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1 Introduction

Holographic techniques have provided new avenues for exploring the behavior of strongly

coupled quantum phases of matter. In recent years much of the focus has been on under-

standing the transport properties of models that may be in the same universality class of

strongly correlated electron systems, whose unconventional behavior is believed to be tied

to the richness and complexity of their phase diagram (see e.g. [1] for a recent review). A

particularly puzzling behavior is that of the linear temperature dependence of the electrical

resistivity R ∼ T displayed by many correlated electron metals, which is often associated

with the existence of an underlying quantum critical point (QCP). This strange metal be-

havior has been argued to be due to the fact that the temperature is the dominant energy

scale in the system, and therefore sets the scattering rate near a QCP, resulting in the

T -linear resistivity.
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A natural question is then whether the same argument applies to magneto-transport

phenomena in quantum critical systems, with the magnetic field behaving much like tem-

perature. Indeed, it has been shown recently [2, 3] that in the pnictide superconductor

BaFe2(As1−xPx)2 near its QCP the magnetic field h plays the same role as the tempera-

ture T , with the in-plane resistance described well by

RDC =
√

α̂ T 2 + η̂ h2 , (1.1)

where α̂, η̂ are constants which relate the scattering rate to the temperature and magnetic

field scales (see [2, 3] for more details). It is believed that in quantum critical metals h

and T compete with each other to set the scale of the scattering rate, and thus magnetic

fields provide yet another way to probe the unconventional linear resistivity of the strange

metal phase.

It was shown in [4] that the behavior (1.1) can be generated holographically by working

with a string-inspired Dirac-Born-Infeld (DBI) model, which can be thought of as a non-

linear realization of electrodynamics which encodes the low-energy dynamics of D-branes.

In particular, the result (1.1) is a special case of a broader class of allowed scaling behaviors,

which are realized by considering finite temperature backgrounds exhibiting hyperscaling

violation θ 6= 0 and a non-trivial dynamical exponent z 6= 1. A specific choice of exponents

z and θ then yields precisely (1.1).

However, the analysis of [4] was done in the probe approximation, building on the work

of [5, 6], in which the backreaction of the charge density and magnetic field on the geometry

is neglected. Indeed, in the probe DBI limit the charge degrees of freedom are subleading

as compared to the uncharged ones (the D-branes leave the background unchanged since

their backreaction is not taken into account). As a result, the coefficient of the momentum

conserving δ-function is hierarchically suppressed and the DC conductivity is finite even

though the system has translational invariance. However, once the full backreaction of

the DBI action is taken into account, the above probe description breaks down and one

recovers the usual infinite DC conductivity due to the presence of translational symmetry.

In this paper we are going to extend the results of [4–6] by going beyond the probe

limit and examining the effect of backreaction of the DBI action on the geometry. In

order to introduce momentum dissipation and ensure that the theory can lead to a finite

DC conductivity, we add axionic scalars [7], thus breaking translational invariance. The

axions are taken to depend on the spatial directions linearly, making the analysis tractable.

We will find new classes of solutions, including geometries that exhibit Lifshitz scaling and

hyperscaling violation, which can be associated with new quantum critical regimes. Armed

with these backgrounds, we will examine the implications on the transport properties

of the dual system. The question we are interested in is that of the role of the fully

non-linear effects encoded by the DBI interactions on the conductive properties — are

there any features inherent to the backreacted analysis that would be absent in the probe

approximation? Our focus will be on the interplay between temperature and magnetic

field, in the presence of momentum relaxation. We will find a very rich structure for the

resistivity that arises in this class of models.
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1.1 Summary of results

We have examined the behavior of the DC conductivity/resistivity matrix as a function

of the physical scales in the problem — temperature, charge density, magnetic field and

momentum dissipation1 — taking into account the full backreaction of the D-brane action

on the geometry. Axionic fields were used to break translational invariance and ensure mo-

mentum relaxation. A dilatonic scalar appropriately coupled to the DBI interaction term

was introduced to generate scaling solutions. We have found a highly complex and rich

structure for the magnetotrasport, given in expressions (3.20) (3.22), which simplifies some-

what in a number of limiting cases. In full generality, the dependence of the conductivity

matrix on the physical scales in the system and the couplings of the theory is significantly

more complicated than that of the probe DBI limit, which is summarized in (3.29).

In general the various contributions to the DC conductivity combine in a non-trivial

fashion — the terms associated with momentum relaxation of the charge carriers in the

system and those independent of the charge degrees of freedom are not added together in

a simple way. Thus, this provides an explicit example in which there is no clean separation

between coherent and incoherent contributions. The results of the probe DBI approxima-

tion are recovered in the limit of strong momentum dissipation, for which the contribution

of the DBI action to the geometry is negligible as compared to that of the axionic sector.

In the opposite limit of weak momentum relaxation, the conductivity tensor to leading

order is independent of temperature and of the details of the theory, as a consequence of

Lorentz invariance [19]. Only at next-to-leading order one finds non-trivial dependence on

T and the specific parameters of the model.

We have identified several classes of new, exact solutions to the theory and discussed

the physical constraints on the parameter space needed to have a well-defined holographic

ground-state. Depending on the theory parameters, these solutions can describe either

metallic or insulating phases. While they are valid everywhere in the geometry (they are

exact), when their UV asymptotics are not AdS we will interpret them as describing only

the IR of the geometry, in order to adopt the standard holographic AdS/CFT dictionary.

That they can be embedded in AdS (by making minor modifications to the scalar potential)

is by now well known.

When the dilatonic scalar is trivial, the exact black-brane geometries are associated

with a metal-insulator crossover, induced by varying the magnitude of the magnetic field.

On the other hand, a running dilatonic scalar leads to exact hyperscaling violating, Lifshitz-

like black brane solutions, which also exhibit either metallic or insulating behavior, depend-

ing on the range of parameters. For some of the simpler classes of scaling solutions we have

obtained, we find that the DC conductivity in the absence of magnetic field scales with

temperature as

σDC ∼ T
θ−4
z , (1.2)

yielding a linear resistivity RDC = 1/σDC ∼ T along the line θ + z = 4 which is allowed in

much of the physical parameter space of the theory. Interestingly, we have also identified

a somewhat simple hyperscaling violating solution with non-vanishing magnetic field, and

1Due to a scaling symmetry, only three of these four scales are actually physical.
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with θ = 4. For this solution the result (1.2) still applies and σDC is constant. Thus, this

special θ = 4 geometry sits at the edge of the insulating and metallic behavior seen in (1.2).

Moreover, for this dyonic case we observe a negative magnetoresistance, a feature which

is absent in the probe DBI limit. Exact solutions with non-zero magnetic field and more

arbitrary values of θ can also be identified, but are significantly more complicated. We

expect them to lead to a similarly rich structure for the magnetotransport, and leave their

analysis to future work.

The key message to take away from our analysis is that by taking into account back-

reaction, the transport behavior which can be realized in this theory is rich and highly

complex. Non-trivial classes of IR geometries can be easily constructed, which allow for a

wide range of scalings. They give rise to not only metallic or insulating behavior, but also

new magnetic field driven metal-insulator crossovers as well as a negative magnetoresis-

tance. In this paper we have only begun to explore the properties of these solutions, and

their implications for transport. We anticipate that disorder driven transitions (driven by

changing the magnitude k of the axionic scalars) may also be possible to realize in these

models, perhaps using new classes of black brane solutions. It would also be interesting to

construct the full geometries that interpolate between the IR solutions we have identified

and the AdS4 fixed point in the UV, and study their AC transport properties. We leave

the exploration of these questions to future studies. Before closing, we note that while we

were in the last stages of this project, the paper [8] appeared, whose conductivity analysis

for DBI Q-lattice models partially overlaps with our results.

The outline of the paper is as follows. Section 2 introduces our holographic DBI model

while section 3 contains the computation of the DC conductivity matrix and a discussion

of simple limiting cases. In section 4 we present exact black brane solutions for the case of

a trivial dilatonic scalar, and discuss the associated magnetic-field-induced metal-insulator

transition. Section 5 contains new exact hyperscaling violating and Lifshitz-like scaling

geometries and discusses the associated transport behavior. Finally, in appendix A we

include for complenetss the magnetotransport analysis for the simpler Born-Infeld theory.

2 The holographic setup

We consider a four-dimensional model describing gravity coupled to a neutral scalar field

φ, two axions ψI and an abelian gauge field Aµ, whose dynamics is described by the

DBI action,

S =

∫

d4x
√−g

[

R− 1

2
(∂φ)2 − V (φ)− Y (φ)

2

2
∑

I=1

(∂ψI)2

]

+ SDBI , (2.1)

with2 the DBI term

SDBI = −
∫

d4xZ1(φ)

[

√

− det(gµν + Z2(φ)Fµν)−
√

− det(gµν)

]

. (2.2)

2The second term in SDBI, which could have been incorporated into V (φ), is chosen to make it apparent

that in the weak flux limit F → 0 one recovers the standard gauge field kinetic term.
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The couplings Z1(φ), Z2(φ), Y (φ) are introduced to lead to non-trivial interactions between

the scalar sector and the gauge field. It is well known that dimensional reductions usually

involve several matter fields and non-trivial potentials for the lower-dimensional scalars.

