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Abstract—Mobile edge computing (MEC) has emerged

as a prominent technology to overcome sudden demands

on computation-intensive applications of the Internet of

Things (IoT) with finite processing capabilities. Neverthe-

less, the limited energy resources also seriously hinders

IoT devices from offloading tasks that consume high power

in active RF communications. Despite the development of

energy harvesting (EH) techniques, the harvested energy

from surrounding environments could be inadequate for

power-hungry tasks. Fortunately, Backscatter communica-

tions (Backcom) is an intriguing technology to narrow the

gap between the power needed for communication and

harvested power. Motivated by these considerations, this

paper investigates a backscatter-assisted data offloading

in OFDMA-based wireless-powered (WP) MEC for IoT

systems. Specifically, we aim at maximizing the sum compu-
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tation rate by jointly optimizing the transmit power at the

gateway (GW), backscatter coefficient, time-splitting (TS)

ratio, and binary decision-making matrices. This problem

is challenging to solve due to its non-convexity. To find

solutions, we first simplify the problem by determining the

optimal values of transmit power of the GW and backscat-

ter coefficient. Then, the original problem is decomposed

into two sub-problems, namely, TS ratio optimization with

given offloading decision matrices and offloading decision

optimization with given TS ratio. Especially, a closed-

form expression for the TS ratio is obtained which greatly

enhances the CPU execution time. Based on the solutions

of the two sub-problems, an efficient algorithm, termed the

fast-efficient algorithm (FEA), is proposed by leveraging the

block coordinate descent method. Then, it is compared with

exhaustive search (ES), bisection-based algorithm (BA),

edge computing (EC), and local computing (LC) used as

reference methods. As a result, the FEA is the best solution

which results in a near-globally-optimal solution at a much

lower complexity as compared to benchmark schemes. For

instance, the CPU execution time of FEA is about 0.029

second in a 50-user network, which is tailored for ultra-

low latency applications of IoT networks.

Index Terms—Backscatter communication, Internet of

Things (IoT), mobile edge computing (MEC), OFDMA,

wireless power transfer (WPT).

I. INTRODUCTION

Internet of Things (IoT) can play a key role in im-

proving quality of life through applications such as home

automation, smart cars, smart city, health care, industrial

or agriculture monitoring, augmented reality, and smart

grid [1]. The number of IoT devices is estimated to reach

25 billion by 2025 [2], [3]. Moreover, there is an explosive

surge of resource-intensive IoT applications such as inter-

active gaming, multi-view video construction, augmented

reality (AR), virtual reality (VR), and face recognition,

that impose stringent demands on high computation capa-

bility, and low-latency processing [4]. The restricted stor-
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age and computation resources of IoT users besides their

constrained battery capacity make them unsuitable for

processing resource-hungry applications. Mobile cloud

computing (MCC) is a promising solution to overcome

the above issues in IoT networks [5]. Specifically, offload-

ing the heavy computation tasks to a central cloud (CC)

mitigates the IoT devices’ workload responding to low

latency and highly accurate applications. Nevertheless, the

MCC faces many problems such as network congestion

and high transmission delay due to many users connect

to the CC simultaneously and distant from users to CC,

respectively, which reduces the system performance. To

this end, Mobile Edge Computing (MEC) was recently

proposed to eliminate the shortcomings of the traditional

MCC due to its compute-intensive capability and the close

proximity to end-users. Consequently, MEC provides high

bandwidth connectivity and comes hand-in-hand with

ultra-low latency in computational offloading tasks [6]–

[9].

Extensive studies have investigated the MEC in IoT

networks [10]–[14]. The works in [10] and [11] investi-

gated the scheduling of tasks for IoT services in MEC.

Specifically, Hu et al. [11] studied the resource schedul-

ing problem in ultra-dense edge computing (UDEC)

networks. The authors in [10] solved the problem of

maximizing the number of admitted tasks based on

their deadline requirements, wherein they mathematically

formulated the dynamic task offloading and scheduling

(DTOS) problem by jointly optimizing the computing

offloading task, resource allocation, and task scheduling.

Then, they applied the Logic-based Benders Decompo-

sition approach to solve it efficiently. Different from

works in [10], [11] that only focused on modeling the

offloading decision, Yousafzai et al. [12] investigated

the process-level computational offloading. Specifically,

the authors proposed a process migration-based com-

putational offloading (PMCO) framework that offloads

a computation-intensive task from resource-limited IoT

devices to a mobile cloud/edge computing. Facilitated

by machine learning, Cui et al. [13] studied the pre-

dicted online learning method to improve the network

association by forecasting the mobility of IoT mobile

machines for ultra-low latency tasks in MEC networks.

The concept of a decentralized and revised content-centric

networking (CCN)-based MEC was presented in [14].

Specifically, they proposed a novel three-tiers hierarchi-

cal MEC network topology encompassing core cloud,

regional cloud, and MEC nodes which outperforms the

conventional two-tiers architecture in term of the average

service discovery time. Despite remarkable achievement,

none of those works [10]–[14] took energy harvesting into

consideration.

Especially, the data offloading process for low-powered

IoT users can be expensive due to high power consump-

tion in conventional RF communications which limited

them to utilize MEC systems [15]. Moreover, since the

IoT’s battery stores a finite amount of energy, it needs

to be replaced or charged, which is infeasible and costly

in the hazardous environments, e.g., in toxic (i.e., gas or

chemical) environments. This is the reason why energy

harvesting (EH) has attracted much attention in the last

decade [16], [17], [18]. Particularly, the integration of

MEC and wireless power transfer (WPT) creates a novel

paradigm called WPMEC which has emerged as a poten-

tial solution to tackle the limitation of energy budget and

computation capability of low-power IoT devices [19]–

[21]. Reference [19] considered a single-user WPMEC

system wherein a multi-antenna source utilized energy

beamforming to power a single-antenna user. Based on the

harvested energy, the user will decide to compute locally

a portion of tasks and offload the rest of tasks to MEC

server. The authors aimed at minimizing the total trans-

mission power of the source while guaranteeing the ac-

complished user’s task operation. In a two-user WPMEC

system [20], the authors studied the maximization of

minimum energy-efficiency by optimizing time allocation

under minimum rate constraint and maximum harvested

energy requirement. Reference [21] investigated a multi-

user WPMEC system with binary offloading, wherein the

authors aimed at maximizing the total computation rate

of all users by jointly optimizing the time allocation and

binary decision-making for each user.

Nevertheless, the harvested energy from surrounding

environments may be insufficient for power-hungry tasks.

This leads to the mismatch between the EH from the

harvester and the required energy by the IoT devices.

To overcome this issue, the authors in [17] designed a

system to push up the amount of harvested energy by

scavenging from multiple sources. However, it required

a more complicated hardware that may not be suitable

for mobile IoT devices. Recently, backscatter communi-

cations (Backcom) has received significant attention from

researchers due to its ability to bridge the gap between

the required power for communication and the supplied

power from the energy source [22], [23]. This is because

the power consumption of a typical backscatter transmit-

ter is less than 1 µW [24] which is well suitable for RF-

power energy ranging from 1 µW to 10 µW [25]. This

motivates us to apply backscatter-assisted data offloading
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in MEC for IoT networks. There are few existing studies

on the backscatter-assisted MEC system [15], [26]. In

[15], a deep reinforcement learning (DRL) framework

was adopted to learn the optimal offloading schedule in

different network scenarios. [26] was the first work that

considers a backscatter-assisted hybrid offloading scheme

in MEC. Specifically, based on the different required

workload, the authors aimed to minimize the entire energy

consumption by jointly optimizing the power allocation

and offloading schemes for each device. Nevertheless,

[15] and [26] only considered time-division multiple

access (TDMA) model which was only tailored for delay-

tolerant applications.

