
ORIGINAL RESEARCH
published: 14 April 2022

doi: 10.3389/fnins.2022.760298

Frontiers in Neuroscience | www.frontiersin.org 1 April 2022 | Volume 16 | Article 760298

Edited by:

Angeliki Pantazi,

IBM Research, Switzerland

Reviewed by:

Charles Augustine,

Intel, United States

Chankyu Lee,

Intel, United States

*Correspondence:

Zhuo Zou

zhuo@fudan.edu.cn

Lirong Zheng

lrzheng@fudan.edu.cn

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 17 August 2021

Accepted: 22 February 2022

Published: 14 April 2022

Citation:

Yan Y, Chu H, Jin Y, Huan Y, Zou Z

and Zheng L (2022) Backpropagation

With Sparsity Regularization for

Spiking Neural Network Learning.

Front. Neurosci. 16:760298.

doi: 10.3389/fnins.2022.760298

Backpropagation With Sparsity
Regularization for Spiking Neural
Network Learning
Yulong Yan, Haoming Chu, Yi Jin, Yuxiang Huan, Zhuo Zou* and Lirong Zheng*

School of Information Science and Technology, Fudan University, Shanghai, China

The spiking neural network (SNN) is a possible pathway for low-power and

energy-efficient processing and computing exploiting spiking-driven and sparsity features

of biological systems. This article proposes a sparsity-driven SNN learning algorithm,

namely backpropagation with sparsity regularization (BPSR), aiming to achieve improved

spiking and synaptic sparsity. Backpropagation incorporating spiking regularization is

utilized to minimize the spiking firing rate with guaranteed accuracy. Backpropagation

realizes the temporal information capture and extends to the spiking recurrent layer to

support brain-like structure learning. The rewiring mechanismwith synaptic regularization

is suggested to further mitigate the redundancy of the network structure. Rewiring based

on weight and gradient regulates the pruning and growth of synapses. Experimental

results demonstrate that the network learned by BPSR has synaptic sparsity and is highly

similar to the biological system. It not only balances the accuracy and firing rate, but also

facilitates SNN learning by suppressing the information redundancy. We evaluate the

proposed BPSR on the visual dataset MNIST, N-MNIST, and CIFAR10, and further test

it on the sensor dataset MIT-BIH and gas sensor. Results bespeak that our algorithm

achieves comparable or superior accuracy compared to related works, with sparse

spikes and synapses.

Keywords: spiking neural network, backpropagation, sparsity regularization, spiking sparsity, synaptic sparsity

1. INTRODUCTION

Artificial intelligence (AI) has shown impressive abilities in various tasks such as computer vision,
natural language processing, and decision making. For example, AlphaGo Zero defeated the world
champion of the game of Go (Silver et al., 2017). However, the power consumption of AlphaGo
Zero is about 1kW (Frenkel et al., 2021), which is 50× higher than the 20W power budget of
the human brain (Roy et al., 2019). The brain-inspired spiking neural network (SNN) plays an
important role in addressing the issue of AI energy efficiency. SNN exchanges information through
binary spikes between synapses and performs intensive calculation only when spikes are received.
Dedicated SNN hardware such as TrueNorth (Akopyan et al., 2015), Loihi (Davies et al., 2018),
Tianjic (Pei et al., 2019), and MindWare (Ding et al., 2021) can reduce energy consumption from
sparse spikes and synapses through spike-driven computing architecture. Despite the merits of
improving energy efficiency, there remain a lot of challenges ahead of the SNN in sparsity learning
algorithms and efficient network exploration.

The commonly adopted SNN learning algorithms can be summarized into three different types
as follows. (1) Conversion-based learning. It uses the same SNN structure as an artificial neural

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.760298
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.760298&domain=pdf&date_stamp=2022-04-14
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:zhuo@fudan.edu.cn
mailto:lrzheng@fudan.edu.cn
https://doi.org/10.3389/fnins.2022.760298
https://www.frontiersin.org/articles/10.3389/fnins.2022.760298/full

Yan et al. BPSR for SNN Learning

network (ANN) and converts the parameters of the learned ANN
to SNN. One conversion idea is to use the spiking firing rate (FR)
of SNN to quantify the floating value of ANN and establish an
approximate mapping between the parameters of two networks
(Sengupta et al., 2019; Kim et al., 2020). This kind of conversion
uses rate coding, resulting in dense spikes. Another idea is to use
spike timing to represent the floating value in ANN. Methods
like time-to-first-spike (TTFS) conversion (Rueckauer and Liu,
2018) and few spikes conversion (FS-conversion) (Stöckl and
Maass, 2021) use temporal coding to protect spiking sparsity.
However, the time domain is used for coding so that temporal
processing structure such as recurrent neural network (RNN)
cannot be converted. (2) Plasticity-based learning. It is a kind
of biologically inspired algorithm. The most famous spike-
timing-dependent plasticity (STDP) adjusts synaptic weight
according to the spike order between the pre- and post-synaptic
neurons. The role of STDP is feature clustering. Combined
with lateral inhibition structure, STDP can realize unsupervised
classification (Diehl and Cook, 2015; Białas and Mańdziuk,
2021). Reward-modulated STDP draws on the eligibility trace of
reinforcement learning to realize supervised learning to further
improve performance (Mozafari et al., 2018). The plasticity-
based learning algorithm is skilled in computation overhead
and weak in network accuracy. (3) Gradient-based learning.
Like the learning of ANN, it updates the parameters of SNN
according to the gradient information from backpropagation.
A recent study by Lillicrap et al. (2020) suggests that a similar
propagation mechanism may exist in the brain. Spatio-temporal
backpropagation (STBP) (Wu et al., 2018, 2019) provides
advanced accuracy by calculating gradient in the spatio-temporal
domain. Deep continuous local learning (DECOLLE) (Kaiser
et al., 2020) reduces the memory overhead through the local
error function. Spike-train level recurrent SNN backpropagation
(ST-RSBP) (Zhang and Li, 2019) further supports the recurrent
layer, to deal with temporal information by mimicking import
feedback structure in the brain (Luo, 2021). The above algorithms
focus on the accuracy improvement and lack consideration
in the sparsity issue. Compared with local learning based on
plasticity, gradient-based learning requires global information.
It improves accuracy and brings additional calculation burdens.
However, in the offline learning scenario, the computational
overhead of SNN is mainly contributed by inference rather than
learning. Therefore, reducing the computational overhead in
inference through sparsity optimization and ensuring accuracy
by gradient-based learning, become the major motivation of
this work.

Another kind of SNN algorithm aims to improve synaptic
sparsity by pruning. Existing studies explore different pruning
standards. Liang et al. (2021) prune synapses through random
patterns and quantify synaptic weight to reduce storage
overhead. Rathi et al. (2018) utilize the synaptic weight
threshold to prune and optimize storage through weight
quantization and sharing. Cho et al. (2019) prune long-range
synaptic connections based on the small world theory of
the nervous system. Nguyen et al. (2021) combine pruning
with STDP and use the weight adjustment record as the

FIGURE 1 | Spiking sparsity and synaptic sparsity facilitate the efficiency of

SNN by reducing the number of synaptic operations.

pruning standard. Shi et al. (2019) use spiking count as
the pruning threshold and propose a soft pruning method
to reduce the computation overhead in learning. Moreover,
Guo et al. (2020) prune the neurons rather than synapses
according to spiking count, providing a new perspective of
sparsity exploration.

SNN can perform sparse computing due to the event-driven
feature. At the same time, the synaptic operation uses membrane
potential accumulation instead of matrix multiplication and
addition in traditional ANN, which reduces the amount of
calculation. In recent years, similar methods have been proposed
in the field of ANN to reduce the number of operations.
Binarized neural network (BNN) (Hubara et al., 2016) and
XNOR-Net (Rastegari et al., 2016) introduce binarized weights
and activations and replace most arithmetic operations on
synapses with bit-wise operations. AdderNet (Chen et al., 2020)
builds ANN only through addition to avoid the expensive
multiplication operation and achieves acceleration with low
energy consumption. Beyond that, Bartol et al. (2015) believe
each synapse stores about 4.7 bits of information. Quantization
of synaptic weights can also be an idea to further optimize
computational speed and compress storage overhead.

This work proposes an SNN learning algorithm, namely
backpropagation with sparsity regularization (BPSR) to facilitate
sparsity. As shown in Figure 1, the sparse spikes reduce the
amount of information that subsequent neurons need to process,

Frontiers in Neuroscience | www.frontiersin.org 2 April 2022 | Volume 16 | Article 760298

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yan et al. BPSR for SNN Learning

meanwhile the sparse synapses prevent each spike from causing
intensive calculations. The proposed BPSR enables SNN to
improve sparsity during learning and achieve satisfactory energy
efficiency in inference. The backpropagation takes advantage
of temporal information and adapts the brain-like recurrent
structure. BPSR balances the accuracy and FR by combining
backpropagation with spiking regularization. Inspired by the fact
that the brain learns through synaptic rearrangement (Dempsey
et al., 2022), rewiring mechanism is proposed to explore
efficient SNN structures, which uses the weight and gradient
to regulate synaptic pruning and growth. The experimental
result is consistent with the concept that the proposed BPSR
can achieve low FR with high accuracy. Spiking sparsity is
proved to be beneficial to SNN learning (Tang et al., 2017),
because of the suppression of information redundancy. BPSR
not only improves the synaptic sparsity but also generates a
bionic structure similar to the nervous system of Caenorhabditis
elegans (C. elegans). The result on the visual MNIST dataset
(LeCun et al., 1998) with rank order coding (Thorpe and
Gautrais, 1998), neuromorphic-MNIST (N-MNIST) (Orchard
et al., 2015), and CIFAR10 (Krizhevsky et al., 2009) reach the
accuracy of 98.33, 99.21, and 90.74%, respectively. The evaluation
on MNIST also shows 30× the inference overhead advantage
compared to other SNN works. With post-training quantization
(PTQ), SNN can achieves 15× efficiency compared to BNN
with 0.22% accuracy drop. BPSR is further tested on sensor
datasets like MIT-BIH arrhythmia (Moody and Mark, 2001)
and gas senor (Vergara et al., 2013), which achieves 98.41 and
98.30% accuracy.

