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Abstract—Persistent scatterer (PS) techniques are a set of impor-
tant time-series tools for interferometric synthetic aperture radar
(InSAR) that enable deformation analysis in highly decorrelated
terrain. Detailed knowledge of the statistics of persistent scatterers
in InSAR images is critical for the design of better techniques
that will enable both the extraction of deformation in traditionally
difficult regions as well as develop a better understanding of how
performance of these algorithms relates to important system pa-
rameters. In this article, we characterize the backscatter statistics
of both persistent and distributed scatterers over wavelength using
data from X-band (COSMO-SkyMed), C-band (Sentinel-1), and
L-band (ALOS) sensors. We show that popular distributions that
have previously been used to fit SAR backscatter can effectively
capture the returns from both PS and clutter, with the G0 distribu-
tion being the most applicable across wavelength and scatterer type.
Thus, our work paves the way for improved detection algorithms to
be designed based on these distributions and also builds an initial
foundation for developing a greater theoretical understanding of
PS statistics.

Index Terms—Interferometric synthetic aperture radar
(InSAR), persistent scatterers (PSs), wavelength.

I. INTRODUCTION

I
NTERFEROMETRIC synthetic aperture radar (InSAR) has

become an increasingly popular remote sensing tool for geo-

physical and earth-observing studies [1], [2]. Advanced satellite

development in recent years has increased the applicability of

the technique due to improvements in satellite resolution and

more frequent revisit times, enabling more precise scientific

studies and frequent time-sensitive applications such as damage

assessment [3]. However, InSAR studies of many important

natural regions, such as forested and vegetated terrain, are often

still limited due to difficulties in extracting reliable deformation

signals in areas that suffer from high decorrelation [4].

Persistent scatterer (PS) interferometry is one widely imple-

mented technique for studying rapidly decorrelating regions in
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InSAR [5], [6]. PSs are temporally stable pixels in an InSAR

image that can be used to form a reliable network of points

which can then be used for analysis. By applying this technique,

we can analyze ground deformation of several millimeters in

areas that otherwise suffer from high decorrelation. PS inter-

ferometry has been applied to applications as diverse as urban

building characteristics, subsidence in cities, volcanic activity,

and landslide dynamics [7]–[10].

While current analytical methods have proven effective in

detecting PS and exploiting their desirable properties, the de-

velopment of these algorithms has primarily been driven by

empirical observations. Notably, previous studies have already

noted the importance of quantities such as wavelength [11]

and image resolution [12] on PS density. However, there are

few published studies that study these phenomena in detail and

that address the theoretical understanding of PS statistics and

its relation to system parameters. Such research and a suitable

theoretical framework are needed for the design of increasingly

accurate and analytically sound detection methods, which in turn

would result in a denser network of reliable measurements that

enable more detailed deformation analysis.

In this article, we present initial results from analysis of the

statistics of PS and distributed scatterers (clutter) as a function

of wavelength. In Section II, we outline the theoretical basis

for modeling PS statistics and why backscatter distributions

are of interest. In Section III, we describe our test dataset.

In Section IV, we examine distributions that fit to the power

backscatter of both scatterer types and show that we can model

both PS and clutter with the G0 distribution. We discuss possible

other factors that may contribute to differing observed statistics

by satellite, and we conclude with general observations and

suggestions for next steps.

II. CHARACTERIZATION AND DETECTION OF PS

Over the years, a wide variety of PS detection methods has

been developed [13], [14]. These detection methods can gener-

ally be grouped by the type of measure used to characterize and

analyze PS statistics—amplitude-based (including amplitude

dispersion and the signal-to-clutter ratio), coherence, statistical

homogeneity, and spectral diversity. For this work, we choose to

develop our model based on estimating the signal-to-clutter ratio

of each pixel (denoted SCR or γ), which is utilized in techniques

such as the spatio-temporal unwrapping network algorithm [15]
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and the maximum likelhood estimation (MLE) method [16]. PS

are then selected as the pixels with an estimated SCR above

a certain threshold. Previous research has found that higher

SCR, which describes the strength of the dominant scatterer

with respect to the clutter in a resel, corresponds to lower phase

uncertainty [17]. While the method is simple, it serves as starting

point for understanding PS statistics and can easily be extended

to more complex analysis methods.

