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The action of the Backlund transformations on the axisymmetric chiral fields is investigated. 
In particular, it is calculated how the superpotential I’ associated with any chiral field is 
affected by the Bicklund transformations. 

I. INTRODUCTION 

The axisymmetric chiral field equations are derivable 
from a two-dimensional variational principle with a Lagran- 
gian L of the particular structure 

L =VgVg-‘, 

the chiral field g being an N X N matrix. Examples are the 
stationary axisymmetric vacuum and electrovacuum fields 
in General Relativity, where g is an element of SU ( 1,l) and 
SU (2,l) , respectively. 

The linear problem associated with the nonlinear chiral 
field equations’ leads to the possibility to apply the polyno- 
mial method’ in order to generate new solutions from 
known (seed) solutions of the chiral field equations. This 
generation method corresponds to the Bicklund transfor- 
mations used in the theory of nonlinear evolution equa- 
tions3v4 

There is a superpotential F defined in Eq. (6) below. 
For stationary axisymmetric vacuum gravitational fields, in 
the Lewis-Papapetrou form of the metric, 

ds2= (l/f)[ezr(dp2+dt) +p2&p2)] -f(dt+odp)2 
(1) 

the superpotential F is one of the three gravitational poten- 
tials f= f&z), w = w(p,z) , and l? = I (p,z). Whereas the 
matrix g can be calculated fromfand w, the superpotential I 
is related to the conformal factor of the two-metric orthogo- 
nal to the group orbits in space-time. 

In this paper we will derive explicit expressions for the 
change of I and g under Backlund transformations. 

All our calculations are valid for principal chiral fields, 
i.e., the chiral fields are not a priori subject to special con- 
straints. In physical applications, such constraints have to be 
imposed on g. 

II. THE CHIRAL FIELD EQUATIONS AND THE 
ASSOCIATED LINEAR PROBLEM 

By definition, a cylindrically symmetric or stationary 
axisymmetric chiral field is represented by an N X Nmatrix g 
satisfying the nonlinear partial differential equation 

(l/p)(pg,,g- 9,” + Wp)(pg,,g-‘I,” = 0. (2) 
The chiral field g depends on the two variables u and v which 

can be either real (ii = u, lj = v) for cylindrically symmetric 
fields or complex conjugate (v = ii) for stationary axisym- 
metric fields. The radial coordinate p is defined by 
p: = (u + v)/2. 

The nonlinear equation (2) is implied by the linear 
equations 

Y,, = $( 1 + /l)AY, ‘4: = g,,g- ‘, 

Y,, =$(l +/z -‘)BY, B: =g,“g-‘, 

A: = (K - iv)“*(K + iu) - I”, (3) 
K being a complex constant. For any given chiral field g one 
can calculate a corresponding N XN matrix function 
Y(/~,u,v) with the normalization 

Y( 1) =g. (4) 

In this article, the dependence of Y on u and v is not explicit- 
ly indicated, Y(,l)=Y(;l,u,v). 

Note that g and, consequently, the matrices A and B 
defined in (3) do not depend on R. 

To show that the linear problem (3) implies the chiral 
field equation (2)) one has to consider the integrability con- 
dition Y,,, = Y,,, and to use the formulas 

a,, = (1/4p)(i12- 1)/l, a*, = (1/4p)(/V- 1)//l, (5) 
which follow from the definition of A as given in (3). The 
integrability condition, which must be true separately for the 
terms with different powers of /2, leads to (2), without any 
further restrictions. 

As mentioned in the Introduction, for any chiral field g, 
there is an associated superpotential l? defined by 

I,, =@TrA*, I,, =@TrB2. (6) 
One can easily verify that the integrability condition 
r ,%” = r,u,I( holds as a consequence of the chiral field equa- 
tion (2). 