In this work, we investigate the backscatter-assisted

data offloading in OFDMA-based wireless power MEC

(WPMEC) for limited computational resources and low-

power IoT devices. Notably, the integration of the latest

wireless advances, e.g., backscatter, OFDMA, WPMEC,

in IoT communication networks aims at designing a

system that overcomes the restrictions of IoT users, i.e.,

low computational capacity and battery constraint, and

suitable with ultra-low latency applications. So clearly,

these technologies have intimate contact with each other,

and combining them is promising. OFDMA can be

considered as an extended version of OFDM which is

optimized for multi-user scenarios [2], [27], [28]. In an

OFDMA-based system, multi-users can operate at the

same time at different sub-channels which is appropriate

for ultra-low latency applications. Meanwhile, OFDMA-

based systems outperforms their TDMA-based counter-

parts wherein each user is allocated a different time slot

to prevent interference, which thus leads to much higher

delay. Despite many advantages, subchannel allocation in

OFDMA-based MEC systems impose a more involved

mixed-integer programming problem which is challenging

to solve [29], [30]. To this end, we design an efficient

decision-making algorithm that efficiently utilizes limited

MEC resources to maximize the overall network per-

formance e.g., sum-rate maximization. In summary, our

contributions are as follows:

• This is the first work that jointly considers the

combination of OFDMA and backscatter-assisted

WPMEC in IoT networks. Specifically, we propose

a novel model in which an IoT user is able to harvest

energy from the gateway (GW) and it then utilizes

the harvested energy for backscattering its own data

to the GW or computes locally.

• We aim at maximizing the sum computation rate sub-

ject to constraints on the maximum transmit power

at the GW, maximum backscatter coefficient, time-

splitting (TS) ratio, and decision-making matrices.

This optimization problem is a mixed-integer non-

linear programming (MINLP) problem, which is NP-

hard. Particularly, the binary nature of the decision-

making variables in the objective function makes

it more troublesome. Instead of applying existing

approximation methods or an Inner Approximation

framework [31]–[33] to solve the problem which is

still highly complex, we design two-layer alternat-

ing algorithms to solve the non-convex optimization

problems by adopting the block coordinate descent

(BCD) method [34].

• We first simplify the problem by obtaining the

optimal values of transmit power at the GW and

backscatter coefficient. Then, the problem is decom-

posed into two sub-problems, namely, TS ratio opti-

mization with fixed offloading decision matrices and

offloading decision optimization with a fixed value

of TS ratio. Particularly, a closed-form solution for

TS ratio optimization is derived which dramatically

pushes up the CPU execution time. Based on the

solutions of these two sub-problems, a BCD-based

algorithm, termed the fast-efficient algorithm (FEA),

is proposed for alternately optimizing the TS ratio

and offloading decision to maximize the sum com-

putation rate. Then, it is compared with benchmark

schemes such as exhaustive search (ES), bisection-

based algorithm (BA), edge computing (EC), and

local computing (LC). Although the ES provides

a globally optimal solution, this method is limited

to a small-scale network because its complexity is

exponentially increasing with the number of IoT

devices. Besides, the EC and LC methods have sig-

nificantly degraded performance. Furthermore, BA

also achieves a near-globally optimal solution but

this scheme consumes a higher CPU execution time

as compared to the FEA method. Thus, the FEA is

adopted to significantly reduce the complexity while

guaranteeing that the performance converges to that

of the exhaustive method.

• The effectiveness of the proposed algorithm is ver-

ified through simulation results, which show sig-

nificant improvements in the maximum sum com-

putation rate in comparison with the benchmark

schemes. Specifically, the benchmark ES algorithm

takes all offloading decisions into consideration, the

benchmark BA algorithm is designed similar to FEA

but it adopts the bisection method to solve the
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Fig. 2: Frame structure of OFDMA-based MEC system.

TS ratio optimization problem instead of using a

closed-form expression. Moreover, the benchmark

EC and LC schemes are designed such that each

IoT user tries to offload all computation tasks to the

MEC server or execute locally without considering

offloading decision-making.

The rest of this work is organized as follows. Section

II introduces the system model and problem formulation.

The sum-rate maximization problem is analyzed in Sec-

tion III. The proposed iterative algorithms is proposed in

Section IV. Section V shows the simulation results and

Section VI concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, we consider an OFDMA-

based WPMEC system with M single-antenna

backscatter-assisted IoT users (BUs) denoted by

M = {1, . . . ,m, . . . ,M}, which are served by a

single-antenna GW integrated with MEC server and

a stable power supply. We assume that the EH and

communication operate in the same frequency band.

Without loss of generality, the system bandwidth is

partitioned into N resource blocks (RBs) denoted by

N = {1, . . . , n, . . . , N}, where each RB has a bandwidth

of 180 kHz [2], [28]. Besides, let us define the offloading

decision-making (i.e., offloading or local computing) as

a matrix DM×N , {dmn|m ∈ M, n ∈ N}, then we

have decision-making constraints as follows

dmn ∈ {0, 1}, (1)
∑

m∈M

dmn ≤ 1, ∀n ∈ N , (2)

where dmn = 1 or dmn = 0 imply that the BU m
will offload the data to MEC server through RB n or

compute locally, respectively. Constraint (2) means that

one RB n is only allocated to one BU m during the time

period T . During each time frame T , the wireless channel

coefficient between GW and m-th BU operating on RB

n is denoted by hmn, which is assumed to be reciprocal

for the uplink (UL) and downlink (DL) [21]. Moreover,

T is assumed to be sufficiently small such that wireless

channels are static within each time frame T but it may

change across different time frames.

To avoid mutual interference, we apply the time-

splitting (TS) illustrated as in Fig. 2 to optimize the

fraction of time τT and (1 − τ)T for the EH and

data offloading, respectively. Whereas τ ∈ (0, 1] is the

TS ratio, with τ = 1 indicates that all BUs locally

perform their computation tasks during T and τ < 1
means that a portion of time τT is used for EH and

(1 − τ)T is used for backscattering its own signal to

MEC server. Thus, the harvested energy at the BU m
is Eh

m = χτTPw
∑

n∈N
|hmn|

2, where 0 ≤ χ ≤ 1 is the

energy harvesting efficiency, Pw is the transmit power of

the GW, and |hmn|
2 is the channel gain from GW to BU

m using RB n.

Local Computing: The total processed bits at the BU

m can be defined as Sm = fmtm/nc, where fm, tm, and

nc are the processor’s computation speed (cycles/second),

computation time, and the number of cycles used to

process one bit. In local computing mode, we assume

that the BU can perform local computing and energy

harvesting at the same time [35]–[37]. Consequently,

the local computing rate (in bps) at the BU m can be

calculated as RL
m = Sm/T = fmtm/(ncT ).