It would be interesting to find an actual top-down construction in which the couplings of

the D-brane action are fixed uniquely (see, for example, [4]). However in this paper we

focus on a bottom-up approach and view (2.2) as an effective theory, without worrying

about its detailed string theory origin. In particular, we would like to see whether this

effective theory can lead to interesting behaviors for the magnetotransport of the putative

dual quantum system.

The equations of motion associated with the action (2.1) take the form

∇µ∇µφ− V ′(φ)− Y ′(φ)

2

2
∑

I=1

(∂ψI)2 − Z ′
1(φ)

[
√

− det(g + Z2(φ)F )

− det g
− 1

]

+
Z1(φ)Z

′
2(φ)

2

√

− det(g + Z2(φ)F )

− det g
(g + Z2(φ)F )

−1[µν]Fµν = 0 , (2.3)

∇µ

[

Z1(φ)Z2(φ)

√

− det(g + Z2(φ)F )

− det g
(g + Z2(φ)F )

−1[µν]

]

= 0 , (2.4)

∇µ

(

Y (φ)∇µψI
)

= 0 , (2.5)

Rµν −
1

2
Rgµν =

1

2

(

∂µφ∂νφ− 1

2
gµν(∂φ)

2

)

+
Y (φ)

2

2
∑

I=1

(

∂µψ
I∂νψ

I − 1

2
gµν(∂ψ

I)2
)

− 1

2
gµνV (φ) + TDBI

µν , (2.6)

with the DBI stress energy tensor TDBI
µν = − 1√

−g
δSDBI
δgµν given by

TDBI
µν = −Z1(φ)

2

√

− det(g + Z2(φ)F )

− det g
gµα(g + Z2(φ)F )

−1(αβ)gβν +
Z1(φ)

2
gµν . (2.7)

Here (g + Z2(φ)F )
−1µν is the inverse of (g + Z2(φ)F )µν , with the subscript ( ) denoting

the symmetric part (and [ ] the antisymmetric part). The current in the dual field theory,

evaluated at the boundary, reads

Jµ =
√−γ nν Z1(φ)Z2(φ)

√

− det(g + Z2(φ)F )

− det g
(g + Z2(φ)F )

−1[νµ]
∣

∣

∣

∂

= Z1(φ)Z2(φ)
√

− det(g + Z2(φ)F ) (g + Z2(φ)F )
−1[rµ]

∣

∣

∣

∂
,

(2.8)

The quantities γ and nµ in this expression are, respectively, the induced metric and outward

pointing normal vector at the asymptotically AdS boundary. Here we have used r to denote

the holographic radial direction.
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Assuming homogeneity and isotropy, the bulk metric and the matter fields take the

generic form,

ds2 = −D(r)dt2 +B(r)dr2 + C(r)(dx2 + dy2), φ = φ(r),

ψ1 = k x, ψ2 = k y, A = At(r) dt+
h

2
(xdy − ydx) ,

(2.9)

with h denoting the magnitude of the magnetic field. The axions depend on the spatial

coordinates linearly, which breaks translational invariance and gives rise to momentum

relaxation. Substituting the ansatz into (2.3)–(2.6), we obtain the following equations:

1√
BDC

(
√

D

B
Cφ′

)′

+
Ω

C
√
BD

Z ′
2(φ)

Z2(φ)

(

(C2 + 2h2Z2(φ)
2)A′2

t − h2BD
)

− Z ′
1(φ)

(

Z1(φ)Z2(φ)
2

ΩC
√
BD

− 1

)

− k2

C
Y ′(φ)− V ′(φ) = 0 , (2.10)

D′C ′

DC
+

1

2

C ′2

C2
− 1

2
φ′2 +BZ1(φ)

(

ΩC
√
BD

Z1(φ)Z2(φ)2
− 1

)

+
ΩB

√
BDh2

C
+
k2B

C
Y (φ) +BV (φ) = 0 , (2.11)

2C ′′

C
−
(

B′

B
+
C ′

C
+
D′

D

)

C ′

C
+ φ′2 = 0 , (2.12)

2D′′

D
− 2C ′′

C
−
(

B′

B
− C ′

C
+
D′

D

)

D′

D
+
B′C ′

BC

− 2Ω
√
BD

(

CA′2
t

D
+
Bh2

C

)

− 2k2B

C
Y (φ) = 0 , (2.13)

(Ω(C2 + h2Z2(φ)
2)A′

t)
′ = 0 , (2.14)

where for convenience we have introduced the function

Ω(r) =
Z1(φ)Z2(φ)

2

√

(C2 + h2Z2(φ)2)(BD − Z2(φ)2A′2
t )

. (2.15)

3 DC conductivities with a finite magnetic field

Next, we calculate the DC conductivities for our DBI model using the method developed

in [9, 10].3 We consider the following set of perturbations,

δgti = C(r)hti(r) , δgri = C(r)hri(r) ,

δAi = − Ei t+ ai(r), δψ1 = χ1(x), δψ2 = χ2(x) ,
(3.1)

with i = x, y, and further simplify our analysis by using diffeomorphisms to set

D(r) =
1

B(r)
. (3.2)

3Other studies on the transport coefficients based on Einstein-Maxwell-like theories in the presence of a

magnetic field can be found e.g. in [11–18].
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The vector equation (2.14) can be immediately integrated, leading to the radially indepen-

dent quantity

ρ = Ω(C2 + h2Z2(φ)
2)A′

t , (3.3)

which is nothing but the charge density J t in the dual field theory as defined in (2.8).

There are two constant fluxes that are provided by the perturbed vector equations,

∂rJ
x(r) = ∂rJ

y(r) = 0 , (3.4)

where

Jx(r) = −ΩCD(a′x + hhry)−
C2htx − hEyZ

2
2

C2 + h2Z2
2

ρ , (3.5)

Jy(r) = −ΩCD(a′y − hhrx)−
C2hty + hExZ

2
2

C2 + h2Z2
2

ρ , (3.6)

are both currents in the dual field theory. Since they are conserved along the radial

direction, they can be calculated anywhere in the bulk, with a particularly convenient

choice being the horizon.

The perturbation equations coming from Einstein’s equations (2.6) are

h′′tx +
2C ′

C
h′tx +ΩA′

t(a
′
x + hhry)−

1

CD

(

k2Y + h2Ω
)

htx −
hΩ

CD
Ey = 0 , (3.7)

h′′ty +
2C ′

C
h′ty +ΩA′

t(a
′
y − hhrx)−

1

CD

(

k2Y + h2Ω
)

hty +
hΩ

CD
Ex = 0 , (3.8)

kY χ′
1 +Ωh a′y −

ΩCA′
t

D
(Ex − hhty)−

(

k2Y +Ωh2
)

hrx = 0 , (3.9)

kY χ′
2 − Ωh a′x −

ΩCA′
t

D
(Ey + hhtx)−

(

k2Y +Ωh2
)

hry = 0 , (3.10)

while the axion equations (2.5) yield

χ′′
1 +

(

C ′

C
+
D′

D
+
Y ′φ′

Y

)

(χ′
1 − k hrx)− k h′rx = 0 , (3.11)

χ′′
2 +

(

C ′

C
+
D′

D
+
Y ′φ′

Y

)

(χ′
2 − k hry)− k h′ry = 0 . (3.12)

Notice that (3.11) and (3.12) are implied by the other equations.

Since we are interested in a background geometry with a regular horizon at r = rh,

we have

At = A′
t(rh)(r − rh) + . . . ,

D = D′(rh)(r − rh) + · · · = 4πT (r − rh) + . . . ,
(3.13)

while the constraint of regularity on the perturbation equations near rh demands the fol-

lowing expansions,

ai = − Ei

4πT
log(r − rh) + . . . , hti = Dhri + . . . ,

χ1 = χ1(rh) + . . . , χ2 = χ2(rh) + . . . .

