
Backreaction in Cosmology
S. Schander1,2 and T. Thiemann2*

1Perimeter Institute, Waterloo, ON, Canada, 2Institute for Quantum Gravity, FAU Erlangen – Nürnberg, Erlangen, Germany

In this review, we investigate the question of backreaction in different approaches to
cosmological perturbation theory, and with a special focus on quantum theoretical
aspects. By backreaction we refer here to the effects of matter field or cosmological
inhomogeneities on the homogeneous dynamical background degrees of freedom of
cosmology. We begin with an overview of classical cosmological backreaction which is
ideally suited for physical situations in the late time Universe. We then proceed backwards
in time, considering semiclassical approaches such as semiclassical or stochastic
(semiclassical) gravity which take quantum effects of the perturbations into account.
Finally, we review approaches to backreaction in quantum cosmology that should apply to
the very early Universe where classical and semiclassical approximations break down. The
main focus is on a recently proposed implementation of backreaction in quantum
cosmology using a Born–Oppenheimer inspired method.
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1 INTRODUCTION

The Λ cold dark matter (ΛCDM) concordance model (Cervantes-Cota and Smoot, 2011; Deruelle
and Uzan, 2018; Dodelson and Schmidt, 2021), based on the pillars of the Standard Model of
particle physics and general relativity, has shaped our current view of the Universe, and has been
the driving force behind many of the breakthroughs of modern cosmology, for example the
prediction and the discovery of the cosmic microwave background radiation (Aghanim et al., 2019,
2020; Alpher and Herman, 1948a,b; Gamov 1948a,b; Penzias and Wilson 1965). Modeled by only
six parameters (Spergel 2015; Aghanim et al., 2020), it features an impressive simplicity while
correctly predicting and fitting most of the cosmological data (Aghanim et al., 2019, 2020). One of
the most important assumptions within the ΛCDM paradigm is that the Universe is
almost spatially homogeneous and isotropic, especially during its earliest phases, but even
today when considered on its largest scales. The resulting simplification of Einstein’s equations is
remarkable as it reduces the ten coupled non-linear partial differential equations in four
variables to two ordinary equations in one variable, with solutions known as the
Friedmann–Lemaı̂tre–Robertson–Walker (FLRW) solutions (Friedman 1922, 1924; Lemaı̂tre
1931; Robertson 1933; Walker 1937).

Obviously, a look at the night sky reveals that the Universe is not homogeneous and isotropic, but
is characterized by clusters of galaxies and stars, and large voids inbetween (Blumenthal et al., 1984;
Cole et al., 2005; Colless et al., 2001; Ross et al., 2020; Zel’dovich et al., 1982). For explanation, the
concordance model assumes that smallest quantum fluctuations of the primordial matter and
geometry have been stretched to the present time, thereby generating the observable large scale
structure. Importantly, these inhomogeneities on any scale smaller than the observable Universe are
presumed to evolve following the underlying FLRW background structure, but conversely their
evolution does not affect the global FLRW evolution. More precisely, it is assumed that effects from
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the small scale inhomogeneities onto the largest scales can be
neglegted, i.e., there is no substantial backreaction.

Doubts regarding the simplistic nature and the question of
backreaction have gained momentum in recent years. In fact, the
ΛCDMmodel, as appealing it may be, leads to the conclusion that
approximately 69% of the energy budget of our Universe consists
of a yet unknown fluid, dubbed “dark energy,” (Aghanim et al.,
2020), and which drives the very recent accelerated expansion of
the Universe (Riess et al., 1998; Perlmutter et al., 1999; Peebles
and Ratra 2003). Most of the remaining 31% of the energy budget
is credited to another yet unknown form of cold “dark” matter
(Peebles 1982; Blumenthal et al., 1984; Aghanim et al., 2020),
which provides an explanation for the characteristic rotation and
motion of the remaining 6% of ordinary matter in the Universe.
In summary, we are faced with the problem that we are literally in
the dark about 94% of the energy and matter content of the
observable Universe.

In recent years, these conceptual problems have been
accompanied by important tensions in the estimates of
certain cosmological parameters as made by different
collaborations (Di Valentino et al., 2020a,b; Pesce et al.,
2020). The evaluation of the Hubble constant H0 as
performed by the Planck collaboration (explicitely assuming
a ΛCDM model) gives a value of H0 �
(67.27 ± 0.60)km/(s ·Mpc) (Aghanim et al., 2020), while the
SH0ES collaboration finds H0 � (74.03 ± 1.42)km/(s ·Mpc)
(Riess et al., 2019), which in turn is based on the
measurements of the Hubble Space Telescope. This leads to a
tension at the 4.4σ level (Di Valentino et al., 2020a).
Furthermore, we point to the (albeit weaker) tensions
regarding the measurement of the parameter S8, a measure
for the matter energy density Ωm and the amplitude of structure
growth σ8 (Aghanim et al., 2020; Di Valentino et al., 2020b).

On the other hand, the theoretical modeling of the early and
very early Universe turns out to be a difficult undertaking, in
particular the faithful consideration of all interactions within
coupled quantum cosmological–matter systems. Since classical
cosmological perturbation theory and its various applications to
the physics of our Universe (Durrer, 2004; Mukhanov, 2005),
represents a successful formalism to model (most of) the
cosmological data today, one of the most promising
approaches to make progress in the field is to consider an
inhomogeneous, but perturbative, quantum cosmology, i.e., to
establish a quantization of the well-known (possibly) gauge-
invariant cosmological perturbation theories (Brandenberger
et al., 1993; Brandenberger, 2004; Elizaga Navascués et al.,
2016). In fact, there has been tremendous progress in
developing such quantum cosmological perturbation theories,
for example, in quantum geometrodynamics (Kiefer, 2007;
Brizuela and Krämer, 2018), in string cosmology (Erdmenger,
2009), as well as in loop quantum cosmology (LQC) and
spinfoam cosmology (Bianchi et al., 2010; Vidotto 2011;
Cailleteau et al., 2012; Agullo et al., 2013; Elizaga Navascués
et al., 2016), to mention but a few. Unfortunately, the majority of
these approaches neglect backreaction effects from the
inhomogeneous quantum fields on the homogeneous,
dynamical degrees of freedom, or incorporate a series of

assumptions which are hard to control, similar to the situation
in classical cosmological perturbation theory.

It seems hence very timely to scrutinize and question the
various assumptions of the concordance model of cosmology, and
to develop suitable formalisms which are able to take interactions
in coupled (quantum) cosmological models more realistically and
unambigiously into account. In this review, we start by assessing
the question of backreaction, i.e., whether cosmological
inhomogeneities have an effect on the large scale evolution of
the Universe, especially in view of the occurent inconsistencies
within the standard model. We consider different aspects of
backreaction, in particular we discuss backreaction in classical,
semiclassical and quantummechanical models. Our main focus is
on the purely quantum mechanical backreaction and we discuss
one recent approach to including backreaction in quantum
cosmology in more detail (Schander and Thiemann, 2019a).
The structure of the paper is then as follows.

In Section 2, we provide an overview of the results in the field
of classical backreaction, which is particularly relevant for late
time cosmological models. In Section 3, we consider semiclassical
backreaction which occurs when considering quantum fields on
classical curved space times. Section 4 gives an overview of
quantum backreaction, i.e., backreaction that occurs in purely
quantum theoretical models. In Section 5, we focus on one
particular approach to quantum backreaction which uses
mathematical tools inspired by the Born–Oppenheimer
approximation. Section 6 provides a final discussion and an
outlook.

2 CLASSICAL BACKREACTION

Standard perturbative approaches to cosmological perturbation
theory implicitely conjecture that backreaction, i.e., the effects of
cosmological inhomogeneities on the global or macroscopic
evolution of the Universe can be ignored. For purely classical
models of the Universe that are particularly relevant for its late
time evolution, this conjecture has generated an intense debate
over the last decades. And still, there is no consensus on the
question of backreaction in the classical regime , see for example
the reviews by Clarkson et al. (2011), Ellis (2011), and Bolejko and
Korzynski (2017).

The question of backreaction is closely related to the fitting
problem, (Ellis and Stoeger, 1987), and the problem of averaging,
(Clarkson et al., 2011). In fact, an intuitive way to access the
effects of small inhomogeneities on the macroscopic scales is to
construe an averaging procedure that defines new homogeneous
variables by integrating the inhomogeneous fields over a certain
space time domain, and to compare their properties and
dynamics to the assumed FLRW Universe, (Ellis, 2011).
However, it is inadmissible to conclude from the validity of
Einstein’s equations for the inhomogeneous fields on the
smallest scales (where they have been excellently checked),
that the averaged fields satisfy the Einstein equations
(Paranjape, 2012). This is because evaluating the Einstein
tensor and taking a space (time) average does not commute in
general. Hence, the averaging procedure can lead to additional
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contributions to Einstein’s equations that might be considered as
effective source terms for the geometry, see for example (Buchert,
2000, 2001).

As it turns out, the results regarding the form and strength of
backreaction depend heavily on the averaging procedure and the
matter model being chosen, as well as on the choice of space time
volumes to be integrated over. In the non-perturbative regime,
the two most discussed averaging procedures are the scalar
averaging scheme by Buchert (2008) and the Macroscopic
Gravity approach by Zalaletdinov (1997, 2008). Buchert’s
scheme focuses on building spatial averages of scalar fields and
derives effective (scalar) equations of motion for the averaged
quantities, for example an improved Raychaudhuri equation for
the averaged scale factor that includes a kinematical backreaction
term. While being technically easy to implement, the Buchert
scheme relies on a system of scalar equations that is not closed
(Clarkson et al., 2011), and consequently requires additional
information to fix the solution. Besides, the averaging
demands to fix suitable spatial domains and hence, a
hypersurface slicing. In contrast, the Macroscopic Gravity
approach is manifestly covariant but requires to define an
auxiliary so–called bi–local transport operator, (Ellis, 2011).
Physical applications of these schemes yield a range of
different results, ranging from explaining the recent
accelerated expansion of the Universe or the H0-tension
(Buchert and Räsänen, 2012; Heinesen and Buchert, 2020), to
negligible backreaction effects (Paranjape and Singh, 2007, 2008).

Many of the afore-mentioned approaches (among many
others) assume the matter content to be modeled by a fluid,
which is likely to be a poor approximation to the true lumpy late
time Universe. Models with more realistic matter distributions
are for example the Timescape Cosmology by Wiltshire (2009),
who separates the Universe into underdense expanding regions
bounded by overdense virialized structures, the Swiss Cheese
Model (Kantowski, 1969; Tomita, 2000; Biswas andNotari, 2008),
or modifications of FLRW Universes that cut spherically
symmetric Lemaı̂tre–Tolman–Bondi or Szekeres dust space
time regions (Marra et al., 2008; Bolejko and Celerier, 2010),
to mention but a few. By construction, many of these models
follow the evolution of an appropriately fitted FLRWmodel since
they assume a background structure from the beginning.
Consequently, they do not attack the backreaction problem
outlined before. In contrast, the model by Lindquist and
Wheeler (1957) assembles static Schwarzschild regions without
relying on any background, and which has been further
investigated by Clifton (2011) and Clifton and Ferreira (2009).
In both cases, the models provide insights into backreaction
effects on light propagation (Krasinski and Bolejko, 2011;
Sussman, 2011), which points to another important topic.

