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We propose a practical scheme for end-to-end optical backpropagation in neural networks. Using saturable
absorption for the nonlinear units, we find that the backward-propagating gradients required to train the
network can be approximated in a surprisingly simple pump-probe scheme that requires only simple passive
optical elements. Simulations show that, with readily obtainable optical depths, our approach can achieve equiv-
alent performance to state-of-the-art computational networks on image classification benchmarks, even in deep
networks with multiple sequential gradient approximation. With backpropagation through nonlinear units
being an outstanding challenge to the field, this work provides a feasible path toward truly all-optical neural
networks. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.411104

1. INTRODUCTION

Machine learning (ML) is changing the way in which we ap-
proach complex tasks, with applications ranging from natural
language processing [1] and image recognition [2] to artificial
intelligence [3] and fundamental science [4,5]. At the heart
(or “brain”) of this revolution are artificial neural networks
(ANNs), which are universal function approximators [6,7]
capable, in principle, of representing an arbitrary mapping
of inputs to outputs. Remarkably, their function only requires
two basic operations: matrix multiplication to communicate in-
formation between layers, and some nonlinear transformation
of individual neuron states (activation function). The former
accounts for most of the computational cost associated with
ML. This operation can, however, be readily implemented
by leveraging the coherence and superposition properties of lin-
ear optics [8]. Optics is therefore an attractive platform for real-
izing the next generation of neural networks, promising faster
computation with low power consumption [9–13].

Proposals for optical neural networks (ONNs) have been
around for over 30 years [14,15] and have been realized in both
free-space [16–18] and integrated [9,10] settings. However, the
true power of neural networks is not only that they can approxi-
mate arbitrary functions, but also that they can “learn” that
approximation. The training of neural networks is, almost

universally, achieved by the backpropagation algorithm [19].
Implementing this algorithm optically is challenging because
it requires the response of the network’s nonlinear elements
to be different for light propagating forward or backward.
Confronted with these challenges, existing ONNs are actually
trained with, or heavily aided by, digital computers
[9,16,18,20]. As a result, the great advantages offered by optics
remain largely unexploited. Developing an all-optically trained
ONN to leverage these advantages remains an unsolved prob-
lem. Here, we address this challenge and present a practical
training method capable of backpropagating the error signal
through nonlinear neurons in a single optical pass.

The backpropagation algorithm aims to minimize a loss
function that quantifies the divergence of the network’s current
performance from the ideal, via gradient descent [19]. To do so,
the following steps are repeated until convergence: (1) forward
propagation of information through the network; (2) evaluation
of the loss function gradients with respect to the network
parameters at the output layer; (3) backpropagation of these
gradients to all previous layers; (4) parameter updates in the
direction that maximally reduces the loss function. Forward
propagation [step (1)] requires the aforementioned matrix
multiplication, which maps information between layers, and
a suitable nonlinear activation function, which is applied

Research Article Vol. 9, No. 3 / March 2021 / Photonics Research B71

2327-9125/21/030B71-10 Journal © 2021 Chinese Laser Press

https://orcid.org/0000-0003-2094-0123
https://orcid.org/0000-0003-2094-0123
https://orcid.org/0000-0003-2094-0123
https://orcid.org/0000-0001-6241-3028
https://orcid.org/0000-0001-6241-3028
https://orcid.org/0000-0001-6241-3028
mailto:xianxin.guo@physics.ox.ac.uk
mailto:xianxin.guo@physics.ox.ac.uk
mailto:xianxin.guo@physics.ox.ac.uk
mailto:xianxin.guo@physics.ox.ac.uk
mailto:xianxin.guo@physics.ox.ac.uk
mailto:thomas.barrett@physics.ox.ac.uk
mailto:thomas.barrett@physics.ox.ac.uk
mailto:thomas.barrett@physics.ox.ac.uk
mailto:thomas.barrett@physics.ox.ac.uk
mailto:thomas.barrett@physics.ox.ac.uk
mailto:zhmwang@uestc.edu.cn
mailto:zhmwang@uestc.edu.cn
mailto:zhmwang@uestc.edu.cn
mailto:alex.lvovsky@physics.ox.ac.uk
mailto:alex.lvovsky@physics.ox.ac.uk
mailto:alex.lvovsky@physics.ox.ac.uk
mailto:alex.lvovsky@physics.ox.ac.uk
mailto:alex.lvovsky@physics.ox.ac.uk
https://doi.org/10.1364/PRJ.411104


individually to each neuron. While this nonlinearity has so far
been mostly applied digitally in hybrid optical-electronic sys-
tems [9,20–22]—at the cost of repeatedly measuring and gen-
erating the optical state—recent work has also realized optical
nonlinearities [18,23–25].

However, obtaining and backpropagating the loss-function
gradients [(steps (2) and (3)] remains an outstanding problem
in an optical setting. While backpropagating through the linear
interconnection between layers is rather straightforward, as
linear optical operations are naturally bidirectional, the nonlin-
earity of neurons is a challenge. This is because the backward-
propagating signal must be modulated by the derivatives of the
activation function of each neuron at its current input value,
and these derivatives are not readily available in an ONN.