Furthermore, the energy consumption of the BU m
utilized for local computing must be less than or equal to

the harvested energy, which is expressed as βmf3
mtm ≤

Eh
m, with βm denotes the computation energy efficiency

coefficient [37]–[39]. In order to maximize the local

computing rate, we assume that BU m utilizes all the

harvested energy for computing task, thus we have

RL
m(Pw, τ) =

(χτPw
∑

n∈N
|hmn|

2

βm

)1/3
1

nc
, (3)
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where tm = T , fm =
(

Eh
m/(βmtm)

)1/3
.

Computing Offloading: The BUs offloads/reflects their

computing tasks to GW based on OFDMA RBs allocation

as known in priori, i.e., the BUs have dmn = 1. During

this mode, the BUs receive the activation RF signal from

GW and reflect back to GW during (1− τ)T period. Let

Pc denotes the circuit power consumption of the BU ,

thus we have the following constraint [40, Eq. 6]

Pc(1− τ)T ≤ Eh
m = χτTPw

∑

n∈N

|hmn|
2. (4)

Constraint (4) means that the total harvested energy must

be higher than or equal to the circuit power consumption

of the BU in the case of offloading mode.

Let xw denotes the broadcasting RF signal of the GW

with unit power. Thus, the received signal at the BU n
from GW is given by

ym =
√

Pw

∑

n∈N

|hmn|
2xw. (5)

Note that the noise power at the BU is neglected due to

the BU only consists of passive RF components [40]–[42].

The received signal at the GW by reflecting from BU

m is expressed as [41]

yw =
√

ηPwhmn

∑

n∈N

hmnxscm + nw, (6)

where cm denotes the information signal of BU m, nw ∼
CN (0, σ2

w) is the additive white Gaussian noise (AWGN),

and 0 ≤ η ≤ 1 is the backscatter coefficient of the BU.

Due to the losses in Backscatter device, the value of η
can not achieve 1 in practice [39], [43]. This motivates

us to introduce a threshold for η, i.e., η ≤ ηmax with

0 < ηmax < 1. Particularly, the processing delay can be

considered as a very small value and is ignored in this

work which is commonly used in [40]–[42].

Consequently, the achieved offloading rate (in bps) for

BU m over RB n is expressed as

RO
mn(Pw, η, τ) = Bn(1− τ) log2

(

1 + ΥO
mn

)

, (7)

where ΥO
mn =

ηPw|hmn|2
∑

n∈N

|hmn|2

σ2
w

denotes signal to noise

ratio and Bn is the bandwidth of the RB n, i.e., Bn = 180
khz [28], [44].

III. SUM-RATE MAXIMIZATION

In this section, we design an optimal decision-making

for offloading the BU’s data to GW utilizing OFDMA

resource allocation. Specifically, we aim at maximizing

a sum-rate local and offloading throughput by jointly

optimizing the TS ratio, backscatter coefficient, power

allocation, and resource allocation. Specifically, the sum

computation rate is represented as

S(D, Pw, η, τ) ,
∑

m∈M

(

1−min
(

1,
∑

n∈N

dmn

)

)

RL
m(Pw, τ)

+
∑

m∈M

∑

n∈N

dmnR
O
mn(Pw, η, τ). (8)

Then, the optimization problem can be formulated as

P1 : max
D,Pw,η,τ,

S(D, Pw, η, τ) (9a)

s.t. (1), (2), (4), (9b)

τ ∈ (0, 1], (9c)

0 < η ≤ ηmax, with 0 < ηmax < 1, (9d)

0 < Pw ≤ Pmax, (9e)

where Pmax is the power budget of the GW. Constraint

(9e) implies that the transmit power of the GW should be

less than the power budget Pmax.

P1 is a highly non-convex optimization problem due

to the binary nature of dmn and the couple of τ and η
which is difficult to be directly solved. First, we transform

P1 into a more tractable form. Particularly, the following

lemma holds.

Lemma 1: Given D, Pw, and τ , the objective S(η)
is a non-decreasing function w.r.t. η and it obtains the

maximum value at η = ηmax.

Proof: See Appendix A.

Lemma 2: Given D, η, and τ , the objective S(Pw) is

a non-decreasing function w.r.t. Pw and it obtains the

maximum value at Pw = Pmax.

Proof: See Appendix A.

Based on Lemmas 1 and 2, problem P1 is simplified

from four variables to two variables, which is expressed

as follows

P2 :max
D,τ

S(D, Pmax, ηmax, τ) (10a)

s.t. (1), (2), (4), (10b)

τ ∈ (0, 1]. (10c)

Although P2 is more tractable than P1, it is still

non-convex due to the binary nature of D. To solve it,

we propose an efficient algorithm, namely, fast-efficient

algorithm adopting block coordinate descent (BCD) tech-

nique. In this regard, we provide a corresponding solution

in the next section.

IV. PROPOSED ALTERNATING ALGORITHM FOR

SOLVING P1

This section provides an iterative algorithm based on

the BCD method to solve the design problem P1. We first

present the ES scheme for the globally optimal solution.

Then, the proposed FEA scheme is shown in details.
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A. Exhaustive Search

We first enumerate all (M + 1)N possible of-

floading decision-making matrices denoted by D ,

{1, . . . ,Dk, . . . ,D(M+1)N} with 1 ≤ k ≤ (M + 1)N

that satisfy constraints (1) and (2). For each given D
k,

P2 becomes a single-variable optimization problems that

is given as follows:

P3 :max
τ

S(Dk, Pmax, ηmax, τ) (11a)

s.t. (4), (11b)

τ ∈ (0, 1]. (11c)

We next specify the feasible set of τ for given D
k.

From (4), we obtain τ ≥ PcT
PcT+χTPw

∑

n∈N

|hmn|2
, ζ which

means that ζ ≤ τ ≤ +∞. By combining with constraint

(9c), we obtain ζ ≤ τ ≤ 1. Fortunately, since ζ always

less than or equal to 1, thus the feasible set of τ always

exists. Consequently, for any given offloading decision

matrix D
k, the optimal time allocation τ of P3 can be

obtained by addressing the following problem

P4 : max
τ

S(Dk, Pmax, ηmax, τ) (12a)

s.t. ζ ≤ τ ≤ 1. (12b)

Lemma 3: Let us define τ⋆ as a strict local optimal so-

lution of P4. Then, the following closed-form expression

of τ⋆ can be expressed as

τ⋆ =
( Ω3

3Ω4

)3/2
. (13)

where

Ω3 ,
∑

m∈M

(

1−min
(

1,
∑

n∈N

dmn

)

)

×

(χτPw
∑

n∈N
|hmn|

2

βm

)1/3
1

nc
, (14)

Ω4 ,
∑

m∈M

∑

n∈N

dmnBn log2

(

1 +

ηPw|hmn|
2
∑

n∈N
|hmn|

2

σ2
w

)

.

(15)

Proof: See Appendix B.

The pseudo-code for solving P3 is summarized as in

Algorithm 1.

Complexity Analysis: Algorithm 1 complexity is

O
(

MN
)

.