Starting with the linear equations (3) and using (5) one 
derives the expressions’ 

A = (1/2p) li+i(/VY’Y -‘), 

B= - J-lim(Y’Y-I), Yr:=g. 
2p 

(7) 
1-O 

It is the aim of this paper to calculate F, for a special class of 
solutions to (2), from (6) and (7). 
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Ill. THE POLYNOMIAL METHOD 
Suppose we have at hand a seed solution go to (2) and 

the associated solution Y, to the linear problem (2). Then 
we try to generate a new solution Y by means of the ansatz2 

Y=N,, T= qnp, (A), (8) 
where P,, (A) is a matrix polynomial in /z of degree n, 

P, (RI = 2 asa s, 
S=O 

(9) 

with A-independent N X N matrix coefficients a,. The scalar 
term q, can be appropriately chosen as 

q” =K(K)(K+ iu)“‘2. (10) 

The matrix Y constructed in this way must again satisfy 
linear equations of the form ( 3). This behavior is guaranteed 
if the coefficients a, in (9) are determined from the follow- 
ing set of algebraic equations: 

p, (4 )Yo (4 ,cj = 0, (lla) 
P”( - 1) =I, (lib) 

C, being constant N-dimensional column eigenvectors. The 
operation (8)-( 11) is called the n-fold Backlund transfor- 
mation (BT) because it corresponds to the BT in the theory 
of nonlinear evolution equations.4 

Equation ( 1 la) means that the ,I,‘$ are the Nn zeros of 
det P,, (R) provided that Y, (/2, ) is regular and 
det Y, (;li ) #O. (The zeros R, have to be prescribed.) Under 
these conditions one infers that the new Y generated from 
Y, by the BT (8 )-( 11) satisfies (3). The proof runs as fol- 
lows.6 

The expression 

Y(/2):=/2Y.,,Y-‘detP, 

=;1 [P,,, +t(l -t-/2 -‘)P,,B,](P;‘detP,) (12) 
is a matrix polynomial in /z of degree Nn + 1. From ( 1 la) 
and (8) one gets 

K, -‘w(ni)ci =o, i= l*.*Nn, 
(13) 

A,: = (Ki - iu)“‘(Ki + iu) -‘/*, K~: = Ki(Ki). 

The comparison of ( 13) with the identity 

K, -‘Y(Rj)~iY -‘(A,) detP,(/Zi) =0 (14) 
shows that the columns of KAY - ’ (Ai ) det P, (/2, ) are pro- 
portional to C,. Using this fact one obtains from ( 13) after 
differentiation with respect to v (the C,‘s are constants) 

[K~-‘Y(R,)],,K~Y-‘(A~) detP,&) =0, (15) 
which yields Y(R,) = 0, i.e., the polynomials Y(/z) and 
det P,, (2 ) have the same zeros il,,i = 1. * .Nn. Hence, the 
polynomial Y(;1 )/det P, (/2) is linear in R, and Y,, Y - ’ is 
linear in /I - ‘. Similarly, it turns out that VI,, Y - ’ is linear in 
/I: 

Y,,Y-‘=a+/3a, 

Y*,Y-‘= y+sa -1. (16) 
Finally, from ( 1 lb) one finds a = @$A and 

y = S=$B, and we conclude that Y satisfies the linear prob- 
lem (3). According to (4) one can assign to Y the new chiral 
field g generated from go by the BT (8)-( 11). 

The BT method described in this section generates from 
any seed go a new chiral field g which contains the additional 
parameters Ki corresponding to the zeros /zi of det P, (A), 
and C,. 

IV. THE CALCULATION OF THE SUPERPOTENTIAL I’ 

Now we will derive an expression for the superpotential 
F defined in (6) in terms of the seed potential PO, and the 
constants K, and C, arising from the BT (8)-( 11). For the 
class of chiral fields generated in this way, one can calculate 
the corresponding superpotential S algebraically whereas 
otherwise the calculation of F leads to line integrais, see (6). 