In 1987, Wagner et al. suggested that a feedforward ONN
could be implemented and trained by using Fabry–Perot
etalons to approximate the required forward and backward re-
sponse of a sigmoid nonlinearity [26]. However, this backpro-
pagation approach was never realized or even analyzed in detail,
largely due to its inherent experimental complexity, with a sub-
sequent ONN demonstration instead using digitally calculated
errors [27]. A further approach to an optically trained feedfor-
ward network was proposed by Cruz-Cabrera et al. [28]. The
authors used a highly nonstandard network architecture that
transforms a “continuum of neurons” (a wavefront) as it passes
through a nonlinear crystal using cross-phase modulation with
a secondary “weight” beam. In a proof-of-concept experiment,
the learning of two-bit logic was demonstrated.

An additional challenge is to map from the gradients with
respect to the (platform-agnostic) weight matrices to the physi-
cal parameters that control these matrices in a specific ONN
platform. In 2018, Hughes et al. [20] proposed a method to
directly obtain the gradients of these control parameters by
an additional forward-propagating step. However, this scheme
assumes computing the derivatives of the activation functions
digitally and applying them to the backpropagating signal
electro-optically.

This work directly addresses the issue of optical backpropa-
gation through nonlinear units in a manner that is both consis-
tent with modern neural network architectures and compatible
with leading ONN designs [9,20,29,30]. We consider an opti-
cal nonlinearity based on saturable absorption (SA) and show
that, with the forward-propagating features and the backward-
propagating errors taking the roles of pump and probe, respec-
tively, backpropagation can be realized using only passive optical
elements. Our method is effective and surprisingly simple, with
the required optical operations for both forward and back-
ward propagation realized using the same physical elements.
Simulations with physically realistic parameters show that the
proposed scheme can train networks to performance levels equiv-
alent to state-of-the-art ANNs.When combined with optical cal-
culation of the error term at the output layer via interference, this
presents a path to the all-optical training of ONNs.

2. IMPLEMENTING OPTICAL

BACKPROPAGATION

We begin by recapping the operation of a neural network before
discussing optical implementations. Seeded with data at the

input layer (a�0�), forward-propagation maps the neuron activa-
tions from layer l − 1 to the neuron inputs at layer l as

z�l�j �
X

i

w�l�
ji a

�l−1�
i , (1)

via a weight matrix w�l�, before applying a nonlinear activation

function individually to each neuron, a
�l�
j � g�z�l�j � (with sub-

scripts labelling individual neurons).
At the output layer, we evaluate the loss function, ℒ, and

calculate its gradient with respect to the weights,

∂ℒ

∂w
�l�
ji

� ∂ℒ

∂z
�l�
j

∂z�l�j

∂w
�l�
ji

� δ
�l�
j a�l−1�i , (2)

where δ
�l�
j ≡ ∂ℒ∕∂z

�l�
j is commonly referred to as the “error” at

the jth neuron in the l th layer. From the chain rule, we have
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k . Given the error at the output

layer, i.e., δ�L�, which is calculated directly from the loss func-
tion, the errors δ�L−1�,…, δ�1� for all preceding layers are se-
quentially found using Eq. (3). These errors, as well as the
activations a�l−1� of all neurons, allow one to find the gradients
[Eq. (2)] of the error function with respect to all the weights
and hence apply the gradient descent.

The transformation [Eq. (1)] is readily implemented as a linear
optical (interferometric) operation, with the neurons represented
by real-valued field amplitudes in different spatial modes [8]. An
experimental realization of this operation, with the matrix and
vector dimension up to 56, has recently been reported by our
group [31]. Remarkably, calculating ρ�l�1� in the right-hand
side of the backpropagation in Eq. (3) involves the same weight
matrix, meaning that it can be implemented by physical backward
propagation of an optical signal through the same linear optical
arrangement [27], as shown in Fig. 1(a). However, multiplying
this signal by the derivative of the activation function, g 0�z�l��,
is a challenge without invoking digital electronics.

To address this challenge, we require an optical implemen-
tation of the activation function with the following features:
(i) nonlinear response for the forward input; (ii) linear response
for the backward input; (iii) modulation of backward input
with the derivative of the nonlinear function. While it is natural
to use nonlinear optics for this purpose, it is difficult to satisfy
the requirement that the unit must respond differently to for-
ward- and backward-propagating light. Here, we show that this
problem can be addressed using saturable absorption in the
well-known pump-probe configuration.