Convergence Analysis: Firstly, a global optimal solution

of τ⋆ can be achieved by utilizing a closed-form ex-

pression as in Lemma 3. Secondly, P2 is addressed

by enumerating all possible offloading decision-making

matrices D
k ∈ D satisfying (1) and (2). Combining with

Lemmas 1 and 2, we obtain the global optimal solution

Algorithm 1: Exhaustive Search Algorithm for Solv-

ing P3

1: Enumerate all (M + 1)N possible offloading

decision-makings satisfying (1) and (2),

D = [D1, ...,Dk, ...,D(M+1)N )];
2: Initialization: A zero vector f with length

(M + 1)N .

3: Set i := 1;

4: for k = 1 : (M + 1)N do

5: Substitute D
k to P3.

6: Solving P4 as in Lemma 3: τ⋆ =
(

Ω3

3Ω4

)3/2
.

7: Calculate S(Dk, Pmax, ηmax, τ
∗).

8: f
k := S(Dk, Pmax, ηmax, τ

∗).
9: end for

10: f
⋆ , argmax

Dk

(f).

of the original optimization problem P1.

B. Fast-Efficient Algorithm

Although P2 obtain the global optimal solution by uti-

lizing exhaustive search algorithm, checking all possible

offloading decision-making matrices with a high number

of user is a inefficient method due to its exponential

complexity. In this section, we introduce a fast-efficient

algorithm, which is tailored with large-scale networks.

Moreover, our proposed algorithm obtains a near-global

optimal solution and converges with a super-fast speed,

it thus becomes a promising method for real-time appli-

cations under fast-fading channel. Inspired from Block

coordinate descent (BCD) algorithm, we decompose the

optimization problem P2 into two sub-problems, i.e., TS

ratio optimization with fixed D
k and offloading decision

optimization with fixed τ . Based on the solutions of two

sub-problems, a BCD method is proposed for alternatively

optimizing the TS ratio and offloading decision. Specif-

ically, we first initialize a offloading decision-making

satisfying (1) and (2) and solve the TS ratio optimization

problem to find the sub-optimal τ , then τ is updated and

solve the offloading decision optimization problem to find

the sub-optimal offloading decision-making. These steps

are repeatedly performed until convergence. The details

are presented as follows:

1) TS Ratio Optimization: For given value of

offloading decision matrix D
k ∈ D, the optimal value of

τ can be achieved by adopting the closed-form expression

in Lemma 3.

2) Offloading Decision Optimization: For the given

TS ratio τ , the optimal value of offloading decision D
⋆
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Fig. 3: Convergence behaviour of fast-efficient algorithm.

can be obtained by solving the following problem

P5 :max
D⋆

S(D⋆, Pmax, ηmax, τ) (16a)

s.t. (1), (2). (16b)

For ease of exploration the objective function, let us

define two variables X and Y as follows

X ,
∑

m∈M

(

1−min
(

1,
∑

n∈N

dmn

)

)

, (17)

Y ,
∑

m∈M

∑

n∈N

dmn. (18)

For given TS ratio τ , P5 becomes a binary optimization

problem. It is easy to recognize that X and Y are not

dependent on τ . Therefore, P5 can be solved by allocating

value ”1” on the binary matrix D
k satisfying (1) and

(2) such that S(Dk, Pmax, ηmax, τ) reaches the optimal

value. Notably, constraint (2) is only applied to individual

columns on binary matrix D
k, thus, we independently al-

locate value ”1” for each column, wherein positions with

”1” value are called by offloading positions. Specifically,

the offload position at n-th column is determined via two

following steps:

• Step 1: We defineM
(c)
n as a subset of all elements in

n-th column such that RL
m(τ) ≤ RO

mn(τ). Otherwise,

if RL
m(τ) > RO

mk(τ) for all elements in n-th column,

we then haveM
(c)
n = ∅, this means that all BUs do

not offload at n-th RB.

• Step 2: After obtaining all candidates M
(c)
n at n-th

column. The best offloading position can be selected

as

m⋆ , argmax
m∈M(c)

n

{RO
mn(τ)}, ∀n ∈ N . (19)

The pseudo-code for solving P2 is summarized as in

Algorithm 2.

Complexity Analysis: The complexity at each iteration of

Algorithm 2 is O (MN).

Algorithm 2: Fast-Efficient Algorithm for Solving P2

1: Initialization: Offloading decision-making D
(r)

satisfying (1) and (2), set r = 0.

2: repeat

3: Solve P4 for the given offloading decision-making

D
(r), and denote optimal solution as τ (r+1).

4: for n = 1 : N do

5: Initialization: Set M
(c)
n = ∅;

6: for m = 1 : M do

7: if RL
m(τ (r+1)) > RO

mn(τ
(r+1)) then

8: dmn = 0;

9: else

10: dmn = 1;

11: M
(c)
n =M

(c)
n + {m};

12: end if

13: end for

14: m⋆ = argmax
m∈M(c)

n

{RO
mn(τ)};

15: dm⋆n = 1;

16: end for

17: Obtain the optimal solution as D
(r+1);

18: r ←− r + 1;

19: until The fractional increase of the objective value

of P2 is less than or equal to a small threshold

ǫ > 0.

TABLE I: Simulation Parameters

Parameter Value

System bandwidth 1.25 MHz [44]

RB bandwidth 180 kHz [44]

The number of RBs 6 [44]

The number of BUs 4

Maximum reflection coefficient, ηmax 0.5

Circuit power consumption at each BU, Pc 0.1 mW

Path loss exponent, ϕ 2.8

Carrier frequency, fs 915 MHz

Power budget at GW, Pmax 3 W

Antenna channel gain, G 4.11

The energy harvesting efficiency, χ 0.7

The computing efficiency at each BU, βm 10−26

AWGN, σ2 10−10

The processor’s computation speed, nc 100 cycles/s

Error tolerance threshold, ǫtol 10−4

Time frame duration T 1 second

Convergence Analysis: First, since the optimal TS ratio

τ (r+1) of optimization problem P2 is achieved for the

given offloading decision-making D
(r), we have

S(D(r), Pmax, ηmax, τ
(r))

≤ S(D(r), Pmax, ηmax, τ
(r+1)). (20)

Second, for the given TS ratio τ (r+1), P2 obtains the
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Fig. 4: The maximum computation rate versus power budget

Pmax.

optimal offloading decision-making D
(r+1). It is shown

as

S(D(r), Pmax, ηmax, τ
(r+1))

≤ S(D(r+1), Pmax, ηmax, τ
(r+1)). (21)

From (20) and (21), we obtain

S(D(r), Pmax, ηmax, τ
(r))

≤ S(D(r+1), Pmax, ηmax, τ
(r+1)). (22)

Inequality (22) proves that the weighted sum computation

rate S(D, Pmax, ηmax, τ) is always non-decreasing after

each iteration as in Algorithm 2. Furthermore, section III

shows that the optimization P1 exists a global optimal

solution, this means that function S(D, Pmax, ηmax, τ)
is upper bounded by a finite value. Therefore, it is

guaranteed that Algorithm 2 converges.

V. NUMERICAL RESULTS

This section provides some numerical results to present

the comparative study of exhaustive search and fast-

efficient algorithm. Two proposed methods are analyzed

adopting Python 3.6 on a PC with an AMD Ryzen 7

3.7-4.3 GHz CPU and 16 GB memory, where simulation

parameters are mainly referenced from the existing works

in [37], [41], [44] and they are presented in Table I.