First we determine A and B according to (7) from the 
seed quantities A, and B,, 

A, = (1/2p) li-;(A2Y;,Y(‘-‘), 

B, = - (l/2$?) lp$Y&Y, I)# (17) 

Tine relations (8)-( 10) link the new Y with the original Y, 
and the term q,, in (10) can be chosen in the form 

40 = ,fJ :2-_An:i ’ ( ,) 
l/2 

(18) 

where the product is formed with n of the Nn zeros/2,. From 
(8) it follows that the quantity Y’Y - ’ in (7) reads 

Y’Y - ’ = PLP, ’ + P,Y;,Y, ‘P, ’ + q;q; ‘. (191 
To calculate A from (7) it is convenient to introduce 
c n : = ,I “qn and the polynomial (in /z - ’ ) i”, : = R - “P, 
with the Emits 

lim ;ij, = a,,, 
a-cc 

lim ir’ljA,i;‘= -a,-,a;‘, 
a-r 

lim /z ‘g;,Q, ’ = 0. 
a-m (20) 

On the other hand, the calculation of B from (7) re- 
quires the limit il-+O of (19); one obtains 

IimP, =a,, 
A-O 

limP;P;‘=a’a;*, 
a-0 

fr$q:qn-‘=O. 

(21) 
Using the limits (20), (21) one derives from (7) and (19) 
the relations 

A = a,A,a, ’ - ( 1/2p)a,, _ , a, I, 

B=a,B,a,’ - (1/2p)a, a(j- ‘, c=l 
and the termsp Tr A 2 andp Tr B *, which occur in the defin- 
ition (6) of the superpotential I’, are given by 

pTrA’=pTrA$-Tr(A,a;‘a,-,) 

+ ( 114~) Tr(a; ‘an _ , )‘, 

pTrB2=pTrB~ -Tr(Boa;‘a,) 

+ (1/4p) Tr(a; ‘a, )2. (23) 
The linear algebraic equations ( 1 la) for the matrices 

a,,..., a, can be written in the form 

a, ‘(Qo,Q, ,...,a, - ’ InI = - W’,Y2 f..., Y,)A”, (24) 
where the following definitions are used. The elements of the 
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nN X nN block matrices D and A, 

/ Y, **- Y” \ 

(25) 

(26) 

are the N XNmatrices A, and Y, (k = 1.a.n) defined by 

0 
AA: = 

4k-1w+2 *** 
: -. 

0 
. 

0 . . . 

yk:= (Y”(R~k-,)N+,)C~k-,)N+,, . . . . ~o(&,)Gv). 
(28) 

Note that the C,‘s are column vectors. 
The nNzeros Ai, and the corresponding eigenvectors C,, 

are arbitrarily ordered into n sets of N elements each. The 
brackets in (24) denote block row vectors. 

Because of (5) and 

Y”., =:c1 +~))A,~!, 

Y),,, = tc1 + 1/~M,Y,, 
the block matrix D satisfies the relations 

(29) 

ID,, = :AJm + II) + ( 1/4p)ND(A2 - !I), 

D.,, = @loWi-’ + 1) - (1/4p)NiD(A-2 - I), (30) 
where the block diagonal matrices A,, B,, IV, I are defined by 

/A, 0 *** o\ 

b:=(; 4’ L; a)* 

0 I -** I;=I. . 0 
. . --. 4 . 

\ 0 0 *.a I/ 

I being the N X N unit matrix. 
From the first part of (30) we conclude 

(31) 

(In det D)., = Tr(D,,D- ‘) 

=jTr(A,DAlD- -t-A,) 

+ (1/4p) Tr(NDA*l0- -IV). (32) 

The definitions (3 1) and A, = g,,,g; ’ imply 

TrA, =nTrA, =n (lndetg,),, 

TrWT= (Nn/2)(n-- 1). (33) 

To calculate the remaining terms in (32) one needs the diag- 
onal elements of the block matrices IF& = DAD - ’ and iR*. In 
the block matrix formulation, Eq. (24) can be rewritten as 

Y,A, ..* Y,A,, 

Y,A; *** Y,A; 

Y,A; a.+ Y,A; 

with 

(x, ,x2 ,..., x, 1: = - an- ‘(a,,a, ,...,a,, - , 1. (35) 
The second matrix in (34) is D as defined in (25) and the 
matrix on the right-hand side of (34) is DA. Hence, one 
infers from (34) 

/o I 0 *** 0 

R= 

\x, x2 x3 *-- X” 

and the diagonal elements of R* are found to be 
0 

0 
-. 