Consider passing a strong pump, EP , and a weak probe, Epr,
through a two-level medium (e.g., atomic vapor). The pump
transmission is then a nonlinear function of the input,

EP,out � g�EP,in� � exp

�

−

α0∕2

1� E2
P,in

�

EP,in, (4)

where α0 is the resonant optical depth and all fields are assumed
to be normalized by the saturation threshold. Figure 2(a) plots
the pump transmission g�·� at α0 of 1 and 30. High optical
depth induces strong nonlinearity in the unsaturated region,
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and a sufficiently strong pump renders the medium nearly
transparent in the saturated region. A suitably weak probe, on
the other hand, does not modify the transmissivity of the
atomic media and hence experiences linear absorption with
the absorption coefficient determined by the pump,

Epr,out

Epr,in

� exp

�

−

α0∕2

1� E2
P,in

�

: (5)

Note that both beams are assumed to be resonant with the
atomic transition and so, as the phase of the electric field is
unchanged, we treat these as real-valued without loss of general-
ity. Therefore, with the pump and probe taking the roles of the
forward-propagating signal and backward-propagating error in
an ONN, required features (i) and (ii) of our optical nonlinear
unit are met.

Condition (iii), however, remains to be satisfied. The deriva-
tive of the pump transmission is

g 0�EP,in� �
�

1�
α0E

2
P,in

�1� E2
P,in�2

�

exp

�

−

α0∕2

1� E2
P,in

�

: (6)

The derivatives at α0 of 1 and 30 are plotted in Fig. 2(b).
Our key insight is that, in many instances, the square-bracketed
factor in Eq. (6) can be considered constant, in which case the
backpropagation transmission of Eq. (5) is a good approxima-
tion of the desired response in Eq. (6) up to a constant factor.
Feature (iii) is then satisfied because a constant scaling of the

network gradients can be absorbed into the learning rate. This
may appear as a coarse approximation, however; as we will see
in the next section, it is only required to hold within the non-
linear region of the SA response, which is the case for our
system [Fig. 2(b)].

The proposed scheme can be implemented on either inte-
grated or free-space platforms. In the integrated setting, optical
interference units that combine integrated phase-shifters and
attenuators to realize intralayer weights have been demon-
strated [9] as have, separately, on-chip SA through atomic
vapor [32,33] and other nonlinear media [23,34]. A free-space
implementation of the required matrix multiplication can be
achieved using a spatial light modulator (SLM) [8,31] with
the nonlinear unit provided by a standard atomic vapor cell.
In the integrated case, an additional nontrivial step to map
the weight gradients in Eq. (2) to suitable updates of the control
parameters (i.e., phase-shifters and attenuator) is required;
however, this challenge was recently addressed by Hughes et al.
[20]. A free-space implementation, by contrast, has discrete
blocks of SLM pixels directly controlling individual weights,
so the update calculation is more straightforward.

Regardless of the chosen platform, passive optical elements
can only implement weighted connections that satisfy conserva-
tion of energy. For networks with a single layer of nonlinear ac-
tivations, this is not a practical limitation as the weight matrices
can be effectively realized with normalized weights by corre-
spondingly rescaling the neuron activations in the input layer.
For deep networks with multiple layers, absorption through
the vapor cell will reduce the field amplitude available to sub-
sequent layers. This can be counteracted by interlayer amplifi-
cation using, for example, semiconductor optical amplifiers [35].

In our proposed ONN, the only parts that require electron-
ics are (a) real-valued homo- or heterodyne measurements of

(a)

(b)

Fig. 2. Saturable absorber response. (a) The transmission and
(b) transmission derivative of an SA unit with optical depths of 1 (left)
and 30 (right), as defined by Eqs. (4) and (6), respectively. Also shown
in panel (b) are the actual probe transmissions given by Eq. (5), which
approximate the derivatives, with and without the rescaling. The scal-
ing factors are 1.2 (left) and 2.5 (right). In the amplitude region (i), the
SA behaves as a linear absorber for weak input but then exhibits strong
nonlinearity when the pump intensity approaches the saturation
threshold. Region (ii) corresponds to strong saturation: the ground-
state population is depleted, and the absorber is rendered transparent.

(a)

(b)

Fig. 1. ONN with all-optical forward- and backward-propagation.
(a) A single ONN layer that consists of weighted interconnections and
an SA nonlinear activation function. The forward- (red) and back-
ward-propagating (orange) optical signals, whose amplitudes are pro-
portional to the neuron activations, a�l−1�, and errors, δ�l�, respectively,
are tapped off by beam splitters, measured by heterodyne detection
and multiplied to determine the weight matrix update in Eq. (2).
This multiplication can also be implemented optically, as discussed
in the text. The final update of the weights, as well as the preparation
of network input, is implemented electronically. (b) Error calculation
at the output layer performed optically or digitally, as described in
the text.
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the tapped-off neuron activations (a�l�) and error terms (δ�l�) at
each layer, (b) generating the network input and reference
beams, and (c) updating the weights. In practice, the update
(c) is calculated not for each individual training set element
but as the average over multiple elements (a “mini-batch” or
a training epoch); hence, the speed of this operation is not criti-
cal for the ONN performance. Generating the inputs, (b), and
targets is decoupled from the calculation performed by the
ONN and requires fast optical modulators, which are abundant
on the market.

Finally, the measurements, (a), must be followed by calcu-
lating the product δ

�l�
j a

�l−1�
i and averaging over the minibatch.

