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Abstract

Strips made of a resistive sheet material have lower backscat-
tering cross sections than the corresponding perfectly conducting
strips, and this is true in particular when the illumination is edge-
on with the electric vector parallel to the edge. Attention is focused
on this case. Using the moment method applied to an appropriate inte-
gral equation, data are obtained for the surface field and backscattered
far field of a resistive strip for a variety of strip widths w and uniform
resistances R. The front and rear edge contributions to the far field
are then extracted. It is shown that for strips whose width is greater
than about a half wavelength the former is the same as for a half plane
having the same resistance, whereas the latter is proportional to the
square of the current at that point on the half plane corresponding to
the rear edge of the strip. The implications of these results on the

selection of a strip resistance for low backscattering are discussed.
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1. Introduction

The backscattering properties of perfectly conducting strips or
ribbons have been extensively explored both analytically and numerically
and the strip is widely used as a model in scattering investigations.
From the eigenfunction expansion in terms of Mathieu functions data
have been obtained for strips up to a wavelength or two in width, and
asymptotic expansions have been developed which accurately predict the
scattering for strips as narrow as a half wavelength. ©Not surprisingly,
the backscattering decreases at angles away from broadside and is, in
fact, zero at grazing incidence when the magnetic vector is parallel
to the edge (H polarization). For E polarization, however, the edge-on
backscattering is non-zero, and when the strip is regarded as a model,
for example, of an aircraft wing or tail fin, the scattering can be
large enough to be significant. The desire to reduce the scattering
in this case leads naturally to a consideration of non-metallic strips.

For this purpose a strip made of a resistive sheet material is
attractive because, like a perfectly conducting strip, it is invisible
to an H-polarized plane wave at grazing incidence. During the last
few years the concept of a resistive sheet has found several applications.
To see how this comes about, consider a thin sheet of highly
conducting material whose permeability is that of free space. If o
is the conductivity and 1 is the thickness of the sheet, we can define
a surface resistance R as R = (otr) ~ ohms, and as T + 0 we can imagine
0 to increase in such a manner that R is finite in the limit. The result
is an infinitesimally thin sheet whose electromagnetic properties are
specified by the single measurable quantity R. Though this is obviously
an idealization, it is not difficult to fabricate a sheet no more than
0.1 mm in thickness and presenting an almost constant resistance as
large as 1800 ohms over a wide range of frequencies, with the precise

value depending on the amount of carbon loading employed.

In this paper we congider the scattering properties of uniform re-
sistive strips of finite width illuminated by a plane electromagnetic wave
incident in a plane perpendicular to the edge with electric vector paralle.
to the edge. Our primary concern is backscattering at grazing incidence
and its dependence on the resistance and strip width. From an examina-
tion of the known analytical solution [1l] for a resistive half plane,

the current on the infinite structure is computed and the backscatter-



ing attributable to the edge determined. For strips of various resist-
ances and finite widths, the induced currents and backscattering cross
sections are obtained by numerical solution of the appropriate integral
equation. The currents are remarkably similar to those on a half plane
and from the backscattering data the front and rear edge contributions
are extracted. The former is the same as for a half plane and the lat-
ter is proportional to the square of the current amplitude at that posi-
tion on a half plane corresponding to the rear edge of the strip. Fact-
ors affecting the choice of a strip resistance for low backscattering

are briefly discussed.

2. Formulation

Consider a strip of width w and resistance R occupying the portion
0 <x<w, -» <z < xof the plane y = 0 of a cartesian coordinate sys-
tem (x,y,z). The strip is illuminated by an E-polarized plane electro-
magnetic wave
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(see Fig. 1) where 0 < 90 < 7 and a time factor e has been suppress
ed. Since the total electric field also has only a z component, the
conditions at the surface of the strip can be written as
E_(x,0+) = E_(x,0~) = RJ
with

+
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being the total z-directed current induced in the strip. We remark
that when R = 0 the strip is perfectly conducting, and when R = =
it no longer exists.

The scattered electric field is
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where Ho(l) is the cylindrical Hankel function of the first kind of
order zero and Z is the intrinsic impedance of free space. 1In the far
zone,
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where (p,¢) are cylindrical polar coordinates such that x = pcos¢ and
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y = psin¢d, and the complex scattering amplitude P is
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In terms of P the two dimensional scattering cross section (or length)
is

o lo,80) = 22 |p(6,0.)]°. (3)

T
For edge-on incidence (¢0 = 7m) the front edge of the strip is the one
coincident with the 2z axis.

From (1) and (2), on allowing the observation point to lie on the
strip and then applying the boundary condition, the following integral
equation results:
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for 0 < x < w. A computer program has been written to solve this by the
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moment method and thence compute the backscattered far field, and this

was used to generate the data to be presented later.