(3.14)

– 7 –



J
H
E
P
1
0
(
2
0
1
7
)
1
3
3

The latter can be obtained by switching to the Eddington-Finklestein coordinate

v = t−
∫ r 1

D(z)
dz = t− 1

4πT
log(r − rh) + . . . , (3.15)

where we have demanded that v → −∞ as r → rh. Using the above regularity conditions,

we extract the horizon data for htx and hty from (3.9) and (3.10),

htx(rh) = − ρEx + hJy

k2C(rh)Y (φ(rh))
, hty(rh) = − ρEy − hJx

k2C(rh)Y (φ(rh))
. (3.16)

Substituting the relations above into (3.5) and (3.6) and using (3.14), we find

(

1 + h2Ω
k2Y

− Chρ
k2Y (C2+h2Z2

2 )
Chρ

k2Y (C2+h2Z2
2 )

1 + h2Ω
k2Y

)(

Jx

Jy

)

=





C
(

Ω+ ρ2

k2Y (C2+h2Z2
2 )

)

hρ
(

Ω
k2Y

+
Z2
2

C2+h2Z2
2

)

−hρ
(

Ω
k2Y

+
Z2
2

C2+h2Z2
2

)

C
(

Ω+ ρ2

k2Y (C2+h2Z2
2 )

)





(

Ex

Ey

)

, (3.17)

evaluated at the horizon r = rh. In these expressions the function Ω introduced in (2.15)

takes the form

Ω =
Z2

C2 + h2Z2
2

√

ρ2 + Z2
1Z

2
2 (C

2 + h2Z2
2 ) . (3.18)

Finally, relating the two currents Jx and Jy in the matrix equation (3.17) to the electric

fields Ex and Ey via

Jx = σxxEx + σxy Ey , Jy = σyxEx + σyy Ey , (3.19)

the DC conductivities can be easily extracted and are given by

σxx = σyy =
k2CY

[

Ω(h2Ω+ k2Y )(C2 + h2Z2
2 )

2 + C2ρ2
]

(h2Ω+ k2Y )2(C2 + h2Z2
2 )

2 + h2C2ρ2
,

σxy = −σyx

=
hρ[(h2Ω+ k2Y )2(h2Z4

2 + 2C2Z2
2 ) + (h2Ω+ k2Y )C4Ω+ C2ρ2 − C2k2Y (C2Ω+ k2Y Z2

2 )]

(h2Ω+ k2Y )2(C2 + h2Z2
2 )

2 + h2C2ρ2
.

(3.20)

The conductivity matrix is controlled by four functions, the three scalar couplings Z1, Z2, Y

and the component C of the bulk metric. All four are functions of the holographic radial

coordinate r and in (3.20) are evaluated at the horizon r = rh. Moreover, since rh is in

general a function of temperature T , the matrix (3.20) is implicitly temperature-dependent,

while the dependence on the remaining scales in the system — the magnetic field h, the

strength of momentum dissipation k and the charge density ρ — is explicitly visible. We

should note that our results for σxx overlap with those obtained recently in [8].

From the expressions (3.20) we can then extract the inverse Hall angle,

cotΘH =
σxx
σxy

, (3.21)
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and the resistivity matrix by inverting the conductivity matrix,

Rxx = Ryy =
σxx

σ2xx + σ2xy
, Rxy = −Ryx = − σxy

σ2xx + σ2xy
. (3.22)

From now on all functions will be understood to be evaluated at the horizon, but for

convenience we will omit the explicit dependence on rh. Since the general formulae for σij
and Rij are quite cumbersome, we consider first some simple limiting cases.

3.1 Weak momentum dissipation

A simple case to consider is that of slow momentum relaxation, i.e. small k. As a consistency

check, we first look at the limit k → 0, which corresponds to no momentum dissipation at

all. The conductivity tensor then reduces to

σxx = σyy = 0, σxy = −σyx =
ρ

h
, (3.23)

and is independent of the temperature as well as the details of the theory we are working

with. This can be understood as a generic consequence of Lorentz invariance when k → 0,

and agrees with the Hall conductivity result of [19]. Including the leading and subleading

corrections coming from momentum dissipation, we find

σxx = σyy =
C

h2
k2Y − CΩ(C2 + h2Z2

2 )
2

h4Ω2(C2 + h2Z2
2 )

2 + h2C2ρ2
(k2Y )2 + . . . ,

σxy = −σyx =
ρ

h
− ρ

h

C2(C2 + h2Z2
2 )

h4Ω2(C2 + h2Z2
2 )

2 + h2C2ρ2
(k2Y )2 + . . . .

(3.24)

As expected, the matrix components are now sensitive to the detailed structure of the

model, and are temperature dependent through the implicit dependence on rh.

3.2 Vanishing magnetic field

In the absence of magnetic field, σxy = 0, and the DC conductivity reduces to the simple

expression

σDC = σxx = Z2

√

Z2
1Z

2
2 +

ρ2

C2
+

ρ2

k2Y C
= Z2

√

Z2
1Z

2
2 +

16π2ρ2

s2
+

4πρ2

k2Y s
, (3.25)

where s = 4π C(rh) is the entropy density.4 As seen in a number of cases in the literature,

the DC conductivity can be interpreted [20] as being composed of two physically distinct

and independent pieces: a coherent contribution σdissDC due to momentum relaxation for

the charge carriers in the system, and an incoherent contribution, known as the charge

conjugation symmetric term σccsDC, which is independent of the charge density ρ. In the

absence of magnetic field, there are examples showing that the DC conductivity consists of

such two distinct terms, simply added together. However, more generally the contributions

can combine to form the DC conductivity in a rather non-trivial fashion. Indeed, notice that

4In the action (2.1) we have used units with 1
16πGN

= 1, where GN is Newton’s constant. So the entropy

density by definition is s = C(rh)
4GN

= 4πC(rh).
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in (3.25) we do not have a clean separation between σccsDC and terms dissipating momentum

for charge carriers. The first contribution in the square root persists at zero charge density,

i.e. the charge conjugation symmetric term is given by σccsDC = Z1Z
2
2 . The other two terms

are associated with the charge density ρ and are due to momentum dissipation effects.

Thus, here we have given an explicit realization of a setup in which there is no simple

separation between σccsDC and σdissDC .

3.3 Vanishing charge density

The DC resistivity in the absence of charge density reads

RDC = Rxx =
1

Z1Z2
2

√

1 +
Z2
2

C2
h2 +

h2

k2Y C
=

1

Z1Z2
2

√

1 +
16π2Z2

2

s2
h2 +

4πh2

k2Y s
, (3.26)

which falls into the charge conjugation regime, since the charge density is vanishing. It

should be pointed out that charge fluctuations still exist at zero charge density, and it would

seem the incoherent conductivity should be identified as being due to diffusion of charge

fluctuations.5 Notice the similarity of the structure of this result with that of (3.25). In

particular, we have σxy = Rxy = 0 because ρ = 0. In contrast, in the case with vanishing

magnetic field the theory is parity symmetric, which requires the Hall conductivity to

vanish for any value of charge densityρ.

3.4 Strong momentum dissipation limit

Next, we consider the case in which the momentum dissipation ∼ k is dominant compared

to the other scales in the system. Working to leading order in the strong momentum

dissipation limit, we obtain the conductivities

σxx = σyy = ΩC − C(Ω2h2(C2 + h2Z2
2 )

2 − C2ρ2)

(C2 + h2Z2
2 )

2

1

k2Y
+ . . . ,

σxy = −σyx =
hρZ2

2

C2 + h2Z2
2

+
2C2hρΩ

C2 + h2Z2
2

1

k2Y
+ . . . ,

(3.27)

and the corresponding resistivities

Rxx = Ryy =
C

Z2

√

ρ2 + Z2
1Z

2
2 (C

2 + h2Z2
2 )

ρ2 + C2Z2
1Z

2
2

− C[ρ2(ρ2 + C2Z2
1Z

2
2 ) + h2Z2

1Z
4
2 (ρ

2 − C2Z2
1Z

2
2 )]

Z2
2 (ρ

2 + C2Z2
1Z

2
2 )

2

1

k2Y
+ . . . ,

Rxy = −Ryx = − hρ

ρ2 + C2Z2
1Z

2
2

− 2hρC2Z2
1Z2

√

ρ2 + Z2
1Z

2
2 (C

2 + h2Z2
2 )

Z2
2 (ρ

2 + C2Z2
1Z

2
2 )

2

1

k2Y
+ . . . .

(3.28)

5We would like to thank the referee for clarifying these points.
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We focus on the conductivities at leading order, which are given by

σxx = σyy = ΩC =
Z2C

C2 + h2Z2
2

√

ρ2 + Z2
1Z

2
2 (C

2 + h2Z2
2 ) ,

σxy = −σyx =
hρZ2

2

C2 + h2Z2
2

.

(3.29)

The inverse Hall angle reads

cotΘH =
σxx
σxy

=
C

hρZ2

√

ρ2 + Z2
1Z

2
2 (C

2 + h2Z2
2 ) , (3.30)

and the in-plane resistivity

RDC = Rxx =
C

Z2

√

ρ2 + Z2
1Z

2
2 (C

2 + h2Z2
2 )

ρ2 + C2Z2
1Z

2
2

. (3.31)

Interestingly, we find that these expressions are precisely the same as the ones which were

obtained in the probe DBI case [4], using a different approach.