This operation can be implemented using electronic gate arrays.
For a network with L layers of N neurons, this requires 2LN
measurements and LN 2 offline multiplications. Alternatively,
the multiplication can be realized by direct optical interference
of the two signals with each other, followed by intensity mea-
surement. The optical multiplication would require phase sta-
bility of the setup and the additional overhead of 2LN 2

photodetectors but eliminate the need for reference beams
and offline multiplications. Additionally, calculating the new
weight matrices from the data acquired through these detectors
will require ∼LN 2 operations, which would need to be per-
formed once per epoch. Note that these operations may intro-
duce a performance bottleneck due to the limited refresh rate
of the modulators.

Although the activation and error signals are frequency-
degenerate in our scheme, their counterpropagating configura-
tion makes them easily distinguishable at the detection stage.
Furthermore, the nonlinear unit operation is not affected by the
relative phase of the two counterpropagating signals.

The primary latencies associated with the optical propaga-
tion of the signal in the ONN are due to the bandwidths of the
SAs and intralayer amplifiers. Further processing speed limita-
tions are present in the photodetection and multiplication of
δ
�l�
j a�l−1�i as well as conversion of the computed weight matrix
gradients to their actuators within the ONN [20]. This latter
conversion, however, occurs once per training batch, so this
limitation can be amortized by using large batches.

The remaining, not yet discussed, element of the ONN
training is the calculation and reinjection of the error δ�L� at
the output layer, to initiate backpropagation. To implement
this optically, we train the ONN with the mean-squared-error
loss function,

ℒ �
X

i

1

2
�z�L�i − t i�2, (7)

where t i is the target value for the ith output neuron. This
loss function implies δ

�L�
i � ∂ℒ∕∂z�L�i � z�L�i − t i, which is

calculable by interference of the network outputs with the tar-
get outputs on a balanced beam-splitter. This approach to error
calculation is illustrated in the right panel of Fig. 1(b), whereas
the left panel shows the standard approach in which the errors
are calculated offline (electronically).

3. EXAMINING APPROXIMATION ERRORS

To investigate our proposed backpropagation scheme and, in
particular, how our approximated derivatives affect network

performance, we consider the canonical ML task of image clas-
sification. Our first set of numerical experiments classifies im-
ages of handwritten digits from 0 to 9. We use the MNIST [36]
data set, which contains grey-scale bitmaps of size 28 × 28 fed
into the input layer of the ONN. The output layer contains 10
neurons whose target values are 0 or 1 dependent on the digit
encoded in the bitmap (“one-hot encoding”). In this section,
we use a network architecture with a single 128-neuron hidden
layer, as shown in Fig. 3(a). Further details of the networks,
training, and calculation of the accuracy metric for all experi-
ments presented in this work can be found in Appendix A.

Initially, we consider the activation function to be provided
by SA with an optical depth of α0 � 10. For the chosen net-
work architecture, this provides 97.3%� 0.1% classification
accuracy after training, with no difference in performance re-
gardless of whether the true derivatives in Eq. (6) or the opti-
cally obtainable derivative approximations in Eq. (5) are used.
From Fig. 3(b), we can see that, during training, the neurons
are primarily distributed in the unsaturated region of the SA
activation function. This is a consequence of the fact that
the expressive capacity of neural networks arises from the non-
linearity of its neurons. Therefore, to train the network, the
optically obtained derivatives need to approximate the exact
derivatives (up to a fixed scaling as previously discussed) in only
this nonlinear region.

(a)

(b) (d)

(c) (e)

Fig. 3. Effects of imperfect approximation of the activation function
derivative. (a) Feed-forward neural network architecture using a single
hidden layer of 128 neurons. (b) Distribution of neuron inputs
(E �1�

P,in ≡ z�1�), which is concentrated in the unsaturated region (1)
of the SA activation function, g�·�. As a result, the approximation error
in the linear region (2) is less impactful on the training. (c) The trans-
mission of an SA unit with α0 � 10, along with the exact and (rescaled
for easier comparison) optically approximated transmission derivatives.
(d) Performance loss associated with approximating activation func-
tion derivatives g 0�·� with random functions, plotted as a function
of the approximation error, for α0 � 10 (see Appendix B for details).
(e) Average error of the derivative approximation in Eq. (5) as a func-
tion of the optical depth of an SA nonlinearity.
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It is interesting to investigate how training is affected by im-
precision in the derivatives used. To this end, we evaluate the
network performance by replacing the derivative g 0�·� with
random functions of varying similarity to the true derivative
within the nonlinear region (the quantitative measure, S, of the
similarity is defined in Appendix B). From Fig. 3(d), we see that
the performance appears robust to approximation errors, de-
fined as 1–S, of up to ∼15%. We explain this potentially sur-
prising observation by noting that gradient descent will
converge even if the update vector deviates from the direction
toward the exact minimum of the loss function, so long as this
deviation is not too significant.