The remainder of this article is organized as follows. In
Section 2, the backpropagation with sparsity regularization is
introduced. The suggested heterogeneous neuron dynamic
model, the loss function with regularization, and the
backpropagation algorithm on the flat and recurrent SNN
layers are detailed. In Section 3, the rewiring based on
weight and gradient and the corresponding implementation
process is introduced. In Section 4, the effect of the
proposed BPSR algorithm is tested by experiments, and
comparisons with related works on various datasets are
reported. In Section 5, we summarize this work and
make a discussion.

2. BACKPROPAGATION WITH SPARSITY
REGULARIZATION

The backpropagation algorithm with regularization updates
SNN parameters while improving sparsity. The spiking
sparsity is implemented through backpropagation and spiking
regularization. Synaptic sparsity requires the cooperation
of regularization and the rewiring mechanism in Section
3. Firstly, a heterogeneous leaky integrate-and-fire (LIF)
neuron dynamic model and its differential approximation are
suggested. Secondly, a classification loss function with spiking
regularization and synaptic regularization is introduced. Finally,
the backpropagation algorithm for the flat SNN layer and the
brain-like recurrent SNN layer is detailed, respectively.

2.1. Heterogeneous Leaky
Integrate-and-Fire Model
As one of the most commonly used neuronmodels, LIF describes
the dynamic process of neurons in SNN. Themembrane potential
of neurons increases under the stimulation of spikes and leaks
spontaneously with time. When the potential reaches the spiking
threshold, the neuron generates a spike and resets the membrane
potential. In addition, we extend the LIF description to the
spiking recurrent layer and support neurons with different time
coefficients (heterogeneous), to utilize the brain-like structure
and temporal features. We hierarchically describe the SNN. For
the n-th layer, the LIF process can be described by equations in
the discrete-time domain:

uti = ut−1i · τi · st−1i +
∑

j∈Ln−1

wij · xtj +
∑

k∈Ln

wik · st−1k
+ bi, i ∈ L

n

(1)

sti = g(uti − Uth) (2)

where uti is the membrane potential of i-th neuron in layer Ln

at time t (Ln represents the set of neurons in the n-th layer). sti ∈
{0, 1} is a boolean value where sti = 1 denotes a spike activity. st−1i

means to take a logical ‘not’ operation on st−1i . τi ∈ [0, 1] is the
leakage time coefficient, which achieves neuronal heterogeneity.
This allows the neuron model to be heterogeneous and facilitates

temporal feature extracting. Multiply ut−1i by τi · st−1i controls
whether the membrane potential leaks by τi or drops to the
resting potential 0. The neuron bias is denoted by bi, leading
to self-excitation or self-suppression. xtj is the input spike from

the j-th neuron in layer Ln−1. It should be noted that, for the
calculation of layer Ln+1, x: = sti , i ∈ L

n. In this way, spikes
are transmitted layer by layer. As shown in Figure 2, the SNN
layer can be classified as Figure 2A the flat layer and Figure 2C

the recurrent layer. For the flat layer, wij represents inter-layer
synapse from the j-th neuron in layer L

n−1 to i-th neuron in
layer Ln. For the recurrent, wik is appended to indicate intra-
layer synapse inside layer L

n, which has the ability to extract
temporal features due to the brain-like structure. The Heaviside
function g(·) generates a spike when uti is greater than or equal
to the spiking threshold Uth. Heaviside function and the adopted
differential approximation are expressed as:

g(x) =

{

1, x ≥ 0

0, x < 0
, g′(x) =

α
√

π
e−α2x2 (3)

Backpropagation requires a differentiable path. The derivative
of the Heaviside function g(·) is the Dirac function δ(·), whose
value is +∞ at 0 and impossible to perform the calculation.
Thus, the Gaussian function is introduced as the differential
approximation of the Heaviside function, where α controls the
shape of the function.

2.2. Loss Function With Sparsity
Regularization
The loss function measures the error for a classification task
and the sparsity of SNN, which is defined as follows. The first

Frontiers in Neuroscience | www.frontiersin.org 3 April 2022 | Volume 16 | Article 760298

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yan et al. BPSR for SNN Learning

FIGURE 2 | The structure of the SNN layer contains (A) the flat layer with only inter-layer synapses (wik = 0), and (C) the recurrent layer with intra-layer synapses

(wij 6= 0). The corresponding computational graphs are (B,D), respectively. The legends of arithmetic operations, neuron state variables, and gradients are marked in

the lower right corner.

termmeasures the classification error through softmax and cross-
entropy functions. The second and third terms achieve spiking
sparsity and synaptic sparsity, respectively.

L = −
∑

c

yc log(pc)

︸ ︷︷ ︸

classification error

+
λs

2

∑

i/∈LN

∑

t

∥
∥sti

∥
∥
2

2

︸ ︷︷ ︸

spiking sparsity

+ λw

∑

w∈Ln

‖w‖1
︸ ︷︷ ︸

synaptic sparsity

(4)

pc = softmax(k ·
∑

t

stc) =
exp(

∑

t k·stc)
∑

i∈LN exp(
∑

t k·sti)
(5)

where yc is the ground-truth label of one-hot coding for the c-
th class. pc is the predicted probability given by the output layer
L
N. pc is calculated by summing of the output spikes, multiplied

by factor k, and then processing by softmax function. The factor

k = 10
T corrects the softmax error by scaling the sum of spikes

in the time window T. λs is the coefficient of l2 regularization for
spiking sparsity. It takes effect on the spikes of the SNN layer,
except for the output layer to ensure classification accuracy. λw
is the coefficient of l1 regularization for the sparsity of synaptic
weight, which is effective for all layers of the SNN.

The regularizations of spiking sparsity and synaptic sparsity
have similar forms and can promote each other. But in
essence, their mechanism is different (as shown in Table 1). The
goal of spiking regularization is to reduce FR while ensuring

guaranteed accuracy. Therefore, the regular term adjusts the
parameters wij, wik, bi, and τi to punish dense spikes. Synaptic
regularization works together with the rewiring mechanism in
Section 3 to realize pruning of the weight wij and wik. The
gradient of spiking regularization is calculated by the chain

Frontiers in Neuroscience | www.frontiersin.org 4 April 2022 | Volume 16 | Article 760298

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yan et al. BPSR for SNN Learning

TABLE 1 | Comparison between spiking and synaptic regularization.

Regularization Purpose Scope Gradient of synaptic weight

Spiking Reduce FR while ensuring accuracy wij , wik , bi , τi ∇w ∝ λs · stig
′(uti)x

t
j

Synaptic Combine with rewiring for pruning wij , wik ∇w = λw · sign(w)

rule. When either input spike xtj or output spike sti is 0,

the spiking regularization will not be affected. The gradient
of synaptic regularization is calculated directly, and it works
continuously until the weight is set to 0. As regularization,
both of them improve network performance by preventing
overfitting. The difference is that the principle of spiking
regularization is simplifying feature expression to improve
generalization ability. While synaptic regularization and rewiring
work together to take effect by reducing the dimensionality of the
parameter space.

2.3. Backpropagation in Flat Layer
The error information is propagated through the gradient and
the parameters of SNN are updated accordingly. Therefore, it
is necessary to derive the gradient of the loss function to each
parameter. There are only inter-layer synaptic connections in the
flat layer structure and wik = 0. The computational graph of
the flat layer and the corresponding gradient path are shown in
Figure 2B. For the output layer LN, the partial derivative ∂L/∂s
can be directly calculated. For the non-output layer (Ln, n < N),
the partial derivative ∂L/∂s is the ∂L/∂x of the following layer,
plus the spiking regularization term.

∂L

∂sti
=

pi − yi, i ∈ L
N

∂L

∂xtj
+ λs · xtj , i ∈ L

n, j ∈ L
n+1, n < N

(6)

The spike sti is a function of the membrane potential uti , and
the membrane potential changes over time. Although uti is a

function of st−1i in Equation (1), st−1i only gates the information
flow in potential along time. Unlike uti accumulating information

to sti , or xt−1j passing wij of information to uti , s
t−1
i has no

information contribution to uti . Thus, ∂uti/∂s
t−1
i is ignored in

backpropagation. ∂L/∂uti is expressed as:

∂L

∂uti
=

∂L

∂sti
·

∂sti
∂uti
=

∂L

∂sti
· g′(uti − Uth), t = T

∂L

∂sti
·

∂sti
∂uti
+

∂L

∂ut+1i

·
∂ut+1i

∂uti

=
∂L

∂sti
· g′(uti − Uth)+

∂L

∂ut+1i

· τi · sti , t < T

(7)

The part of t < T in Equation (7) takes into account
all the errors after time t through iterative calculation and reduces
the algorithm complexity toO(t). Assuming the direct error from
the loss function at time t is εt = ∂L/∂sti ·∂s

t
i/∂u

t
i . Figure 3 shows

how the influence from the subsequent time is calculated by one
addition and multiplication when t = T,T−1,T−2.