This can be understood as follows. When the momentum dissipation is strong enough,

the contribution to the geometry coming from the DBI sector is negligible compared to that

of the axionic sector. Thus, in this case the background geometry is seeded by the axions,

and the dynamics of the U(1) gauge field can be captured by treating it as a probe around

the resulting geometry. This can be easily seen from the background equations (2.10)–

(2.13). When the terms coming from the DBI action are negligible compared to the axionic

terms, we obtain a closed system which only involves the axions as well as φ coupled

to gravity,

1√
BDC

(
√

D

B
Cφ′

)′

− k2

C
Y ′(φ)− V ′(φ) = 0 , (3.32)

D′C ′

DC
+

1

2

C ′2

C2
− 1

2
φ′2 +

k2B

C
Y (φ) +BV (φ) = 0 , (3.33)

2C ′′

C
−
(

B′

B
+
C ′

C
+
D′

D

)

C ′

C
+ φ′2 = 0 , (3.34)

2D′′

D
− 2C ′′

C
−
(

B′

B
− C ′

C
+
D′

D

)

D′

D
+
B′C ′

BC
− 2k2B

C
Y (φ) = 0 . (3.35)

The gauge field At can then be determined from (2.14).

As was shown in [4, 21], the coupled equations of motion (3.32)–(3.35) admit IR hy-

perscaling scaling violating geometries,

ds2 = rθ
(

−f(r)dt
2

r2z
+
L2dr2

r2f(r)
+
dx2 + dy2

r2

)

, (3.36)

φ = κ ln(r), ψ1 = k x, ψ2 = k y ,
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with

f(r) = 1−
(

r

rh

)2+z−θ

, z =
α2 − η2 + 1

α(α+ η)
, θ =

2η

α
, κ = − 2

α
,

L2 =
(z + 2− θ)(θ − 2z)

V0
, k2L2 = 2(z − 1)(z + 2− θ) , (3.37)

η = ± θ
√

(θ − 2)(θ + 2− 2z)
, α = ± 2

√

(θ − 2)(θ + 2− 2z)
,

when the dilaton couplings V and Y are approximated by exponentials in the IR,

V (φ) ∼ −V0 eη φ, Y (φ) ∼ eαφ , (3.38)

with η, α constants. In order to have a well defined geometry and a resolvable singularity

one should take into account the Gubser’s physicality criterion [22, 23], which restricts

the range of the scaling exponents {z, θ} appearing in (3.37). In particular, the allowed

parameter range is given by

IR r → 0 : [z 6 0, θ > 2], [0 < z < 1, θ > z + 2] ,

IR r → ∞ : [1 < z 6 2, θ < 2z − 2], [z > 2, θ < 2] ,
(3.39)

depending on the location of the IR. It was also shown in [4] that by setting

C(rh)

Z2(φ(rh))
∼ T, Z1(φ(rh))Z2(φ(rh))

2 ∼ 1

T
, (3.40)

where T is the temperature, one can obtain the scaling behavior

RDC ∼
√

aT 2 + h2 , (3.41)

with a a constant which depends on the details of the action. The main point to note for

this case is that for appropriate choices of parameters it is possible to reproduce the in-plane

resistance (1.1). The anomalous temperature dependence of the resistivity and Hall angle

of the cuprate strange metals has recently been realized in this setup [24]. The backreacted

DBI case, however, leads to a much richer transport behavior, as we will see next.

4 Magnetic-field-induced metal-insulator transition

If we choose the dilaton field φ to be trivial, the background black brane geometry can be

solved exactly. Even in this simple case the physics is still quite rich, and we find a finite-

temperature transition — or crossover — from metallic to insulating behavior, induced by

the magnetic field.

We take the couplings to be of the form6

Z1 = z1 , Z2 = Y = 1 , V = −V0, φ = 0 , (4.1)

6A class of exact solutions for the DBI theory without axions have been studied in [25].
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where z1 and V0 are positive constants. Once again we set D(r) = 1/B(r). The metric

function C(r) is then found by solving (2.12), and is given by

C(r) = r2. (4.2)

Here we have chosen the AdS boundary to be at r → ∞. The remaining (non-trivial)

equations of motion are then

A′
t −

ρ

z1

√

r4 +
ρ2+h2z21

z21

= 0 , (4.3)

rD′ +D − r2

2
(V0 + z1) +

1

2
k2 +

z1
2

√

r4 +
ρ2 + h2z21

z21
= 0 , (4.4)

D′′ − 2

r2
D − 1

r2
k2 − ρ2 + h2z21

r2z1

√

r4 +
ρ2+h2z21

z21

= 0 . (4.5)

We find that the last equation is implied by the second one. Solving (4.4), we obtain

D(r) =
r2

6
(V0 + z1)−

z1
6

√

r4 +
h2z21 + ρ2

z21
− 1

2
k2 − M

r

− 1

3

√

h2z21 + ρ2 2F1

(

1

4
,
1

2
;
5

4
;− r4z21

ρ2 + h2z21

)

,

(4.6)

where M corresponds to the mass of the black brane and is determined by the location of

the horizon rh via D(rh) = 0. The U(1) gauge field is given by

At(r) =

∫ r

rh

ρ

α

√

u4 +
ρ2+h2z21

z21

du

= c1 + ρ r

√

1

h2z21 + ρ2
2F1

(

1

4
,
1

2
;
5

4
;− r4z21

ρ2 + h2z21

)

, (4.7)

with the constant c1 given by requiring as usual that the gauge field vanishes at the horizon,

At(rh) = 0. Finally, the temperature associated with the black brane geometry takes

the form

T =
D′(rh)

4π
=
V0 + z1

8π
rh −

1

8πrh
k2 − z1

8πrh

√

r4h +
ρ2 + h2z21

z21
, (4.8)

and the entropy density reads

s = 4πr2h . (4.9)

By making use of (4.8) to express the location of the horizon in terms of T , one can find

the temperature dependence of the conductivity matrix (3.20) as well as the resistivity

matrix (3.22), which of course also depends on the magnetic field h, the charge density ρ

and the momentum dissipation parameter k.
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Rxx

Figure 1. The DC resistivity Rxx when h = 0 as a function of T/
√
ρ and k/

√
ρ. Moving from top

to bottom, the curves in the right panel correspond to decreasing values of k/
√
ρ.

It is interesting to ask whether the black brane solution we just presented leads to

metallic or insulating behavior. To this end, we are going to adopt the following working

definition of a metal versus an insulator,

Metal :
dRxx

dT
> 0 , Insulator :

dRxx

dT
< 0 , (4.10)

and inspect the temperature dependence of the conductivities. We will focus on cases with

finite momentum dissipation, since in the limit k → 0 shown in (3.23) the conductivity is

quite simple, due to Lorentz invariance. For simplicity and without loss of generality, from

now on we fix our theory parameters to be

z1 = 1, V0 = 6 . (4.11)

We start by considering two simple cases which correspond to, respectively, vanishing

magnetic field and charge density. The former turns out to be associated with metallic

behavior, while the latter with insulating. We then look at the more generic situation, in

which both h and ρ are non-zero, and find a finite temperature crossover between the two

types of behavior.

4.1 Vanishing magnetic field

We examine first the case in which the magnetic field is absent. The Hall part of the

conductivity is zero, and the resistivity can be obtained from (3.25),

RDC = Rxx = 1/σxx =
k2r2h

ρ2 + k2
√

r4h + ρ2
, (4.12)

For a fixed value of k/
√
ρ,7 the resistivity RDC increases monotonically with increasing

temperature, as shown in figure 1. Thus, according to the criterion (4.10), the resulting

7Without loss of generality, we will assume ρ > 0 from now on.
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Figure 2. The DC resistivity Rxx at vanishing charge density as a function of T/
√
h and k/

√
h.

In the right panel, from top to bottom the ratio k/
√
h increases.

behavior is metallic. The curves displayed in the right panel of figure 1 correspond to, from

top to bottom, decreasing values of k/
√
ρ. We therefore see that by lowering the amount k

of momentum dissipation one also decreases the resistivity, with the effect being especially

pronounced at low T . What this indicates is that as k → 0 we should recover a divergent

conductivity, which is expected from the fact that we would be approaching the regime of

no momentum dissipation.

4.2 Vanishing charge density

In the case with vanishing charge density, the component σxy is also zero. The resistivity

can now be obtained from (3.26),

RDC = Rxx =
h2 + k2

√

r4h + h2

k2r2h
. (4.13)

For a fixed value of k/
√
h, the quantity RDC decreases monotonically as the temperature

increases, as can be seen from figure 2. According to (4.10), this corresponds to an insulat-

ing like behavior. Moreover, the curves in the right panel of figure 2 show that the smaller

the ratio k/
√
h, the larger the resistivity, with the enhancement more pronounced at low

temperatures. We wonder whether this effect is entirely model dependent, or whether it

could be a feature of the role of disorder or momentum dissipation on insulating phases.