In the case of SA, i.e., when the approximate derivatives
given by Eq. (5) are used, this error saturates at ∼10% for in-
creasing optical depth [see Fig. 3(e)] so no significant detrimen-
tal effect on the training accuracy can be expected. These results
suggest that our scheme would still be effective in a noisy ex-
perimental setting, as further discussed in Appendix D, and that
the approach studied here may function well for a broad range
of optical nonlinearities.

4. CASE STUDY: IMAGE CLASSIFICATION

Thus far, we have only used a simple network architecture
to examine our derivative approximation; however, we now
consider how ONNs with SA nonlinearities are compared with
state-of-the-art ANNs. To do this, we use deeper network ar-
chitectures for a range of image classification tasks. To obtain
a comparison benchmark, we computationally train ANNs
with equivalent architectures using standard best practices.
Concretely, for ANNs we use ReLU (rectified linear unit) ac-
tivation functions, defined as gReLU�z� � max�0, z�, and the
categorical cross-entropy loss function, which is defined as

ℒ � −

P

i t i log�pi�, where pi � exp�z�L�i �∕
P

k exp�z�L�k � is
the softmax probability distribution of the network output
(see Appendix A for a discussion of the different choices of loss
function for ANNs and ONNs).

To begin, we use a network with two 128-neuron hidden
layers, as shown in Fig. 4(a)(i), and once again consider the
MNIST data set. Figure 4(a)(ii) compares the simulated perfor-
mance of the optical and benchmark networks. The ReLU-
based classifier achieves an accuracy of 98.0%� 0.2%,
which provides an approximate upper bound on the achievable
performance of this network architecture for the chosen task
[37]. An optical network with an optical depth of α0 � 30
[trained with approximate activation function derivatives in
Eq. (5) obtained in optical backpropagation through the SA]
exactly matches this level of performance with 98.0%� 0.2%
classification accuracy. As an additional benchmark, we train the
optical network using the exact derivative in Eq. (6) of the acti-
vation function, obtaining a similar accuracy of 98.1%� 0.3%.
The convergence speed to near-optimum performance during
training is unchanged across all of these networks.

Figure 4(a)(iii) shows the trained performance of optical
networks as a function of the optical depth, which essentially
determines the degree of nonlinearity of the transmission func-
tion. As α0 → 0, our network can only learn linear functions
of the input, which restricts the classification accuracy to
85.7%� 0.4%. For larger optical depths, the performance
of the network improves, with the strong performance observed
at α0 � 1 increasing to near optimal levels once α0 ≥ 10,
which is readily obtainable experimentally. Eventually, for
α0 ≥ 30, we start to see the performance of the approximated
derivatives reduced, although high accuracy is still obtained.
This can be attributed to the increasing approximation errors
associated with high optical depths [see Fig. 3(e)], which, as

(a)

(b)

Fig. 4. Performance on image classification. (a) (i) The fully connected network architecture. (ii) Learning curves for the SA [with either exact
derivatives in Eq. (6) of the activation function or their approximation in Eq. (5)] and benchmark ReLU networks. (iii) The final classification
accuracy achieved as a function of the optical depth, α0, of the SA cell. (b) (i) The convolutional network architecture. Sequential convolution layers
of 32 and 64 channels convert a 28 × 28 pixel image into a 1024-dimensional feature vector, which is then classified (into NC � 10 classes for
MNIST and KMNIST, and N C � 47 classes for EMNIST) by fully connected layers. Pooling layers are not shown for simplicity. (ii) Classification
accuracy of convolutional networks when using various activation functions. The same deep network architecture is applied to all data sets, but the
SA networks use mean-pooling, while the benchmark networks use max-pooling. The last row shows the performance of a simple linear classifier as
a baseline.
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previously discussed, accumulate in the deeper network archi-
tecture. In free-space implementations with saturated atomic
vapor cells, the optical depth can be dynamically tuned via cell
temperature. For semiconductor absorbers in integrated set-
tings, the optical depth is related to the material thickness
and/or the density of dopants.

To probe the limits of the achievable performance using SA
nonlinearities and optical backpropagation, we also consider
the more challenging Kuzushiji-MNIST [38] (KMNIST)
and extended-MNIST [39] (EMNIST) data sets. For these ap-
plications, we use a deep network architecture with convolu-
tional layers (see Appendix A for details), as illustrated in
Fig. 4(b)(i), which significantly increases the achievable classi-
fication accuracy to a level approaching the state-of-the-art.
While not the focus of this work, we emphasize that convolu-
tional operations are readily achievable with optics. Current re-
search into convolutional ONNs either directly leverages
imaging systems [40] or decomposes the required convolution
into optical matrix multiplication [41–43].

In addition to convolutional layers, convolutional neural
networks also contain pooling layers, which locally aggregate
neuron activations. The common implementation of these is
max-pooling; however, this operation does not readily translate
to an optical setting. Therefore, for ONNs, we deploy mean-
pooling, where the activation of neurons is locally averaged,
which is a straightforward linear optical operation. In contrast,
our benchmark ANNs utilize max-pooling.