Iw2 = 
. i I 0 , 

X n-i 

Y, 

(36) 

X,-l = -a;‘a,-,, 
x, = - a; ‘an _ , , 

Y, =x7; +x,-1* 

(37) 

(The irrelevant off-diagonal elements have been omitted. ) 
From (37) one gets 

TrB*==TrA’= 5 nt 
i= I 

= Tr( a; ‘an _ , )*-2Tr(a;‘a,-,). (38) 

With (36), (37) the terms Tr(A,R) and Tr(NB*) in (32) 
can be written as 
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Tr(&iR) = - Tr(A,a; ‘a,- ’ 1, 

Tr(N@‘) = - (2n - 3) Tr(a; *a,-,) 

+ (n - 1) Tr(a:‘a,-, I*, 

and one obtains from (32), (33), and (39) 

(39) 

(IndetD)., = -$Tr(A,a;‘a,,-,) +f(lndetgo).U 

- (2n-33) Tf-(a-la,_,) +!!A 4P n 4P 
XTr(a; ‘a,-, I2 - Nn 

8P 
(n-l). (40) 

Inserting (38) into (41) one finds the relation 

(Indet D),, = -~Tr(Aoa;la,-,) +I (lndetg,),= 
L L 

+~Tr(a;‘a,_,)’ 
8P 

(41) 

Taking into account Eq. (23) and the definitions (6) togeth- 
er with the corresponding relations 

To+ =&TrAg, IO+ =$TTrBi (42) 
for the seed solution, Eq. (4 1) reads 

(IndetD),,=2(I?-I?o),,+~(1ndetgo),, 

+y,f,Af-$(n- 1). (43) 

A similar consideration yields 

(Indet ID),, =2(r - IO),‘, +f (lndetg,),, 

-$- ,$ Aie2+$- (n - 1). (44) 
I I 

Finally, the integration of (43) and (44) leads to the expres- 
sion 

*I- = ~e*~odet D P 
h’ntn-2)/4 Nn 

l-I 

(/If- I)‘-“‘* 
e 

(detg,)“” ;=I AZ,‘/* 
(45) 

for the Backlund transform of the superpotential I’. (Mis an 
arbitrary constant of integration.) This formula contains as 
a particular case (for N = 2) the results derived in Refs. 1 
and 7 for stationary axisymmetric vacuum fields. 

V. THE CALCULATION OF THE CHlRAL FIELD g 
The new chiral field g generated from g, by means of a 

BT is given by 

g=P,ilk,, P,(l) = 2 a,. 
s=o 

(461 

The matrices a e ,...,a, are determined from the algebraic 
equations ( 11) which are equivalent to 

P,( - 1) = s$o( - l)“a, =I (47) 

and (24), 

ag’(a,,a ,,.. .,a,-, ) = - (Y,A; ,..., Y,A;)D-‘, (48) 
where the definitions (25)-(28) have been used, 

From (46) one gets 

a;‘(P,(l) -a,)=a;‘P,(l) -I 

I 
I 

= a, - ‘(a,,a, ,..., a,-, ) ‘: , 

0 

(49) 
f 

whereas (47) implies 

a, ‘(P, ( - 1) -a,)=a;‘-i 
I’ 

-1 
= a, - ‘(ao,a, ,...,a,- ’ ) 

0 

i . 
f 

-I 
(50) 

From (48), and the last two equations, one obtains the final 
result: 

s=P,,(lko, 
-1 

- (Y, A:,...,Y,A;)D-’ 

Summarizing our results, the Backlund transforms of I and 
g are given by the formulas (45) and (5 1 ), respectively. 
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