3. Half Plane
In the particular case of a half plane (w=~) the integral equation

(4) is of the Wiener-Hopf type and can be solved analytically. As shown
in [1,2]
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where n = 2R/Z, K (z) is a 'split' function analytic and free of zeros

ZJ (x) dz

in the upper half 7 plane, and the path C runs from -« to « with
indentations above the branch point at ¢=~k but below the pole at
§=-kcos¢o and the branch point at =k (see Fig. 2). For edge-on incid-

ence the latter branch point and the pole coalesce, giving
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and throughout the remainder of this section we shall confine attention

to the case ¢0=w.

If the half plane is perfectly conducting (n=0)

K+lr) = /58 (6)



and the integral in (10) can be evaluated analytically to give

23 (x) = 2//5%§ ol (kxtn/4) (7)

which is infinite at the edge. If n#0 the behavior of the current far
from the edge is specified by the nature of the singularity of the

integrand at r=k, closest to the origin of the ¢ plane. From this we

73 (x) - 2 /E%Q ol (kx+m/4) (8)

as kx»», showing that the current on a resistive half plane asymptoti-

have

cally approaches that on a perfectly conducting half plane at large

distances from the edge. The behavior close to the edge is determined

by the order of the integrand for large |z|, and since Ky(z) - n-l/z
as |g|>», it follows that
23 (0) = 20 Y2k, (x) . (9)

K4+(k) has been computed [1l] and Fig. 3 shows a plot of ZJ(0)
for 0.1 ¢ n < 10. 1In addition, asymptotic approximations [1l] to Ki(k)

give
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and the curves corresponding to these expressions are included in
Fig. 3. They cover the entire range of n with surprising accuracy,
and even for n=1 the small and large resistance approximations differ
by only 20 percent and are individually in error by no more than 10
percent. Such accuracy is adequate for many practical purposes, and
the formulas (10) are valid for complex n as well as real.

To find the current away from the edge but at distances less than
those for which (8) is applicable, the obvious approach is to compute
the integral in (5). Unfortunately, attempts to do this numerically
using an integral expression for the split function ratio have proved
unsuccessful, and as an alternative we shall use data computed from (4)
for strips of large width w. It is found that as w increases, the cur-
rent over a distance of (say) 3) from the front edge becomes less and
less dependent on the strip width and, for w z 6\, can be treated as

=

the current on the corresponding portion of a half plane. The result-



ing half plane currents for different n are shown in Fig, 4, and we
observe that for fixed x the amplitude decreases with increasing n.

The scattered field for edge-on incidence can be obtained by
substituting (5) into (2) and using the Fourier integral representation
of the Hankel function. Thus
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and for ¢=r a stationary phase evaluation yields the following expression
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for the far field amplitude:

P(r,1) = FKu()} . (11)

In the particular case of a perfectly conducting half plane we have K+GO=ﬁZ
giving P(m,m) = -i/2, and the ratio of (1l1l) to its perfectly conducting
< n < 102, in Figure 1 of [1].

value is plotted as a function of n, 10

The ratio decreases monotonically from unity for n=0 to zero for n=e.

4. Finite Width Strips

Using the moment method the integral equation (4) has been solved
for a variety of resistances R(=nZz/2) and strip widths w<6A. The samp-
ling rate was never less than 16 points per wavelength, and since no
interpolation formula was employed, the rate was increased in the immed-
iate vicinity of the front edge, reaching a maximum of 2000 points per
wavelength for a perfectly conducting strip whose current is infinite
at the edge. We again concentrate on the case of edge-on incidence.

For a perfectly conducting strip of width w21A/2 the current is
almost identical to that on the corresponding portion of a half plane.
This is illustrated in Fig. 5, where the current amplitude on a strip
of width 3X is compared with that given by (7), and the only noticeable
differences are within about X/2 of the rear edge. The edge-on back-
scattering cross section ¢/) is plotted as a function of w/) in Fig,

6. The rather regular oscillation with minima A/2 apart is suggestive
of an interference between front and rear edge contributions, and accord-
ing to the asymptotic expansion of Fialkovskiy [3],

5 e2ikw
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for large kw, implying
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The resulting curve is included in Fig. 6, and we observe that the

50 - (13)

approximation is good for all w>)\/2.
From (12) the front edge contribution is clearly -i/2 and is
identical to that for a half plane. The rear edge contribution is
therefore
2ikw
- _
4rkw

and we note that if J(w) is the half plane current measured at a dis-

P (T,T) (14)

tance w from the edge,

pY(m,m) = %i{ZJ(w)}z. (15)

The relationship is analogous to that for a traveling wave [4] in the
case of H polarization.

For resistive strips having n#0 the currents are also similar to
those on the corresponding half planes, and this can be seen from
Fig. 7 where the current amplitudes on strips of width w=3) having
n=1, 4 and 10 are compared with the half plane currents shown in Fig,
4. The strip currents oscillate about the half plane values, but the
oscillations, indicative of a reflected contrihution, are small except
close to the rear edge and decrease with increasing distance from the
rear.