Figure 4(b)(ii) compares the obtained performance with SA
nonlinearities (with α0 � 10) to that achieved with benchmark
ANNs that use various standard activation functions. We see an
equivalent level of performance, despite the approximation in
the backpropagation phase. This result suggests that all-optical
backpropagation can be utilized to train sophisticated networks
to state-of-the-art levels of performance.

5. DISCUSSION

This work presents an effective and surprisingly simple ap-
proach to achieving optical backpropagation through nonlinear
units in a neural network, an outstanding challenge in the pur-
suit of truly all-optical networks. With our scheme, the infor-
mation propagates through the network in both directions
without interconversion between optical and electronic form.
The role of digital electronics is reduced to the preparation
of the network input, photodetection, and updating the net-
work parameters. In these elements of the network, the conver-
sion speed is not critical, particularly for large batches of
training data. A detailed estimate of the energy efficiency
and computation speed of the optically trained neural network
is presented in Appendix C.

As compared with offline training, optical training is more
robust against experimental imperfections, since such imperfec-
tions are automatically included and counteracted during the
training process. As an illustration, numerical simulation results
of optical training in noisy experimental settings are presented
in Appendix D.

The scheme is compatible with a variety of ONN platforms.
We also anticipate that a broader class of nonlinear optical phe-
nomena can be used to implement the activation function.

For example, one could consider directly using saturation of
intralayer amplifiers for this role, circumventing the need for
SA units entirely. A preliminary numerical experiment to this
effect is discussed in Appendix E. Our scheme may also be
applicable to the optical Kerr nonlinearity as proposed in
Ref. [30] for training diffractive neural networks, albeit with
the added complexity of operating with complex-valued field
amplitudes and weights. Therefore, as well as presenting a path
toward the end-to-end optical training of neural networks, this
work sets out an important consideration for nonlinearities in
the design of analog neural networks of any nature.

APPENDIX A. NETWORK DETAILS

1. Image Data Sets

We consider three different data sets, all containing 28 × 28
pixel grey-scale images: MNIST [36], Kuzushiji-MNIST
(KMNIST) [38], and extended-MNIST (EMNIST) [39].
MNIST corresponds to handwritten digits from 0 to 9;
KMNIST contains 10 classes of handwritten Japanese cursive
characters; and we use the EMNIST balanced data set, which
contains 47 classes of handwritten digits and letters. MNIST
and KMNIST have 70,000 images in total, split into 60,000
training and 10,000 test instances. EMNIST has 131,600 im-
ages, with 112,800 (18,800) training (test) instances. For all
data sets, the training and testing sets have all classes equally
represented.

2. Network Architectures

The fully connected network we train to classify MNIST [cor-
responding to the results in Fig. 4(a)] first unrolls each image
into a 784-dimensional input vector, before two 128-neuron
hidden layers and a 10-neuron output layer.

The convolutional network depicted in Fig. 4(b)(i) has two
convolutional layers of 32 and 64 channels, respectively. Each
layer convolves the input with 5 × 5 filters (with a stride of 1
and no padding), followed by a nonlinear activation function
and finally a pooling operation (with both kernel size and stride
of 2). After the convolutional network, classification is carried
out by a fully connected network with a single 128-neuron hid-
den layer and NC neuron output layer, where NC is the num-
ber of classes in the target data set.

Multilayer ONNs are assumed to have the same optical
depth of their saturable absorbers in all layers.

3. Network Loss Function

As stated in the main text, we train ONNs using the mean-
squared-error (MSE) loss function, whereas the ANN baselines
use categorical cross-entropy (CCE). This choice was made as
the gradients of MSE loss are readily calculable in an optical
setting, whereas the softmax operation in CCE would require
offline calculation. However, our ANNs use CCE, as this is the
standard choice for classification problems in the deep learning
community. For completeness, we retrained our ANN baselines
for MNIST classification using MSE. The fully connected
classifier [Fig. 4(a)(i)] provided a classification accuracy of
98.0%� 0.2%, while the convolutional classifier [Fig. 4(a)
(ii)], using ReLU nonlinearities, scored 99.5%� 0.1%. In
both cases, the performance of MSE is essentially equivalent
to that of CCE.
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4. Network Training

All networks are trained with a minibatch size of 64. We used
the Adam optimizer with a learning rate of 5 × 10−4, indepen-
dent of the optical depth of the SA. For each network, the test
images of the target data set are split evenly into a “validation”
set and a “test” set. After every epoch, the performance of the
network is evaluated on the held-out “validation” images. The
best ONN parameters found over training are then used to
verify the performance on the “test” set. Therefore, learning
curves showing the performance during training [i.e., Fig. 4
(a)(ii)] are plotted with respect to the “validation” set, with
all other reported results corresponding to the “test” set.
The fully connected networks were trained on MNIST for
50 epochs. The convolutional networks are trained for 20
epochs when using ReLU, Tanh, or Sigmoid nonlinearities
and 40 epochs when using SA nonlinearities.