In fact, cosmological observations such as the
distance–redshift relation or the angular diameter distance rely
on measurements of light, traveling along our past lightcone in a
very inhomogeneous Universe. The seminal work by Kristian and
Sachs (1966) laid out the basis for analyzing backreaction on light
propagation. Flanagan (2005), for example, used these ideas to
compute the deceleration parameter as measured by comoving
observers. Gasperini et al. (2011) define a covariant light–cone

average for the backreaction problem, see also (Fanizza et al., 2020)
for a more recent generalized proposal. Räsänen (2009) and
Räsänen (2010) derives a relationship of the redshift and the
angular diameter distance to the average expansion rate for
statistically homogeneous and isotropic universes, based on
Buchert’s approach, and Barausse et al. (2005) and Bonvin et al.
(2006) evaluate the distance–redshift relation and the luminosity
distance in a perturbative framework. Most recently, Heinesen
(2021a), Heinesen (2021b) and Koksbang (2019), Koksbang
(2020), Koksbang (2021) investigated the effects of
inhomogeneities and averaging on a possible redshift drift.

Many approaches that attempt to make direct contact with
cosmological observations restrict their analysis to cosmological
perturbation theory in an FLRW Universe, as opposed to the
above–mentioned non-perturbative approaches. Most of them
consider flat ΛCDM models with Gaussian scalar perturbations
as initital conditions. To evaluate backreaction, they compute
the deviations to the Hubble expansion rate or similar variables
that are caused by backreaction (Brandenberger et al., 2018;
Clarkson et al., 2009; Kolb et al., 2010; Kolb et al., 2005; Li and
Schwarz, 2008), or give effective Friedmann equations with
additional contributions (Paranjape and Singh, 2007; Behrend
et al., 2008; Brown et al., 2009; Peebles, 2010; Baumann et al.,
2012). The idea is to perform appropriate spatial averages of the
perturbed quantities and to use the given statistical information
of the perturbation fields in guise of their power spectra. It turns
out that due to the smallness of the gravitational potential and
the power suppression of modes on large scales, backreaction
for the expansion rate is always small. However, the
backreaction to the deceleration parameter q and the
variance of the Hubble rate depend on an auxiliary
UV–cutoff that might lead to large backreaction even if it is
set by scales larger than the non-linearity scale (Clarkson et al.,
2011). Other approaches to backreaction in the linear regime are
(Baumann et al., 2012) who propose a reformulation of
perturbation theory that leads to small backreaction on the
largest scales but affects the baryon accoustic oscillations, and
(Green and Wald, 2011, 2012, 2013, 2014) who claim, using a
point limit process, that backreaction can never mimic dark
energy and put strong constraints on its strength.

We also point to the quite recent advent of numerical tools
that allow to simulate increasingly realistic models of the
Universe, including relativistic effects (Löffler et al., 2012;
Mertens et al., 2016) and N-body simulations (Adamek et al.,
2016; Barrera-Hinojosa and Li, 2020). Using the N-body
relativistic code “gevolution,” Adamek et al. (2019) find that
backreaction on the expansion rate in a ΛCDM and an
Einstein–de Sitter Universe remains small if one chooses
averaging volumes related to the Poisson gauge, while when
choosing comoving gauge backreaction is of the order of 15%.
Other works in this respect were done by Macpherson et al.
(2019), who also claim that backreaction effects are small,
however based on a fluid approximation which breaks down
as soon as it comes to shell crossing.

Finally, let us also point to the consideration of backreaction
from long wavelengthmodes of the early Universe. In this respect,
early contributions were notably made by Tsamis and Woodard
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(1993, 1996), as well as by Abramo et al. (1997) and Mukhanov
et al. (1997). The latter works pursue a gauge—invariant
formulation of the backreaction problem associated with an
effective long wavelength energy momentum tensor, and
within a slow–roll inflationary scenario. Unruh (1998)
subsequently examined the question of whether this effect is
indeed locally measurable, and it was found that such
backreaction effects (in single field inflationary theories) can
be absorbed by a gauge transformation, (Abramo and
Woodard, 2002; Geshnizjani and Brandenberger, 2002).
However, backreaction of such fluctuations becomes locally
measurable after introducing an additional (subdominant)
clock feld, (Geshnizjani and Brandenberger, 2005). This
approach was extended by Marozzi et al. (2013) based on the
gauge—invariant formalism by Finelli et al. (2011), and secondly
by Brandenberger et al. (2018) beyond perturbation theory.
Further contributions were made by Losic and Unruh (2005),
Losic and Unruh (2008) who support the idea that backreaction
represents a real and measurable effect.

3 SEMICLASSICAL BACKREACTION

For considerations of backreaction in models of the very early
Universe, the standard model of cosmology suggests that (at least)
the matter fields should be studied in a quantum mechanical
framework. The implementation of such ideas can be realized via
different paths, and we consider here the approaches of
semiclassical gravity (Ford 2005; Wald 1977, 1978) and
stochastic (semiclassical) gravity (Calzetta and Hu 1987; Hu
and Verdaguer 2008; Jordan 1986, 1987). Both approaches rely
on the framework of quantum field theory on curved space times
(QFT on CST) (Birrell and Davies, 1984; Fulling 1989), which
itself takes the effects of the classical curved space times on the
quantum matter fields into account but in general not the
backreaction effects of those quantum fields on the classical
background.

The backreaction problem in semiclassical gravity was first
brought in byWald (1977) who considered the backreaction from
particle creaction on a gravitational field. The idea of the
semiclassical program is to consistently define an improved set
of Einstein field equations in which the expectation value of the
quantum stress–energy tensor Tμ] of the matter fields with
respect to an appropriate quantum state of the matter fields ω
appears as a source term,

Rμ] + 1
2
gμ]R � 8πGω(: Tμ] :), (1)

where the quantization with respect to the matter fields is
expressed using bold letters and the dots indicate the normal
ordering of the stress–energy tensor. The state ω should be
considered as a positive linear functional in the sense of the
algebraic approach to quantum field theory (QFT) (Haag 1992;
Araki 1999).

The first goal of semiclassical gravity is to define a procedure
that leads to a meaningful expression for the expectation value
of the stress–energy tensor. In fact, the latter depends on

products of operator-valued distributions, even for the simple
case of a real-valued Klein–Gordon field, and its expectation
value is in general a divergent expression. Wald (1977) gave a set
of axioms that are required to hold for a suitable
renormalization scheme. Possible proposals are the
Hadamard point-splitting method (Brunetti and
Fredenhagen, 2000; Hollands and Wald, 2001), and the
adiabatic regularization procedure (Fulling and Parker 1974;
Fulling et al., 1974; Parker and Fulling, 1974). In either scheme,
the result of the regularization procedure is a set of modified
“semiclassical” Einstein equations. These equations are
substantially harder to solve than the original Einstein
equations and many studies restrict to cases of conformally
coupled matter to avoid problems regarding the well-posedness
and the stability of the solutions (Ford, 2005). Caution is also
required regarding the question of self-consistency of the
backreaction effects, as has been discussed by Flanagan and
Wald (1996).

Many applications of the semiclassical gravity approach to
early Universe cosmology have been considered. For example,
Fischetti et al. (1979) analyzed the backreaction effects from a
conformally invariant matter field in an FLRW Universe with
classical radiation, and found that the trace anomaly can soften
the cosmological singularity, but not avoid it. Other works in this
direction were done by Anderson (1983, 1984, 1985), who also
considered the trace effects on the particle horizon. A well-known
example of trace anomaly effects from semiclassical gravity is the
Starobinsky (1987) cosmological model, which has however not
survived the observational scrutiny of the Planck data (Ade et al.,
2016).

Another application of semiclassical gravity is the study of
backreaction of particle creation on the dynamics of the early
Universe, as already conceived byWald (1977). Grishchuk (1977)
as well as Hu and Parker (1977) considered the effect of gravitons
around the Planck time in an FLRW Universe with a classical,
isotropic fluid. The model leads to a timely non-local
(i.e., history-dependent) backreaction effect, (Hu and
Verdaguer, 2020). Similar studies were performed for
anisotropic FLRW Universes and it was shown that particle
production due to the shear anisotropy isotropizes space time
(Hu and Parker, 1978; Zel’dovich and Starobinsky, 1972).
Regarding the effects of particle creation in a spatially
inhomogeneous but isotropic Universe, we refer to the work
by Campos and Verdaguer (1994).

We also point to the more recent works by Finelli et al. (2002),
Finelli et al. (2004) who specifically consider a slow—roll (almost
de Sitter) phase of the very early Universe and compute a(n
adiabatically) renormalized energy momentum tensor of
quantum inflaton, respectively cosmological scalar fluctuations.
In case of the cosmological scalar perturbations, they found that
the energy momentum tensor is characterized by a negative
energy density which grows during inflation, and also that
backreaction is not a mere gauge artifact.

Further contributions to the topic of semiclassical gravity for
cosmological situations were notably made by Dappiaggi et al.
(2008); Dappiaggi et al. (2010); Eltzner and Gottschalk (2011);
Gottschalk and Siemssen (2018); Hack (2013); Matsui and
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Watamura (2020); Parker and Raval (1999); Pinamonti (2011), to
mention but a few. Most recently, Meda et al. (2020) and
Pinamonti and Siemssen (2015) have made progress on the
definition of the semiclassical theory for general couplings by
proving existence and uniqueness of solutions in flat cosmological
space times with a massive quantum scalar field. The idea of
relating backreaction effects to the decay of a cosmological
constant has for example been promoted by Dymnikova and
Khlopov (2001). We also point to the work by Matsui and
Watamura (2020) (and references therein) who claim that the
approach of semiclassical gravity is not appropriate to describe
the early Universe.

The second approach to evaluating backreaction in
semiclassical cosmology that we present here, denoted
stochastic gravity (Hu and Verdaguer 2020), creates a link to
open system concepts and statistical features such as dissipation,
fluctuations, noise and decoherence. It employs a so-called closed
time path coarse grained effective action (CTP CGEA) (Calzetta
and Hu 1987; Jordan 1986, 1987), in order to derive a set of
modified semiclassical Einstein equations, denoted as
Einstein–Langevin equations. It includes the semiclassical
approach but extends it by a stochastic noise term (Hu and
Matacz, 1995).

Some of the first applications of the CTP CGEA formalism
to the backreaction problem in cosmology were made by
Calzetta and Hu (1987, 1989, 1994). Hu and Matacz (1995)
derived the Einstein–Langevin equations for the case of a
free massive scalar field in a flat FLRW background, as well
as for a Bianchi Type-I Universe. The case of a massless
conformally coupled field was discussed in (Campos and
Verdaguer, 1994). The scope of works includes topics such
as stochastic inflation, where quantum fluctuations present
in the noise term backreact on the inflaton field (Calzetta
and Hu, 1995; Lombardo and Mazzitelli, 1996), as well as
studies of the reheating phase in inflationary cosmology
(Boyanovsky et al., 1995; Ramsey and Hu, 1997). The
formalism was also used by Sinha and Hu (1991) to check
the validity of the minisuperspace approximation in quantum
cosmology. Further applications can be found in the paper and
textbook by Hu and Verdaguer (2008), Hu and Verdaguer
(2020).

We also point to one of the most prominent applications of
stochastic methods to early Universe cosmology by
Starobinsky (1982) and Starobinsky (1988). His stochastic
inflationary model evaluates backreaction of small scalar
field quantum perturbations on the corresponding long
wavelength modes (which are assumed to behave classically)
by additional stochastic terms in the long wavelength
equations of motion. A slow-roll behavior of the
background is assumed. Interestingly, it has been shown
that the stochastic and the quantum feld theoretic
approaches to perturbations in the early Universe yield the
same results, (Starobinsky and Yokoyama, 1994; Finelli et al.,
2009; Tsamis and Woodard, 2005). For recent considerations
of stochastic inflation beyond the (strict) slow-roll conditions,
we refer to the work by Pattison et al. (2019) and references
therein.