Once the gradient to uti is obtained, the gradients to each
parameter and input spike are easy to calculate by the following
equations, where i belongs to layer Ln and T is the time window.
The initial value u0i = s0i = 0. Learning shared parameters such
as convolution weights or homogeneous leakage coefficients can
be realized by summing the gradient of shared weight. Potential
changes well beyond the threshold have no effect, so excessively
large wij and bi are meaningless and clamped to [−Uth,+Uth]
accordingly. τ is also limited to its range of values [0, 1].

∂L

∂xtj
=

∑

i∈Ln

∂L

∂uti
·
∂uti
∂xtj
=

∑

i∈Ln

∂L

∂uti
· wij (8)

∂L

∂wij
=

T
∑

t=1

∂L

∂uti
·

∂uti
∂wij
+ λw · sign(wij)

=
T

∑

t=1

∂L

∂uti
· xtj + λw · sign(wij) (9)

∂L

∂bi
=

T
∑

t=1

∂L

∂uti
·
∂uti
∂bi
=

T
∑

t=1

∂L

∂uti
(10)

∂L

∂τi
=

T
∑

t=1

∂L

∂uti
·
∂uti
∂τi
=

T
∑

t=1

∂L

∂uti
· ut−1i · st−1i (11)

2.4. Backpropagation in Recurrent Layer
The intra-layer synaptic connections exist in the recurrent
layer, i.e., wik 6= 0. This makes the computational graph of
the recurrent layer and the gradient path are different from
the flat layer, which are shown in Figure 2D. The calculation
method of the partial derivative ∂L/∂sti still follows Equation
(6). Considering the intra-layer connection within the recurrent,
∂L/∂uti is modified to:

∂L

∂uti
=

∂L

∂sti
·

∂sti
∂uti
=

∂L

∂sti
· g′(uti − Uth), t = T

∂L

∂sti
·

∂sti
∂uti
+

∂L

∂ut+1i

·
∂ut+1i

∂uti
+

∑

k∈Ln

∂L

∂ut+1
k

·
∂ut+1

k

∂sti
·

∂sti
∂uti

=

[

∂L

∂sti
+

∑

k∈Ln

∂L

∂ut+1
k

· wki

]

· g′(uti − Uth)

+
∂L

∂ut+1i

· τi · sti , t < T

(12)
Note that for the intra-layer synaptic weight, we swap the
subscripts of the input and the output neurons (denoted as

Frontiers in Neuroscience | www.frontiersin.org 5 April 2022 | Volume 16 | Article 760298

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yan et al. BPSR for SNN Learning

FIGURE 3 | Iterative calculation with linear algorithm complexity. At time T, the potential error comes from the direct error εT . At time T − 1, the potential error includes

the direct error εT−1 and the backpropagation of εT . At time T − 2, the influence of εT , εT−1, εT−2 are taken into account through iterative calculation, which only

requires one addition and multiplication.

wki). The above equation is still an iterative calculation with
time complexity of O(t). The calculation of the gradient of
each parameter is still consistent with Equation (8)–(9). As a
supplement, ∂L/∂wik can be calculated by the following equation,
where i and k both belong to layer Ln and the initial value s0

k
= 0.

∂L

∂wik
=

T
∑

t=1

∂L

∂uti
·

∂uti
∂wik
+ λw · sign(wik)

=
T

∑

t=1

∂L

∂uti
· st−1

k
+ λw · sign(wik) (13)

In this way, the required gradients are obtained. Errors can
be passed down layer by layer. Each network parameter can
be updated by various general ANN parameter optimization
algorithms, such as stochastic gradient descent (SGD), adaptive
momentum estimation (Adam) (Kingma and Ba, 2014) or Adam
with decoupled weight decay (AdamW) (Loshchilov and Hutter,
2017).

2.5. Post-training Quantization
Fixed-point quantification can compress the storage overhead of
SNN, and achieve higher computational efficiency by replacing
floating-point arithmetic with fixed-point arithmetic. We use
PTQ to quantify parameters, avoiding the overhead of re-
learning. After learning, PTQ quantizes w and b into n-bit
fixed-point numbers, where the fraction length is n - 1 and
the signedness is 1-bit. This allows synaptic operations to be
performed through fixed-point addition instead of floating-point
addition. τ is rounded to 2−m, so that the multiplication on the
potential is replaced by m-bit right shift operation. PTQ brings
optimization of storage overhead and energy consumption under
the condition of limited accuracy loss.

3. REWIRING BASED ON WEIGHT AND
GRADIENT

Rewiring mechanism prunes and grows synapses based on
synaptic weights and gradients to improve synaptic sparsity.
Synaptic weights are constantly decreasing in learning through
synaptic regularization. When the |w| is less than the pruning
threshold 2w (Equation 14), it means that the influence on the
post-synaptic neuron is negligible and synapse can be pruned
(Figure 4A). Moreover, the pruned synapses have a chance
to reconnect through growth. The gradient of the synaptic
weight represents a trend of growth. The momentum m is
the exponential moving averaging of the synaptic gradient
∇w, where βm is the coefficient of moving average. The m
measures the strength of the growth trend after smoothing
fluctuations. When the m is large enough to satisfy Equation
(15), the synapse grows as shown in Figure 4B. The growth
conditions include a constant threshold 2m and a distance
term scaled by the ratio µm, where ci and cj represent the
spatial coordinates of two neurons. The above condition means
that establishing a longer-range synaptic connection requires a
stronger growth trend. Dynamic rewiring is coupled with the
learning process, using pruning and growth to improve sparsity
and ensure performance. SNN is finally stable between rewiring
and parameter optimization and acquires a sparse and efficient
network structure.

pruning : |w| < 2w (14)

growth : |m| > 2m ·
(

1+ µm

∥
∥ci − cj

∥
∥
1/2

2

)

,

m : = m+ (1− βm)∇w (15)

The rewiring mechanism works together with backpropagation
and parameter optimization. The pseudo-code (Algorithm 1)
takes layer L

n as an example to illustrate how to implement

Frontiers in Neuroscience | www.frontiersin.org 6 April 2022 | Volume 16 | Article 760298

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yan et al. BPSR for SNN Learning

FIGURE 4 | (A) The weight of synapse w controls the synaptic pruning. (B) The momentum of the synapse gradient m controls the synaptic growth.

the proposed BPSR algorithm with matrix operation. The input
spike matrix X and the gradient matrix of output spike 1S are
required. N n represents the number of neurons in layer Ln and
T is the time window. The shape of X is N n−1×T. The gradient
1S with shape ofN n×T can be backpropagated by the following
layer through Equation (6). The notation [t] is used to represent
the matrix slice in the time dimension. The algorithm generates
the output spike S and the gradient of the input spike 1X, and
ensures to update the synaptic weight matrix W, bias matrix B

and, leakage coefficient matrix T . For the flat layer, we mark
the synaptic weight as W = Wij. For the recurrent layer, the
synaptic weight matrix is the concatenation W =

[

Wij

∣
∣Wik

]

.
In the initial stage, the weight matrix W is set to obey Gaussian
distribution N (0, 1). The bias matrix B is initialized to uniform
distribution U(0, 1). The leakage coefficient matrix T is set to an
empirical value of 0.5. The coordinates of neurons C are set to
the random distribution in the unit cube. Especially, Kaiming
initialization (He et al., 2015) is applied to the convolutional
layer. The coordinates of neurons C are set to the random
distribution in the unit cube. The forward and backpropagation
processes are described in the previous sections. In the rewiring,
Prun and Grow are two boolean matrices, denoting the synapses
that meet the conditions 14 and 15. The boolean matrix Mask
indicates the existing synapses after rewiring. Logical operations
“and” and “or” achieve prune and grow, respectively. The W

and 1W is superimposed by Mask. Finally, all parameters
are updated through the ANN optimization algorithm
and clamped.

4. EXPERIMENTAL RESULTS

The proposed BPSR is implemented by PyTorch (Paszke et al.,
2019) and runs on a CPU of AMD Ryzen-3970X and a GPU of
NVIDIA RTX-3080. Various visual datasets and sensor datasets
are used in the experiments. MNIST is a static digital dataset
and can be transformed into a spiking dataset by rate coding
and rank order coding. Rate coding (Figure 5A) takes pixel

intensity as the probability and performs Bernoulli sampling
in the time domain to produce spikes. Rank order coding
(Figure 5B) convert higher values to earlier spikes, which is a
kind of temporal sparse coding. Unlike rate coding, the spiking
timing in rank order is meaningful. This requires the SNN
to have the capacity for temporal processing. N-MNIST is a
spiking version of MNIST and is acquired by the dynamic
vision sensor (DVS). It is widely used in SNN research due to
event-driven and neuromorphic. CIFAR10 is another static visual
dataset for object classification of color images. We employ the
encoding layer proposed by Wu et al. (2019) to convert floating
values to spikes. MIT-BIH is an arrhythmia dataset that includes
48 sets of electrocardiographs (ECG). The level-crossing (LC)
sampling (Marisa et al., 2017) converts signal into spike. 2-
channel ECG generates 4-channel spiking input suitable for SNN,
as shown in Section 4.1. The gas sensor dataset is the record
from a chemical detection platform in a wind tunnel facility in
response to ten high-priority chemical gaseous substances. The
72-channel sensing signal is encoded by rank order to obtain the
spiking input.