We consider a system with four BUs and one GW, as

illustrated in Fig. 1. Herein, the distance from the GW to

m-th BU are uniformly distributed between 2.5 and 5.2

meters. The average channel gain between GW and m-th

BU over n-th RB is assumed to follow the free-space path

loss model which is given by hmn = G

(

3.108

4πfsdm

)ϕ

.

At time frame T , the time-varying wireless channel gain

of m-th BU over n-th RB, i.e. hTmn, is considered as a

Rayleigh fading channel model hTmn = hmnγ
t
mn, where

γtmn denotes the independent random channel fading
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Fig. 5: The maximum computation rate versus maximum re-

flection coefficient ηmax.

factor which is an exponential distribution with unit mean.

Note that the numerical results in all the figures are

averaged over 10000 different channel realizations. To

show the advantages of designed algorithms, we compare

our proposed methods with benchmark ones. Specifically,

two benchmark schemes are described as follows:

• Exhaustive search (ES) algorithm: it considers all

offloading decision-making matrices, hence, its com-

plexity is proportional to the network size [45].

• Bisection-based algorithm (BA): This method is im-

plemented similar to FEA but it adopts the Bisection

method to solve the TS ratio optimization problem.

• Edge computing (EC): Each BU has to compete with

others to maximize its offloading tasks to the edge

server using OFDMA-based system without con-

sidering offloading decision-making as in proposed

algorithms.

• Local computing (LC): All BUs locally execute their

computation tasks without offloading to the edge

server.

The convergence behaviour of the fast-efficient algo-

rithm is illustrated in Fig. 3, where the error tolerance

is given by ǫtol = 10−4. As can be observed from Fig.

3, the sum computation rate increases with the algorithm

iterations. This can be explained by the fact that the TS

ratio and the offloading decision-making are updated to

better values after each iteration. Particularly, the fast-

efficient algorithm converges to the saturation value only

after 2 iterations. This highlights the superiority of our

proposed fast-efficient method.

Fig. 4 depicts the maximum sum computation rate ver-

sus the power budget at GW. As illustrated, the maximum

sum computation rate is enhanced by increasing the power

budget of GW. This is due to the fact that the offloading

and local computation rate is proportional to the transmit
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power of GW as in Eqs. (3) and (7). Moreover, while

the LC scheme always executes computation tasks locally

and does not take offloading decision into account, it

thus achieved the worst performance due to the limited

computing resources of BUs, e.g., processing capability,

energy budget. This also explains that the maximum

computation rate of LC is only slightly increased with

a higher value of power budget as compared with other

methods. On the other hand, the EC scheme achieves

better performance compared to that of LC method,

this shows the benefits of edge server to overcome the

limitation of low-power IoT users. Nevertheless, the EC

always try to offload their tasks to the MEC server without

considering local computing which is not a wise strategy

due to the limited resources at the edge server, i.e., limited

bandwidth and computation capability, thus MEC server

can not always serve all users at the same time during

peak hours. This can explain the reason why the perfor-

mance of EC is always lower than that of fast-efficent and

exhaustive search algorithms. Especially, the exhaustive

search and fast-efficient methods are proposed to balance

between offloading and local computing decision. Thus,

they obtain the best results and have almost the identical

performance with the gap is less than 0.3 % which shows

the supremacy of our designed schemes.

In Fig. 5, we study the influence of maximum reflection

coefficient on the maximum sum computation rate. Most

of properties in Fig. 4 remains unchanged except for

the local computing scheme. It is observed that the

sum computation rate of LC is unaltered with different

values of reflection coefficient. This is expected since

the reflection coefficient does not impact on the local

computation rate which is shown in Eq. (3). In contrast

to that, since the reflection coefficient is proportional to
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Fig. 7: The maximum sum computation rate versus the number

of BUs.

the offloading rate as shown in Eq. (7). Therefore, the

performance of exhaustive search, fast-efficient, and EC

methods is significantly improved when we increase the

maximum value of reflection coefficient.

In Figs. 6 and 7, we evaluate the maximum sum com-

putation rate versus the number of RBs and the number of

BUs, respectively. As we know, the exhaustive search’s

complexity tends to grow exponentially as the problem

size increases. Thus, we do not study exhaustive search

method in these figures when the number of RBs and the

number of BUs increase up to 25 and 20, respectively.

In Figs. 6, we see that the sum computation rate of

EC and fast-efficient methods are drastically increased

corresponding to a higher number of RBs while it only

slightly changes with respect to LC method. This is

expected since a higher number of RBs leads to a larger

allocated bandwidth for communication between GW and

BUs. On the one hand, the RB’s bandwidth does not have

an effect on the local computing rate as in Eq. (3), it thus

does not impact on LC scheme. On the other hand, RB’s

bandwidth has an influence directly on the offloading rate

as in Eq. (7), thus it has a positive impact on EC and

fast-efficient schemes. Furthermore, one more interesting

thing is observed that when the number of RBs is large

enough, the performance of EC and fast-efficient is no

discernible difference. This is because the offloading rate

is dominant as compared with local computing rate.

In Fig. 7, we compare the performance of different

algorithms when the number of BUs varies from 4 to 20.

The preeminence of the proposed fast-efficient algorithm

is more perspicuous as the number of BUs is larger. As in

practical scenario, with a limited number of RBs but the

number of IoT users or the traffic demand is dramatically

increasing, it leads to bottleneck problems in which the
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TABLE II: Complexity analysis for different schemes

Scheme Complexity

ES O
(

MN
)

BA O
(

Υ1

(

log
2

(

1/ε
)

+MN
))

FEA O (Υ2MN)
EC O (Υ3MN)

TABLE III: Comparisons of CPU execution latency (sec-

ond)

The number of BUs EC FEA BA ES

4 0.002 0.004 0.01 1.5

50 0.019 0.029 0.037 x

100 0.037 0.056 0.072 x

GW is unable to support all users at the same time. In

these cases, the simple designs such as LC and EC method

are clearly expose their disadvantages. To overcome these

issues, the proposed fast-efficient method finds an optimal

trade-off between the offloading and the local computing

rate to keep the sum computation rate to be as best as

possible.

The results in Figs. 4-7 show that there is no discernible

difference of FEA and BA w.r.t. sum computation rate,

it is because their solutions are both based on the BCD

method. However, the TS ratio optimization problem of

FEA is solved by deriving a closed-form expression while

the Bisection method is adopted in BA. It leads to the

execution time of FEA is better than that of BA. In the

case of achieving closed-form expression is troublesome,

the BA method may become a better solution.

In Table II, we provide the complexity analysis of FEA

and other algorithms, i.e., ES, BA, and EC. Here, Υ1,

Υ2, and Υ3 denote the number of iterations needed for

BCD method converges, ε is the stopping criterion of

bisection algorithm that used to solve the subproblem P4,

i.e., ε = 10−4.

Finally, we study a new metric called CPU execution

time as a function of the number of BUs shown in

Table III. Specifically, CPU execution time is defined as

the running time of algorithms (i.e., EC, FEA, BA, and

ES), to find the offloading decision for BUs. For a fair

comparison, these algorithms are alternately optimizing

TS ratio and offloading decision. It can be seen that the

exhaustive is only feasible in a small-scale network, i.e.,

a system consists of 4 BUs and 6 RBs. Moreover, it

imposes a largest latency as compared with others as it

tries all possible decision matrices, while The EC and

fast-efficient consumes much less time. From practical

aspects, the fast-efficient algorithm is preferred as it has

low complexity and obtain near-global optimal solution.