Both approaches, semiclassical as well as stochastic gravity
regard the gravitational field as a classical entity from the start
while the matter fields are considered to be of quantum nature.
While this represents a seminal progress to incorporating
quantum effects of the matter fields in the early Universe, it
can and should be questioned whether this somehow
incompatible approach (classical and quantum fields treated at
the same level) survives the test of future observations, and
whether it should be replaced by a more consistent approach -
quantum gravity - at least for the earliest moments of the cosmic
history.

4 APPROACHES TO QUANTUM
BACKREACTION

The question of backreaction in quantum gravity and quantum
cosmology encompasses a variety of different approaches and
definitions of backreaction. In quantum cosmology, backreaction
is usually identified as the effects from the inhomogeneous
quantum perturbation fields on the (quantum) homogeneous
and isotropic degrees of freedom, which is also the notion of
backreaction used in the next section (Schander and Thiemann,
2019c). This approach is tightly related to a perturbative
expansion with respect to the inverse Planck mass
m−1

Pl � (G/Z)1/2, where G is Netwon’s constant and we set
Z ≡ 1. More precisely, it employs a Born–Oppenheimer type
scheme (Born and Oppenheimer, 1927), with respect to m−1

Pl .
We will thus focus on implementations of the
Born–Oppenheimer method to quantum gravity and quantum
cosmology.

In fact, the idea that quantum gravity can be considered as a
perturbative theory with respect tomPl was already introduced by
Brout (1987). The first investigations of backreaction in quantum
gravity that rely on this expansion were performed in the
framework of quantum geometrodynamics (Wheeler, 1957;
Kiefer, 2007). The idea is to expand the Wheeler–DeWitt
equation in terms of the ratio of the Planck mass and the
matter field mass (Kiefer and Singh, 1991). A different idea,
conceptually similar to the schemes considered here, is to use a
Born–Oppenheimer type approach, relying on the same
perturbation parameter. Different considerations of the
problem (giving rise to similar results) can be found in the
works by Bertoni et al. (1996), Brout and Venturi (1989), and
Kiefer (1994) (for a summary, see Kiefer, 2007). A review of the
ideas of Born and Oppenheimer will be given in the next section,
but to understand its use in the given context we present the
key ideas.

For simplicity, let Q denote the gravitational and q the matter
degrees of freedom. The Born–Oppenheimer scheme employs an
ansatz solution for the quantum Hamiltonian and momentum
constraint of the form (Kiefer, 2007),

Ψ(q,Q) �∑
n

χn(Q)ψn(q,Q), (2)

where {ψn(q,Q)}n is supposed to be a known orthonormal
basis of the matter Hilbert space that solves the matter part of
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the constraint and Q is to be considered as an external
parameter for this eigenvalue problem. Then, one applies
the constraints to Ψ and applies some ψk(q,Q) from the
left (i.e., one considers the inner product of the matter
states). This gives rise to constraint equations for the
geometric factors χn(Q), which can be seen as an effective
quantum problem for the geometric part, including the
backreaction effects of the quantum matter system. In this
scenario, the Born–Oppenheimer approximation consists in
neglecting the contributions that enter with higher orders in
m−1

Pl .
In order to extract physical results from the formalism, one

can additionally employ a semiclassical approximation (which is
however independent of the Born–Oppenheimer approach). This
should yield the semiclassical limit of quantum gravity, i.e., a
matter QFT on CST. It is common to employ a WKB ansatz for
the geometrical states χn(Q) of the form,

χn(Q) � Cn(Q)eim2
PlS[Q], (3)

where S[Q] stands for the geometric action in the
geometrodynamical approach. The perturbative scheme in
m−1

Pl eventually yields the semiclassical Einstein equations.
In this sense, these approaches evaluate the backreaction of
the quantum matter fields on the quantum or classical
geometry.

One can apply the Born–Oppenheimer and WKB
approximations in a different manner. Instead of taking the
expectation value with respect to the quantum matter system,
one applies the Wheeler–DeWitt constraints on the total
Born–Oppenheimer ansatz function and uses the WKB
approximation for the geometrical part. Restricting again to
the lowest order with respect to the inverse Planck mass, this
yields a quantum constraint for the matter wave function which
depends on the classical action (through the WKB ansatz), and
derivatives with respect to the spatial metric thereof. The idea of
the above–cited works (and also of Briggs and Rost, 2000) is to
introduce an external time parameter that depends on this
derivative, hence giving rise to a Schrödinger equation for the
matter system that includes the backreaction of the geometry
through the geometry–dependent time derivative. In fact, this
gives rise to a notion of time in a formerly background
independent framework. Such ideas go back to DeWitt (1967)
and have been applied to a variety of cosmological situations (see
(Kiefer 2007) and references therein). It is however a different
notion of backreaction than the one considered in the next
section. Besides, the present approach uses a
Born–Oppenheimer approach plus a semiclassical WKB
approximation while the next section uses the purely quantum
mechanical space adiabatic perturbation extension of the
Born–Oppenheimer scheme. Applications of the former works
to the inflationary paradigm with perturbations and a discussion
of the question of unitary evolution of the perturbations can be
found in the work by Chataignier and Krämer (2021) and
references therein. They also consider cosmological
perturbations that include gravitational contributions (i.e., the
Mukhanov–Sasaki variables). Similar approaches that do not split
the system into geometric and matter parts but include

(perturbative) parts of the gravitational degrees of freedom in
the fast subsystem and (homogeneous) matter parts in the slow
sector were already presented by Halliwell and Hawking (1985)
and Vilenkin (1989). This choice is also used in Schander and
Thiemann (2019c).

The Born–Oppenheimer approximation was also considered
within approaches to quantum gravity with other variable
choices. Giesel et al. (2009) aimed at an application of the
Born–Oppenheimer methods to loop quantum gravity (LQG)
(Thiemann, 2008; Rovelli, 2010), using holonomy–flux variables
or connection–flux variables. As it turns out, this choice of
variables prevents the use of the Born–Oppenheimer methods
since the flux operators are mutually non-commuting (which is a
prerequisite for the Born–Oppenheimer scheme). Instead, they
use commuting co-triad variables for the gravity sector and a
scalar field for the matter sector to derive the semiclassical
Einstein equations that take the backreaction of the quantum
matter fields via an expectation value into account. Giesel et al.
(2009) consider their model on a discrete lattice (as it is common
practice for approaches to LQG), and thus formally obtain a
lattice QFT on a discrete curved space time. They also point to the
possibility of pursuing the formal Born–Oppenheimer scheme
and computing quantum solutions to the gravity sector with the
effective backreaction of the quantum matter fields. Besides, they
introduce a hybrid approach (similar to the models we consider
here) where the gravitational sector is restricted to FLRW
solutions and the fast part of the system is given by the
matter quantum fields. They also propose to introduce
coherent states for the gravitational subsystem in order to
make progress in finding solutions. Due to the complexity of
the gravity-matter systems, the focus of this work lies on spelling
out the conceptual ideas rather than technically carrying out the
program in detail.

More recently, Stottmeister and Thiemann (2016a,b,c)
considered similar questions in the context of LQG but employed
the more general scheme of space adiabatic perturbation theory
(SAPT) (Panati et al., 2003). Since in the latter approach, the
variables of the slow, gravitational sector are not required to
commute, it is in principle possible to apply the
Born–Oppenheimer ideas also to LQG and related theories. The
concrete implementation turns however out to be difficult due to the
particular structure of the LQG phase space (which relies on a
cotangent bundle of a compact Lie group rather than on a vector
space) and its quantum represention. Other open issues of their
attempts are related to the underlying graph structure of LQG
models and the projective limits of finite dimensional truncations
of the gravitational phase space that are needed in order to construct
a continuum theory (Stottmeister and Thiemann, 2016c). They also
point out that amajor obstruction to the derivation of aQFT onCST
from LQG lies in the inequivalent representations of quantum fields
for different gravitational configurations (Stottmeister and
Thiemann, 2016c). This problem is a generic feature of
background dependent quantum field theories. In this work, we
present a (perturbative) solution to this problem which makes the
application of space adiabatic methods to quantum cosmology
possible (Fernandez-Mendez et al., 2012; Castelló Gomar et al.,
2015; Castelló Gomar et al., 2016).
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For completeness, we also mention the application of
Born–Oppenheimer methods within the spinfoam approach to
LQC (Rovelli and Vidotto, 2008) (see Ashtekar et al., 2003;
Bojowald, 2008 for the LQC approach), and that Castelló
Gomar et al. (2016) consider a conceptually different kind of
Born–Oppenheimer approximation in the hybrid approach to
LQC. These seminal works make important progress by first
considering the problem of backreaction, but must either remain
on a rather formal level or include various assumptions which are
hard to control. We therefore advocate to employ the SAPT scheme
presented in the next sectionwhich serves as an unambigious, rigorous
and perturbative approach, in principle applicable to any quantum
cosmological framework and realizable up to any perturbative order,
to taking quantum cosmological backreactions thoroughly into
account. The approach applies to a much wider variety of
quantum systems in comparison to the Born–Oppenheimer
approach (in particular to quantum cosmological perturbation
theory), does not rely on the introduction of semiclassical ansatz
states and iteratively provides quantum constraints or equations of
motion whose solutions approximate the true solutions up to, in
principle, indefinitely small errors.

5 QUANTUM BACKREACTION WITH
SPACE ADIABATIC METHODS

Computing and including backreaction in (perturbative)
quantum cosmology requires an approximation scheme that
ideally takes the physical characteristics of the system into
account. SAPT as proposed by Panati et al. (2003) and
extensions thereof are ideally suited to achieve this goal and to
integrate backreaction effects into quantum cosmology (Schander
and Thiemann, 2019a; Schander and Thiemann 2019b; Schander
and Thiemann 2019c; Neuser et al., 2019).

SAPT is a generalization of the well-known Born–Oppenheimer
approximation for non-relativistic molecular systems. Both
approaches exploit the small ratio of two internal parameters
such as the mass ratio of electrons and nuclei in a molecule to
define a perturbation parameter,

ε2 :� me

mn
≈ 5.46 × 10−4 ≪ 1, (4)

with the electron mass me ≈ 9.11 × 10−31 kg and the nuclei mass
mn ≈ 1.67 × 10−27 kg. In the simplest atom with one nucleus and
one electron (although exact solutions are known for this case),
the Hamilton function has the form,

H(q, P; x, y) � ε2P2

2me
+ y2

2me
+ V(q; x), (5)

where (q, P) and (x, y) are the canonically conjugate pairs of the
nucleus and the electron respectively. V(q; x) is a smooth
potential, typically a Coulomb potential depending on the
distance between nucleus and electron. In this molecular set
up, the equipartition theorem states that the kinetic energies
of nuclei and electrons are of the same order, and hence, on
average, the nuclei move much slower than the electrons with
correspondent statistically–averaged velocities, 〈vn〉 ≈ ε〈ve〉.