4.1. Coding Method and Feature
Visualization
A 5-class ECG task is used to show how SNN processes temporal
information. The SNN model resented in Figure 6A is the
recurrent MLP (rMLP) of “r18 - fc8 - fc5”, where “r” denotes
the recurrent layer and ‘fc’ denotes the fully connected layer.
Figure 6B demonstrates the original ECG signal and the spiking
sequence after LC sampling. The 2 channels of the displayed
record 102 are modified lead V2 and V5, and other records
may contain modified limb lead II (MLII). Bipolar spikes are
generated on the edge of signal changes in each channel. In
this way, the spike reflects the changing trend of the signal. 4-
channel spikes input to the recurrent layer for temporal feature
processing. In the right of Figure 6C, the output FR curve of
the recurrent layer under different input FR is plotted channel
by channel. Neurons can be classified into low-pass, high-pass,

Frontiers in Neuroscience | www.frontiersin.org 7 April 2022 | Volume 16 | Article 760298

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yan et al. BPSR for SNN Learning

Algorithm 1: The BPSR implementation of layer Ln.

Require: Input spike X. The gradient of output spike 1S obtained by backpropagation.
Ensure: Output spike S. The gradient of input spike 1X. Update parametersW, B and T .

Initialization:
1: W← N (0, 1) , B← U(0, 1) , T ← 0.5 , Uth ← 1 , C← U(0, 1) // Initialize if applicable.

Forward:
2: for t = 1 to T do

3: U[t]← CalU(U[t−1], S[t−1],X[t],W,B, T) // Calculate potential by Equation (1). Specially S[0] = 0.
4: S[t]← CalS(U[t]) // Calculate spike by Equation (2).
5: end for

Backpropagation:
6: // Calculate gradient of potential by Equation (7) and (12).
7: 1U[T]← CalGU(1S[t],U[t])
8: for t = T − 1 to 1 do
9: 1U[t]← CalGU(1S[t],1U[t+1],U[t], S[t], T)
10: end for

11: 1X ← CalGX(1U,W) // Calculate gradient of input spike by Equation (8).
12: 1W ← CalGW(1U, S,X,W) , 1B ← CalGB(1U) , 1T ← CalGT (1U,U, S) // Calculate gradient of parameters by Equations

(10)–(9) and (13).
Rewiring:

13: M← CalM(1W,M) // Calculate gradient momentum by Equation (15).
14: Prun← CalPrun(W) , Grow← CalGrow(M,Coor) // Pruning and growth by Equations (14)–(15).
15: Mask = (W! = 0) and Prun or Grow // Calculate mask of synapse by logical operation.
16: W : = Mask ·W , 1W : = Mask ·1W // Mask the weight and gradient.

Updating:
17: UpdateW, B and T with optimization algorithm such SGD, Adam or AdamW.
18: W ∈ [−Uth,+Uth] , B ∈ [−Uth,+Uth] , T ∈ [0, 1] // Clamp parameters.

FIGURE 5 | The principle of (A) rate coding and (B) rank order coding, and the spike sequence of an MNIST image after coding.

band-pass and composite characteristics according to different
filter effects. The left of Figure 6C shows the spike output of
the recurrent layer and its influence on the prediction result. All
neurons have a positive effect (green) on the prediction results,
except for neuron 11 marked by the black box. In addition,
neurons 0, 10, and 15 make more contributions, revealing that
the corresponding frequency features are more important for
predicting this class. Figure 6D is the spike output of the hidden
layer. The role of this layer is the feature mapping before
prediction. All neurons also make a positive effect except for
one neuron. The final prediction result (Figure 6E) is the spike
sum of 5 output neurons and is normalized to probability. It
can be seen that the SNN makes the correct prediction for a
normal heartbeat.

4.2. Algorithm Efficiency
The runtime and memory overhead reflect the efficiency of
the algorithm, the accuracy and convergence epoch number
prove its effectiveness. The proposed BPSR is compared with the
other three SNN gradient descent algorithms, namely DECOLLE,
STBP, and graph-based STBP (G-STBP) (Yan et al., 2021a). The
four algorithms are all implemented based on PyTorch and
accelerated by the GPU to get a fair comparison. The MNIST
is encoded by rate coding as the time window T and the
learning batch size is set to 32. The SNN model is a three-layer
multilayer perceptron (MLP), where the size of the input layer
is 784 and the output layer is 10. The number of neurons in
the hidden layer (N 1) is a variable in the experiment. Figure 7
shows the algorithm runtime of a single epoch, the graphic

Frontiers in Neuroscience | www.frontiersin.org 8 April 2022 | Volume 16 | Article 760298

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yan et al. BPSR for SNN Learning

FIGURE 6 | Visualization of LC sampling and each layer of SNN. (A) The structure of the SNN model. (B) The ECG signal and the input spikes after LC sampling. (C)

Output spikes and corresponding FR response curves of 18 neurons in the recurrent layer. The coordinates of the spikes represent the occurrence time and the

neuron index. The color indicates the impact on the prediction result, where green is positive and red is negative. Response curves are plotted channel-by-channel.

The x-axis and y-axis are the input and output FR, respectively. The 18 neurons are classified according to the filter effect, and the corresponding neuron index is

marked in gray number. The output spikes of the hidden layer are drawn on (D), and the predicted probability for the 5 ECG classes is shown on (E).

memory overhead on the GPU, the accuracy with rate coding in
different situations, and the number of epochs required for SNN
learning to reach convergence. It can be seen that G-STBP has the
smallest runtime in any case, also accompanied by the highest
memory overhead. G-STBP describes the network as a whole
adjacency graph. This allows backpropagation to be carried out
on the entire network together instead of layer by layer, but the
inter-layer connection is expressed as zero resulting in memory
overhead. BPSR simplifies the storage and calculation burden of
intermediate quantities through iterative calculations, bringing
faster runtime (2.1× than STBP) and smaller memory overhead.
BPSR also achieves the highest accuracy in all cases, with the
second most convergence epoch, verifying its effectiveness.

4.3. Spiking Sparsity and Synaptic Sparsity
The effect of spiking sparsity regularization is tested on the
MNIST dataset encoded by rank order. The used SNN model
is rMLP of “r1000 - fc100 - fc10.” The accuracy and average FR
of the test set are counted under different spiking regularization
coefficients λs. The count of FR excludes the input spike

because it is controlled by the encoding method rather than
the regularization. It can be seen from Figure 8A that FR
decreases as the spiking regularization coefficient λs increases.
Spiking regularization forces SNN to express information with
fewer spikes. Through appropriate λs, the SNN can achieve
high accuracy with low computation overhead in the inference.
Moreover, the accuracy is improved with the decrease of FR when
λs ∈ [0, 10−7]. One reason is that SNN learning is a process of
FR reduction. As shown in Figure 8B, the accuracy and FR are
approximately inversely related during the learning process. SNN
learns important features by suppressing redundant information.
Setting a high initial threshold (Uth = 10) causes the FR to
increase first and then become an inversely proportional learning
process. Inappropriately high threshold (Uth = 12) can even lead
to network divergence. The learning curve in Figure 8C verifies
that spiking regularization can prevent overfitting. Under the
same training error, the SNN with spike regularization achieves
improved test accuracy and shows better generalization.

The effect of synaptic sparsity regularization is tested on the
gas sensor dataset and the learned SNN structure is compared

Frontiers in Neuroscience | www.frontiersin.org 9 April 2022 | Volume 16 | Article 760298

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yan et al. BPSR for SNN Learning

FIGURE 7 | (A) Runtime, (B) graphic memory overhead, (C) accuracy, and (D) convergence epoch of four learning algorithms are counted under the different number

of hidden layer neurons N 1. Panels (E–H) are the corresponding indicator under the different length of time window T.

with the nervous system of Caenorhabditis elegans (C. elegans).
The neuron connection graph of C. elegans has been fully studied
(Cook et al., 2019). The hermaphrodite and the male have 302
neurons and 385 neurons, respectively. 83 sensory neurons and
81 interneurons are the same for all genders. The tested SNN
model is “r81 - fc36 - fc10.” The input layer and the first hidden
layer have a similar number of neurons as the C. elegans, which is
convenient for structural comparison. SNN learns under synaptic
regularization coefficient λw = 0.01. The line in Figure 8D shows
the number of synapses in the input layer and the first hidden
layer. The point cloud plots the network structure (topological
connection) during the rewiring process. After 117 epochs, the
network can be 8× in the recurrent layer. In Figure 8E, the above
network obtained by rewiring is re-initialized to evaluate the
convergence speed. SNN with the same number of synapses but a
random structure is also tested. Experiment shows that the SNN
without rewiring will reach the lowest error 4 epochs earlier than
the SNN with rewiring. SNN with random structures has higher
errors, demonstrating the effect of rewiring.

