left(\begin{array}{cccc}
I & 0 & \cdots & 0 \\
0 & I & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & I
\end{array}\right), \tag{31}
\end{align*}
$$

I being the $N \times N$ unit matrix.
From the first part of (30) we conclude

$$
\begin{align*}
(\text { In det } \mathbb{D})_{\cdot u}= & \operatorname{Tr}\left(\mathbb{D}_{\cdot u} \mathbb{D}^{-1}\right) \\
= & \frac{1}{2} \operatorname{Tr}\left(\mathbb{A}_{0} \mathbb{D} \boldsymbol{\Lambda} \mathbb{D}^{-1}+\mathbb{A}_{0}\right) \\
& +(1 / 4 \rho) \operatorname{Tr}\left(\mathbb{N D} \boldsymbol{\Lambda}^{2} \mathbb{D}^{-1}-\mathbb{N}\right) . \tag{32}
\end{align*}
$$

The definitions (31) and $A_{0}=g_{0, u} g_{0}^{-1}$ imply

$$
\begin{align*}
& \operatorname{Tr} \mathbb{A}_{0}=n \operatorname{Tr} A_{0}=n\left(\ln \operatorname{det} g_{0}\right)_{. u} \\
& \operatorname{Tr} \mathbb{N}=(N n / 2)(n-1) . \tag{33}
\end{align*}
$$

To calculate the remaining terms in (32) one needs the diagonal elements of the block matrices $\mathbb{R}:=\mathbb{D} \Lambda \mathbb{D}^{-1}$ and \mathbb{R}^{2}. In the block matrix formulation, Eq. (24) can be rewritten as

$$
\begin{align*}
&\left(\begin{array}{ccccc}
0 & I & 0 & \cdots & 0 \\
0 & 0 & I & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & I \\
x_{1} & x_{2} & x_{3} & \cdots & x_{n}
\end{array}\right)\left(\begin{array}{ccc}
\Psi_{1} & \cdots & \Psi_{n} \\
\Psi_{1} \Lambda_{1} & \cdots & \Psi_{n} \Lambda_{n} \\
\vdots & \ddots & \vdots \\
\Psi_{1} \Lambda_{1}^{n-2} & \cdots & \Psi_{n} \Lambda_{n}^{n-2} \\
\Psi_{1} \Lambda_{1}^{n-1} & \cdots & \Psi_{n} \Lambda_{n}^{n-1}
\end{array}\right) \\
&=\left(\begin{array}{ccc}
\Psi_{1} \Lambda_{1} & \cdots & \Psi_{n} \Lambda_{n} \\
\Psi_{1} \Lambda_{1}^{2} & \cdots & \Psi_{n} \Lambda_{n}^{2} \\
\vdots & \ddots & \vdots \\
\Psi_{1} \Lambda_{1}^{n-1} & \cdots & \Psi_{n} \Lambda_{n}^{n-1} \\
\Psi_{1} \Lambda_{1}^{n} & \cdots & \Psi_{n} \Lambda_{n}^{n}
\end{array}\right), \tag{34}
\end{align*}
$$

with

$$
\begin{equation*}
\left(x_{1}, x_{2}, \ldots, x_{n}\right):=-a_{n}^{-1}\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) . \tag{35}
\end{equation*}
$$

The second matrix in (34) is \mathbb{D} as defined in (25) and the matrix on the right-hand side of (34) is D \mathbf{M}. Hence, one infers from (34)

$$
\mathbb{R}=\left(\begin{array}{ccccc}
0 & I & 0 & \cdots & 0 \tag{36}\\
0 & 0 & I & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & I \\
x_{1} & x_{2} & x_{3} & \cdots & x_{n}
\end{array}\right)
$$

and the diagonal elements of \mathbb{R}^{2} are found to be

$$
\begin{align*}
& \mathbb{R}^{2}=\left(\begin{array}{llllll}
0 & & & & & \\
& 0 & & & & \\
& & \ddots & & & \\
& & & 0 & & \\
& & & & x_{n-1} & \\
& & & & y_{n}
\end{array}\right), \\
& x_{n-1}=-a_{n}^{-1} a_{n-2}, \\
& x_{n}=-a_{n}^{-1} a_{n-1} \tag{37}\\
& y_{n}=x_{n}^{2}+x_{n-1} .
\end{align*}
$$