4.3 Magnetotransport at finite magnetic field and charge density

We move on to the more generic case in which both h and ρ are non-zero, which is sig-

nificantly more complex. There is now a non-trivial Hall component to the conductivities,
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Figure 3. The resistance Rxx at finite charge density as a function of h/ρ and T/
√
ρ. We choose

the momentum dissipation parameter k/
√
ρ = 1. In the right panel, the curves from top to bottom

correspond to decreasing values of h/ρ.

and the general resistivity components are given by

Rxx = k2 r2h

ρ2Q2
(

Q2 − k4
)

+ k2
√

Q2 + r4h
(

ρ2
(

k4 −Q2
)

+ k4r4h
)

+ k4r4h(h
2 − ρ2)

ρ4 (Q2 − k4)2 + 2k4ρ2r4h (h
2 + k4 − ρ2) + k8r8h

,

Ryx = h ρ
2k6r4h

√

Q2 + r4h + ρ2
(

Q2 − k4
)2

+ k4r4h
(

h2 + k4 − 3ρ2
)

ρ4 (Q2 − k4)2 + 2k4ρ2r4h (h
2 + k4 − ρ2) + k8r8h

, (4.14)

where we have introduced Q2 = ρ2 + h2. The inverse Hall angle reads

cotΘH =
σxx
σxy

=
Rxx

Ryx

=
k2r2h
hρ

ρ2Q2
(

Q2 − k4
)

+ k2
√

Q2 + r4h
(

ρ2
(

k4 −Q2
)

+ k4r4h
)

+ k4r4h(h
2 − ρ2)

2k6r4h

√

Q2 + r4h + ρ2 (Q2 − k4)2 + k4r4h (h
2 + k4 − 3ρ2)

.

(4.15)

We display the behavior of the in-plane resistance Rxx in figure 3 at the momentum dissi-

pation parameter k/
√
ρ = 1. We find the following features:

• h < ρ: Rxx increases monotonically as one increases the temperature, corresponding

to metallic behavior.

• h > ρ: as the temperature increases, Rxx first rises, then reaches a maximum at a

certain ratio T0/
√
ρ, and then decreases monotonically. The value of T0/

√
ρ depends

on k/
√
ρ and h/ρ. We have metallic behavior at low temperatures and insulating at

high temperatures. Thus, this can be thought of as a metal-insulator transition —

or crossover — induced by the magnetic field.

We also display the resistance Rxx for a larger value of the momentum dissipation

parameter, k/
√
ρ = 3, in figure 4. The temperature dependence of Rxx is similar to that
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Figure 4. The resistance Rxx at finite charge density versus h/ρ and T/
√
ρ. We choose the

momentum dissipation parameter k/
√
ρ = 3. In the right panel, the curves from top to bottom

correspond to decreasing values of h/ρ.

in the previous case when h < ρ. However, the non-monotonic behavior at large values

of the magnetic field disappears and Rxx decreases monotonically as one increases the

temperature, which is reminiscent of an insulating behavior. Note that the change in the

behavior of the resistivity is once again induced by the magnetic field. Metal-insulator

transitions or crossovers have been studied using other gravity setups, see, e.g. [26–31].

The threshold value for the magnetic field, h/ρ = 1, can be understood in the following

way. Consider the high temperature limit T ≫ (k,
√
ρ,
√
h) in which T is the dominant

scale in the problem. In this limit at leading order the temperature (4.8) is given by the

simple expression

T =
V0
8π
rh =

3

4π
rh , (4.16)

and the corresponding resistance Rxx reads

Rxx = 1 +
h2 − ρ2

k2r2h
+O(r−3

h ) = 1 +
9

16π2
h2 − ρ2

k2
T−2 +O(T−3) . (4.17)

It is clear that when h < ρ, Rxx increases monotonically with T (working under the

assumption above that the temperature is the largest scale in the problem), displaying

metallic behavior. On the other hand, it decreases with increasing T when h > ρ, displaying

insulating behavior. In this regime, the Hall component and the inverse Hall angle become

Ryx =
9

8π2
hρ

k2
T−2 +O(T−3) , cotΘ =

8π2

9

k2

hρ
T 2 +O(T 0) . (4.18)

At this point one would like to restore all theory parameters (4.1). The general results
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in the high temperature regime are given by

Rxx =
1

z1
+

V 2
0

64π2
h2z21 − ρ2

k2z21
T−2 +O(T−3) ,

Ryx =
V 2
0

32π2
hρ

k2z1
T−2 +O(T−3) , T ≫ (k,

√
ρ,
√
h) ,

cotΘ =
32π2

V 2
0

k2

hρ
T 2 +O(T 0) .

(4.19)

The threshold value for the magnetic field is therefore given by h/ρ = 1/z1. Finally, note

that in order to generate more arbitrary scalings, one needs to allow for more complicated

background geometries, in which the neutral scalar φ should be dynamical. We turn to

this question next.

5 Non-relativistic scaling geometries

We are now going to examine the behavior of the resistivities for geometries supported by

a non-trivial scalar field profile, and which exhibit non-relativistic scalings. We choose the

couplings to have the simple exponential form

Z1(φ) = z1e
γ φ , Z2(φ) = eδ φ , V (φ) = −V0 eη φ , Y (φ) = eαφ , (5.1)

in order to look for exact scaling solutions, loosely motivated by top-down realizations [4,

23]. However, one should keep in mind that we will assume that such non-relativistic

solutions describe the IR of the geometry, and approach AdS in the UV, so that one can

adopt the standard AdS/CFT dictionary. To this end, the scalar potential of (5.1) should

be appropriately modified, to ensure that the scalar φ can indeed settle to a constant at

the boundary. That this can be done is by now well known, and has been shown explicitly

in a variety of cases in the literature. Thus, here we will simply adopt 5.1 and focus on

obtaining exact scaling backgrounds. We focus mostly on cases with no magnetic field, but

also include a simple background solution for which h is non-zero. Scaling solutions for the

Einstein-DBI-dilaton system were also studied first in [32] and later in [33]. However the

models studied in those papers did not include axions, and therefore did not incorporate

any mechanism for dissipating momentum, resulting in an infinite DC conductivity.

5.1 Hyperscaling-violating solutions without magnetic field

We are going to parametrize the geometry as in (2.9), and look for black brane solutions

of the form

B(r) =
L2rθ−2

f(r)
, C(r) = rθ−2 , D(r) = rθ−2zf(r) , (5.2)

A = At(r) dt , φ(r) = κ ln r , ψ1 = k x , ψ2 = k y , (5.3)

where the parameters z and θ are, respectively, the Lifshitz and hyperscaling violating

exponents. In this ansatz we have turned off the magnetic field, h = 0, for simplicity.
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Note that when the blackening function is trivial, f(r) = 1, one recovers the standard

hyperscaling-violating geometries

ds2 = rθ
(

−dt
2

r2z
+
L2dr2

r2
+
dx2 + dy2

r2

)

, (5.4)

which represent the extremal limit of (5.2) and can be thought of as generalized quantum

critical geometries. Examining Einstein’s equations, we immediately find from (2.12) that

κ must obey

κ2 = (θ − 2)(θ − 2z + 2) , (5.5)

while from the gauge field equation (2.14) we find the derivative of At,

A′
t =

ρL rθ−z−δκ−1

√

ρ2 + z21r
2[θ−2+(γ+δ)κ]

. (5.6)

In order to obtain exact solutions for this system we will make some assumptions on the

parameters of the model. First, notice that the gauge field expression (5.6) simplifies

drastically when we set

θ = 2− κ(γ + δ) , (5.7)

in which case the gauge field obeys the much simpler condition

A′
t =

ρL rθ−z−δκ−1

√

ρ2 + z21
. (5.8)

Combining (5.5) and (5.7) in this case yields the following relation between z and θ,

z = 1 +
θ

2
+

2− θ

2(γ + δ)2
. (5.9)

We are most interested in the case in which the stress tensor terms in the field equations

originating from the axions appear at the same order in powers of the radial coordinate

as terms coming from the metric, neutral scalar and U(1) gauge fields. This motivates us

to take

δ = −α =
2

κ
, η = γ . (5.10)

Finally, using (2.10), (2.11) and (2.13), we find an analytic solution for f(r)

f(r) = 1−
(

r

rh

)2+z−θ

, (5.11)

where rh is the location of the horizon, and

L2 =
2

δ2
(γ + 3δ)(γ + δ) + 1

V0 + z1 − k2 −
√

ρ2 + z21
, (5.12)

k2 =
γ2 + γδ − 1

δ2 + γδ + 1

(

z21
√

ρ2 + z21
− z1 − V0

)

− ρ2
√

ρ2 + z21
. (5.13)

We have demanded that the extremal limit is given by (5.4).
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Summarizing our results, in the case of vanishing magnetic field we have obtained the

following quantum critical geometry, supported by a running scalar,

ds2 = rθ
[

−f(r)
r2z

dt2 +
L2

r2f(r)
dr2 +

dx2 + dy2

r2

]

,

φ = κ ln(r), ψ1 = k x, ψ2 = k y ,

(5.14)

with

f(r) = 1−
(

r

rh

)2+z−θ

, z =
1− γ2 + δ2

δ(γ + δ)
, θ = −2γ

δ
, κ =

2

δ
,

L2 =
2

δ2
(γ + 3δ)(γ + δ) + 1

V0 + z1 − k2 −
√

ρ2 + z21
=

(θ − 2)(θ − z − 2)

V0 + z1 − k2 −
√

ρ2 + z21
,

k2 =
γ2 + γδ − 1

δ2 + γδ + 1

(

z21
√

ρ2 + z21
− z1 − V0

)

− ρ2
√

ρ2 + z21
,

=
2(z − 1)

(2z − θ)

(

V0 + z1 −
z21

√

ρ2 + z21

)

− ρ2
√

ρ2 + z21
,

α = −δ, η = γ, At =
Lρ

(θ − z − 2)
√

ρ2 + z21
rθ−z−2 .