The efficacy of rewiring is further verified by significance
profile (SP) (Milo et al., 2004), a method of analyzing the
similarity of network structure. It measures the structural
characteristics of the network by comparing the number of
occurrences of different induced subgraphs (i.e., motifs) in the
network. The possible connection modes between the three
nodes are used as 13 motifs. A set of random networks is
generated as the reference based on the degree sequence of

the network to be tested. The numbers of occurrences of 13
motifs in the network to be tested and the random network set
are recorded as the 13-dimensional vector Ntest and vector set
Nrand, respectively. The SP is the vector normalization of (Ntest−
Nrand)/std(Nrand). The SP of hermaphrodite (herm) and male C.
elegans, and the SP of SNN before and after learning are plotted
in Figure 8F. It can be seen that the hermaphrodite and the male
C. elegans have the same structural characteristics. After BPSR
learning, the structure of SNN is more similar to the nervous
system of C. elegans, which means that the rewiring mechanism
can generate an effective and bionic network structure.

4.4. Evaluation of Performance
Table 2 provides the network structure and hyper-parameters
used in the various experiments below. Convolutional indicator
“8c5/2” means kernel size 5, output channel 8 and stride 2.
“r” and “fc” denote the recurrent layer and the fully connected
layer, respectively. [·] means a residual block (He et al., 2016).
For convolutional neurons, τ is homogeneous and shared while
learning. For neurons in other layers, τ is heterogeneous.

4.4.1. MNIST Dataset

Table 3 shows the comparison results of the proposed BPSR
and related SNN works on the MNIST dataset. The pooling
is taken into account of the number of synapses, and shared
weight in the convolution is repeatedly added. The introduction
of recurrent layers enhances accuracy but brings additional

Frontiers in Neuroscience | www.frontiersin.org 10 April 2022 | Volume 16 | Article 760298

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yan et al. BPSR for SNN Learning

FIGURE 8 | (A) The test accuracy and FR under different spiking regularization coefficients λs. (B) Accuracy and FR change law in the learning process. (C) Learning

curves under different λs (after smoothing filtering). (D) The number of synapses and network structure changes in the recurrent layer. (E) The learning curve with and

without rewiring mechanism (after smoothing filtering). (F) Significance profile of C. elegans nervous system and the gas sensor network.

TABLE 2 | SNN structures and hyper-parameters setup.

Structure

MNIST 8c5/2 - 16c3/2 - r100 - fc10

N-MNIST 4c5/2 - 16c3/2 - 32c3 - r100 - fc10

CIFAR10 64c7/2 -
[128c3

128c3

]

-
[256c3/2

256c3

]

-
[512c3/2

512c3

]

-
[1024c3/2

1024c3

]

- fc1024 - fc10

MIT-BIH
r256 - fc96 - fc18 (18 classes)

r192 - fc64 - fc5 (5 classes)

Gas sensor r128 - fc64 - fc10

Hyper-parameter

Potential threshold Uth = 1

Leakage coefficient τ = 0.5 (initial). Homogeneous for conv, otherwise heterogeneous.

Coefficient of g(·) α = 0.7

Learning rate CIFAR10: lr = 10−3, otherwise: 10−2

Sparsity coefficient CIFAR10: λs = 10−9/10−8, otherwise: 10−7; λw = 10−2

Rewiring parameter 2w = 10−2; 2m = 10−4; µm = 5; βm = 0.99

overhead, which is further improved by sparsity regularization.
Compared to other sparse networks using pruning, the proposed
BPSR acquired the least number of synapses, with the best
spiking sparsity except for G-STBP. Floating-point operations
(FLOPs) show the computational overhead of SNN in the
learning and inference process. Conversion-based algorithm
(Diehl et al., 2015) learns parameters through ANN, avoiding the

backpropagation in the time window. It has the lowest learning
FLOPs and high accuracy (the conversion cost is underlined
and only occurs once after learning). Plasticity-based algorithm
is generally considered to be efficient due to local learning
rules. However, Diehl and Cook (2015) used a large network to
improve the accuracy, resulting in the learning burden. Gradient-
based algorithms have high backpropagation overhead but also

Frontiers in Neuroscience | www.frontiersin.org 11 April 2022 | Volume 16 | Article 760298

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yan et al. BPSR for SNN Learning

TABLE 3 | Comparison of different spiking models on MNIST dataset.

Coding Pruning Model Synapses Spikes
FLOPs / sample

Accuracy (%)

learning inference

Diehl et al. (2015) Rate ×
MLP 2.4M 10.0K* 24.0+7.2M* 6.3M* 98.6

CNN 1.4M 14.7K* 7.5+2.9M* 2.0M* 99.1

Diehl and Cook (2015) Rate × rMLP 46.0M 2.3K 74.7M 15.0M 95.0

Wu et al. (2018) Rate ×
MLP 0.6M 6.7K* 78.9M* 2.6M* 98.89

CNN 1.4M 41.4K* 162.3M* 5.1M* 99.42

Yan et al. (2021a) Rank × rMLP 0.3M 392 17.3M 84.5K 97.3

Tang et al. (2020) Rank × CNN 0.6M ——— N/A** ——— 90.2

Comşa et al. (2021) Rank × MLP 0.3M ——— N/A** ——— 97.96

Shi et al. (2019) Rate
√

MLP 0.2M ——— N/A** ——— 94.05

Guo et al. (2020) Rate
√

rMLP 0.5M ——— N/A** ——— 88.71

Liang et al. (2021) Rank
√

MLP 0.4M ——— N/A** ——— 96

BPSR (this work) Rank

× CNN 98K 859

10.1M

86.8K 97.56

× rCNN 0.1M 2.6K 0.19M 98.43
√

rCNN 73K 542 67.6K 98.33

*The result is estimated based on the open source code.

**Data is not available (N/A) due to the lack of experimental result and source code. The bold values mark our metrics for this work.

FIGURE 9 | Accuracy, operations, normalized energy consumption, and parameter size of different networks. The area of the circle represents the storage overhead

of the parameters. The y-coordinate of the center represents the network accuracy. The x-coordinate represents (A) the number of operations and (B) the energy

consumption of each inference. The proportions of different operations are marked in (A). Additionally, the x-axis of (a) is folded and the x-axis of (B) is logarithmic.

bring performance optimization. Wu et al. (2018) and Yan et al.
(2021a) have improved the SNN with the goal of better accuracy
and sparser spikes, respectively. The proposed BPSR achieves
a low learning overhead due to its extremely sparse network.
Moreover, rank order coded data has a higher learning difficulty
due to sparse temporal representation. The accuracy of BPSR
is only 0.8–1.1% lower than rate coding, with a 30× inference
overhead advantage.

Networks such as BNN and AdderNet improve energy
efficiency by reducing computational overhead, which is similar

to SNN. We also compare the performance of the proposed
BPSR and other ANN in Figure 9. The network structure used
is LeNet5 and their variant. As mentioned in the original work,
batch normalization (BN) (Ioffe and Szegedy, 2015) is introduced
to improve accuracy. The involved operations include floating-
point multiplication (FL-MUL), floating-point addition (FL-
ADD), fixed-point addition (FI-ADD), and bitwise operation
(BIT-OP). The network energy consumption in inference is
counted by normalization. FL-ADD is considered as unit
overhead. FL-MUL is estimated to be 4× of floating-point

Frontiers in Neuroscience | www.frontiersin.org 12 April 2022 | Volume 16 | Article 760298

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yan et al. BPSR for SNN Learning

TABLE 4 | Comparison of different spiking models on N-MNIST dataset.

Model T Synapses Accuracy (%)

Wu et al. (2018) MLP 30 1.9M 98.78

Jin et al. (2018) MLP N/A* 1.9M 98.93

Wu et al. (2019) CNN 30 202.4M 99.53

Vaila et al. (2019) Mixed CNN + SVM N/A* 0.98M 98.32

Kaiser et al. (2020) CNN 300 315.5M 99.04

BPSR (this work)
CNN

20
0.26M 99.15

rCNN 0.26M 99.21

*Data is not available (N/A) due to the lack of result reports. The bold values mark our

metrics for this work.

addition (Cheng et al., 2019), and FI-ADD is estimated to be
20% of FL-ADD (Finnerty and Ratigner, 2017). The overhead of
BIT-OP is negligible.

Under the same structure, AdderNet reduces the
computational cost by approximating multiplication by addition.
BNN and XNOR-Net further reduce storage burden and energy
overhead through bitwise operations. The proposed BPSR
achieves optimized energy consumption through lightweight
structure and sparse spike while ensuring accuracy. PTQ
quantizes the parameters of SNN to 8-bit or 4-bit, and further
uses fixed-point addition and bitwise right shift instead of
floating-point addition and floating-point multiplication to
reduce the energy cost. After PTQ, the proposed BPSR reaches
15 ∼ 60× energy efficiency than BNN or XNOR-Net, with a
0.22–0.61% accuracy drop of unquantized SNN.

4.4.2. N-MNIST Dataset

Table 4 shows the comparison of N-MNIST. Event-driven N-
MNIST is usually converted to frame-based data. Time step T
matches the time length of the frame sequence. Most networks
take few time steps, except Kaiser et al. (2020) which uses 60
steps to warm up the network and 240 steps to learn and infer.
Kaiser et al. (2020) uses a shallow network, but the readout
layer followed by each regular layer greatly increases the synaptic
overhead. The network used by Vaila et al. (2019) is a mixture
of ANN and SNN, and the prediction results are given by SVM.
Wu et al. (2019) uses the deepest network and most synapses
to get the best accuracy. BPSR has minimal synaptic overhead
and achieves the second-best accuracy. Introducing a recurrent
layer improves the accuracy in the case where the number of tiny
synapses grows, proving that the recurrent structure is useful for
frame sequence processing.