Training performance is empirically observed to be sensitive
to the initialization of the weights, which we ascribe to the
small derivatives away from the nonlinear region of the SA re-
sponse curve. For low optical depths, α0 ≤ 30, all layers are
initialized as a normal distribution of width 0.1 centered
around 0. For higher optical depths, the weights of the fully
connected ONN shown in Fig. 4(a) are initialized to a dou-
ble-peaked distribution comprised of two normal distributions
of width 0.15 centered at �0.15. We do not constrain our
weight matrices during training because, as discussed in the
main text, conservation of energy can always be satisfied by re-
scaling the input power or output threshold for the first and last
linear transformation and using intralayer amplifiers in deeper
architectures.

For all images, the input is rescaled to be between 0 and 1
(which practically would correspond to 0 ≤ E

�0�
P,in ≤ 1) when

passed to a network with computational nonlinearities
(i.e., ReLU, Sigmoid, or Tanh). Due to “absorption” in net-
works with SA nonlinearities, we empirically observe that re-
scaling the input data to higher values results in faster
convergence when training convolutional networks with multi-
ple hidden layers. Therefore, the fully connected networks in
Fig. 4(a) use inputs between 0 and 1, and the convolutional
networks in Fig. 4(b) use inputs normalized between 0 and
5 (15) for α0 ≤ 10 (α0 > 10).

APPENDIX B. CALCULATION OF THE

DERIVATIVE APPROXIMATION ERROR

As discussed in the main text, we approximate the true deriv-
atives g 0�·� of the activation functions by random functions
f �·� to test the effect of the approximation error on training.
Here, we discuss how these functions are generated and how
the similarity measure is defined.

The response of a saturable absorption nonlinearity can be
considered in two regimes, i.e., nonlinear (unsaturated) and lin-
ear (saturated), which are labeled (i) and (ii) in Fig. 2, respec-
tively. During the network training, the neuron input values
(z

�l�
j ) are primarily distributed in the nonlinear region, as seen

in Fig. 3(b) and discussed in the main text. Therefore, we
model the neuron input as a Gaussian distribution within this
region:

p�z� � 1
ffiffiffiffiffi

2π
p

σ
exp

�

−

z2

2σ2

�

, (B1)

where 2σ is the width of region (1). We then define the sim-
ilarity as the reweighted normalized scalar product between the
accurate and approximate derivatives,

S � j
R

f �z�g 0�z�p�z�dzj2
R

�f �z��2p�z�dz ·
R

�g 0�z��2p�z�dz : (B2)

According to the Cauchy–Schwarz inequality, S is bounded
by 1 and therefore so is the average approximation error, 1–S.

To obtain the results in Figs. 3(d) and 3(e), we generate 200
random functions for f , with different approximation errors.
We first generate an array of pseudo-random numbers ranging
from 0 to 1, concatenate it with the flipped array to make them
symmetric like the derivative g 0�·�, and then use shape-preserv-
ing interpolation to obtain a smooth and symmetric random
function. The network is then trained once with each of the
generated f .

APPENDIX C. OPTICAL POWER CONSUMPTION

AND COMPUTATION SPEED

The optical power consumption in an ONN depends on the
network architecture and implementation details. For concrete-
ness, we consider a fully connected network with N � 1000
units per layer, with SA optical nonlinearities implemented on
the 87Rb D2 line. Recalling Fig. 3(b) from the main text, we
note that, during training, the input power to each neuron is
typically restricted to the unsaturated region, (i), of the nonlin-
earity response. For the SA nonlinearities we consider, the sat-
uration intensity is given by [44]

I sat �
ℏωΓ

2σ0
� 16.6 μW⋅mm−2, (C1)

where Γ � 2π × 6 MHz is the natural linewidth, and
σ0 � 3λ2∕�2π� is the resonant absorption cross section. For
beams with a waist of w0 � 100 μm, this corresponds to a sat-
uration power of Psat ≈ 500 nW per neuron and total SA input
power for 1000 units on the order of 500 μW.

To saturate the SA, the optical pulse needs to be longer than
the excited state lifetime Γ−1 � 26 ns. The energy cost of a
single forward pass through the network is then ∼10 pJ,
and the backpropagation energy cost is negligible. Since a single
interlayer transition involves a VMM with N 2 multiplications,
one can estimate the energy cost per multiply-accumulate op-
eration to be ∼10 aJ. In an integrated setting, the saturation
powers are higher, but the pulse durations are proportionally
shorter, so similar energy costs can be expected. This is, of
course, an idealized estimate, which does not include peripheral
energy costs in powering and sustaining the instruments and
stabilizing the system. Hence, the actual power consumption
can be expected to be at least an order of magnitude higher.
For comparison, today’s electronic processors like CPUs and
GPUs have energy costs on a scale of 0.1 to 1 nJ per operation.