Following [18], we define the signal-to-clutter ratio (γ or

SCR) as

γ =
Pd

Pc + Pn
(1)

where Pd is the backscattered power from one or multiple

dominant scatterers in one resolution element (“resel,”)Pc is the

power from clutter, and Pn is the power contribution of thermal

noise. (1) is an important formulation to consider when taking

into account bandwidth effects on PS density, as thermal noise

is bandwidth-dependent.

We assume that due to spatial and temporal fluctuations in the

radar cross section (RCS) and other noise sources,Pd andPc can

be taken as random variables. Pn is also commonly modeled as

a random variable, usually exponential. Therefore, this equation

suggests that with knowledge of the power distributions of PS

and clutter, we can describe the statistics of γ and optimize

detection algorithms accordingly. Thus, we would like to better

understand how to model Pd and Pc and whether a unifying dis-

tribution over varying system parameters—namely, wavelength,

can be used to describe them.

Previous InSAR and PS analyses have traditionally relied on

the assumption that radar backscatter is distributed according to

a complex bivariate Gaussian distribution, due to the tractability

of the model [19], [20]. However, Gaussian statistics have long

been recognized to be oversimplifications of high-resolution

SAR statistics, and early data have shown that the amplitude of

radar backscatter exhibits distributions with long tails that the

Rayleigh distribution is unable to model [21]–[25]. As a result,

various other distributions have been employed and designed

over the years to describe SAR amplitude backscatter, including

the Weibull, K, G, GC, G0, and generalized Rayleigh distribu-

tions, among others [26]–[28]. Many of these distributions of

SAR statistics are based on the idea that the SAR backscatter

is composed of a two components: a texture (modulation) com-

ponent and a speckle component, which acts as multiplicative

noise [25], [27]. Thus, this assumes that we can describe the

backscatter of a SAR image as follows:

Ã = Ãt · Ãs (2)

where At describes the contribution of the texture and Ãs the

contribution of the speckle component. It is commonly assumed

that Ãt is real and corresponds to the square root of the RCS.

The different models for SAR statistics are derived from various

choices for distributions for Ãt and Ãs some of which lead to

analytical solutions for amplitude and power [27].

Recent work has shown that the probability distributions

(PDFs) of the power of both PS and clutter pixels are non-

Gaussian and can be described by several of the aforementioned

SAR backscatter models, and that these models apply over

varying bandwidths as well [29]. We choose an appropriate

distribution by fitting a distribution function to the normalized

power histogram of the dataset; this process is described in detail

in Section III.

As an example of an application of these distributions, once

known, the theoretical SCR distribution can be derived from

(1). The derivation for the integrable expression for (1) is pre-

sented in [18]. Substituting random variables for the constants

in (1), such that Pd ∼ pd(x), Pc ∼ pc(x), Pn ∼ pn(x), and that

Pcn = Pc + Pn where Pcn ∼ pc ∗ pn = pcn(x) =
∫∞
−∞ pc(x−

y)pn(y)dy. Then the distribution of (1) can be written

p(γ) =

∫ ∞

0

x · pd(γx)pcn(x)dx

=

∫ ∞

0

x · pd(γx)
[
∫ ∞

−∞
pc(x− y)pn(y)dy

]

dx. (3)

Further modifications to (1) can be made to reflect other

systems effects such as decorrelation, but the general form as

indicated can be obtained once the distributions for PS and

clutter statistics are known.

III. DATA

We examine data from X-band (COSMO-SkyMed, λ =
3.22 cm), C-band (Sentinel-1 A, λ = 5.66 cm), and L-band

(ALOS, λ = 23.6 cm) radar sensors over the Kilauea crater

in Hawaii, which is natural terrain but mostly unvegetated,

composed primarily of lava. The surface thus contains many

stable pixels for our analysis and also allows us to evaluate the

suitability of our fits and resulting model on natural terrain, as

previous work has analyzed PS density over more structured

terrain with manmade objects such as roads and buildings.

The selected area is shown in Fig. 1, and important satellite

parameters for the selected datasets are shown in Table I. The

ALOS data are a mix of FBS and FBD mode data.

We only investigate single-polarization data, although the

different single-pol types we have chosen (VV and HH) are due

to limitations of the datasets. It is possible that this may affect

the results of PS density, based on previous research that shows

PS detection may be sensitive to polarization [30]; however,

the same results have also shown that the larger distinction

in between obtained PS densities is obtained when comparing

between full-pol, dual-pol, and single-pol data rather than in

between the two types of single-pol data. With respect to this

work, it is assumed that the type of single-pol data utilized does

not significantly affect the resulting PS density. Further study of

polarization-dependent PS density remains an area of study for

future work.