4.4.3. CIFAR10 Dataset

We applied the residual SNN on CIFAR10 to verify the
performance of the BPSR on the deep model. Table 5 compares
BPSR with other SNN works. Sengupta et al. (2019) achieves
the best accuracy on VGG16 with a conversion-based learning
algorithm. However, the conversion takes 2500 time steps to
rate encoding, much higher than other methods. Wu et al.
(2019) uses a gradient-based learning algorithm to achieve high
accuracy while keeping small time steps. Although in the work of

TABLE 5 | Comparison of different spiking models on CIFAR10 dataset.

Model T Synapses Spikes Accuracy

(%)

Cao et al. (2015) 5-layer CNN 400 5.7M N/A* 77.43

Wu et al. (2018) 4-layer CNN N/A* 2.9M N/A* 50.7

Wu et al. (2019) 8-layer CNN 12 519.8M N/A* 90.53

Sengupta et al.

(2019)

VGG16 2500 315.5M N/A* 91.55

Allred et al. (2020) LeNet5 N/A* 0.66M 89.9K 66.45

BPSR (this work) 11-layer ResNet
12

260.7M
136.1K (λs = 10−9) 90.74

8 89.6K (λs = 10−8) 90.24

*Data is not available (N/A) due to the lack of result reports. The bold values mark our

metrics for this work.

TABLE 6 | Comparison of different spiking models on MIT-BIH dataset.

Model T Synapses Accuracy (%)

Kolağasioğlu (2018) wavelet + rMLP N/A* N/A* 95.5 (17 classes)

Corradi et al. (2019) rMLP + SVM 250 25.6K 95.6 (18 classes)

Amirshahi and

Hashemi (2019)

rMLP 300 968.0K 97.9 (4 classes)

Bauer et al. (2019) rMLP N/A* 34.8K 97.3 (2 classes)

Wu et al. (2020) GRU + MLP N/A* 20.8K 97.8 (5 classes)

Yan et al. (2021b) CNN 180 184.3K 90 (4 classes)

BPSR (this work) rMLP 40
15.3K 97.82 (18 classes)

10.4K 98.41 (5 classes)

*Data is not available (N/A) due to the lack of result reports.

Allred et al. (2020), the accuracy of SNN is limited by the network
size, the sparsity resulting from regularization is further explored.
We test BPSR on an 11-layer residual network composed of 4
residual blocks. The number of synapses is less than that of other
deep networks. The proposed BPSR can reach 90.24% accuracy
with the same number of spikes as Allred et al. (2020), or achieve
the accuracy of 90.74% with 50% additional spike overhead.

4.4.4. MIT-BIH Dataset

Table 6 are the comparison results between BPSR and related
spiking models on the MIT-BIH dataset. Most of the work
introduces recurrent structures such as lateral inhibition to
process temporal signals. In addition, Kolağasioğlu (2018) use
wavelet transform for signal preprocessing, Wu et al. (2020)
adopt the gated recurrent unit (GRU), and Corradi et al.
(2019) use the support vector machine (SVM) for prediction.
These make the implementation no longer pure SNN. MIT-BIH
dataset contains various ECG arrhythmia types with a long-tailed
distribution. The classification of the fewer sample has a higher
learning difficulty. Most works achieve 2-5 classification tasks
by selecting subsets and merging certain classes. Kolağasioğlu
(2018) and Corradi et al. (2019) take 17 or 18 classes for fine-
grained classification. Thus, we used the two models 18 classes
and 5 classes. BPSR can make inferences from the compressed
time window (T = 40), which is more efficient. The proposed

Frontiers in Neuroscience | www.frontiersin.org 13 April 2022 | Volume 16 | Article 760298

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yan et al. BPSR for SNN Learning

TABLE 7 | Comparison of different models on gas senor dataset.

Model T Synapses Accuracy (%)

Vergara et al. (2013) SVM – – 87.14–96.55

Imam and Cleland (2020) EPL 16 55.4K 92

BPSR (this work) rMLP 16 7.7K 98.30

− The indicator is not applicable.

BPSR achieves the highest accuracy in fine-grained classification
and coarse-grained classification. With the proposed sparsity
regularization, the learned models under different classification
tasks both achieve optimal synaptic sparsity.

4.4.5. Gas Sensor Dataset

Table 7 shows the comparison results of BPSR and related works
on the gas sensor dataset. Vergara et al. (2013) use the SVM
method to obtain high accuracy. Imam and Cleland (2020)
implement the spiking method on Loihi through the external
plexiform layer (EPL) structure. Although this method does not
perform well in network accuracy, the reported results show
high robustness and biological inspiration. BPSR achieves better
accuracy and synaptic overhead than related works. At the same
time, the proposed SNN with sparsity regularization only needs
762 spikes per sample to achieve the inference.

5. DISCUSSION

SNN promises to realize efficient AI through its brain-
inspired mechanism and spike-driven computing architecture.
However, the efficiency advantage of the SNN cannot be fully
exploited because of the lack of sparsity exploration. This
work provides a learning algorithm, namely Backpropagation
with Sparsity Regularization (BPSR), to improve efficiency
through advanced spiking sparsity and synaptic sparsity. Firstly,
a backpropagation algorithm with sparsity regularization is
proposed to update parameters and improve sparsity. A
heterogeneous LIF neuron dynamics model and a classification
loss function with spiking and synaptic regularization are
defined. The backpropagation algorithm of the flat and recurrent
layer is detailed to calculate the gradient of each parameter.
Secondly, the rewiring mechanism based on weight and gradient
is proposed to improve synaptic sparsity through pruning

and growth. Then, the experimental results show that the
proposed BPSR has the advantages of runtime and graphic
memory overhead compared with other gradient-based learning
algorithms. The improved spiking sparsity can balance the
accuracy and FR, and promotes the network performance
by simplifying the information representation. Through the
BPSR, SNN acquires a structure similar to the nervous system
of C. elegans, proving its effectiveness. The proposed BPSR
reaches the accuracy of 98.33% on the MNIST dataset while
achieving 30× inference overhead than other SNN work
and 15× energy efficiency compared to BNN after PTQ
(with 0.22% accuracy drop). Finally, BPSR is also evaluated
on two visual datasets (N-MNIST and CIFAR10) and two
sensor datasets (MIT-BIH and gas sensor). The experimental
results show comparable or superior accuracy (99.21, 90.74,
98.41, and 98.30%, respectively), with spiking sparsity and
synaptic sparsity.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

YY proposed the idea and did the math and engineering
work. YY, HC, and YJ designed the experiments
and wrote the first draft of the manuscript. YH, ZZ,
and LZ directed the projects and provided overall
guidance. ZZ and LZ provided the supervision
and project administration. All authors contributed
to manuscript revision, read, and approved the
submitted version.

FUNDING

This work was supported in part by the National Natural
Science Foundation of China under Grants 61876039,
62076066, 62004045, and 92164301, Shanghai Municipal
Science and Technology Major Projects Nos. 2021SHZDZX0103,
2018SHZDZX01, 17DZ2260900, and NSFC-STINT project
No. 62011530132.

REFERENCES

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P.,

et al. (2015). Truenorth: Design and tool flow of a 65 mw 1 million neuron

programmable neurosynaptic chip. IEEE Trans. Comput. Aided Design Integr.

Circ. Syst. 34, 1537–1557. doi: 10.1109/TCAD.2015.2474396

Allred, J. M., Spencer, S. J., Srinivasan, G., and Roy, K. (2020). Explicitly trained

spiking sparsity in spiking neural networks with backpropagation. arXiv

[Preprint]. arXiv:2003.01250. Available online at: https://arxiv.org/pdf/2003.

01250.pdf (accessed March 2, 2020).

Amirshahi, A., and Hashemi, M. (2019). ECG classification algorithm based

on STDP and R-STDP neural networks for real-time monitoring on ultra

low-power personal wearable devices. IEEE Trans. Biomed. Circ. Syst. 13,

1483–1493. doi: 10.1109/TBCAS.2019.2948920

Bartol, T. M. Jr., Bromer, C., Kinney, J., Chirillo, M. A., Bourne, J. N., Harris, K.

M., et al. (2015). Nanoconnectomic upper bound on the variability of synaptic

plasticity. eLife, 4:e10778. doi: 10.7554/eLife.10778

Bauer, F. C., Muir, D. R., and Indiveri, G. (2019). Real-time ultra-low power

ECG anomaly detection using an event-driven neuromorphic processor.

IEEE Trans. Biomed. Circ. Syst. 13, 1575–1582. doi: 10.1109/TBCAS.2019.29

53001

Białas, M., and Mańdziuk, J. (2021). Spike-timing-dependent plasticity with

activation-dependent scaling for receptive fields development. IEEE Trans.