(5.15)

We can also invert the expressions for z and θ to obtain

γ = ± θ
√

(θ − 2)(θ − 2z + 2)
, δ = ∓ 2

√

(θ − 2)(θ − 2z + 2)
. (5.16)

The temperature associated with these solutions has the simple expression

T =
|z + 2− θ|

4πL
r−z
h , (5.17)

and the thermal entropy is therefore

s ∼ rθ−2
h ∼ T

2−θ
z . (5.18)

There are a number of conditions one should impose on these solutions to ensure that

they are well-defined and supported by a matter sector that is physical. Such conditions

will lead to constraints on the allowed range of {z, θ}, and therefore on the range of theory

parameters γ and δ. First, in order for the solution to be real one should demand8

k2 > 0, L2 > 0, (θ − 2)(θ − 2z + 2) > 0 . (5.19)

Next, the Null Energy Condition (NEC) should be satisfied, i.e.

TµνN
µNν

> 0 , (5.20)

8Notice that when z = 1 we have k2 < 0. Thus, the relativistic case z = 1 is not allowed when the

axions are present in the theory, as it leads to unphysical conditions on the parameters. Moreover, in order

to have k2 > 0 the quantity V0 + z1 should be positive and sufficiently large.
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for any null vector NµNµ = 0. For the geometry (5.14), the two independent null vectors

can be chosen as

N t =
1√
f
rz−θ/2, N r =

√
f

L
r1−θ/2 sin τ, Nx = r1−θ/2 cos τ , (5.21)

with τ = 0 or π/2. The NEC constraints on the scaling exponents are then

(θ − 2)(θ − 2z + 2) > 0, (z − 1)(2 + z − θ) > 0 . (5.22)

We also note that, in order for the IR region to be defined unambiguously, we want the

(t, x, y) components of the (extremal) metric to scale in the same way with r. From the

form of the metric in (5.14), this condition can be seen to give

(θ − 2)(θ − 2z) > 0 . (5.23)

The IR is then located where the (t, x, y) metric components vanish:

θ − 2 > 0 and θ − 2z > 0 ⇒ IR at r = 0 ,

θ − 2 > 0 and θ − 2z > 0 ⇒ IR at r = ∞ .
(5.24)

Finally, to ensure thermodynamic stability we would like the geometry to have positive

specific heat.9 From (5.18) we see that this implies

z (2− θ) > 0 . (5.25)

Figures 5 and 6 show the allowed ranges of z and θ which satisfy all of the constraints

above, for two different choices of Lagrangian parameters V0 and z1. The charge density

has been scaled to ρ = 1 in both plots. Notice that as V0+ z1 becomes smaller, the allowed

parameter space decreases (disappearing completely when V0+ z1 is negative). The figures

also indicate whether the UV is located at r = 0 or r = ∞, for a particular region of

parameter space.

Armed with these geometries, we can now inspect the behavior of the conductivity.

Substituting the solution into (3.25), the expression for σDC in the absence of magnetic

field, we find that all the terms scale in the same way with temperature, yielding the

simple expression

σDC ∼ r4−θ
h ∼ T

θ−4
z . (5.26)

Here we see clearly the system behaving as a metal or as an insulator, according to (4.10),

depending on the sign of z and the range of θ. Figures 5 and 6 also display the parameter

ranges associated with metallic or insulating behavior. Note that in this model there is no

obstruction to obtaining a linear resistivity.10 Indeed, requiring the latter singles out a line

in parameter space,

θ + z = 4 ⇒ RDC =
1

σDC
∼ T , (5.27)

9This condition is not quite necessary and will not change our results by much. For the case with

negative specific heat, the extremal geometry still takes the form (5.4), but is obtained by taking T → ∞.

One could obtain a gapped spectrum for the AC conductivity, for example, by incorporating the linear

perturbation analysis [23, 34].
10See e.g. [35–39] for the study of holographic strange metals in the probe DBI approximation.
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Figure 5. The shaded areas denote the allowed ranges of z and θ after taking into account all

constraints on the theory parameter space. This case corresponds to V0 = 5, z1 = 2, ρ = 1. The

straight line θ = 4−z corresponds to a resistivity linear in temperature, which for these parameters

is allowed in much of the phase space.

Figure 6. The shaded areas denote the allowed ranges of z and θ after taking into account all

constraints on the theory parameter space. This case corresponds to V0 = 1, z1 = 1/6, ρ = 1. The

straight line θ = 4− z corresponds to a resistivity linear in temperature.

which corresponds to taking δ = −γ ± 1√
3
. The linear resistivity case is indicated by the

solid line in the figures. Notice that it is allowed in most of the parameter space, provided

that V0 + z1 is sufficiently large and positive.

5.2 Dyonic solutions and negative magnetoresistance

For the solutions we have just examined the background magnetic field vanishes. It is much

more difficult to obtain analytic dyonic solutions, for which both the electric charge density
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Figure 7. The shaded area denotes the allowed ranges of z and h after taking into account the

NEC, condition (5.23) and requiring all theory parameters to be real.

and the magnetic charge are non-trivial. Here we show a simple family of exact solutions

we obtained after turning on h:

f(r) = 1−
(

r

rh

)z−2

, z = 3− 4

γ2
, θ = 4, κ = −4

γ
,

L2 =
2

γ2
4− γ2

V0 + z1 − k2 −
√

ρ2 + z21(1 + h2)
=

2(2− z)

V0 + z1 − k2 −
√

ρ2 + z21(1 + h2)
,

k2 =
(z − 1)

(z − 2)

[

V0 + z1 −
z21

(z − 1)

(z − 1) + h2(z − 2)
√

ρ2 + z21(1 + h2)

]

− ρ2
√

ρ2 + z21(1 + h2)
,

α = −δ = γ

2
, η = γ, At =

Lρ

(2− z)
√

ρ2 + z21(1 + h2)
r2−z. (5.28)

Note that the hyperscaling violating exponent is fixed in these geometries, i.e. θ = 4 (and

as a result, the IR is always located at r = 0). In addition to the NEC, the parameters

must be chosen in such a way to ensure that both k2 and L2 are positive. Moreover,

condition (5.23) must hold. The parameter space for the Lifshitz exponent z and the

magnetic field h allowed by these constraints is shown in figure 7, for different choices of

V0 and z1 (we did not require the specific heat to be positive, which in this case would only

change the plots slightly). As in the previous solution, the phase space becomes smaller as

the quantity V0 + z1 decreases.

Substituting the solution (5.28) into (3.20) we obtain the conductivity matrix, which

now depends only on the magnetic field, and not on the temperature. Rxx is an even

function as a function of h, while the Hall part Rxy is an odd function. The resistance

Rxx as a function of h for different values of z is presented in figure 8. We find that

the physical constraint shown in figure 7 ensures that Rxx is not negative, as required

for a well defined theory. The dual system falls into a particular quantum critical regime

where the transport property is determined solely by the magnetic field, independent of
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Figure 8. The in-plane resistance Rxx versus h for various values of z. It is an even function of

h. Left panel: V0 = 5, z1 = 2. Right panel: V0 = 1, z1 = 0.2. The charge density has been fixed

to ρ = 1.

the temperature. Depending on the choice of theory parameters V0 and z1, Rxx versus |h|
can have a non-monotonic (left panel) or monotonic (right panel) behavior.

Next, let’s consider the behavior of the magnetoresistance supported by these solutions.

Recall that the standard definition of magnetoresistance is given by

MR =
Rxx(h)−Rxx(h = 0)

Rxx(h = 0)
, (5.29)

describing the tendency of a material to change the value of its electrical resistance in an

externally-applied magnetic field. In particular, a negative magnetoresistance has been

observed in many materials, see e.g. [40–47]. Interestingly, one finds from figure 8 that

our system also exhibits negative magnetoresistance.11 The left panel of figure 8 shows a

positive value of MR in the regime of small magnetic field. However, it is easy to see that

in the right panel the magnetoresistance is negative, in all of the allowed parameter range.