Born and Oppenheimer used this fact to define suitable ansatz
solutions for the quantum mechanical problem: On the typical
electronic time scale, the nuclei are at rest and the non-trivial
electronic contributions of the Hamilton operator can be
considered at fixed nuclei positions q ∈ R,

He(q) :� y2

2me
+ V(q, x), (6)

where the bold letters y, x denote momentum and position
operators of the electron defined on their respectively dense
domains in L2(R, dx). Ideally, the operator function He(q)
admits a solvable q–dependent eigenvalue problem,

He(q) ξn(q) � En(q) ξn(q), (7)

with a discrete q–dependent eigenbasis {ξn(q)}n∈N in the fast
Hilbert space Hf :� L2(R, dx), for which the so–called
electronic energy bands En(q) are gapped functions,
i.e., En(q) − Em(q)≠ 0 pointwise for m≠ n. One can use this
eigenbasis as an ansatz solution for the full Hamilton
operator Ĥ (the Weyl quantization with respect to the
nuclei sector is labeled by hats), and ask whether it provides
an approximate solution to the entire problem. Equivalently,
we can define for every electronic eigensolution the direct
integral operator,

π̂n :� ∫⊕

R

dq ξn(q)〈ξn(q), ·〉e � ∫⊕

R

dqπn(q), (8)

on the total Hilbert spaceH � L2(R, dq)⊗Hf and ask whether it
commutes with Ĥ. Of course, the answer is in the negative, but it
turns out that the commutator scales like ε,

[Ĥ, π̂n] ∼ ε. (9)

This is because of the adiabatic relation between the electrons and
the nuclei. By construction, the Weyl quantization Ĥe(q̂) of the
electronic Hamiltonian and π̂n commute. However, the
remaining contribution to the Hamilton operator Ĥ, in
particular the kinetic energy of the nucleus, scales like ε2 and
leads hence to the estimate in Eq. 9. The Born–Oppenheimer
approximation builds on this result and proposes to use the
ansatz functions,

Ψ(q; x) �∑
n

ψn(q)ξn(q; x), (10)

to solve the full quantum problem. In its simplest version, the
scheme neglects any of the contributions that arise from applying
the kinetic energy operator of the nucleus to the electronic ansatz
functions (as they enter with small ε-factors), and thus results in
an effective eigenvalue problem for the nucleus only,

( P̂
2

2mn
+ En(q̂))ψn(q) ≡ Eψn(q). (11)

If this nucleonic eigenproblem can be solved, the scheme leads in
fact to viable results for the stationary energy spectra of
molecules, which are given by the energy solutions E, and
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which include the backreaction of the electrons via the potential
energy En(q̂).

Unfortunately, the Born–Oppenheimer approach comes
with some limitations which preclude its application to
more complicated systems. Firstly, the scheme explicitely
uses that the electronic eigenfunctions depend only on the
configuration variable of the nucleus. Was the coupling
between electrons and nuclei provided by non-commuting
slow operators, for example by q̂ and p̂, the scheme would
fail since the direct integral construction in Eq. 8 builds on the
commutativity (i.e., the existence of a common spectrum) of
the coupling operators. Also one could not define the ansatz
functions in Eq. 10. Secondly, the scheme does not provide a
simple extension to better error estimates. This becomes
problematic if one is interested in the dynamical evolution
of the system. The interesting dynamics of the nuclei happens
on time scales tn ∼ te/ε or larger, but considering the evolution
generated by Ĥ with respect to the above ansatz functions, the
scheme cannot lead to trustworthy results due to the
commutator relation Eq. 9.

It should be possible to do better. In fact, the adiabatic theorem
(Teufel, 2003) states that under certain conditions (to be
discussed in the sequel), there exists an orthogonal projection
operator Π̂ ∈ B(H) in the bounded operators on the total Hilbert
space H such that,

[Ĥ, Π̂] � O0(ε∞), (12)

where the right hand side means that for all m ∈ N, there exists a
constant Cm <∞ such that

[Ĥ, Π̂]B(H) ≤Cmεm, in the norm of
bounded operators on H. Most importantly, Π̂ can be
constructed by a “semiclassical symbol” function, i.e., an
operator-valued ansatz function like the almost–projector
function πn ∈ C∞(R,B(Hf )) from the simple example above.
This symbol function appears as an asymptotic series in the
perturbation parameter ε, and–to anticipate the result–the
equivalent of πn(q) will serve as the base clause to an iterative
ε-scheme to compute better and better approximations to Π̂. This
is the idea of SAPT (Panati et al., 2003).

SAPT uses an ε-scaled phase space (or deformation)
quantization scheme (Blaszak and Domanski, 2012) for the
slow subsector of the system, while retaining a standard
Hilbert space representation for the fast sector. Phase space
quantum mechanics is a formulation of quantum mechanics
that employs an algebra of phase space functionsAQ instead of
using the standard operator algebra in the Hilbert space
representation of quantum mechanics. Quantum mechanical
observables are thus represented by real-valued phase space
functions. The pullback of the operator product to the phase
space algebra gives rise to a non-commutative star product +.
Since the star product reduces to the commutative
multiplication of phase space functions in the limit Z→ 0,
this formulation of quantum mechanics is also known as
deformation quantization. The standard textbooks by
Dimassi and Sjöstrand (1999), Folland (1989), and
Hörmander (1985a,b) give thorough introductions to the
usual scalar–valued phase space quantization scheme and

pseudodifferential calculus, but the situation here is more
subtle. SAPT requires to consider operator–valued symbol
functions, in particular functions on the slow phase space
with values in the operators on the fast Hilbert space. We will
thus deal with symbol functions of the form
A(q, p) ∈ C∞(Γs,B(Hf )) where Γs denotes the slow phase
space (Teufel, 2003; Appendix A). It is straightforward to
map the symbol functions (operator–valued or not) to their
operator representatives in the standard Hilbert space
approach. The concrete prescription depends of course on
the operator ordering that one chooses. In case of the
symmetric Weyl quantization prescription, this relation is
provided by the Weyl correspondence (Dubin et al., 1980),
and a symbol function appears as the kernel of an integral
operator that acts on an element of the Hilbert space (Teufel,
2003).

Symbol functions which give rise to admissible operators in
the quantum theory can be classified by their asymptotic behavior
on the slow phase space. One important class of symbols relevant
for SAPT are the semiclassical symbols Smρ , with m ∈ R and
0≥ ρ≥ 1. An operator–valued function A ∈ C∞(R2,B(Hf )) is
in the symbol class Smρ (B(Hf )) if for every α, β ∈ N, there exists a
positive constant Cα,β such that,

sup
q∈R

(zαqzβpA)(q, p)B(Hf)≤Cα,β〈p〉m−ρ|β|, (13)

for every p ∈ R, and 〈p〉 � (1 + ∣∣∣∣p|2)1/2 (Teufel, 2003). For such
symbols theWeyl ordering prescription for quantum theory gives
rise to a specific star product, and we can finally make sense of the
space adiabatic perturbation idea. For two such operator–valued
symbols on the slow phase space A ∈ Sm1

ρ (B(Hf )),
B ∈ Sm2

ρ (B(Hf )), their star product is given by,

(A+B)(q, P) � exp(iZ
2
(zxzP − zqzD))A(x,D)B(q, P)∣∣∣∣∣∣∣x�q,D�P ∈ Sm1+m2

ρ (B(Hf)).
(14)

We note that the exponential has a series expansion which could
be considered as a series with respect to Z in the given context.
Alluding to the adiabaticity of the system, it is reasonable to
define a rescaled momentum operator p :� εP. Replacing P andD
by their ε-scaled versions in the star product formula, the new
expansion parameter is εZ. Any star product of symbol functions
can thus be written in a series expansion in ε. Comparing terms of
the same polynomial order in ε, this defines a perturbation theory
for quantummechanical equations which will iteratively solve the
eigenvalue problems of interest. The first two orders of the
rescaled star product are given by,

(A+B)(q, p) � (A0 · B0)(q, p) + iεZ
2
{A0(q, p),B0(q, p)}

+ ε(A0 · B1 + A1 · B0)(q, p) +O(ε2), (15)

where the symbol functions have been expanded with respect to ε
according to A � ∑kε

kAk and B � ∑kε
kBk. Note that the

ε-rescaling changes the whole symplectic structure (we now
have, {q, p}s � ε), as well as the canonical commutation
relations since we obtain,
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[q̂, p̂]s� iεZ 1̂s. (16)

From now on, we will set Z ≡ 1. Note that in the original
Born–Oppenheimer approximation, the perturbative parameter
occurs (after an appropriate rescaling) only in the Hamiltonian
and the perturbation theory consists in splitting the Hamiltonian
(and its spectrum) accordingly, while here the quantum algebra is
redefined, giving rise to a (n in principle infinite) perturbation
series in ε.

5.1 Space Adiabatic Perturbation Theory
SAPT as introduced by Panati et al. (2003) places a set
of conditions on the physical system under consideration.
These are, in some respects, quite restrictive. However, if
one accepts to abandon certain results, such as the
convergence of the perturbative series, it is possible to
milden the conditions. Here, we present the original
conditions introduced by Panati, Spohn and Teufel for a
system with d slow and k fast degrees of freedom, and
which can be split into four categories:

(C1) The state space of the system decomposes as,

H � L2(Rd)⊗Hf � L2(Rd ,Hf), (17)

where L2(Rd) is the state space of the systemwhose rate of change
is by a factor εl , l ∈ R+, smaller than the rate of change of the
(environmental) system Hf . The latter is assumed to be a
separable Hilbert space.

(C2) The quantum Hamiltonian Ĥ (may it be an operator or a
constraint) is given as the Weyl quantization of a
semiclassical symbol H ∈ Smρ (ε,B(Hf )), i.e., H
asymptotically approaches an ε-series,

H(ε, z)p∑∞
j�0

εjH j(z), (18)

where H j ∈ Sm−jρ
ρ (B(Hf )) for all j ∈ N and z :� (q, P) ∈ R2d . The

appropriate notion of convergence is provided by a Fréchet
semi–norm in Smρ (B(Hf )), see (Teufel, 2003) for further details.

(C3) For any fixed z ∈ R2d , the spectrum σ(z) of the principal
symbol H0(z) of H(ε, z) has isolated parts σn(z), n ∈ N.
Picking one such ] ∈ N and therefore suppressing any
n–dependence in the following, the minimal distance
between the elements of σ](z) and the remainder of the
spectrum σrem(z) :� σ(z)\σ](z) displays a non-vanishing
gap. According to its characteristics with varying z, the gap
can be classified by means of a parameter c.

Conditions(Gap)c: Let f ± ∈ C0(R2d ,R) be two continuous
functions with f− ≤ f+.

(G1) Enclosing interval. For every z ∈ R2d the isolated part of the
spectrum σn(z) is entirely contained in the interval I(z) :�
[f−(z), f+(z)].

(G2) Gap to the remainder. The distance between the remainder
of the spectrum, σrem(z) and the enclosing interval I(z) is
strictly bigger than zero and increasing for large
momenta, i.e.,

Dist[σrem(z), I(z)]≥Cg(1 + p2)c2. (19)

(G3) Boundedness of the interval. The width of the interval I(z)
is uniformly bounded, i.e.,

sup
z∈R2d

∣∣∣∣ f+(z) − f−(z)
∣∣∣∣≤Cd <∞. (20)

(C4) Convergence Condition. If the system satisfies the gap
condition (C3)c for some c ∈ R, the Hamilton symbol H
must be in Scρ . If ρ � 0, also cmust vanish. If ρ> 0, c can be
any real number but Ĥ must be essentially self–adjoint
on S(Rd ,Hf ).

Condition (C4) is not vital in order to perform the
formal computations in the following. It ensures however that
for considerations on the whole slow phase space Γs, the error
estimates of SAPT are bounded everywhere on Γs. In particular,
the adiabatic decoupling is said to be uniform. Note also that the
requirement that H has values in the bounded operators is
violated for many physical systems of interest. In such cases,
the space adiabatic scheme cannot be immediately applied
and the convergence of the perturbative expansion has to be
examined by independent methods (Panati et al., 2003).