The EC algorithm is fastest method but it significantly

sacrifices the performance. The LC does not consume

time for calculating offloading decision since it operate

locally, but it has worst performance compared to other

methods, as shown in Figs. 4, 5, 6, and 7.

VI. CONCLUSION AND DISCUSSION

This paper has studied a sum-rate maximization in

backscatter-assisted OFDMA-based WPMEC for IoT net-

works with binary offloading decision. In this context,

we have formulated a problem of maximizing the total

computation rate via joint optimization of transmit power

of the GW, bacscatter coefficient, TS ratio, and computing

mode (i.e., local or offloading). Since the formulated

problem is of MINLP type which is NP-hard, we have

simplified the original problem into a tractable form by

obtaining the optimal values of transmit power of the

GW and backscatter coefficient. Then, we have proposed

FEA to tackle the difficulty of offloading decisions based

on the BCD method. Extensive numerical results have

shown that the proposed method is able to achieve a near-

globally optimal solution and dramatically outperform

other benchmark schemes. In practical scenarios, the FEA

is the best option due to its low complexity and high

performance which is suitable for ultra-low latency appli-

cations in IoT networks such as virtual reality, augmented

reality, remote surgery, and mission-critical applications.

The results obtained in this work open future research di-

rections of backscatter-assisted WPMEC in IoT networks.

One problem of interest is to consider a GW with multiple

antennas, which enhances the network performance, uses

relays in blockage/peak hours, or uses a power splitting

method instead of time-switching. Another promising

problem is to jointly optimize the power allocation and

other metrics in a mobility system model or investigate

the intelligent reflecting surface-based MEC.

APPENDIX A: PROOF OF LEMMA 1 AND LEMMA 2

Given D and τ , the partial derivatives of S w.r.t. η is

calculated as
∂S

∂η
=
∑

m∈M

∑

n∈N

dmn
Ω1Ω2

(

1 + Ω2η
)

ln 2
, 0 ≤ η ≤ ηmax.

(A.1)

where Ω1 , Bn(1− τ), Ω2 ,
Pw|hmn|2

∑

n∈N

|hmn|2

σ2
w

.

Since ∂S
∂η ≥ 0 with 0 ≤ η ≤ ηmax, thus we can

conclude that S is a non-decreasing function w.r.t. η and

it can obtain the maximum value at η = ηmax, which

proves the Lemma 1.
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Similarly, it is also proved that S is a non-decreasing

function w.r.t. Pw and its maximum value obtains at P =
Pmax. Thus, Lemma 2 is proved.

APPENDIX B: PROOF OF LEMMA 3

The objective function S(τ), ζ ≤ τ⋆ ≤ 1, can be

rewritten as

S(τ) , Ω3τ
1/3 +Ω4(1− τ), (C.1)

with

Ω3 ,
∑

m∈M

(

1−min
(

1,
∑

n∈N

dmn

)

)

×

(χτPw
∑

n∈N
|hmn|

2

βm

)1/3
1

nc
, (C.2)

Ω4 ,
∑

m∈M

∑

n∈N

dmnBn log2

(

1 +

ηPw|hmn|
2
∑

n∈N
|hmn|

2

σ2
w

)

.

(C.3)

We consider two special cases:

• Case 1: dmn = 1, ∀m ∈ M, n ∈ N . This means

that Ω3 = 0. The optimal value of function S(τ) is

τ⋆ = ζ.

• Case 2: dmn = 0, ∀m ∈ M, n ∈ N . This means

that Ω4 = 0. The optimal value of function S(τ) is

τ⋆ = 1.

More generally, let us define a value τ⋆ satisfy [46]

∂S(τ⋆)

∂τ⋆
= 0, (C.4)

∂2S(τ⋆)

∂2τ⋆
< 0. (C.5)

Firstly, we calculate the Eq. (C.4) such as

Ω3
τ−2/3

3
− Ω4 = 0 ⇐⇒ τ⋆ =

( Ω3

3Ω4

)3/2
. (C.6)

Secondly, we have
∂2S(τ⋆)
∂2τ⋆ = −2Ω3τ−5/3

9 , then by

substituting τ⋆ we can justify the Eq. (C.5).

If ζ < τ⋆ < 1, then we can conclude that τ⋆ =
(

Ω3

3Ω4

)3/2
obtained in (C.6) is a strict optimal solution

[46]. In case of 0 ≤ τ⋆ ≤ ζ, the optimal value in (C.6) is

τ⋆ = ζ. Meanwhile, if 1 ≤ τ⋆, then the optimal in (C.6)

is τ⋆ = 1.

REFERENCES

[1] D. Ma, G. Lan, M. Hassan, W. Hu, and S. K. Das, “Sensing,

computing, and communications for energy harvesting IoTs: A

survey,” IEEE Commun. Surveys Tuts., vol. 22, no. 2, pp. 1222–

1250, 2019.

[2] Ericsson, “Ericsson mobility report: November 2019,” 2019.
[3] D. H. Tran, V. D. Nguyen, S. Gautam, S. Chatzinotas, T. X.

Vu, and B. Ottersten, “UAV relay-assisted emergency commu-

nications in IoT networks: Resource allocation and trajectory

optimization,” preprint arXiv:2008.00218.

[4] T. X. Tran and D. Pompili, “Joint task offloading and resource

allocation for multi-server mobile-edge computing networks,”

IEEE Trans. Veh. Technol., vol. 68, no. 1, pp. 856–868, 2018.

[5] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile

cloud computing: architecture, applications, and approaches,”

Wirel. Commun. Mob. Com., vol. 13, no. 18, pp. 1587–1611,

2013.

[6] N. Hassan, S. Gillani, E. Ahmed, I. Yaqoob, and M. Imran, “The

role of edge computing in internet of things,” IEEE Commun.

Mag., vol. 56, no. 11, pp. 110–115, 2018.

[7] P. Mach and Z. Becvar, “Mobile edge computing: A survey on

architecture and computation offloading,” IEEE Commun. Surv.

Tutor., vol. 19, no. 3, pp. 1628–1656, 2017.

[8] J. Zhao, Q. Li, Y. Gong, and K. Zhang, “Computation offloading

and resource allocation for cloud assisted mobile edge computing

in vehicular networks,” IEEE Trans. Veh. Technol., vol. 68, no. 8,

pp. 7944–7956, 2019.

[9] T. Bai, C. Pan, Y. Deng, M. Elkashlan, A. Nallanathan, and

L. Hanzo, “Latency Minimization for Intelligent Reflecting

Surface Aided Mobile Edge Computing,” IEEE J. Sel. Areas

Commun., vol. 38, no. 11, pp. 2666–2682, 2020.

[10] H. A. Alameddine, S. Sharafeddine, S. Sebbah, S. Ayoubi, and

C. Assi, “Dynamic task offloading and scheduling for low-

latency iot services in multi-access edge computing,” IEEE J.

Sel. Areas Commun., vol. 37, no. 3, pp. 668–682, 2019.

[11] S. Hu and G. Li, “Dynamic request scheduling optimization

in mobile edge computing for IoT applications,” IEEE Internet

Things J., vol. 7, no. 2, pp. 1426–1437, 2019.