(The irrelevant off-diagonal elements have been omitted.) From (37) one gets

$$
\begin{align*}
\operatorname{Tr} \mathbb{R}^{2}=\operatorname{Tr} \Lambda^{2} & =\sum_{i=1}^{N n} \lambda_{i}^{2} \\
& =\operatorname{Tr}\left(a_{n}^{-1} a_{n-1}\right)^{2}-2 \operatorname{Tr}\left(a_{n}^{-1} a_{n-2}\right) \tag{38}
\end{align*}
$$

With (36), (37) the terms $\operatorname{Tr}\left(\mathbb{A}_{0} \mathbb{R}\right)$ and $\operatorname{Tr}\left(\mathbb{N R}^{2}\right)$ in (32) can be written as

$$
\begin{align*}
\operatorname{Tr}\left(\mathbb{A}_{0} \mathbb{R}\right)= & -\operatorname{Tr}\left(A_{0} a_{n}^{-1} a_{n-1}\right) \\
\operatorname{Tr}\left(\mathbb{R}^{2}\right)= & -(2 n-3) \operatorname{Tr}\left(a_{n}^{-1} a_{n-2}\right) \\
& +(n-1) \operatorname{Tr}\left(a_{n}^{-1} a_{n-1}\right)^{2} \tag{39}
\end{align*}
$$

and one obtains from (32), (33), and (39)

$$
\begin{align*}
(\ln \operatorname{det} \mathbb{D})_{. u}= & -\frac{1}{2} \operatorname{Tr}\left(A_{0} a_{n}^{-1} a_{n-1}\right)+\frac{n}{2}\left(\ln \operatorname{det} g_{0}\right)_{. u} \\
& -\frac{(2 n-3)}{4 \rho} \operatorname{Tr}\left(a_{n}^{-1} a_{n-2}\right)+\frac{n-1}{4 \rho} \\
& \times \operatorname{Tr}\left(a_{n}^{-1} a_{n-1}\right)^{2}-\frac{N n}{8 \rho}(n-1) . \tag{40}
\end{align*}
$$

Inserting (38) into (41) one finds the relation
$(\ln \operatorname{det} \mathbb{D})_{, u}=-\frac{1}{2} \operatorname{Tr}\left(A_{0} a_{n}^{-1} a_{n-1}\right)+\frac{n}{2}\left(\ln \operatorname{det} g_{0}\right)_{, u}$

$$
\begin{align*}
& +\frac{1}{8 \rho} \operatorname{Tr}\left(a_{n}^{-1} a_{n-1}\right)^{2} \\
& +\frac{2 n-3}{8 \rho} \sum_{i=1}^{N n} \lambda_{i}^{2}-\frac{N n}{8 \rho}(n-1) \tag{41}
\end{align*}
$$

Taking into account Eq. (23) and the definitions (6) together with the corresponding relations

$$
\begin{equation*}
\Gamma_{0, u}=\frac{1}{4} p \operatorname{Tr} A_{0}^{2}, \quad \Gamma_{0, v}=\frac{1}{4} \rho \operatorname{Tr} B_{0}^{2} \tag{42}
\end{equation*}
$$

for the seed solution, Eq. (41) reads

$$
\begin{align*}
(\ln \operatorname{det} \mathbb{D})_{, u}= & 2\left(\Gamma-\Gamma_{0}\right)_{\cdot u}+\frac{n}{2}\left(\ln \operatorname{det} g_{0}\right)_{, u} \\
& +\frac{2 n-3}{8 \rho} \sum_{i=1}^{N n} \lambda_{i}^{2}-\frac{N n}{8 \rho}(n-1) \tag{43}
\end{align*}
$$

A similar consideration yields

$$
\begin{align*}
(\ln \operatorname{det} \mathbb{D})_{, v}= & 2\left(\Gamma-\Gamma_{0}\right)_{, v}+\frac{n}{2}\left(\ln \operatorname{det} g_{0}\right)_{, v} \\
& -\frac{1}{8 \rho} \sum_{i=1}^{N n} \lambda_{i}^{-2}+\frac{N n}{8 \rho}(n-1) \tag{44}
\end{align*}
$$