We also must consider the lack of calibration of the backscat-

ter data across the three satellites. In other words, the scaling

of the powers in all the data is different and arbitrary relative

to one another. In theory, suitable distributions will fit the same
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Fig. 1. Google Earth image of the selected imagery above the Kilauea crater with the selected area boxed in red. The inset shows the location of the area relative
to the rest of the Hawaiian islands.

TABLE I
SATELLITE PARAMETERS

data multiplied or divided by an arbitrary constant according

to the scaling property of random variables. Because our main

aim is to determine suitable distributions for the backscatter

rather than exact parameters for these distributions, we proceed

with a “naive” approach by scaling the magnitude of the power

data so that they all have the same mean, arbitrarily chosen

be the mean of the C-band (Sentinel) data, as the intermediate

wavelength. We also briefly comment on the fits using different

scaling constants.

IV. PS SELECTION AND PARAMETER FITTING

To select PS and clutter pixels in the dataset, we use the MLE

method [16] to estimate the SCR of the pixels. This technique

is fairly resistant to fluctuations in amplitude noise due to its

phase-based approach. The general approach of the technique is

as follows: first, an expression for the observed phase from each

resel with respect to SCR is derived, and resels are assigned an

SCR value from the maximum likelihood estimate given all the

interferogram phase values. All resels with an SCR value higher

than a certain threshold are assigned to be PS. In this work, we

choose the threshold to be two to minimize false positives.

Once the PS and clutter pixels are distinguished, we form

the empirical probability density function for the backscatter by

computing the normalized histogram of the powers. We fit five

common distributions: exponential, Weibull, K, lognormal, and

G0. While the lognormal does not result from the multiplicative

model, it is included as it has been shown to empirically fit

to data. We merely include the distribution here as a point of

comparison. In this article, we define the distributions as follows:

Exponential:

f(x|µ) = 1

µ
e−

x
µ (4)
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Fig. 2. Log scale plots of the five distributions fit the PS and clutter, respectively, for X-band (a, d), C-band (b, e), and L-band (c, f). All data have been scaled to
the same mean, specifically the mean of the C-band (Sentinel) data.

Weibull:

f(x|a, b) = b

a

(x

a

)b

e−( x
a
)b (5)

Lognormal:

f(x|µ, σ) = 1

xσ
√
2π

e(
−(log x−µ)2

2σ2 ) (6)

K:

f(x|α, λ) = 2λ

Γ(α)
(λx)(α+1)/2−1Kα−1(2

√
λx) (7)

G0:

f(x|α, γ) = Γ(1 + α)

γ−αΓ(α)(γ + x)1+α
(8)

where K is the modified Bessel function of the second kind. The

K and G0 distributions are defined according to [28]. Note that

the G0 is defined here for single-look images, and that we have

reversed the sign of the parameter α so that all the parameters

will be positive.

As in [29], we choose a simple fitting process: the fits were

obtained using a constrained nonlinear solver to minimize the

root mean square logarithmic error (RMSLE) which is defined as

RMSLE =

√

∑N
i=1(log ŷi − log yi)2

N
(9)

where yi are the histogram values, ŷi are the fit values, and

N is the total number of points in the histogram. Because

the empirical histograms of the data contain many bins with

low values, particularly at bright pixels, we find that using

the logarithmic (relative) error rather than the absolute error

significantly improves the fit. More sophisticated parameter

TABLE II
RMSLE OF PS AND CLUTTER FITS

Bolded values indicate the lowest two RMSLE fit values out of the five fits.

estimate procedures such as the ML and EM methods [31] can

also be used, which may also be more effective in dealing with

problems associated with scaling, as described. However, this

is reserved for future work. Our initial results show that this

straightforward method to fit the overall shape produces good

results in determining which distributions are suitable for fitting

PS and clutter.

V. RESULTS AND DISCUSSION

A. Fits to PS and Clutter Backscatter

The initial fits for PS and clutter probability distributions for

each wavelength at full bandwidth are plotted in Fig. 2, displayed

on a log scale. Clearly, for all cases, the exponential and Weibull

are poor fits while the K, lognormal, and G0 distributions all

visually conform well to the observed power histograms.