We emphasize that such negative MR would not be seen in the probe DBI limit. Indeed, as

one can see from (3.31), which is the probe approximation result, Rxx(h) increases mono-

tonically with the magnetic field, resulting in a positive MR value. As a side note, the case

with a trivial dilatonic scalar φ examined in section 4 also has positive magnetoresistance,

as can be seen in figures 3 and 4. A negative MR is obtained in the quantum critical region

characterized by (θ = 4, z). However, notice that for these solutions k is not independent of

h. In particular, this means the requirement that the system remains in a given quantum

critical regime (described by a fixed θ, z) imposes a non-trivial relation between k and h.

In closing this discussion, it is worth noting that we have identified interesting features

even in this very simple dyonic setup, using the geometry (5.28). More generic solutions

with h 6= 0 and broader ranges of z and θ can, in principle, be obtained, but are significantly

more complicated and have therefore been omitted. We expect them to have non-trivial

magnetotransport properties and to lead to the same kinds of metal-insulator transitions

11It would be interesting to generalize our discussion to higher-dimensional theories, in which we would

have a longitudinal channel along the magnetic field and a transverse channel perpendicular to it. In certain

cases one can obtain a negative longitudinal magnetoresistance (see e.g. [48, 49]).
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we discussed in section 4. Since h is an adjustable parameter, it is also interesting to see

if one could obtain a quantum phase transition by tuning the magnetic field. We leave the

analysis of these cases to future work.

5.3 Solutions with AdS2 geometry

In the discussion above we have focused on scaling solutions driven by a runaway scalar deep

inside the bulk, φIR → ∞. These kinds of solutions emerge when we allow the coupling

functions to have the simple exponential form (5.1), loosely motivated by top-down string

theory realizations. As we already mentioned, even though these scaling solutions are

exact, we are interested in the case in which they describe only the near horizon region of

the spacetime at low temperatures.

However, our theory with the simple couplings (5.1) allows for much richer solutions,

including some for which in the IR the scalar approaches a constant at extremality. A

simple example is given by the following h = 0 geometry.

f(r) = 1−
(

r

rh

)2+z−θ

+
V0L

2

(θ − 2)(θ + z − 4)
r2z−2

[

1−
(

r

rh

)4−z−θ
]

,

z =
1− γ2 + δ2

δ(γ + δ)
, θ = −2γ

δ
, κ =

2

δ
,

k2 =
2(z − 1)

(2z − θ)

(

z1 −
z21

√

ρ2 + z21

)

− ρ2
√

ρ2 + z21
,

L2 = (θ − 2z)(θ − z − 2)

√

ρ2 + z21(z1 +
√

ρ2 + z21)

z1ρ2
,

α = − δ , η =
1

γ + δ
, At(r) =

Lρ

(θ − z − 2)
√

ρ2 + z21
rθ−z−2 ,

γ = ± θ
√

(θ − 2)(θ − 2z + 2)
, δ = ∓ 2

√

(θ − 2)(θ − 2z + 2)
.

(5.30)

whose blackening factor is much more involved than that (5.11) appearing in the solutions

we discussed above. As a consequence, the temperature associated with these geometries

has a more complicated dependence on rh, and is given by

T =
r1−z
h

4πL
|f ′(rh)| =

1

4πL

∣

∣

∣

∣

(z + 2− θ)r−z
h − V0L

2

(θ − 2)
rz−2
h

∣

∣

∣

∣

. (5.31)

Substituting this background into (3.25), the expression for σDC in the absence of magnetic

field, we obtain

σDC ∼ r4−θ
h . (5.32)

Using (5.31) one can then convert rh to temperature, obtaining the DC conductivity as a

function of T .

Note that by letting V0 = 0 one could naively recover the standard hyperscaling-

violating geometry with the blackening factor given by (5.11). The choice V0 = 0, however,

is not consistent with the various constraints on the parameter space (NEC and the re-

quirement that L and k are real), as can be checked. Thus, V0 must be taken to be
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Figure 9. The shaded areas denote the allowed ranges of {θ, z} after considering the con-

straint (5.19). The range of the parameter space depends on the ratio z1/ρ.

non-vanishing, and the resulting solution is intrinsically different from the usual one (5.4)

with (5.11). As a result, some of the constraints, such as (5.24), no longer apply. The two

restrictions one can impose are the NEC (5.20) and the reality of all metric/scalar/gauge

field coefficients. The latter demands

L2 ∼ (θ − 2z)(θ − z − 2) > 0, k2 > 0, (θ − 2)(θ − 2z + 2) > 0 . (5.33)

The NEC gives the same condition as (5.22). Moreover, one can show that (5.22) is already

implied by the requirement that the solution be real. The resulting parameter range for

the exponents {θ, z} depends on the ratio z1/ρ. Toy examples are shown in figure 9. In

particular, one finds from figure 9 that (θ − 2) > 0 and (z + 2 − θ) > 0, conditions which

can be shown to be valid in general by considering (5.33).

Therefore, according to (5.31), the extremal limit T → 0 is obtained at a finite value

of the horizon radius,

r̂h =

(

(θ − 2)(z + 2− θ)

V0L2

)1/(2z−2)

. (5.34)

Indeed, the extremal near-horizon geometry for these solutions contains an AdS2 factor,

supported by a constant scalar φIR = φ(r̂h), and is therefore associated with a finite entropy

density. The DC conductivity σDC is also finite as T → 0, unlike the hyperscaling-violating

solution (5.14). At finite temperature, for certain choices of {θ, z} — or equivalently {γ, δ}
— the resistivity will decrease as T is lowered, showing metallic behavior according to

the criterion (4.10). However, it can also increase as the temperature decreases, which

is reminiscent of an insulator. We are going to postpone a more thorough study of the

transport properties associated with these solutions to future work. For now it suffices to

say that they provide a concrete example of the richness of the near horizon backgrounds

allowed in these constructions, even assuming the simple choice of scalar couplings (5.1).
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A Born-Infeld theory

Another well-known non-linear generalization of Maxwell’s electromagnetism is Born-Infeld

theory, whose structure is similar to that of DBI theory, but somewhat simpler. From a

phenomenological point of view, it might also be interesting to consider magnetotrans-

port in this case. In particular, although the conductive behavior shares the same overall

features as that of DBI, its dependence on the couplings of the theory is simpler. As a

consequence, the identification of scaling regimes might be easier in the context of Born-

Infeld interactions. With future applications in mind, here we present the general formula

for magnetotransport for Born-Infeld theory.

The action we consider reads

S =

∫

d4x
√−g

[

R− 1

2
(∂φ)2 − V (φ)− Y (φ)

2

2
∑

I=1

(∂ψI)2 − Za(φ)

2
(
√

1 + Zb(φ)F 2 − 1)

]

,

(A.1)

with the three couplings (Za, Zb, Y ) chosen to be functions of the neutral scalar φ. The

last term in (A.1) is precisely the non-linear interaction known as the Born-Infeld term.

We consider the same homogeneous and isotropic background as in (2.9), and obtain the

charge density

ρ =

√−gZa(φ)Zb(φ)F
tr

√

1 + Zb(φ)F 2
=

CZaZbA
′
t

√

1 + Zb

(

2h2

C2 − 2A′2
t

)

. (A.2)

To calculate the transport coefficients we adopt the same method of section 3, and find

that the conductivity matrix is given by

σxx = σyy =
k2ρ2CY + k2CY Σ(k2CY + h2Σ)

h2ρ2 + (k2CY + h2Σ)2

∣

∣

∣

r=rh
,

σxy = −σyx =
2k2hρCY Σ+ hρ(ρ2 + h2Σ2)

h2ρ2 + (k2CY + h2Σ)2

∣

∣

∣

r=rh
,

(A.3)

with the function Σ(r) defined to be given by

Σ(r) =

√

2Zb(φ)ρ2 + C(r)2Za(φ)2Zb(φ)2

C(r)2 + 2h2Zb(φ)
. (A.4)

We see that the conductivity matrix is controlled by the three scalar couplings Za, Zb, Y

and by the spatial metric component C, all evaluated at the horizon r = rh. They will

depend on temperature T (through their dependence on rh), magnetic field h as well as

the amount of momentum dispassion k and charge density ρ.
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The inverse Hall angle is then given by

cotΘH =
σxx
σxy

=
k2ρ2CY + k2CY Σ(k2CY + h2Σ)

2k2hρCY Σ+ hρ(ρ2 + h2Σ2)
, (A.5)

and the resistivity matrix, obtained by inversting (A.3), reads

Rxx = Ryy =
σxx

σ2xx + σ2xy
=
k2CY (ρ2 + k2CY Σ+ h2Σ2)

h2ρ2Σ2 + (ρ2 + k2CY Σ)2
,

Rxy = −Ryx = − σxy
σ2xx + σ2xy

=
hρ(ρ2 + 2k2CY Σ+ h2Σ2)

h2ρ2Σ2 + (ρ2 + k2CY Σ)2
.