Neural Netw. Learn. Syst. 1–14. doi: 10.1109/TNNLS.2021.3069683

Frontiers in Neuroscience | www.frontiersin.org 14 April 2022 | Volume 16 | Article 760298

https://doi.org/10.1109/TCAD.2015.2474396
https://arxiv.org/pdf/2003.01250.pdf
https://arxiv.org/pdf/2003.01250.pdf
https://doi.org/10.1109/TBCAS.2019.2948920
https://doi.org/10.7554/eLife.10778
https://doi.org/10.1109/TBCAS.2019.2953001
https://doi.org/10.1109/TNNLS.2021.3069683
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yan et al. BPSR for SNN Learning

Cao, Y., Chen, Y., and Khosla, D. (2015). Spiking deep convolutional neural

networks for energy-efficient object recognition. Int. J. Comput. Vis. 113, 54–66.

doi: 10.1007/s11263-014-0788-3

Chen, H., Wang, Y., Xu, C., Shi, B., Xu, C., Tian, Q., et al. (2020). “AdderNet: do we

really need multiplications in deep learning?” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (Virtual), 1468–1477.

doi: 10.1109/CVPR42600.2020.00154

Cheng, Z., Wang, W., Pan, Y., and Lukasiewicz, T. (2019). Distributed low

precision training without mixed precision. arXiv preprint arXiv:1911.07384.

Available online at: https://arxiv.org/pdf/1911.07384

Cho, S.-G., Beigné, E., and Zhang, Z. (2019). “A 2048-neuron spiking neural

network accelerator with neuro-inspired pruning and asynchronous network

on chip in 40nm CMOS,” in 2019 IEEE Custom Integrated Circuits Conference

(CICC) (Austin, TX: IEEE), 1–4. doi: 10.1109/CICC.2019.8780116

Comşa, I.-M., Potempa, K., Versari, L., Fischbacher, T., Gesmundo, A., and

Alakuijala, J. (2021). Temporal coding in spiking neural networks with alpha

synaptic function: learning with backpropagation. IEEE Trans. Neural Netw.

Learn. Syst.

Cook, S. J., Jarrell, T. A., Brittin, C. A., Wang, Y., Bloniarz, A. E., Yakovlev, M. A.,

et al. (2019). Whole-animal connectomes of both Caenorhabditis elegans sexes.

Nature 571, 63–71. doi: 10.1038/s41586-019-1352-7

Corradi, F., Pande, S., Stuijt, J., Qiao, N., Schaafsma, S., Indiveri, G., et al.

(2019). “ECG-based heartbeat classification in neuromorphic hardware,” in

2019 International Joint Conference on Neural Networks (IJCNN) (Budapest:

IEEE), 1–8. doi: 10.1109/IJCNN.2019.8852279

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.

(2018). Loihi: a neuromorphic manycore processor with on-chip learning. IEEE

Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

Dempsey, W. P., Du, Z., Nadtochiy, A., Smith, C. D., Czajkowski, K., Andreev,

A., et al. (2022). Regional synapse gain and loss accompany memory

formation in larval zebrafish. Proc. Natl. Acad. Sci. U.S.A. 119, e2107661119.

doi: 10.1073/pnas.2107661119

Diehl, P. U., and Cook, M. (2015). Unsupervised learning of digit recognition

using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9, 99.

doi: 10.3389/fncom.2015.00099

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S.-C., and Pfeiffer, M. (2015). “Fast-

classifying, high-accuracy spiking deep networks through weight and threshold

balancing,” in 2015 International Joint Conference on Neural Networks (IJCNN)

(Killarney: IEEE), 1–8. doi: 10.1109/IJCNN.2015.7280696

Ding, C., Huan, Y., Jia, H., Yan, Y., Yang, F., Zou, Z., et al. (2021). “An

ultra-low latency multicast router for large-scale multi-chip neuromorphic

processing,” in 2021 IEEE 3rd International Conference on Artificial

Intelligence Circuits and Systems (AICAS) (Washington, DC: IEEE), 1–4.

doi: 10.1109/AICAS51828.2021.9458445

Finnerty, A., and Ratigner, H. (2017). Reduce Power and Cost by Converting From

Floating Point to Fixed Point. Available online at: https://japan.xilinx.com/

support/documentation/white_papers/wp491-floating-to-fixed-point.pdf

Frenkel, C., Bol, D., and Indiveri, G. (2021). Bottom-up and top-down neural

processing systems design: neuromorphic intelligence as the convergence of

natural and artificial intelligence. arXiv preprint arXiv:2106.01288. Available

online at: https://arxiv.org/pdf/2106.01288

Guo, W., Yantır, H. E., Fouda, M. E., Eltawil, A. M., and Salama, K.

N. (2020). Towards efficient neuromorphic hardware: unsupervised

adaptive neuron pruning. Electronics 9, 1059. doi: 10.3390/electronics

9071059

He, K., Zhang, X., Ren, S., and Sun, J. (2015). “Delving deep into rectifiers:

surpassing human-level performance on imagenet classification,” in Proceedings

of the IEEE International Conference on Computer Vision (Santiago),

1026–1034. doi: 10.1109/ICCV.2015.123

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image

recognition,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (Las Vegas, NV), 770–778. doi: 10.1109/CVPR.2016.90

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and Bengio, Y. (2016).

“Binarized neural networks,” in Advances in Neural Information Processing

Systems, Vol. 29, eds D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett

(Barcelona: MIT Press).

Imam, N., and Cleland, T. A. (2020). Rapid online learning and robust

recall in a neuromorphic olfactory circuit. Nat. Mach. Intell. 2, 181–191.

doi: 10.1038/s42256-020-0159-4

Ioffe, S., and Szegedy, C. (2015). “Batch normalization: accelerating deep network

training by reducing internal covariate shift,” in International Conference on

Machine Learning (Lille: PMLR), 448–456.

Jin, Y., Zhang, W., and Li, P. (2018). Hybrid macro/micro level backpropagation

for training deep spiking neural networks. Adv. Neural Inf. Process. Syst.

31, 1–11. Available online at: https://proceedings.neurips.cc/paper/2018/file/

3fb04953d95a94367bb133f862402bce-Paper.pdf

Kaiser, J., Mostafa, H., and Neftci, E. (2020). Synaptic plasticity dynamics

for deep continuous local learning (DECOLLE). Front. Neurosci. 14, 424.

doi: 10.3389/fnins.2020.00424

Kim, S., Park, S., Na, B., and Yoon, S. (2020). “Spiking-YOLO: spiking

neural network for energy-efficient object detection,” in Proceedings of the

AAAI Conference on Artificial Intelligence (New York, NY), 11270–11277.

doi: 10.1609/aaai.v34i07.6787

Kingma, D. P., and Ba, J. (2014). Adam: amethod for stochastic optimization. arXiv

preprint arXiv:1412.6980. Available online at: https://arxiv.org/pdf/1412.6980

Kolağasioğlu, E. (2018). Energy efficient feature extraction for single-lead ECG

classification based on spiking neural networks (Master thesis). Delft University

of Technology, Delft, Netherlands.

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images.

Available online at: https://www.cs.toronto.edu/~kriz/learning-features-2009-

TR.pdf

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based

learning applied to document recognition. Proc. IEEE 86, 2278–2324.

doi: 10.1109/5.726791

Liang, M., Zhang, J., and Chen, H. (2021). “A 1.13 µJ/classification spiking neural

network accelerator with a single-spike neuron model and sparse weights,” in

2021 IEEE International Symposium on Circuits and Systems (ISCAS) (Daegu:

IEEE), 1–5. doi: 10.1109/ISCAS51556.2021.9401607

Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J., and Hinton, G.

(2020). Backpropagation and the brain. Nat. Rev. Neurosci. 21, 335–346.

doi: 10.1038/s41583-020-0277-3

Loshchilov, I., and Hutter, F. (2017). Decoupled weight decay regularization.

arXiv preprint arXiv:1711.05101. Available online at: https://arxiv.org/pdf/

1711.05101

Luo, L. (2021). Architectures of neuronal circuits. Science 373, eabg7285.

doi: 10.1126/science.abg7285

Marisa, T., Niederhauser, T., Haeberlin, A., Wildhaber, R. A., Vogel, R.,

Goette, J., et al. (2017). Pseudo asynchronous level crossing ADC for

ECG signal acquisition. IEEE Trans. Biomed. Circ. Syst. 11, 267–278.

doi: 10.1109/TBCAS.2016.2619858

Milo, R., Itzkovitz, S., Kashtan, N., Levitt, R., Shen-Orr, S., Ayzenshtat, I.,

et al. (2004). Superfamilies of evolved and designed networks. Science 303,

1538–1542. doi: 10.1126/science.1089167

Moody, G. B., and Mark, R. G. (2001). The impact of the MIT-BIH arrhythmia

database. IEEE Eng. Med. Biol. Mag. 20, 45–50. doi: 10.1109/51.932724

Mozafari, M., Kheradpisheh, S. R., Masquelier, T., Nowzari-Dalini, A., and

Ganjtabesh, M. (2018). First-spike-based visual categorization using reward-

modulated STDP. IEEE Trans. Neural Netw. Learn. Syst. 29, 6178–6190.

doi: 10.1109/TNNLS.2018.2826721

Nguyen, T. N. N., Veeravalli, B., and Fong, X. (2021). Connection pruning for

deep spiking neural networks with on-chip learning. (Knoxville, TN). arXiv

[Preprint]. arXiv: 2010.04351. Available online at: https://arxiv.org/pdf/2010.

04351.pdf (accessed July 31, 2021).

Orchard, G., Jayawant, A., Cohen, G. K., and Thakor, N. (2015). Converting

static image datasets to spiking neuromorphic datasets using saccades. Front.

Neurosci. 9:437. doi: 10.3389/fnins.2015.00437

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019).

Pytorch: An imperative style, high-performance deep learning library. Adv.