Given the conditions (C1)–(C4), the space adiabatic
theorem introduces a perturbative construction scheme that
is based on iteratively computing three symbol functions: the
Moyal projector π ∈ S0ρ, the Moyal unitary u ∈ S0ρ and an
effective Hamiltonian Heff ∈ Smρ . The Moyal projector
serves to identify a subspace of the total Hilbert space
which is almost invariant under the dynamics of Ĥ and
which is associated with one particular quantum number
] ∈ N of the fast sector. The Moyal unitary u is an auxiliary
structure which gives rise to a unitary operator that maps
the relevant subspace to a much simpler reference subspace.
In fact, the original subspace is a technically complicated
object and cannot provide us with a simple procedure to
derive the (approximated) dynamics in the subspace. The
reference subspace is trivial with respect to the fast
subsystem and allows to compute the dynamics of the slow
sector including the backreaction of the fast degree(s) of
freedom. It is used to derive an effective Hamiltonian
symbol Heff whose solutions are approximate solutions to
the full Hamilton operator Ĥ. More precisely.

(S1) There exists a unique formal symbol, π � ∑i≥ 0ε
iπi, with

πi ∈ S−iρρ (B(Hf )), such that π0 is the spectral projection of
H(q, p) corresponding to σ](q, p) and with the properties,

(S1–1) : π+ε π � π (S1–2) : π* � π

(S1–3) : H+ε π − π+ε H � 0.
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It can be shown that the Weyl quantization of a resummation of
π, which we denote by πε is O0(ε∞)–close to an operator Π̂,
i.e., Π̂ � π̂ε +O0(ε∞) and that, [Ĥ, Π̂] � O0(ε∞).

(S2) Let πR be the projection on some reference subspaceKf4Hf .
We assume that there exists a symbol u0 ∈ S0ρ(B(Hf )), such
that, u0 · π0 · u*0 � πR. Then, there is a formal symbol u �∑i≥ 0ε

iui with ui ∈ S−iρρ (B(Hf )) such that,

(S2–1) : u* +ε u � 1 (S2–2) : u+ε u
* � 1

(S2–3) : u+ε π+ε u
* � πR.

The Weyl quantization of a resummation of u, which we denote
by uε gives rise to an operator, Û � ûε +O0(ε∞) for which it
holds true that, Û Π̂ Û � π̂R.

(S3) There exists a formal, effective Hamilton symbol heff �∑i≥ 0ε
iheff ,i defined as,

heff :� u+ε H+ε u
*.

For systems with an external time parameter t and the Weyl
quantizations û and ĥeff , we have,

e−i Ĥ s − û†e−i ĥeff s û � O0(ε∞|s|). (21)

In the next section, we will make these formal definitions and
results more explicit and apply the space adiabatic scheme to a
simple cosmological model up to second order in the
perturbations.

5.2 Backreaction in Quantum Cosmology
As an illustrative example for the space adiabatic scheme, let us
consider Einstein general relativity, reduced to spatial
homogeneity and isotropy, including a cosmological constant
Λ> 0, and coupled to a spatially homogeneous, isotropic and real
Klein–Gordon field ϕ0 with mass mKG > 0 and coupling constant
λ ∈ R. We assume a globally hyperbolic space time manifold and
a metric with Lorentzian signature (−,+,+,+). The only
dynamical degree of freedom of the metric is the scale factor
a≥ 0. The lapse function N is a Lagrange multiplier and will be
fixed N ≡ 1. We perform a (3 + 1)–split of the manifold into
space and time which admits spatial hypersurfaces σ which we fix
to be compact, flat three–tori T3 with side lengths l ≡ 1. The
cosmological action is,

S[a(t), ϕ0(t)] � ∫
R

dt(− 1
κ
(3 _a2a + Λa3) + 1

2λ
( _ϕ2

0 −m2
KGϕ

2
0)),
(22)

where κ � 8πG and λ are the gravitational and scalar field
coupling constants. If both, (a, ϕ0) are dimensionless, as we
assume, then both coupling constants have the same
dimension, and we define the dimensionless ratio,

ε2 :� κ

λ
. (23)

Considering typical values of the coupling parameters in the
Standard Model, it seems reasonable to assume that this ratio is

indeed extremely small. Hence, we identify gravity with the
slow sector while the matter field is considered to be the fast
subsystem.

The space adiabatic scheme requires a Hamiltonian
formulation of the problem. We define the conjugate
momenta of a and ϕ0 as, pa :� ε zLz _a and μ0 :� zL

z _ϕ0
, where L is

the Lagrange function associated with the action S. The Poisson
brackets of the canonical variables evaluate to {a, pa} � ε, and
{ϕ0, μ0} � 1. The Legendre transformation generates the
Hamilton constraint,

C(a, pa, ϕ0, π0) :� − 1
12

p2a
a
+ Λ
λ κ

a3 + μ20
2a3

+ 1

2λ2
m2

KGa
3ϕ2

0, (24)

where for notational reasons, we divided the whole constraint
by a constant factor λ. For simplifying the analysis by means of
SAPT in the following, we switch to triad–like canonical
variables,

b :� ±
��
a3

√
, ρ :� 2

3
pa�
a

√ , (25)

which is a double cover of the original phase space and we do not
restrict to any of the branches of b. In order to keep the notation
as simple as possible, we introduce the following parameters and
functions,

mG :� 8
3
, ω2

G :� 3Λ
4 λ κ

, ~mKG :� b2, ω2
KG :� m2

KG

λ2
.

(26)

These definitions and the new canonical variables give for the
Hamilton constraint,

C(b, ρ, ϕ0, μ0) � − ρ2

2mG
+ 1
2
mGω

2
Gb

2 + μ20
2~mKG(b)

+ 1
2
~mKG(b)ω2

KGϕ
2
0. (27)

We quantize the system and start by considering the scalar field
subsystem using bold operator symbols. The state space is
Hf :� L2(R, dϕ0), and the scalar field operator and its conjugate
momentum satisfy the canonical commutation relation,
[ϕ0, μ0]f � i 1f . Similarly, the state space of the geometrical
subsystem is Hs :� L2(R, db). The quantum operators wear hats
and the canonical commutation relation for the geometrical variable
and its conjugate momentum are, [b̂, ρ̂]s � i ε 1̂s. The quantum
theory of the coupled system has the tensor product Hilbert space,
H � Hs ⊗Hf . The constraint operator on H is given by,

Ĉ � (− ρ̂2

2mG
+ 1
2
mG ω

2
G b̂

2)⊗ 1f + 1

2 ~mKG(b̂)⊗ μ2
0

+ 1
2
~mKG(b̂)ω2

KG ⊗ϕ
2
0. (28)

We check the conditions (C1)–(C4) for SAPT. (C1) holds
without further ado since the cosmological Hilbert space
Hs ⊗Hf has the required tensor product structure, and Hs is
an L2–space and Hf is separable. We represent the quantum
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constraint as a symbol function C(ρ, b)with values in the linear
operators on the Klein–Gordon Hilbert space Hf by formally
quantizing the Klein–Gordon subsystem only,

C(b, ρ) � ( − ρ2

2mG
+ 1
2
mGω

2
Gb

2)1f + ϕ2
0

2 ~mKG(b)
+ 1
2
~mKG(b)ω2

KG μ
2
0. (29)

C(b, ρ) is an unbounded operator onHf for every (b, ρ) ∈ R2. In
particular, the operator corresponds to the Hamiltonian of a
quantum harmonic oscillator with constant frequency ωKG,
b–dependent mass ~mKG(b) and an off–set energy. As such, the
symbol has for fixed finite (b, ρ) an energy spectrum which is
bounded from below but not from above. Besides, C(b, ρ) is an
unbounded function with respect to both, b and ρ. According to
SAPT, the constraint symbol must however belong to one of the
symbol classes Smρ (B(Hf )) and should therefore have values in
the space of bounded operators on Hf , be a bounded function
with respect to b and grow maximally polynomially in ρ. By
means of the standard quantum oscillator eigensolutions ξn ∈ Hf ,
n ∈ N with a b–dependent mass, the correspondent eigenvalue
equation has the form,

C(b, ρ) ξn(b) � En(b, ρ) ξn(b),
En(b, ρ) � − ρ2

2mG
+ 1
2
mGω

2
Gb

2 + ωKG(n + 1
2
) (30)

We emphasize that the b-dependence of the states is purely
parametric which allows to define b-dependent projection
operators on Hf ,

πn(b) :� ξn(b) 〈ξn(b), · 〉Hf
, (31)

by means of which the Hamilton symbol constraint has the
spectral representation,

C(b, ρ) � ∑
n≥ 0

En(b, ρ)πn(b). (32)

In order to respect the conditions for the application of SAPT, it is
possible to define an auxiliary Hamilton symbol Caux(b, ρ) which
has values in the bounded operators, is locally a bounded function
with respect to b, and which preserves the local structure of the
symbol function C(b, ρ) (Panati et al., 2003; Stottmeister, 2015).
Since the perturbation scheme is applicable without referring to this
auxiliary symbol (if convergence and uniformity of the series
expansion do not play a role for the time being), we continue
working with the original symbol (32) to illustrate the scheme. Most
importantly, the gap condition (C3) is satisfied since the energy
functions En(b, ρ) are gapped functions on the gravitational phase
space. Finally, we formally choose one of the fast energy bands with
quantumnumber ] ∈ N to proceed with the space adiabatic scheme.

Application of Space Adiabatic Perturbation
Theory
We start with the perturbative construction of the Moyal projector
symbol π up to first order in ε. In fact, this will be sufficient to define

the effective Hamilton constraint up to second order. With the
ansatz, π(1) � π0 + επ1, and the natural choice for the base clause,

π0 :� ξ](b) 〈ξ](b), · 〉Hf
, (33)

we construct the symbol function π(1)(b, ρ) following the
construction steps (S1). The first condition (S1–1), π+ε π � π,
yields that the diagonal contribution to π1 vanishes because π0(b)
depends solely on b. Regarding the third condition (S1–3),
C0 +ε π − π+ε C0 � 0, it is straightforward to derive (Teufel,
2003; Neuser et al., 2019), that,

π1 � − i
2
π0 · {π0,C0 + E] 1f}s · (C⊥

0 − E] 1f)−1 · π⊥
0

− i
2
(C⊥

0 − E] 1f)−1 · π⊥
0 · {C0 + E] 1f ,π0}s · π0,

(34)

as a determining equation for π1, where we defined, C⊥
0 � C0 · π⊥

0 ,
and π⊥

0 :� 1f − π0. To evaluate the partial derivative zbπ0 in this
equation, we need to evaluate the derivative of the states ξn(b) ∈ Hf

as well as the derivatives of the canonically defined creation
and annihilation operators a*(b) ∈ L(Hf ) and a(b) ∈ L(Hf ).
Therefore, recall that the initial eigenvalue problem admits the
oscillator solutions ξn(b). Accordingly, the creation operator a*(b)
can be written in terms of the canonical pair (ϕ0, μ0) as,

a*(b) �
����������
~mKG(b)ωKG

2

√ (ϕ0 −
i

~mKG(b)ωKG
μ0), (35)