(A.6)

Since these expressions are quite involved, we would like to restrict our attention to three

simple cases:

• No momentum dissipation: in the limit k → 0, the momentum dissipation disappears

and the conductivity tensor becomes

σxx = σyy = 0, σxy = −σyx =
ρ

h
, (A.7)

the same result we obtained for the DBI case studied in the main text. As before,

in this limit the conductivities are independent of the temperature and the details of

the theory.

• No magnetic field: after turning off the background magnetic field, we obtain

σDC = σxx =

√

Z2
aZ

2
b +

2Zbρ2

C2
+

ρ2

k2CY
=

√

Z2
aZ

2
b +

32π2Zbρ2

s2
+

4πρ2

k2Y s
, (A.8)

where s = 4π C(rh) is the entropy density. The dependence on the couplings of

the theory is now slightly different from that of the DBI case, as expected from the

different structure of the action. Note that σxy = 0 when h = 0. A particular simple

case with Za,b and Y constants and without the neutral scalar φ was discussed in [50],

where some features of Mott-like states were identified.

• No charge density: the DC resistivity when ρ = 0 reads

RDC = Rxx =
1

ZaZb

√

1 +
2Zb

C2
h2 +

h2

k2CY
=

1

ZaZb

√

1 +
32π2Zb

s2
h2 +

4πh2

k2Y s
, (A.9)

and the Hall part vanishes, Rxy = 0.

The explicit dependence on the two scales T and h can be determined after substituting

specific background geometries into the general resistivity expressions. However, finding

black hole solutions for the Born-Infeld-Axion theory (A.1) is beyond the scope of this

paper, and is delegated to future work.
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[31] S. Cremonini, H.-S. Liu, H. Lü and C.N. Pope, DC conductivities from non-relativistic scaling

geometries with momentum dissipation, JHEP 04 (2017) 009 [arXiv:1608.04394] [INSPIRE].

[32] S.S. Pal, Fermi-like liquid from Einstein-DBI-dilaton system, JHEP 04 (2013) 007

[arXiv:1209.3559] [INSPIRE].

[33] J. Tarrio, Transport properties of spacetime-filling branes, JHEP 04 (2014) 042

[arXiv:1312.2902] [INSPIRE].

[34] E. Kiritsis and J. Ren, On holographic insulators and supersolids, JHEP 09 (2015) 168

[arXiv:1503.03481] [INSPIRE].

[35] S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic

holography, JHEP 04 (2010) 120 [arXiv:0912.1061] [INSPIRE].

[36] B.-H. Lee, D.-W. Pang and C. Park, Strange metallic behavior in anisotropic background,

JHEP 07 (2010) 057 [arXiv:1006.1719] [INSPIRE].

[37] B.S. Kim, E. Kiritsis and C. Panagopoulos, Holographic quantum criticality and strange

metal transport, New J. Phys. 14 (2012) 043045 [arXiv:1012.3464] [INSPIRE].

[38] S.S. Pal, Model building in AdS/CMT: DC conductivity and Hall angle, Phys. Rev. D 84

(2011) 126009 [arXiv:1011.3117] [INSPIRE].

[39] A. Karch, Conductivities for hyperscaling violating geometries, JHEP 06 (2014) 140

[arXiv:1405.2926] [INSPIRE].

– 30 –

https://doi.org/10.1007/JHEP09(2015)090
https://arxiv.org/abs/1505.05092
https://inspirehep.net/search?p=find+EPRINT+arXiv:1505.05092
https://doi.org/10.1007/JHEP04(2014)181
https://doi.org/10.1007/JHEP04(2014)181
https://arxiv.org/abs/1401.5436
https://inspirehep.net/search?p=find+EPRINT+arXiv:1401.5436
https://arxiv.org/abs/hep-th/0002160
https://inspirehep.net/search?p=find+EPRINT+hep-th/0002160
https://doi.org/10.1007/JHEP11(2010)151
https://arxiv.org/abs/1005.4690
https://inspirehep.net/search?p=find+EPRINT+arXiv:1005.4690
https://arxiv.org/abs/1710.01326
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.01326
https://doi.org/10.1007/JHEP03(2017)071
https://arxiv.org/abs/1612.08624
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.08624
https://doi.org/10.1038/nphys2701
https://doi.org/10.1038/nphys2701
https://arxiv.org/abs/1212.2998
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.2998
https://doi.org/10.1103/PhysRevD.92.086003
https://doi.org/10.1103/PhysRevD.92.086003
https://arxiv.org/abs/1507.02514
https://inspirehep.net/search?p=find+EPRINT+arXiv:1507.02514
https://doi.org/10.1103/PhysRevD.92.106002
https://arxiv.org/abs/1507.03105
https://inspirehep.net/search?p=find+EPRINT+arXiv:1507.03105
https://doi.org/10.1007/JHEP01(2017)040
https://arxiv.org/abs/1601.07897
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.07897
https://doi.org/10.1016/j.physletb.2016.12.051
https://arxiv.org/abs/1606.07866
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.07866
https://doi.org/10.1007/JHEP04(2017)009
https://arxiv.org/abs/1608.04394
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.04394
https://doi.org/10.1007/JHEP04(2013)007
https://arxiv.org/abs/1209.3559
https://inspirehep.net/search?p=find+EPRINT+arXiv:1209.3559
https://doi.org/10.1007/JHEP04(2014)042
https://arxiv.org/abs/1312.2902
https://inspirehep.net/search?p=find+EPRINT+arXiv:1312.2902
https://doi.org/10.1007/JHEP09(2015)168
https://arxiv.org/abs/1503.03481
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.03481
https://doi.org/10.1007/JHEP04(2010)120
https://arxiv.org/abs/0912.1061
https://inspirehep.net/search?p=find+EPRINT+arXiv:0912.1061
https://doi.org/10.1007/JHEP07(2010)057
https://arxiv.org/abs/1006.1719
https://inspirehep.net/search?p=find+EPRINT+arXiv:1006.1719
https://doi.org/10.1088/1367-2630/14/4/043045
https://arxiv.org/abs/1012.3464
https://inspirehep.net/search?p=find+EPRINT+arXiv:1012.3464
https://doi.org/10.1103/PhysRevD.84.126009
https://doi.org/10.1103/PhysRevD.84.126009
https://arxiv.org/abs/1011.3117
https://inspirehep.net/search?p=find+EPRINT+arXiv:1011.3117
https://doi.org/10.1007/JHEP06(2014)140
https://arxiv.org/abs/1405.2926
https://inspirehep.net/search?p=find+EPRINT+arXiv:1405.2926


J
H
E
P
1
0
(
2
0
1
7
)
1
3
3

[40] J.F. Woods and C.Y. Chen, Negative magnetoresistance in impurity conduction, Phys. Rev.

135 (1964) A1462.

[41] H. Negishi, H. Yamada, K. Yuri, M. Sasaki and M. Inoue, Negative magnetoresistance in

crystals of the paramagnetic intercalation compound MnxTiS2, Phys. Rev. B 56 (1997)

11144.

[42] Y.B. Zhou et al., From positive to negative magnetoresistance in graphene with increasing

disorder, Appl. Phys. Lett. 98 (2011) 222502.

[43] X.C. Huang et al., Observation of the chiral-anomaly-induced negative magnetoresistance in

3D Weyl semimetal TaAs, Phys. Rev. X 5 (2015) 031023.

[44] C.Z. Li et al., Giant negative magnetoresistance induced by the chiral anomaly in individual

Cd3As2 nanowires, Nature Commun. 6 (2015) 10137 [arXiv:1504.07398].

[45] H. Li et al., Negative magnetoresistance in Dirac semimetal Cd3As2, Nature Commun. 7

(2016) 10301 [arXiv:1507.06470].

[46] M. Culo et al., Magnetotransport properties of La1−xCax MnO3 (0.52 ≤ x ≤ 0.75): signature

of phase coexistence, Thin Solid Films 631 (2017) 205 [arXiv:1704.07315].

[47] N. Jiang, Y. Nii, R. Ishii, Z. Hiroi and Y. Onose, Magnetotransport properties in a

noncentrosymmetric itinerant magnet Cr11Ge19, arXiv:1705.06026.

[48] P. Goswami, J.H. Pixley and S. Das Sarma, Axial anomaly and longitudinal

magnetoresistance of a generic three dimensional metal, Phys. Rev. B 92 (2015) 075205

[arXiv:1503.02069] [INSPIRE].

[49] A. Baumgartner, A. Karch and A. Lucas, Magnetoresistance in relativistic hydrodynamics

without anomalies, JHEP 06 (2017) 054 [arXiv:1704.01592] [INSPIRE].
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