To more closely analyze the quality of fit to each distribution,

we can examine the final RMSLE values resulting from each

of the fits, shown in Table II. The errors are consistent with

the observed trends in Fig. 2, where the K, lognormal, and G0

distributions provide the best fits to both PS and clutter across
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TABLE III
FITTED G0 PARAMETERS FOR PS AND CLUTTER

different wavelengths. The K distribution provides a good fit to

the PS backscatter at X- and L-band and the clutter backscatter

at L-band, while the lognormal better fits the PS backscatter

at C-band and the clutter at X- and C-bands. Meanwhile, the

G0 consistently provides the best or second best fit across all

wavelengths for both PS and clutter.

Overall, it is clear that the G0 distribution is the natural choice

for both scatterer types as it provides the best overall fit. The

fitted parameters for the distribution [the parameters as they

are defined in (9)] are shown in Table III. The PS and clutter

parameters are distinct from each other at all wavelengths. Both

α and γ are larger for clutter points than PS points at C- and

L-band, but the reverse is true at X-band. More research is

required to further interpret the physical meaning and how they

might relate to scattering mechanisms.

One caveat we have found when we have investigated the

fits is that the fit is sensitive to some large scaling factors.

When we apply the same scaling factor but divided by 100,

the γ parameter scales by the 1/100 factor, and the α parameter

remains the same, which is the expected behavior. However,

when we apply the same scaling factor but multiplied by 100,

both parameters change more dramatically. When examining

the resulting plots, we observe that the shape of many of the fits

change, but importantly, the same distributions generally still

seem to fit well to each scatterer type across the wavelengths.

This suggests that our fitting routine becomes slightly unstable

for data that are either too large, spread out, or low in density. It

is clear that improved fitting methods are required for the fits to

be applicable across a larger range of data scaling. The important

result, however, is that the same distributions (K, lognormal, and

G0) still fit well to the data.

Overall, although the fitting routine can generally be im-

proved to obtain the exact parameters with more accuracy, our

results show that there is a consistent distribution for the power

backscatter can be selected across wavelength for both PS and

clutter.

B. Role of Land Cover Type in Observed

Backscatter Distributions

Land cover is an important factor that affects observed SAR

and InSAR statistics, particularly backscatter distributions and

PS density. In this work, we have shown that the K, lognormal,

and G0 distributions are suitable to describe the backscatter of

PS and clutter over natural terrain that is primarily composed of

bare, unvegetated land and includes a small amount of vegetated

shrubland, forest, and grassland, with the G0 distribution provid-

ing the lowest error fit. The G0 distribution has also previously

been shown to be appropriate fits for PS and clutter backscatter

in urban, rural, and mixed urban/rural terrain, which exhibit

heavier-tailed behavior than in areas of entirely natural terrain

as they contain man-made structures that are stronger scatter-

ers [29]. PS and clutter statistics in more diffusely scattering

natural terrain has yet to be studied. However, we expect the G0

distribution to still be applicable for both scatterer classes over a

diverse set of land cover types, including more vegetated terrain,

based on previous work that has shown that the distribution

can describe high-resolution radar backscatter from forested

areas [28]. Other studies have shown that the lognormal and K

distributions may also still be appropriate fits for more vegetated

regions [23], [32]. We expect these results to be applicable to

both PS and clutter, but a more detailed study of PS and clutter

distributions with respect to land cover type remains for future

work.

C. Role of Other System Parameters in Observed

Backscatter Distributions

Our results demonstrate the generalizability of several dis-

tributions for PS and clutter across appropriately scaled data

from systems operating at different wavelengths. Other key

system parameters that are expected to affect the resulting ob-

served PS and clutter distributions include polarization mode

and resolution (previous works have shown that backscatter

angle can affect the observed distributions, but in spaceborne

geometries the angle will not differ significantly across various

systems).

The transmitter and receiver polarization mode has previously

shown to have some effect on the detected PS density and type

of detected point, as cross-polarization modes tend to be more

sensitive to multiple-bounce surfaces, but our data in this study

are limited to the single-pol HH and VV cases. We have shown

that the studied distributions seem to describe both the HH and

VV datasets equally well. However, more research is required

to understand the generalizability of the distributions studied in

this work to PS and clutter backscatter for the cross-pol cases

as well as any differences between the HH and VV modes. This

becomes particularly significant with respect to datasets of more

diverse land cover, such as forest canopies.

Image resolution also directly affects the observed PS density

as well as the shape of the backscatter distribution; however,

the studied distributions have shown to be generalizable across

various image resolutions [18], [29]. We note that in this study,

each satellite has a different native resolution. We therefore

briefly examine whether the differences in between the fitted

parameters by wavelength may be due to the differing resolution

of the data. For simplicity, we reduce the resolution in 1 D only;

this is achieved by downsampling each raw SLC in range by
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Fig. 3. Observed SCR distribution for downsampling factors of k = 1, 2, 4, and 8 at (a) X-band, (b) C-band, and (c) L-band.