The derivatives of the vacuum state ξ0(b) and the creation
operator are given by,

zξ0
zb

:� �
2

√
f (b) ξ2(b), za*(b)

zb
� −2f (b) a(b), (36)

where f (b) :� −(zb ~mKG)/(4~mKG) � −1/(2b). We propose
the definition of a covariant derivative, or more precisely, a
gauge potential A, associated with the b–derivative of the
fast oscillator states. Note that this is simply Berry’s connection
(Berry, 1984). Using the natural basis choice from above, its
coefficients with respect to the b–direction on Γs are given by,

zξn(b)
zb

� A n−2
bn (b) ξn−2(b) +A n+2

bn (b) ξn+2(b), (37)

with, Ak
bn(b) � − �������

n(n − 1)√
f (b) δk+2n + ������������(n + 1)(n + 2)√

f (b)
δk−2n . All coefficients A m

ρn in the ρ–direction vanish because the
fast eigenstates do not depend on ρ. Only the coefficients that connect
states differing by two excitations in the b–direction are non-
vanishing. Since we have real–valued eigenstates, the connection
coefficients are real–valued, too, such that the orthonormality relation
between the fast states yields that,A m

bn � −A n
bm . The b–derivative

of the projector symbol π0 follows from using Riesz’ representation
theorem and one can simply write,

zπ0

zb
� A m

b] (ξ]〈ξm, · 〉f + ξm〈ξ], · 〉f), (38)

where ] is still a fixed quantum number while m runs over all
natural numbers. To evaluate π1, the partial derivative,
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zρ (C0 + E] · 1f ), is simply (−2ρ/mG) · 1f , because only the
spectral functions En(b, ρ) depend on ρ while the states do
not. The functional form of the energy functions also reduces
(C⊥

0 − E] · 1f ) to a factor ± (2ωKG)−1, and consequently,

π1 � − iρ
2mGωKG

(A ]−2
b] (ξ]〈ξ]−2, · 〉f − ξ]−2〈ξ], · 〉f)

+ A ]+2
b] (ξ]+2〈ξ], · 〉f − ξ]〈ξ]+2, · 〉f)). (39)

One can easily check that π(1) satisfies all three conditions
subsumed under (S1) up to first order in ε, i.e., that it is a
projector and commutes with the full Hamilton symbol up to
errors of order ε2. We see that the improved projection symbol
mixes adjacent eigenstates of the fast system, and going to higher
orders in the perturbative scheme more and more states will be
included.

The next step of SAPT consists in constructing the unitary
symbol u1 which maps the dynamical subspace related to π(1), to
a suitable reference subspace Kf ⊂ Hf . It is convenient to choose
one point (b0, ρ0) ∈ Γs and define the reference projection as,

πR :� ξ](b0)〈ξ](b0), · 〉f �: ζ]〈ζ], · 〉f , (40)

where ζ] ∈ Hf does not depend on the gravitational phase space
variables. In a similar fashion, one can define the complete basis
ζn :� ξn(b0), n ∈ N at the point b0. A natural choice for the
unitary operator in line with conditions (S2) at zeroth order is
simply,

u0(b) � ∑
n≥ 0

ζn〈ξn(b), · 〉f. (41)

In order to construct u1, the scheme splits the symbol into a hermitian
and an antihermitian part. The hermitian part is determined by Eqs.
S2-1 and S2-2, namely by requiring that u+u* � 1f holds up to first
order in ε. Since u0 only depends on the configuration variable b, the
hermitian part vanishes trivially. The antihermitian part is determined
by restricting equation (S2S–equation (S3), i.e., u+π+u* � πR, to
the first order. It yields for u1 (Neuser et al., 2019),

u1 � [πR, u0 · πOD
1 · u*

0]f · u0

� iρ
2mG ωKG

[A]−2
b] (ζ]〈ξ]−2, ·〉f + ζ]−2〈ξ], · 〉f)

− A]+2
b] (ζ]+2〈ξ], · 〉f + ζ]〈ξ]+2, · 〉f)]. (42)

Eventually, we are ready to compute the effective Hamiltonian
symbol up to second order in the perturbations, and which we
restrict to the selected reference space, i.e., we compute,
Ceff ,(2),R(b, ρ) :� πR · Ceff ,(2)(b, ρ) · πR. The zeroth order
contribution of this symbol is given according to condition (S3) by,

Ceff ,0,R(b, ρ) � ( − ρ2

2mG
+ 1
2
mGω

2
Gb

2 + ωKG(] + 1
2
))πR. (43)

Thus, the effective constraint symbol for the gravitational degrees
of freedom includes the bare gravitational constraint symbol plus
an off–set energy which stems from the energy band associated
with the quantum number ] of the Klein–Gordon system. This
result corresponds to the Born–Oppenheimer approximation.

The first order contribution of the effective constraint symbol,
Ceff ,1(b, ρ) contains only off-diagonal terms, such that
Ceff ,1,R(b, ρ) vanishes identically,

Ceff ,1,R(b, ρ) � i
2
{πR · u0,C0 + E] 1f}s · u*

0 · πR � 0. (44)

The same reasoning applies to the computation of the second
order contribution Ceff ,2,R(b, ρ) giving,
Ceff ,2,R � i

2
{πR · u1,C0 + E] 1f}s · u0 · πR

� [zEn

zρ
]2[ (A]−2

b] )2
E] − E]−2

+ (A]+2
b] )2

E] − E]+2
]πR + 1

2
z2En

zρ2
[(A]−2

b] )2 + (A]+2
b] )2]πR.

(45)

Finally, inserting the explicit results for the energy functions and
the connection coefficients yields,

Ceff ,2,R(b, ρ) � − 1
2mG

( ρ2

mGωKGb2
(] + 1

2
) + 1

2b2
(]2 + ] + 1))πR.

(46)

This proves our statement that besides the trivial
Born–Oppenheimer approximation, further backreaction
effects arise for the gravitational subsystem. It is now easy to
evaluate the action of this symbol on some generic tensor
product wave function in H � Hs ⊗Hf , since the
Klein–Gordon tensor factor does not depend on the
gravitational degrees of freedom anymore. The problem reduces
to a quantum constraint equation on Hs only, and can be studied
for each ] of interest. Nevertheless, we point out that finding states
that are annihilated by the constraint operator Ĉeff ,2,R is not a trivial
task as it depends non-polynomially on b. Further details can be
found in (Neuser et al., 2019). Finally, the question is how the
solutions of (46) relate to the solutions of the original problem
on H. In fact, one needs to rotate the solutions of Ĉeff ,2,R back
to the original Hilbert space using the quantization of the Moyal
unitary. It turns out that the resulting solutions are also
approximate (orthogonal) solutions to the full Hamilton
constraint at the respective perturbative order (Teufel, 2003;
Schander and Thiemann, 2019a).

5.3 Backreaction in Inhomogeneous
Quantum Cosmology
The purely homogeneous model in the previous section can serve
as a showcase for a more realistic inhomogeneous cosmological
model. Here, we consider standard cosmological perturbation
theory for a gravitational metric field g, a massive real scalar field
Φ as the matter content, and a cosmological constant,Λ> 0. After
the split of the relevant degrees of freedom into a homogeneous
and an inhomogeneous part, the aim will be to incorporate
backreactions from the perturbative degrees of freedom onto
the homogeneous and isotropic background degrees of freedom.

As before, the model rests on a four-dimensional globally
hyperbolic space time manifold M that admits the time space
split M � R × σ. The metric has Lorentzian signature
(−,+,+,+), and the spatial hypersurfaces σ are compact and
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flat three-tori σ � T3 with side lenghts l ≡ 1. The global time
parameter t ∈ R labels the spatial Cauchy surfaces Σt . nμ is the
unit normal vector field to these hypersurfaces, N and Nμ the
(standard) lapse and shift functions which parametrize the
normal and the tangential part of the foliation. The task of
specifying constraints or equations of motion for the metric
field g, translates into defining a Cauchy initial value problem
for the spatial metric hμ] � gμ] + nμn] induced by g. The
extrinsic curvature associated with the time derivative of h is
given by Kμ] � hρμhλ]∇ρnλ. ∇ is the unique, torsion–free covariant
derivative associated with the metric g. After pulling back the
tensor fields to R × T3 and denoting spatial indices on the
spatial hypersurfaces with lower case latin symbols,
a, b, c, . . . ∈ {1, 2, 3}, the Lagrange density is expressed by the
sum of the Einstein–Hilbert Lagrange density LEH and the
scalar field Lagrange density LΦ, with,

LEH � 1
2κ

���|h|√
N (R(3) + KabK

ab − (Ka
a )2 − 2Λ), (47)

LΦ � 1
2λ

���|h|√
N (− 1

N2
_Φ2 + 2

Na

N2
_ΦzaΦ + (hab − NaNb

N2
)zaΦzbΦ

+m2
ΦΦ2). (48)

where again, λ is the coupling constant of the scalar field, mΦ is
the mass parameter of the scalar field, and R(3) is the curvature
scalar associated with the three–metric h and its Levi–Civita
covariant derivative, D. The only degrees of freedom of the
spatially homogeneous and isotropic sector are the zeroth
order lapse function N0(t) and the scale factor a(t), associated
with the zeroth order spatial metric, 0h(t, x) :� a2(t)0~h(x) with
0~h(x) being the time-independent metric on the spatial
hypersurfaces. A Hamiltonian analysis shows that the lapse
function is a Lagrange multiplier with no dynamical features,
affirming the arbitrariness of the hypersurface foliation.

We introduce perturbations of the homogeneous degrees of
freedom using a decomposition into scalar, vector and tensor parts
(Halliwell and Hawking, 1985). Since we make use of their results in a
later stage, we will stick to the definition of perturbations used by
Castelló Gomar et al. (2015) and Martínez and Olmedo (2016),

N(t, x) �: N0(t) + a3(t) g(t, x) (49)

Na(t, x) �: a2(t)Da k(t, x) + a2(t) ϵ bca Db kc(t, x) (50)

hab(t, x) �: a2(t)[(1 + 2α(t, x))0~hab(x) + 6(DaDb − 1
3
0~hab(x)DcD

c)β(t, x)
+ 2 �

6
√

tab(t, x) + 4
�
3

√
D(avb)(t, x)⎤⎦,

(51)

Φ(t, x) �: ϕ(t) + φ(t, x). (52)

where we introduced the perturbative scalar fields (g, k, α, β,φ),
the vector fields va and ka, and the tensor field perturbations
tab. For notational reasons, we introduce the fields �k :� Δk and
�ka :� ϵ bca Dbkc as new degrees of freedom associated with the shift.

We perform a Legendre transformation to obtain
the Hamilton constraint. We insert the perturbed variables
from Eqs. 49–(52) into the Lagrange density (47), (48), and
expand the Lagrangian and the action functional S up to second
order in the perturbations. As the three-torus does not have a
boundary, total divergences vanish in the computations. The
resulting action does neither depend on the velocities of the lapse
variables N0 and g, nor on the velocities of the shift variables �k and
�ka. These Lagrange multipliers will hence be associated with
primary constraint equations in the Hamiltonian formalism. In
the lines of (Castelló Gomar et al., 2015), we define the conjugate
momenta (Pa, Pϕ) for the homogeneous and isotropic degrees of
freedom (a, ϕ) using the Lagrange function L � ∫ dxL,

Pa :� zL
z _a

� − 6
κN

a _a, Pϕ :� zL

z _ϕ
� a3

λN
_ϕ. (53)

We denote the corresponding phase space by Γhom � Γs. The
perturbation fields (α, β,φ, ϑa, tab) together with their conjugate
momenta (πα, πβ, πφ, πa

v , π
ab
t ) span the perturbative phase space

Γpert � Γf . The momenta are defined as,

πχ :� zL
z _χ

, (54)

for any field χ ∈ {α, β,φ, va, tab}. N0, g, �k and �ka induce the lapse
and shift primary constraints ΠN0

0 , Πg
1, Π�k

1 and Π�ka ,b
1 . The

Hamiltonian density is eventually given by,

H � N0[H0 +Hs
2 +Hv

2 +Ht
2] + g ·Hg

1 + �ka ·H�kd ,a
1 + �k ·H�k

1+
λN0 · ΠN0

0 + λg · Πg
1 + λ�k · Π�k

1 + λ�ka ,b · Π
�ka ,b
1 . (55)

H0 denotes the Hamiltonian contribution associated with the
completely homogeneous and isotropic model. Hs

2, Hv
2 and Ht

2
are of second order in the perturbations and contain only scalar,
vector and tensor variables respectively. Hg

1, H�kd ,a
1 and H�k

1
represent first order contributions which factorize with the
respective lapse and shift variables. The second line lists the
primary constraints associated with lapse and shift and their
Lagrange multipliers λN0, λg , λ�k and λ�ka ,b. The system is
completely constrained and we thus perform a Dirac analysis
to extract the relevant physics.