Finally, the integration of (43) and (44) leads to the expression

$$
\begin{equation*}
e^{2 \Gamma}=M e^{2 \Gamma_{0}} \operatorname{det} \mathbb{D} \frac{p^{N n(n-2) / 4}}{\left(\operatorname{det} g_{0}\right)^{n / 2}} \prod_{i=1}^{N n} \frac{\left(\lambda_{i}^{2}-1\right)^{1-n / 2}}{\lambda_{i}^{1 / 2}} \tag{45}
\end{equation*}
$$

for the Bäcklund transform of the superpotential Γ. (M is an arbitrary constant of integration.) This formula contains as a particular case (for $N=2$) the results derived in Refs. 1 and 7 for stationary axisymmetric vacuum fields.

V. THE CALCULATION OF THE CHIRAL FIELD g

The new chiral field g generated from g_{0} by means of a BT is given by

$$
\begin{equation*}
g=P_{n}(1) g_{0}, \quad P_{n}(1)=\sum_{s=0}^{n} a_{s} \tag{46}
\end{equation*}
$$

The matrices a_{0}, \ldots, a_{n} are determined from the algebraic equations (11) which are equivalent to

$$
\begin{equation*}
P_{n}(-1)=\sum_{s=0}^{n}(-1)^{s} a_{s}=I \tag{47}
\end{equation*}
$$

and (24),

$$
\begin{equation*}
a_{n}^{-1}\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)=-\left(\Psi_{1} \Lambda_{1}^{A}, \ldots, \Psi_{n} \Lambda_{n}^{n}\right) \mathbb{D}^{-1} \tag{48}
\end{equation*}
$$

where the definitions (25)-(28) have been used.
From (46) one gets

$$
a_{n}^{-1}\left(P_{n}(1)-a_{n}\right)=a_{n}^{-1} P_{n}(1)-I
$$

$$
=a_{n}^{-1}\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)\left(\begin{array}{c}
I \tag{49}\\
I \\
\vdots \\
I \\
I
\end{array}\right)
$$

whereas (47) implies

$$
a_{n}^{-1}\left(P_{n}(-1)-a_{n}\right)=a_{n}^{-1}-I
$$

$$
=a_{n}^{-1}\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)\left(\begin{array}{r}
I \tag{50}\\
-I \\
\vdots \\
I \\
-I
\end{array}\right)
$$

From (48), and the last two equations, one obtains the final result:

$$
\begin{align*}
& g=P_{n}(1) g_{0} \\
& P_{n}(1)= {\left[\begin{array}{r}
\left.I-\left(\Psi_{1} \Lambda_{1}^{n}, \ldots, \Psi_{n} \Lambda_{n}^{n}\right) \mathbb{D}^{-1}\left(\begin{array}{r}
I \\
-I \\
\vdots \\
I \\
-I
\end{array}\right)\right]^{-1} \\
\end{array}\right.} \\
& \times\left[I-\left(\Psi_{1} \Lambda_{1}^{n}, \ldots, \Psi_{n} \Lambda_{n}^{n}\right) \mathbb{D}^{-1}\left(\begin{array}{c}
I \\
I \\
\vdots \\
I \\
I
\end{array}\right)\right] \tag{51}
\end{align*}
$$

Summarizing our results, the Bäcklund transforms of Γ and g are given by the formulas (45) and (51), respectively.

[^0]
[^0]: ${ }^{1}$ V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitajewski, Theory of Solitons (Nauka, Moscow, 1980), Chap. III (in Russian).
 ${ }^{2}$ G. Neugebauer and D. Kramer, J. Phys. A: Math. Gen. 16, 1927 (1983).
 ${ }^{3}$ G. Neugebauer, J. Phys. A: Math. Gen. 13, L19 and 1737 (1980).
 ${ }^{4}$ G. Neugebauer and R. Meinel, Phys. Lett. A 100, 467 (1984).
 ${ }^{5}$ V. A. Relinski and V. E. Zakharov, Zh. Eksp. Teor. Fiz. 75, 1953 (1978).
 ${ }^{6}$ G. Neugebauer and R. Meinel, unpublished work.
 ${ }^{7}$ D. Kramer, Abstracts GR9 (Jena, East Germany, 1980), Vol. 1, p. 42.