Fig. 4. Labeled PS (red points) for the defined region from CSK imagery for (a) high average spatial baseline and (b) comparatively lower average spatial baseline;
clearly, a well-controlled baseline is critical for effective PS studies.

a factor of k = 1, 2, 4, and 8 before forming the interferograms

and selecting PS. The downsampling process used is described in

detail in [18]. The resulting plots at each wavelength are shown

in Fig. 3.

At each wavelength, there is a slight drop in the proba-

bility density at higher SCR values at the lowest bandwidth,

k = 8, i.e., the probability of PS occurrence decreases for

lower resolution, a trend which is most noticeable at X-band.

However, the fundamental shape of the SCR distribution still

appears to be dictated by the wavelength itself. This suggests

that there are fundamental characteristics at each wavelength

rather than resolution alone that contribute more strongly to

the resulting observed PS density, which includes the distri-

bution of the RCS that we fitted in the previous section. Ad-

ditionally, the differences in the wavelengths may be due to

other effects, such as decorrelation, which is considered briefly

next.

D. Decorrelation as a Wavelength-Dependent Effect

Decorrelation is an important wavelength-dependent factor

that we have not yet commented on. While there exist many PS

identification methods that take into account SLC statistics [16],

[33], decorrelation is generally recognized as an important part

of InSAR analysis and must be included for accurate character-

ization of interferograms [20], [34]. Notably, Lien[19] incorpo-

rated decorrelation effects in PS selection and showed greater

accuracy than previous methods in which decorrelation was not

considered.

In this work, our PS detection scheme relied on SLC statistics

rather than interferogram statistics, and as a result, we did not

take into account decorrelation statistics, which changes with

satellite and wavelength. However, we note that the results for

PS density by wavelength in the previous section show the

lowest PS density at all bandwidths for X-band data, while

C-band data show the highest PS density. This is an interesting

observation especially because data at X-band suffers the most

from decorrelation noise, and Sentinel data in particular have

the most well-controlled temporal and spatial baselines of the

dataset. Therefore, decorrelation is an important factor that must

be considered for future work in general.

A simple example using our data illustrates the importance of

well-controlled baselines in PS studies, shown in Fig. 4. Both are

derived from SAR images from the COSMO-SkyMed satellite

(critical baseline: 12 400 m) and have been downsampled by

8 to a bandwidth of 14.1 MHz. However, the average spatial

baseline is Fig. 4(a) is 604.7 m, while that of Fig. 4(b) is

130.8 m. Furthermore, the maximum spatial baseline of Fig. 4(a)

is 1367 m, in contrast to Fig. 4(b), where the maximum spatial

baseline is 249 m.

It is clear that contrary to some previous simplified assump-

tions about PS, many of these points are not entirely resistant to

the effects of decorrelation. Additionally, research has attested

that PS can, in fact, fade [35]. Therefore, especially when consid-

ering wavelength-dependent behavior, it is important to consider

how decorrelation effects can be included when studying PS

statistics and selection. This is an important avenue to include

for future work.
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VI. CONCLUSION

We have shown that several popular models for SAR backscat-

ter are suitable for describing the power distributions of both PS

and clutter across wavelength in natural terrain, and the G0 distri-

bution has shown to be to most suitable model for both scatterer

types. With knowledge of these distributions, we can already

design improved PS selection mechanisms. This comprises an

important component of further developing PS detection theory;

as briefly alluded to in the article, these distributions can also

be used to develop a theoretical model for the distribution of PS

density.

Another key factor that has not yet been considered is the

role of polarization in PS density—namely, whether there is a

significant difference in VV and HH polarizations with changes

in bandwidth and wavelength. In this work, single-polarization

data were used, but the Sentinel-1 A data were the only one of the

dataset that was VV polarization rather than HH polarization.

Additionally, further future work will focus on linking the

characteristics of PS and clutter to the underlying multiplicative

model which will give further insight to the physical meaning of

the fitted parameters, and finally apply the framework to develop

improved PS detection algorithms. In general, this analysis

could also be extended to clutter detection as there has recently

been increased interest in exploiting the limited correlation of

distributed scatterers to extract deformation, enabling analysis

in particularly difficult areas.
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