Therefore, we identify a suitable set of free variables–in fact,
the Dirac analysis will then become a trivial task. We start by
noting that the perturbation variables that we introduced are not
all gauge–invariant. In the scalar sector, let us employ the
gauge–invariant Mukhanov-Sasaki variable ϑ (Mukhanov,
1988, 2005),

ϑ :� aφ + 6λPϕ

κPa
(α − Δβ) (56)

Note that this transformation for the perturbative fields also
depends on the homogeneous degrees of freedom. While the
original perturbation variables had canonical momenta
properly defined by the Legendre transform, the new
perturbation variables will break the canonical structure as
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they non-trivially depend on the homogeneous degrees of
freedom. In order to preserve the canonical structure of the
system, it is mandatory to find a suitable transformation for the
homogeneous and isotropic variables, too. This appears to be a
cumbersome mission. Castelló Gomar et al. (2015) have
however shown that it is possible to find a transformation
for the homogeneous and isotropic degrees of freedom which
preserves the canonical structure of the system up to second
order in the cosmological scalar perturbations. The same has
been done by Martínez and Olmedo (2016) for the tensor
degrees of freedom.

These transformations and the resulting almost–canonical
variables in the homogeneous and the perturbative sector lead to
a redefinition of the Hamilton constraint. Fortunately, these
transformations make the Dirac constraint analysis almost trivial.
The secondary constraints that one obtains from requiring the
conservation of the primary constraints under the evolution of the
Hamiltonian, generate only one single, non-trivial constraint, namely,

C :� H0 + ~Hs

2 + �Ht

2 � 0, (57)

where H0 now depends on the transformed homogeneous
variables, and ~Hs

2 and �Ht
2 are second order constraints that

depend on the Mukhanov–Sasaki and the tensor perturbations
respectively, as well as on the transformed homogeneous variables.
Before we give the corresponding expressions, let us perform the
typical ε-rescalings of the momenta that will make the space
adiabatic scheme work at the technical level. We will simply
denote the transformed variables by the original ones, and write,

pa :� ε2 Pa, pϕ :� ε Pϕ. (58)

Besides, we perform a canonical rescaling of the inhomogeneous
Mukhanov–Sasaki and tensor perturbations, and multiply the
constraint by a global ε2–factor. Then, the total Hamilton
constraint, C � H0 + ~H

s
2 + �H

t
2 � 0, is given by (Schander and

Thiemann, 2019c),

H0 � − p2a
12a

+ p2ϕ
2a3

+ 1
2
ε2m2

Φa
3ϕ2 + Λa3, (59)

~H
s

2 �
1
2a
∫
T3

dx [ π2
ϑ��
0~h

√ + ϑ ε4[− ��
0~h
√

Δ +m2
MS]ϑ], (60)

Ĥ
t

2 �
1
2a
∫
T3

dx [πab
t πt,ab

6
��
0~h

√ + tabε4[ − 3
��
0~h

√
Δ + (εmT)2]tab], (61)

with the effective Mukhanov–Sasaki and tensor masses
depending on the homogeneous variables,

m2
MS � (− p2a

18a2
+ 7p2ϕ
2a4

− 12ε
��
0~h

√ 2

m2
Φ
aϕpϕ
pa

− 18
p4ϕ
a6p2a

+
��
0~h

√ 2

m2
Φa

2) 1��
0~h

√ ,

(62)

(εmT)2 � ( p2a
6a2

− 3ε2
��
0~h

√ 2

m2
Φa

2ϕ2 − 6
��
0~h

√ 2

Λa2) 1��
0~h

√ . (63)

Now, SAPT requires to quantize the cosmological perturbations.
The form of ~H

s
2 and �H

t
2 suggests to consider a standard Fock

quantization for the Mukhanov–Sasaki and the tensor fields. The
quantized fields should satisfy the commutation relations,

[g(ϑ),πϑ(f )]MS � i∫
T3

dx g(x)f (x) 1MS, [G(t),πt(F)]T

� i∫
T3

dx Gab(x)Fab(x) 1T,

for suitable test functions f, g, Gab and Fab on the three–torus,
where 1MS and 1T denote the unities of the quantum algebras. As
a basis for the one–particle Hilbert space L2(T3, dx) it is
convenient to choose the plane waves f

k
→( x→) � exp(i k→ x→),

with k
→

∈ 2πZ 0 being discrete. The total perturbative Hilbert
space is the tensor product of the correspondent Fock spaces,

Hf � F s,MS(L2(T3, dx)) ⊗
τ�{+,−}

F s,T,τ(L2(T3, dx)), (64)

where the index “s” refers to symmetric, and we introduced the
label τ which stands for the only two physical degrees of freedom
associated with the tensor perturbations (namely their
polarizations). The form of the second order contributions to
the Hamilton constraint suggest to define the one–particle
frequency operators for the Mukhanov–Sasaki and the tensor
systems,

ωMS :� ε2
��������
−Δ +m2

MS

√
, ωT :� ε2

��������������
−18Δ + 6 (εmT)2

√
. (65)

Note that both operators depend on the homogeneous degrees of
freedom as they contain the mass functions mMS(a, pa, ϕ, pϕ) and
mT(a, pa, ϕ). This implies that the annihilation and creation
operators a(f

k
→) �: a

k
→, a*(f

k
→) �: a*

k
→ of the Mukhanov–Sasaki

system and the annilation and creation operators of the tensor
perturbations b ± (f

k
→) � b

k
→

, ±
, b*± (f k

→) � b*
k
→

, ±
, defined in the

standard way, depend on the homogeneous degrees of freedom,
and so do the natural Fock basis states (Schander and Thiemann,
2019c). In contrast to the cosmological toy model, they depend on
the whole set of phase space variables, which represent non-
commuting operators in the quantum theory, and which makes
the application of SAPT mandatory. The Born–Oppenheimer
approach would fail in the given case.

It is most convenient to express the quantum constraint
symbol C(a, pa, ϕ, pϕ) in terms of normal–ordered annihilation
and creation operators,

C � ( − p2a
12a

+ p2ϕ
2a3

+ 1
2
ε2 m2

Φa
3 ϕ2 + Λ a3)1f

+ 1
a
∑
k
→

∈K

ω
MS, k

→ a*
k
→ a

k
→ + 1

6a
∑
K
→

∈K

ω
T, k
→ b*

K
→ b

K
→, (66)

where we identify the first contribution as the usual
FLRW Hamilton constraint, which we will denote by
Ehom(a, pa, ϕ, pϕ). The label K

→
:� ( k→, τ) ∈ K specifies the

mode and the polarization of the tensor perturbations. C
admits a discrete spectrum for any point (a, pa, ϕ, pϕ) ∈ Γs
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because the sums over the wave vectors in the Hamilton constraint
are discrete and so is the spectrum of the number operators a*

k
→ a

k
→

and b*
K
→ b

K
→. Any Fock state ξ(n) ∈ Hf with finite energy can be

identified with a finite set of non-vanishing quantum numbers
(n) :� { . . . , n

MS, k
→

1

, n
MS, k

→
2

, . . . , n
T,τ, k

→
1

, n
T,τ, k

→
2

, . . . }, where we

distinguished between the quantum numbers of the
Mukhanov–Sasaki and the tensor perturbations. We introduce
degeneracy labels which take the possibility of degenerate
eigenstates into account, and we denote them by b � 1, . . . , d for
the Mukhanov–Sasaki system and b′ � 1, . . . , d′ for the graviton
system. To shorten notation, we integrate the degeneracy labels in
β :� {b, b′} and the degeneracy numbers in δ :� {d, d′}. We write
for the set of homogeneous variables, (q, p) :� (a, pa, ϕ, pϕ). The
eigenvalue problem for any finite set of quantum numbers (n)β
then has the form,

C(q, p) ξ(n)β(q, p) � En(q, p) ξ(n)β(q, p), (67)

En(q, p) : � Ehom(a, pa, ϕ, pϕ) + 1
a
∑
k
→

∈K

n
MS, k

→
,b
ω
MS, k

→

+ 1
6a
∑
K
→

∈K

n
T, K
→

,b′
ω
T, K
→.

Due to the discreteness of the eigenbasis, it is possible to define
non–vanishing energy gaps between the eigenenergy bands of the
perturbations, at least for local regions in phase space. In the
following, we assume that the relevant energy bands admit such
local gaps in the region of interest.

To examine the derivatives of the eigenstates with respect to
the homogeneous variables, we need the derivative of the
vacuum state and the annihilation operators since any
excited state in the Hilbert space Hf can be constructed from
the vacuum state Ω(q, p) by applying the desired number
(n

MS, k
→, n

T, k
→

,+, nT, k→,−) of creation operators for every wave

number k
→
. We formally choose one such eigenstate with

quantum number(s) (])β given by,

ξ(])(q, p) � ∏
K
→

∈K

(a*
k
→)]MS, k

→
������
]
MS, k

→!
√ (b*

K
→)]T, K

→
�����
]
T, K
→!

√ Ω(q, p) (68)

It is useful to write the explicit representation of the
Mukhanov–Sasaki wave function and the tensor wave
functions as a product,

ξ(]) �: ξMS
(]MS) ·∏

τ

ξT,τ(]T). (69)

The derivatives of the annihilation operators with respect to
λ ∈ {q, p}, are proportional to the correspondent creation operators,

za
k
→(q, p)
zλ

:� fMS

λ, k
→(q, p) a*

k
→(q, p),

zb
K
→(q, p)
zλ

:� f T
λ,K
→(q, p) b*

K
→(q, p), (70)

and the explicit expressions of the factors can be found in
(Schander and Thiemann, 2019c). The λ-derivative of the
vacuum state is then given by,

zΩ(q, p)
zλ

� ∑
k
→

∈K

fMS

λ, k
→(q, p)(a*

k
→ a*

k
→Ω)(q, p)

+ ∑
K
→

∈K

f T
λ, k
→(q, p)(b*

K
→ b*

K
→Ω)(q, p). (71)

The λ-derivative of any excited state ξ(n) is thus uniquely defined
by these results and can be expressed as an application of a
connectionAλ ∈ C∞(Γs,L(Hf )), on the global Hilbert bundleH,

zξ(n)(q, p)
zλ

�: Aλξ(n) �: A(m)
λ(n)ξ(m),

A(m)
λ(n)(q, p) ∈ C∞(Γs,R) ∀(n), (m),

(72)

where the summation over (m) includes essentially all possible
excitation numbers within the Fock space Hf . However, there is
only a countable number of(m)’s for whichA(m)

λ(n) is non-vanishing if(n) is a finite set of non-vanishing excitation numbers. For more
details and the explicit calculations, we refer to (Schander and
Thiemann, 2019c).