The computation speed of the ONN is determined by the
response time of the SA units and amplifiers as well as the speed
of optical modulators. The response time of atomic-based SA is
tens of nanoseconds and that of semiconductor SA is on the
order of picoseconds. Response time of optical amplifiers is
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on a similar time scale. The speed of the optical modulator pre-
paring the network input is more likely to be the bottleneck in
the near future. The bandwidths of SLM, thermo-optic modu-
lator, and electro-optic modulator are on the order of 10 kHz
[31], 100 kHz [9], and 10 GHz [45], respectively. Adoption of
an ultrafast electro-optic modulator in an ONN with 1000
neurons per layer would perform 1016 operations per second.
Assuming the energy consumption of 1 mW as estimated
above, the energy efficiency would be 1019 operations per sec-
ond per watt. For comparison, a higher-end consumer GPU
has a computation speed of ∼1012 operations per second, with
the energy efficiency of ∼1010 operations per second per watt,
and neuromorphic electronics has an energy efficiency below
1014 operations per second per watt [13].

APPENDIX D. OPTICAL TRAINING WITH

EXPERIMENTAL IMPERFECTIONS

A practical ONN will exhibit noise and errors arising from
background scattering, nonideal optical multiplication or inter-
ference, and digitization error of electronic signals. Here, we
investigate the robustness of our scheme against these imper-
fections. We adopt the network structure of Fig. 3 and perform
simulation on the MNIST data set.

In the first series of tests, we add a certain amount of random
Gaussian noise to the activation outputs a�l�i and error fields
δ
�l�
i . We define the noise level as the ratio between the standard
deviation of noise and signal: σnoise∕σsignal. The top three rows
in Table 1 show the training result. The classification accuracy
decreases mildly from 97.3% to 95.8% with 10% noise.

Our second series of tests consists in randomly scaling the
activation output and error beams: each mode has a fixed scal-
ing factor, and all the scaling factors are sampled from a
Gaussian distribution N �1, σ�. This models the nonuniform
losses of different spatial modes. From Table 1 (fourth to sixth
rows), we see that such imperfection causes no performance
degradation because the weights are automatically rescaled
during training to counteract such deviation.

We further consider the digitization error of weights, acti-
vation, and error beams, since they are usually electronically
controlled or read out with limited-bitwidth analog-to-digital
or digital-to-analog converters. The seventh to ninth rows of
Table 1 show that the training is sensitive to the bitwidth lim-
itations, and the accuracy drops to 96.0% with 8-bit precision
and 93.5% with 6-bit precision. Therefore, in an actual system,
one should use at least 8-bit controls to preserve high accuracy

of the network, which can be readily achieved. Note that high-
performance ONNs with bitwidths as low as 2 to 4 bits have
been proposed [46].

Finally, the last row of Table 1 shows that classification ac-
curacy as high as 96.1% can still be achieved for a practical 8-bit
system with the combined effect of 5% random noise and up to
10% deviation.

APPENDIX E. OPTICAL BACKPROPAGATION

WITH SATURABLE GAIN

In optical amplifiers, saturable gain (SG) takes place when a
sufficiently high input power depletes the excited state of
the gain medium. In a two-level system, this process can be
described similarly to saturable absorption by simply replacing
the optical depth term −α0 in Eq. (4) with a positive gain factor
g0. The transmission in the forward direction is plotted and
compared with both the theoretically exact and optically ob-
tained transmission derivatives in Fig. 5(b) with g0 � 3. The
derivative curves have the inverted shapes of the SA derivative
curves.

The optically obtained derivatives also appear to be a rea-
sonable approximation of the exact gradient. To examine this,
we replace the SA nonlinearity with SG nonlinearity in the fully
connected network, as shown in Fig. 4(a), and repeat the op-
tical training simulation. The MNIST image classification per-
formance is shown in Figs. 5(c) and 5(d). High accuracy can be
achieved with a gain factor as small as 1, and the best result
scores 97.3%� 0.1% at g0 � 3, slightly lower than that of
the benchmark ReLU network and SA-based ONN. Since the
derivative approximation error of the SG nonlinearity is the
same as that of the SA nonlinearity, the performance degrada-
tion is mainly attributed to the nonlinearity itself; however,
higher performance may be achievable through careful hyper-
parameter tuning.

APPENDIX F. CODE AVAILABILITY

Source code is available in Code 1, Ref. [47].

Table 1. ONN Training with Experimental Imperfections

Noise Level Deviation Level Bitwidth Accuracy

0% 0% 32 97.3%� 0.1%
5% 0% 32 96.7%� 0.2%
10% 0% 32 95.8%� 0.3%
0% 5% 32 97.1%� 0.3%
0% 10% 32 97.1%� 0.1%
0% 20% 32 97.1%� 0.3%
0% 0% 8 96.0%� 0.4%
0% 0% 6 93.5%� 0.8%
5% 10% 8 96.1%� 0.2%

(a) (b)

(c) (d)

Fig. 5. Optical backpropagation through saturable gain (SG) non-
linearity. (a) Fully connected network architecture, which is the same
as Fig. 4(a) except for the nonlinearity. (b) Transmission and trans-
mission derivatives of the SG unit with gain factor g0 � 3.
(c) Learning curves for the SG-based ONN and benchmark ReLU
networks. (d) The final classification accuracy achieved as a function
of the gain.
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