[12] A. Yousafzai, I. Yaqoob, M. Imran, A. Gani, and R. M. Noor,

“Process migration-based computational offloading framework

for IoT-supported mobile edge/cloud computing,” IEEE Internet

Things J., vol. 7, no. 5, pp. 4171–4182, 2019.

[13] Q. Cui, J. Zhang, X. Zhang, K.-C. Chen, X. Tao, and P. Zhang,

“Online anticipatory proactive network association to mobile

edge computing for iot,” IEEE Trans. Wireless Commun., 2020.

[14] T.-D. Nguyen, E.-N. Huh, and M. Jo, “Decentralized and re-

vised content-centric networking-based service deployment and

discovery platform in mobile edge computing for IoT devices,”

IEEE Internet Things J., vol. 6, no. 3, pp. 4162–4175, 2018.

[15] S. Gong, Y. Xie, J. Xu, D. Niyato, and Y.-C. Liang, “Deep

reinforcement learning for backscatter-aided data offloading in

mobile edge computing,” IEEE Netw., pp. 1–8, 2020.

[16] T. D. Hieu, T. T. Duy, and B.-S. Kim, “Performance enhancement

for multihop harvest-to-transmit WSNs with path-selection meth-

ods in presence of eavesdroppers and hardware noises,” IEEE

Sensors J., vol. 18, no. 12, pp. 5173–5186, 2018.

[17] D. Altinel and G. K. Kurt, “Modeling of multiple energy sources

for hybrid energy harvesting IoT systems,” IEEE Internet Things

J., vol. 6, no. 6, pp. 10 846–10 854, 2019.

[18] W. Wang, J. Tang, N. Zhao, X. Liu, X. Y. Zhang, Y. Chen, and

Y. Qian, “Joint Precoding Optimization for Secure SWIPT in

UAV-Aided NOMA Networks,” IEEE Trans. Commun., vol. 68,

no. 8, pp. 5028–5040, 2020.

[19] F. Wang, J. Xu, and S. Cui, “Optimal energy allocation and task

offloading policy for wireless powered mobile edge computing

systems,” IEEE Trans. Wireless Commun., vol. 19, no. 4, pp.

2443–2459, 2020.

[20] L. Ji and S. Guo, “Energy-efficient cooperative resource alloca-

tion in wireless powered mobile edge computing,” IEEE Internet

Things J., vol. 6, no. 3, pp. 4744–4754, 2018.

Authorized licensed use limited to: University of Luxembourg. Downloaded on February 09,2021 at 11:27:17 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3057360, IEEE Internet of

Things Journal

[21] S. Bi and Y. J. Zhang, “Computation rate maximization for wire-

less powered mobile-edge computing with binary computation

offloading,” IEEE Trans. Wireless Commun., vol. 17, no. 6, pp.

4177–4190, 2018.

[22] S. Gautam, , T. D. Hieu, S. Chatzinotas, and B. Ottersten,

“Hybrid backscatter and relaying scheme for 6G greencom IoT

networks with SWIPT,” 10.36227/techrxiv.12893750.v1, 2020.

[23] H. Tran-Dinh, S. Gautam, S. Chatzinotas, and B. Ottersten,

“Throughput Maximization for Wireless Communication sys-

tems with Backscatter- and Cache-assisted UAV Technology,”

in Arxiv, preprint arXiv:2011.07955.

[24] B. Kellogg, A. Parks, S. Gollakota, J. R. Smith, and D. Wetherall,

“Wi-fi backscatter: Internet connectivity for RF-powered de-

vices,” in Proc. 2014 ACM conf. SIGCOMM, 2014, pp. 607–618.

[25] X. Lu, P. Wang, D. Niyato, D. I. Kim, and Z. Han, “Wireless

networks with RF energy harvesting: A contemporary survey,”

IEEE Commun. Surveys Tuts., vol. 17, no. 2, pp. 757–789, 2014.

[26] Y. e. a. Zou, “Backscatter-aided hybrid data offloading for wire-

less powered edge sensor networks,” in Proc. IEEE GLOBECOM

2019, 2019, pp. 1–6.

[27] P. X. Nguyen, T. H. Pham, T. Hoang, and O.-S. Shin, “An

efficient spectral leakage filtering for IEEE 802.11 af in TV white

space,” in Proc. 2018 2nd International Conf. Recent Advances

in Sig. Proces., Telecom. & Comp. (SigTelCom). IEEE, 2018,

pp. 219–223.

[28] S. Sesia, I. Toufik, and M. Baker, LTE-the UMTS Long Term

Evolution: From Theory to Practice. John Wiley & Sons, 2011.

[29] Y. Wu, Y. Wang, F. Zhou, and R. Q. Hu, “Computation efficiency

maximization in ofdma-based mobile edge computing networks,”

IEEE Comm. Lett., vol. 24, no. 1, pp. 159–163, 2019.

[30] M. Masoudi and C. Cavdar, “Device vs edge computing for mo-

bile services: Delay-aware decision making to minimize power

consumption,” IEEE Trans. Mobile. Comput., June 2020.

[31] B. R. Marks and G. P. Wright, “A general inner approximation

algorithm for nonconvex mathematical programs,” Operations

Research, vol. 26, no. 4, pp. 681–683, 1978.

[32] P. X. Nguyen, H. V. Nguyen, V. Nguyen, and O. Shin, “UAV-

enabled jamming noise for achieving secure communications in

cognitive radio networks,” in Proc. IEEE Consumer Commun. &
Network. Conf. (CCNC), Jan 2019, pp. 1–6.

[33] P. X. Nguyen, V.-D. Nguyen, H. V. Nguyen, and O.-S. Shin,

“UAV-assisted secure communications in terrestrial cognitive

radio networks: Joint power control and 3D trajectory optimiza-

tion,” arXiv preprint arXiv:2003.09677, 2020.

[34] N. Zhao, X. Pang, Z. Li, Y. Chen, F. Li, Z. Ding, and M. Alouini,

“Joint Trajectory and Precoding Optimization for UAV-Assisted

NOMA Networks,” IEEE Trans. Commun., vol. 67, no. 5, pp.

3723–3735, 2019.

[35] F. W. et al., “Joint offloading and computing optimization in

wireless powered mobile-edge computing systems,” in Proc.

2017 IEEE International Conference on Communications (ICC),

2017, pp. 1–6.

[36] F. W. et al., “Joint offloading and computing optimization in

wireless powered mobile-edge computing systems,” IEEE Trans.

Wireless Commun., vol. 17, no. 3, pp. 1784–1797, 2018.

[37] L. Huang, S. Bi, and Y. J. Zhang, “Deep reinforcement learning

for online computation offloading in wireless powered mobile-

edge computing networks,” IEEE Trans. Mobile Comput., pp.

1–1, 2019.

[38] S. Guo, B. Xiao, Y. Yang, and Y. Yang, “Energy-efficient

dynamic offloading and resource scheduling in mobile cloud

computing,” in Proc. IEEE INFOCOM 2016, 2016, pp. 1–9.
[39] S. Guo, J. Liu, Y. Yang, B. Xiao, and Z. Li, “Energy-efficient

dynamic computation offloading and cooperative task scheduling

in mobile cloud computing,” IEEE Trans. Mobile Comput.,

vol. 18, no. 2, pp. 319–333, 2018.