Application of a Space Adiabatic
Perturbation Scheme
The construction of the space adiabatic symbols is subject to two
different perturbative scalings: ε for the homogeneous scalar field,
and ε2 for the homogeneous gravitational degrees of freedom.
The Moyal product for two operator–valued functions
f (q, p) ∈ Sm1

ρ (Γs,B(Hf )), g(q, p) ∈ Sm2
ρ (Γs,B(Hf )) has the form,

( f +ε g)(q, p)p[f exp(iε2 ( z← ϕ z
→

pϕ − z
←

pϕ z
→

ϕ)
− iε2

2
( z← a z

→
pa − z

←
pa z
→

a))g](q, p) ∈ Sm1+m2
ρ (Γs,B(Hf))

(73)

As it turns out, the Moyal product with respect to the
gravitational degrees of freedom does not contribute to the
computations up to second order in the perturbation scheme.

As before, the discrete eigenstate ξ(])β(q, p) ∈ Hf with quantum
number (])β serves to define the zeroth orderMoyal projector symbol,

π0(q, p) :�∑
β

ξ(])β(q, p) 〈ξ(])β(q, p), · 〉f . (74)

The only relevant contribution to π1 comes from (S1–3). This
off–diagonal part πOD

1 mixes the adjacent inhomogeneous
eigenstates according to,

πOD
1 � i

2
∑
β�1

δ ∑
(n)≠ (])β

A(])β(n)
E(])β − E(n)

(ξ(])β 〈ξ(n), ·〉f − ξ(n) 〈ξ(])β, ·〉f),
(75)

with
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A(])β(n) � A (n)
ϕ(])β

z(E(n) + E(])β)
zpϕ

−A (n)
pϕ(])β

z(E(n) + E(])β)
zϕ

+ (E(n) − E(m))(A(m)
pϕ(])β A

(n)
ϕ(m) −A(m)

ϕ(])β A
(n)
pϕ(m)).

(76)

Constructing the unitary symbol π(1) requires to choose a
simple reference space Kf , and as before, Hf itself is a
convenient choice. Its basis is determined by fixing a set of
numbers (q0, p0) ∈ Γs giving {ζ(n) :� ξ(n)(q0, p0)}(n). The zeroth
order contribution to the Moyal unitary and the reference
projector can be chosen as,

u0(q, p) :�∑
(n)
ζ(n) 〈ξ(n)(q, p), · 〉f, πR :�∑δ

β�1
ζ(])β〈ζ(])β, · 〉f.

(77)

The hermitian part of u1(q, p) is determined by
evaluating (S2-1) and (S2-2) up to first order in the
perturbations,

uh
1(q, p) � ∑

(n),(m),(k)
(A(m)

ϕ(n)A(k)
pϕ(m)

−A (m)
pϕ(n) A (k)

ϕ(m) )ζ(n) 〈ζ(k), · 〉f. (78)

Since the sum runs over all possible combinations of
quantum numbers, it is clear that the two contributions
are equal and cancel each other. We thus have that uh1 � 0.
The antihermitian part of u1 results from employing the
result for πOD

1 in the well–known expression from the toy
model example,

uah
1 � [πR, u0 · πOD

1 · u0*]f · u0. (79)

We evaluate the effective Hamilton constraint symbol
according to, Ceff � u+ε C+ε u*, and restrict our interest
directly to the reference space, i.e., to Ceff ,R � πR · Ceff · πR.
At zeroth order, this yields,

Ceff ,0,R � ∑
b,b′�1

d,d′ ⎡⎢⎢⎢⎢⎢⎢⎢⎣Ehom(a, pa, ϕ, pϕ) + 1
a
∑
k
→

∈K

]
MS, k

→
,b
ω
MS, k

→

+ 1
6a
∑
K
→

∈K

]
T, K
→

,b′
ω
T, K
→⎤⎥⎥⎥⎥⎥⎥⎥⎦ · ζ(])β〈ζ(])β, ·〉f, (80)

which includes the standard zeroth order Hamilton constraint
for an FLRW Universe Ehom(a, pa, ϕ, pϕ), and the bare energy
contributions from the relevant energy band ξ(])a. These
additional terms are finite since the quantum numbers
{]

MS, k
→

,b
, ]

T, k
→

,b′
} are non-vanishing for only a finite number

of wave vectors k
→
. Te first order contribution to the

effective Hamiltonian vanishes identically within the subspace
of interest.

The second order effective Hamilton symbol includes
several contributions but only one of them is of second
order in the perturbative parameter, and hence relevant.

The occurence of terms that actually enter at higher
orders in ε stems from the fact that the perturbative
Mukhanov–Sasaki and graviton contributions to C are by
definition of second order in ε. It was necessary to include
them to make the space adiabatic scheme work at the
technical level. We refer again to (Schander and
Thiemann 2019c) for more details and only state the final
result,

Ceff ,2,R(a, pa, ϕ, pϕ) � −∑d
b�1

∑
k
→

∈K

1

( k→2 +m2
MS)5/2 (]MS, k

→
,b
+ 1
2
)

9
2

m4
Φp

4
ϕ

a3p2a
ζ(])b〈ζ(])b, ·〉f. (81)

This second order effective Hamiltonian symbol together with the
zeroth order contribution Eq. 80, provides after Weyl
quantization a constraint operator for the homogeneous sector
of quantum gravity which includes, most importantly, the
backreaction from the inhomogeneous modes. A similar result
was obtained for a quantum cosmological model with scalar field
perturbations and a deparametrizing dust particle (Schander and
Thiemann, 2019b). The next step of the scheme consequently
consists in Weyl quantizing the full effective constraint symbol
and in finding physical quantum states on the homogeneous
Hilbert space that are annihilated by it. A thorough discussion of
the above results will be given in the next and final section.

6 DISCUSSION AND OUTLOOK

This review provides an introduction to the backreaction problem
in classical, semiclassical and quantum cosmology, as well as a
detailed overview of the current state of research in the respective
fields. We have particularly focused on approaches to the
backreaction problem in (perturbative) quantum cosmology
that are inspired by Born–Oppenheimer methods. The main
part of this paper is dedicated to a program which uses SAPT
as due to Panati et al. (2003), and which extends the latter scheme
to quantum field theoretical models. Thereby, it is possible to
compute the backreaction effects from the quantum cosmological
perturbations on the homogeneous and isotropic quantum
background (Schander and Thiemann, 2019b; Schander and
Thiemann, 2019c). We have advocated this framework here as
it represents an unambigious and straighforward formalism in
order to incorporate the yet neglected backreaction effects in
quantum cosmology in a perturbative and rigorous way.

The extension of the SAPT methods actually requires some care.
The first issue is related to a violation of the Hilbert–Schmidt
condition in QFT on CST. In fact, it is well–known from
standard QFT that Klein–Gordon fields with different masses
give rise to unitarily inequivalent representations of the field
algebra (Haag, 1992). Since here, the effective masses of the
Klein–Gordon and tensor fields depend on the homogeneous
FLRW background, the theory prevents unitarily equivalent
quantum field theories for different background configurations.
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This would evidently impede the quantization of the homogeneous
sector. Schander and Thiemann (2019a,c) show that it is possible to
circumvent these problems by considering transformations of the
whole system that are canonical up to second order in the
cosmological perturbations (Castelló Gomar et al., 2015; Martínez
and Olmedo, 2016; Schander and Thiemann, 2019b).

Another point is that the mass squared functions of
the perturbative quantum fields m2

MS(a, pa, ϕ, pϕ) and
(εmT)2(a, pa, ϕ) in Eqs. 62 and 63 are indefinite, and which
leads to tachyonic instabilities. In (Schander and Thiemann,
2019a), several solutions are propsed, for example to revise
the almost–canonical transformations that have actually led
to these indefinite mass functions. A second proposal is to
restrict the homogeneous phase space of the theory to
regions in which the mass functions are positive. This can
be made manifest by performing coordinate transformations
in the slow sector. This is exemplified for the model with
gauge–invariant perturbations in (Radzikowski, 2008;
Schander and Thiemann, 2019a).

With the identification and solutions to these initial
problems, it was possible to successfully apply the methods
of SAPT to the backreaction problem in quantum cosmology.
We stated the results for a cosmological, homogeneous and
isotropic toy model, and for a fully-fledged perturbative
quantum cosmology with gauge-invariant perturbations
(Schander and Thiemann, 2019c; Neuser et al., 2019). In the
first case, this effective Hamilton constraint includes the
backreaction of the homogeneous scalar field; in the second
case, the backreactions of the perturbative degrees of freedom
on the homogeneous background are taken into account. Here,
results up to second order in the adiabatic ε-scheme are
presented. The effective Hamiltonian symbol eventually
needs to be quantized with respect to the slow sector and
the goal is to find admissible solutions. This has been done
for an oscillator toy model in (Neuser et al., 2019). One can
proceed here in the same way but analytic solutions are harder
to find due to the non-polynomial structure of the result, and
which requires an in depth analysis of their dense domain. For
simplicity, we chose a Weyl quantization scheme and a
Schrödinger representation following the original work by
Panati et al. (2003). Instead, one could consider the
representation underlying LQC which could be of advantage
regarding the domain issues (Bojowald, 2008). Due to the
peculiarities of that representation (especially the strong
discontinuity of the Weyl elements), and in agreement with
certain superselection structures of the dynamics, one would
need to discretize the labels of the Weyl elements in one of the
conjugate variables. This would effectively replace the
gravitational slow phase space T*R by T*(S1) for which the
Weyl quantization in application to LQC has been discussed in
(Stottmeister and Thiemann, 2016b).

Focusing on the second order contribution to the perturbative
model, Eq. 81, one might be worried about the infinite sums.

Note that the result splits into two parts, namely the one
including the finite number of non–vanishing relevant
quantum numbers ]

MS, k
→

,b
for different degeneracy labels b,

and the contributions which do not depend on these quantum
numbers and hence include any summand of the wave vector
sum. The first part has only a finite number of contributions
and is manageable, while the second includes in principle an
infinite sum. Fortunately, the wave vector square enters with an
exponent of −5/2 which makes the sum a priori a convergent
sum. But the effective Mukhanov–Sasaki mass squared
m2

MS(a, pa, ϕ, pϕ) in the denominator is an indefinite function
on the homogeneous phase space. This will be cured as soon as a
positive definite sector of the mass squared functions has
been found.

We emphasize again that the issue of convergence of the
perturbation series in the SAPT approach has not been
addressed here. We point to easily implementable strategies
(Panati et al., 2003; Stottmeister, 2015), that allow to define
auxiliary Hamiltonian symbols that capture the relevant
physics of the model under consideration and whose
perturbation series is safely convergent.

Finally, we stress that there is an obvious connection between
backreaction and decoherence (Schlosshauer, 2007). Indeed, in
decoherence, one aims at finding an effective description of
what we call the slow sector using the reduced density matrix
approach, tracing over the fast degrees of freedom (Kiefer, 1987;
Paz and Sinha, 1991, 1992) (and references therein), and
computing its effective dynamics, e.g., by solving associated
Lindblad equations (Manzano, 2020). Using the tensor product
structure of the full Hilbert space, the connection to our
approach would be to construct the reduced density matrix
from a density matrix on the full Hilbert space that can be
formed from the eigenstates of the Hamiltonian (constraint)
corresponding to a given energy band. Details will be given
elsewhere.
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