Neural Inform. Process. Syst. 32, 8026–8037.

Pei, J., Deng, L., Song, S., Zhao, M., Zhang, Y., Wu, S., et al. (2019). Towards

artificial general intelligence with hybrid Tianjic chip architecture. Nature 572,

106–111. doi: 10.1038/s41586-019-1424-8

Frontiers in Neuroscience | www.frontiersin.org 15 April 2022 | Volume 16 | Article 760298

https://doi.org/10.1007/s11263-014-0788-3
https://doi.org/10.1109/CVPR42600.2020.00154
https://arxiv.org/pdf/1911.07384
https://doi.org/10.1109/CICC.2019.8780116
https://doi.org/10.1038/s41586-019-1352-7
https://doi.org/10.1109/IJCNN.2019.8852279
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1073/pnas.2107661119
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1109/IJCNN.2015.7280696
https://doi.org/10.1109/AICAS51828.2021.9458445
https://japan.xilinx.com/support/documentation/white_papers/wp491-floating-to-fixed-point.pdf
https://japan.xilinx.com/support/documentation/white_papers/wp491-floating-to-fixed-point.pdf
https://arxiv.org/pdf/2106.01288
https://doi.org/10.3390/electronics9071059
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1038/s42256-020-0159-4
https://proceedings.neurips.cc/paper/2018/file/3fb04953d95a94367bb133f862402bce-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/3fb04953d95a94367bb133f862402bce-Paper.pdf
https://doi.org/10.3389/fnins.2020.00424
https://doi.org/10.1609/aaai.v34i07.6787
https://arxiv.org/pdf/1412.6980
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/ISCAS51556.2021.9401607
https://doi.org/10.1038/s41583-020-0277-3
https://arxiv.org/pdf/1711.05101
https://arxiv.org/pdf/1711.05101
https://doi.org/10.1126/science.abg7285
https://doi.org/10.1109/TBCAS.2016.2619858
https://doi.org/10.1126/science.1089167
https://doi.org/10.1109/51.932724
https://doi.org/10.1109/TNNLS.2018.2826721
https://arxiv.org/pdf/2010.04351.pdf
https://arxiv.org/pdf/2010.04351.pdf
https://doi.org/10.3389/fnins.2015.00437
https://doi.org/10.1038/s41586-019-1424-8
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yan et al. BPSR for SNN Learning

Rastegari, M., Ordonez, V., Redmon, J., and Farhadi, A. (2016). “XNOR-

Net: imagenet classification using binary convolutional neural networks,” in

European Conference on Computer Vision (Amsterdam: Springer), 525–542.

doi: 10.1007/978-3-319-46493-0_32

Rathi, N., Panda, P., and Roy, K. (2018). STDP-based pruning of connections

and weight quantization in spiking neural networks for energy-efficient

recognition. IEEE Trans. Comput. Aided Design Integr. Circ. Syst. 38, 668–677.

doi: 10.1109/TCAD.2018.2819366

Roy, K., Jaiswal, A., and Panda, P. (2019). Towards spike-based machine

intelligence with neuromorphic computing. Nature 575, 607–617.

doi: 10.1038/s41586-019-1677-2

Rueckauer, B., and Liu, S.-C. (2018). “Conversion of analog to spiking neural

networks using sparse temporal coding,” in 2018 IEEE International

Symposium on Circuits and Systems (ISCAS) (Florence: IEEE), 1–5.

doi: 10.1109/ISCAS.2018.8351295

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. (2019). Going deeper in

spiking neural networks: VGG and residual architectures. Front. Neurosci. 13,

95. doi: 10.3389/fnins.2019.00095

Shi, Y., Nguyen, L., Oh, S., Liu, X., and Kuzum, D. (2019). A soft-pruning method

applied during training of spiking neural networks for in-memory computing

applications. Front. Neurosci. 13, 405. doi: 10.3389/fnins.2019.00405

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,

et al. (2017). Mastering the game of go without human knowledge. Nature 550,

354–359. doi: 10.1038/nature24270

Stöckl, C., and Maass, W. (2021). Optimized spiking neurons can classify images

with high accuracy through temporal coding with two spikes.Nat. Mach. Intell.

3, 230–238. doi: 10.1038/s42256-021-00311-4

Tang, H., Cho, D., Lew, D., Kim, T., and Park, J. (2020). Rank order

coding based spiking convolutional neural network architecture with

energy-efficient membrane voltage updates. Neurocomputing 407, 300–312.

doi: 10.1016/j.neucom.2020.05.031

Tang, P. T. P., Lin, T.-H., and Davies, M. (2017). Sparse coding by spiking

neural networks: convergence theory and computational results. arXiv preprint

arXiv:1705.05475. Available online at: https://arxiv.org/pdf/1705.05475

Thorpe, S., and Gautrais, J. (1998). “Rank order coding,” in Computational

Neuroscience, ed J. M. Bower (Boston, MA: Springer), 113–118.

doi: 10.1007/978-1-4615-4831-7_19

Vaila, R., Chiasson, J., and Saxena, V. (2019). “Feature extraction using spiking

convolutional neural networks,” in Proceedings of the International Conference

on Neuromorphic Systems (Knoxville, TN), 1–8. doi: 10.1145/3354265.3354279

Vergara, A., Fonollosa, J., Mahiques, J., Trincavelli, M., Rulkov, N., and Huerta,

R. (2013). On the performance of gas sensor arrays in open sampling systems

using Inhibitory Support VectorMachines. Sens. Actuat. B Chem. 185, 462–477.

doi: 10.1016/j.snb.2013.05.027

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018). Spatio-

temporal backpropagation for training high-performance spiking

neural networks. Front. Neurosci. 12, 331. doi: 10.3389/fnins.2018.

00331

Wu, Y., Deng, L., Li, G., Zhu, J., Xie, Y., and Shi, L. (2019).

“Direct training for spiking neural networks: faster, larger,

better,” in Proceedings of the AAAI Conference on Artificial

Intelligence (Honolulu, HI), 1311–1318. doi: 10.1609/aaai.v33i01.330

11311

Wu, Y., Liu, Y., Liu, S., Yu, Q., Chen, T., and Liu, Y. (2020). Spike-driven

gated recurrent neural network processor for electrocardiogram arrhythmias

detection realised in 55-nm CMOS technology. Electron. Lett. 56, 1230–1232.

doi: 10.1049/el.2020.2224

Yan, Y., Chu, H., Chen, X., Jin, Y., Huan, Y., Zheng, L., et al. (2021a). “Graph-based

spatio-temporal backpropagation for training spiking neural networks,” in 2021

IEEE 3rd International Conference on Artificial Intelligence Circuits and Systems

(AICAS) (Washington, DC: IEEE), 1–4. doi: 10.1109/AICAS51828.2021.94

58461

Yan, Z., Zhou, J., and Wong, W.-F. (2021b). Energy efficient ECG classification

with spiking neural network. Biomed. Signal Process. Control 63, 102170.

doi: 10.1016/j.bspc.2020.102170

Zhang, W., and Li, P. (2019). Spike-train level backpropagation for training

deep recurrent spiking neural networks. Adv. Neural Inf. Process. Syst. 32, 1–

12. Available online at: https://web.ece.ucsb.edu/~lip/publications/ST-RSBP-

NeurIPS2019.pdf

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Yan, Chu, Jin, Huan, Zou and Zheng. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 16 April 2022 | Volume 16 | Article 760298

https://doi.org/10.1007/978-3-319-46493-0_32
https://doi.org/10.1109/TCAD.2018.2819366
https://doi.org/10.1038/s41586-019-1677-2
https://doi.org/10.1109/ISCAS.2018.8351295
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.3389/fnins.2019.00405
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/s42256-021-00311-4
https://doi.org/10.1016/j.neucom.2020.05.031
https://arxiv.org/pdf/1705.05475
https://doi.org/10.1007/978-1-4615-4831-7_19
https://doi.org/10.1145/3354265.3354279
https://doi.org/10.1016/j.snb.2013.05.027
https://doi.org/10.3389/fnins.2018.00331
https://doi.org/10.1609/aaai.v33i01.33011311
https://doi.org/10.1049/el.2020.2224
https://doi.org/10.1109/AICAS51828.2021.9458461
https://doi.org/10.1016/j.bspc.2020.102170
https://web.ece.ucsb.edu/~lip/publications/ST-RSBP-NeurIPS2019.pdf
https://web.ece.ucsb.edu/~lip/publications/ST-RSBP-NeurIPS2019.pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Backpropagation With Sparsity Regularization for Spiking Neural Network Learning
	1. Introduction
	2. Backpropagation With Sparsity Regularization
	2.1. Heterogeneous Leaky Integrate-and-Fire Model
	2.2. Loss Function With Sparsity Regularization
	2.3. Backpropagation in Flat Layer
	2.4. Backpropagation in Recurrent Layer
	2.5. Post-training Quantization

	3. Rewiring Based on Weight and Gradient
	4. Experimental Results
	4.1. Coding Method and Feature Visualization
	4.2. Algorithm Efficiency
	4.3. Spiking Sparsity and Synaptic Sparsity
	4.4. Evaluation of Performance
	4.4.1. MNIST Dataset
	4.4.2. N-MNIST Dataset
	4.4.3. CIFAR10 Dataset
	4.4.4. MIT-BIH Dataset
	4.4.5. Gas Sensor Dataset

	5. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	References