[40] B. Lyu, C. You, Z. Yang, and G. Gui, “The optimal control

policy for RF-powered backscatter communication networks,”

IEEE Trans. Veh. Technol., vol. 67, no. 3, pp. 2804–2808, 2017.

[41] S. Xiao, H. Guo, and Y.-C. Liang, “Resource allocation for

full-duplex-enabled cognitive backscatter networks,” IEEE Trans.

Wireless Commun., vol. 18, no. 6, pp. 3222–3235, 2019.

[42] X. Kang, Y.-C. Liang, and J. Yang, “Riding on the primary:

A new spectrum sharing paradigm for wireless-powered iot

devices,” IEEE Trans. Wireless Commun., vol. 17, no. 9, pp.

6335–6347, 2018.

[43] J. D. Griffin and G. D. Durgin, “Complete link budgets for

backscatter-radio and RFID systems,” IEEE Antenn. Propag.

Mag., vol. 51, no. 2, pp. 11–25, 2009.

[44] O. Liberg, M. Sundberg, E. Wang, J. Bergman, and J. Sachs,

Cellular Internet of Things: Technologies, Standards, and Per-

formance. Academic Press, 2017.

[45] D.-H. Tran, T. X. Vu, S. Chatzinotas, S. ShahbazPanahi, and

B. Ottersten, “Coarse trajectory design for energy minimization

in uav-enabled,” IEEE Trans. Veh. Technol., vol. 69, no. 9, pp.

9483–9496, 2020.

[46] Y. Wotao, “Math 273a: Optimization basic concepts,”

www.math.ucla.edu/ wotaoyin/math273a/slides/

Lec2basicsofoptimization2732015f.pdf.

Authorized licensed use limited to: University of Luxembourg. Downloaded on February 09,2021 at 11:27:17 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3057360, IEEE Internet of

Things Journal

Phu X. Nguyen was born and grew up in

Dong Thap, Vietnam (1994). He received the

B.E. degree in Electronics and Telecommuni-

cation Engineering Department from Ho Chi

Minh City University of Technology, Vietnam,

in 2017. In 2019, he received a Master’s degree

in Electronic Engineering from Soongsil Uni-

versity, South Korea. He is currently a lecturer

at the Department of Computer Fundamentals,

FPT University, Ho Chi Minh City, Vietnam. His research interests

include machine learning, optimization, quantum computing and their

applications in IoTs, wireless networks, and computer vision.

Dinh-Hieu Tran (S’20) was born and grew up

in Gia Lai, Vietnam (1989). He received the

B.E. degree in Electronics and Telecommuni-

cation Engineering Department from Ho Chi

Minh City University of Technology, Vietnam,

in 2012. In 2017, he finished the M.Sc degree

in Electronics and Computer Engineering from

Hongik University (Hons.), South Korea. He

is currently pursuing the Ph.D. degree at the

Interdisciplinary Centre for Security, Reliability and Trust (SnT),

University of Luxembourg, under the supervision of Prof. Symeon

Chatzinotas and Prof. Björn Ottersten. His research interests include

UAVs, IoTs, Mobile Edge Computing, Caching, Backscatter, B5G for

wireless communication networks. He was a recipient of the IS3C

2016 best paper award.

Oluwakayode Onireti (S’11, S’13) received

the B.Eng. degree (Hons.) in electrical engi-

neering from the University of Ilorin, Ilorin,

Nigeria, in 2005, and the M.Sc. degree (Hons.)

in mobile and satellite communications, and the

Ph.D. degree in electronics engineering from the

University of Surrey, Guildford, U.K., in 2009

and 2012, respectively. He is currently a lecturer

at the University of Glasgow, U.K. He has been

actively involved in projects such as ROCKET, EARTH, Greencom,

QSON, DARE, and Energy proportional EnodeB for LTE-Advanced

and Beyond. His main research interests include self-organizing cellu-

lar networks, energy efficient networks, wireless blockchain networks,

millimeter wave communications, and cooperative communications.

Phu Tran Tin was born in Khanh Hoa, Viet

Nam, in 1979. He received the Bachelor’s de-

gree (2002) and Master’s degree (2008) from

Ho Chi Minh City University of Science. He is

currently a lecturer at the Faculty of Electronics

Technology (FET), Industrial University of Ho

Chi Minh City. In 2019, he received the Ph.D.

degree in Faculty of Electrical Engineering and

Computer Science, VSB – Technical University

of Ostrava, Czech Republic. His major research interests are wireless

communication in 5G, energy harvesting, performance of cognitive

radio, physical layer security and NOMA.

Symeon Chatzinotas , (S’06-M’09-SM’13) is

currently Full Professor / Chief Scientist I in

Satellite Communications and Head of the SIG-

COM Research Group at SnT, University of

Luxembourg. He is coordinating the research

activities on communications and networking,

acting as a PI for more than 20 projects and

main representative for 3GPP, ETSI, DVB. In

the past, he has been a Visiting Professor at

the University of Parma, Italy, lecturing on “5G Wireless Networks”.

He was involved in numerous RD projects for NCSR Demokritos,

CERTH Hellas and CCSR, University of Surrey. He was the co-

recipient of the 2014 IEEE Distinguished Contributions to Satellite

Communications Award and Best Paper Awards at EURASIP JWCN,

CROWNCOM, ICSSC. He has (co-)authored more than 450 technical

papers in refereed international journals, conferences and scientific

books. He is currently in the editorial board of the IEEE Transactions

on Communications, IEEE Open Journal of Vehicular Technology and

the International Journal of Satellite Communications and Networking.

Nguyen Quang Sang received the BE degree

(2010) and M.E. degree (2013) in Ho Chi

Minh City University of Transport and Ho Chi

Minh City University of Technology, Vietnam,

respectively. In 2017, he received Ph. D degree

in Electrical Engineering from University of

Ulsan, South Korea. Since January – June 2017,

he was a post-doc research fellow at Queen’s

University Belfast. Since July 2017, he has been

a lecturer at Duy Tan University, Vietnam. His major research interests

are: Cooperative communication, cognitive radio network, physical

layer security, energy harvesting, non-orthogonal multiple access,. . .

H. Vincent Poor (S’72, M’77, SM’82, F’87)

received the Ph.D. degree in EECS from Prince-

ton University in 1977. From 1977 until 1990,

he was on the faculty of the University of

Illinois at Urbana-Champaign. Since 1990 he

has been on the faculty at Princeton, where he is

the Michael Henry Strater University Professor

of Electrical Engineering. From 2006 until 2016

he also served as Dean of Princeton’s School of

Engineering and Applied Science. Dr. Poor’s research interests are in

the areas of information theory, machine learning and network science,

and their applications in wireless networks, energy systems, and related

fields. Among his publications in these areas is the forthcoming

book Machine Learning and Wireless Communications (Cambridge

University Press, 2021).

Dr. Poor is a member of the National Academy of Engineering and

the National Academy of Sciences, and is a foreign member of the

Chinese Academy of Sciences, the Royal Society, and other national

and international academies. Recent recognition of his work includes

the 2017 IEEE Alexander Graham Bell Medal and a D.Eng. honoris

causa from the University of Waterloo, awarded in 2019.

Authorized licensed use limited to: University of Luxembourg. Downloaded on February 09,2021 at 11:27:17 UTC from IEEE Xplore.  Restrictions apply. 