The backscattering cross sections of strips having n=1, 4 and 10
are plotted as functions of the strip width w, 0 < w < 3X, in Fig,
8. As in the case of Fig, 6., the regular oscillations with minima
A/2 apart suggest an interference between front and rear edge contribu-
tions. To determine their individual values, an expression for the
far field amplitude of the form
ezikw{e*ZikwIﬂﬁﬂ,ﬂ)} (16)
-2ikw

P(m,m) = Pf(ﬂyﬂ) +

was assumed, with Pf independent of w and e #;at most a slowly
varying function. We then sought the best fit to the computed data
for |P| and arg P. For a few values of 7, the resulting front edge
contributions are listed in Table 1, and are almost identical to those
for the corresponding half planes. For these same n, the amplitudes

of the rear edge contributions as functions of w are shown in Fig., 9 .



Apart from some slight oscillations for wg<A/2, the amplitudes decrease
uniformly with increasing w from the value 2n_l/2K+(k) of (9) for

strips of vanishing width. We also remark that

arg Pr(ﬂ,ﬂ) = 2kw + & (w)
where, for increasing w, 0(w) increases from m/2 for w=0 to a value
9 (o)<t and increasing with n. Thus, in contrast to the case of a
perfectly conducting strip, the edge-on backscattering of a resistive
strip tends to zero as w>0.
When the data for P° are compared with the corresponding half plane

currents at a distance w from the edge, it is found that

P (r,m) = ia{2d(w)}? (17)
with

o = 0.0313 + n0.0663, (18)
valid for w2i/2. The relation is directly analogous to (15) and reduces
to it when n=0. It is therefore possible to deduce the front and rear
edge contributions of strips from the half plane currents which are them-

selves given by (5).

5. Discussion

In seeking to select a strip resistance for low backscattering at
edge~on incidence, we first note that if there were no limit to the
resistances available the obvious choice would be R/Z=», since then
J(x)=0 and the strip no longer exists. In practice, of course, R is
limited, and for the purposes of the following discussicn it will be
assumed that R/Z<5, implying n<l10.

As indicated by (16), the scattering is the sum of front and rear

edge contributions. From (9) and (11)
pf (1, 1) = - -%%{ZJ(O)}Z (19)

and is minimized by choosing n as large as possible. Fig. 3 or, more
directly, Fig. 1  of [1], then shows that, for n=10,|Pf| is 26.6 4dB
below its value for a perfectly conducting strip. For very small strip
widths, maximizing n also minimizes P", but for any given n there is a
strip width beyond which P’ is least if n=0, i.e., if the rear edge is
perfectly conducting. As seen from Fig, 9, when 1n=10 the transition

occurs at w=0.6A. This now suggests that for strips of larger width



the edge-on scattering would be a minimum if the resistance could be
tapered from a maximum value at the front to zero at the rear in such
a way as to avoid creation of new sources of scattering. With uniform
strips, however, the best that can be done is to choose the maximum
resistance available, and since the phasing between the front and rear
edge contributions is virtually independent of n (see Fig. 8), this con-
clusion holds regardless of the strip width and apparently for complex n as
well as real. 1If, therefore, the resistive strip were encased in, for
example, fiberglas to provide rigidity, we could expect to observe the
same effects apart from any changes due to differences in the real part
of the resistance resulting from the presence of the fiberglas.

At aspects near broadside the backscattering cross section does
not show the large variation as a function of w/)A characteristic of
edge-on incidence, but the cross section reductions achieved when
¢=7 are at least indicative of the reduction at other aspects. This
is evident from Fig. 10 where the backscattering cross sections of four
different strips of width 1.25) are plotted as functions of ¢. When
n=4, for example, the reduction exceeds 14 dB at all aspects compared
with the 15.6 dB edge-on.
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Table 1. Deduced and Theoretical Front Edge Contributions

Pf(ﬂ,ﬂ)
\\Pf Deduced Theor. = —i{K+(k)}2/4
\}\\ modulus phase (deg.) modulus phase (deg.)
1 0.1542 -90.4 0.1558 -90
2 0.0940 -90.4 0.0955 -90
4 0.0529 -90.3 0.0540 -90
6 0.0370 ~90.2 0.0377 =90
10 0.0230 -90.0 0.0235 -90




Legends for Figures
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Path of integration C in the complex ¢ plane.
Strip geometry. For edge-on incidence, ¢o = 7.

Current at the edge of a resistive half plane as a function
of n: exact, ----- asymptotic (see 10).

Current amplitudes for five resistive half planes computed
using strips 6) wide, compared with the amplitude for a
perfectly conducting half plane (-=---- ).

Current amplitude computed (068) for a perfectly conducting
strip 3) wide compared with that for a half plane (———).

Backscattering cross section computed (800) for a perfectly
conducting strip compared with the asymptotic approximation

(13) ( ).

Current amplitudes computed (008) for three resistive strips
3A wide compared with those on the corresponding half planes
( ).

Backscattering cross sections computed for three resistive
strips.

Amplitudes of the rear edge contributions P" for five resis-
tive strips ( ) compared with the contribution for per-
fectly conducting strips (=-=-- ) computed using (14). The
crosses show the corresponding |p'| obtained from (11).

Backscattering cross section as a function of aspect from
edge-on (¢=180°) to broadside (¢=90°) for four strips of
width 1.25).
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