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Abstract Silicon microring resonators very often exhibit res-

onance splitting due to backscattering. This effect is hard to

model in a quantitative and predictive way. This paper presents

a behavioral circuit model for ring resonators that quantitatively

explains the wide variations in resonance splitting observed in

experiments. The model is based on an in-depth analysis of the

contributions to backscattering by both the ring waveguides and

the coupling sections, and it accurately explains the origin of

asymmetric resonance splitting. Backscattering transforms uni-

directional ring resonators into bidirectional circuits by coupling

the clockwise and counter-clockwise circulating modes.In high-

Q rings this will induce visible resonance splitting, but due to the

stochastic nature of backscattering this splitting is different for

each resonance. Our model, based on temporal coupled mode

theory, and the associated fitting method are both accurate and

robust, and can also, for the first time, explain asymmetrically

split resonances. The cause of asymmetric resonance splitting

is identified as the backcoupling in the coupling sections. This

is experimentally confirmed, and we further analyze the depen-

dency on gap and coupling length. Moreover, the wide variations

in resonance splitting of one spectrum is also analyzed and suc-

cessfully explained by our circuit model that incorporates most

linear parasitic effects in the ring resonator. This analysis uncov-

ers multi-cavity interference within the ring as the source of this

variation.
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Backscattering in Silicon Microring Resonators: A

Quantitative Analysis

Ang Li1,2, Thomas Van Vaerenbergh1,2,3, Peter De Heyn3 ,Peter Bienstman1,2, and Wim

Bogaerts1,2,4

1. Introduction

Silicon microring resonators are extremely useful devices to
create compact WDM filters, (bio)sensors, all-optical signal
processing, optical switches, optical wavelength converters,
microwave photonics, and laser cavities [1–7]. The use of
silicon gives a high refractive-index contrast, allowing for
compact rings with a large free spectral range (FSR). In
addition, the material system is compatible with CMOS
manufacturing processes, offering a route towards large-
scale integration and mass-manufacturing.

The basic operation principles of (silicon) microring
resonators have already been described extensively [8, 9].
Basically, an ideal add-drop ring filter operates as shown in
Fig. 1a. Light coupled from the in port is coupled to the ring
waveguide and circulates clockwise (CW) in one direction

to be extracted at the drop port when the wavelength is near
the resonance wavelength, or coupled back to the pass port
for other wavelengths. The transmission spectra at the drop

and pass port consist of a series of Lorentzian-shaped reso-
nances, with no light coming out the add port and in port,
as is evident from Fig. 2a. In this unidirectional behavior
the counterclockwise (CCW) mode is never excited.

However, any nonideality in the ring waveguide can lead
to small backreflections that can excite the CCW mode. Es-
pecially near resonance, when the optical intensity in the
ring waveguide is high, backscattering can lead to a coher-
ent build-up of this reflected light, even if the individual
reflections are very weak. This excitation of the CCW mode
results in undesired power output at the add and in port, and
a perturbation of the ideal single resonance state. The backre-
flection couples the degenerate CW and the CCW mode into
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3 Hewlett Packards Labs, 1501 Page Mill Road, Palo Alto, CA 94304, USA.
4 IMEC, Kapeldreef 75, Leuven, Belgium.
5 Luceda Photonics, Dendermonde, Belgium.
* Corresponding author: e-mail: ang.li@intec.ugent.be

Copyright line will be provided by the publisher



2

LASER
&PHOTONICS
REVIEWS

A. Li et al.: Backscattering in Silicon Microring Resonators: A Quantitative Analysis

Figure 1: Ring resonator models for backscattering. (a) Schematic of an ideal ring resonator without backscattering. Light
coupled from the inport will circulate in the ring waveguide and extracted to the drop port near the resonance wavelength,
or continue to the pass port for other wavelengths. (b) t-CMT model for the ring circuit with backscattering. CCW and CW
modes are degenerate in ring resonators without backscattering, and only one is excited by each input. However, due to

backscattering rbs, they are coupled with each other. The factors µx,µ
′

x stand for the mutual coupling of the directional

couplers. (c) A simplified schematic of a 2 × 2 directional coupler. Ideally, the backcoupling k
′

and reflection r
′

are zero.
(d) Illustration of the extra reflections caused by directional couplers in a ring. The directional coupler in a ring resonator
can be physically divided into three parts, two scattering centers at the beginning and end, and a distributed scatterer in
the straight section due to extra coupling length. Scatterers will cause unwanted backcoupling to adjacent port as well as
reflection to in port, while coupling length will bring roughness induced backscattering.

two new resonance states with a mixed CW/CCW nature,
and different resonance wavelengths. In rings with a very
high Q-factor, whose linewidth is sufficiently narrow, this
will induce a visible peak splitting in the spectral response,
and the ring characteristics can be seriously deteriorated
compared to the ideal Lorentzian [10]. As the backreflection
can have many contributions, it is also wavelength depen-
dent, and therefore the resonance splitting can vary from
one resonance peak to the next. This is shown in Fig. 2b,
which is taken from a typical measurement of silicon mi-
croring resonators and Fig. 3, which shows the distributions
of split ratios of 6 sets of ring resonators with 7 rings with
variable lengths in each set. This resonance splitting will
cause problems for many ring resonator applications:

– In ring-based sensors the shift of the resonance wave-
length might not be correctly detected [11].

– In ring-resonator-based tunable lasers, the reflection at
in port as well as the distortion of the ring’s transmission
spectrum may cause laser instabilities.

– In ring-resonator-assisted loss characterization tech-
niques, wrong model parameters will be extracted from
an imperfect fitting of split resonances [12].

– Ring-resonator-based wavelength-division multiplexing
(WDM) filters will deviate from the designed filter speci-
fications as the Q-factor cannot be well controlled.

– Ring-assisted microwave detection circuits could result
in the wrong peak power extracted from a split resonance
[6].

However, in some situations, the backscattering in ring
resonators can be harnessed and provide attractive benefits:
for instance, the extinction ratio of a filter can be strength-
ened [13].

In order to correctly deal with such split resonances,
and fully avoid or take advantage of backscattering, an ac-

Copyright line will be provided by the publisher
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(a) A spectrum of an ideal ring resonator. Clean Lorentzian-shaped

resonances at drop and pass ports, no light at in and add ports.

(b) A measured spectra of a silicon ring resonator. Resonances

exhibit different shapes due to splitting.

Figure 2: Examples of spectra of ideal and real ring res-
onators, respectively.

Figure 3: Histogram of split ratios of 6 sets of ring res-
onators; Each set contains 7 rings with variable lengths but
the same coupling gap and coupling length ( in total there
are as many as 1080 resonances ). When a resonance split
is larger than half of 3dB bandwidth, it becomes visible.

curate and robust model of the ring resonator is required.
With today’s models, the fitting of split resonances does
not correspond very well with the measured reality. Cur-
rent fitting models typically describe only symmetrically
split resonances [12–15], even though many resonances are
asymmetrically split. No published models can explain this
asymmetry in a satisfactory manner. Still, our experimen-
tal data shows that, in many cases, a significant fraction of
the split resonances are asymmetrically split (see Fig. 4),

Figure 4: A pie chart clearly shows the dominance of asym-
metric splitting among all of the splitting resonances we
measured from 252 rings ( in total more than 550 resonances
exhibit splitting ) .

making it necessary to build a fitting model which could
handle all kinds of resonances. Another difficulty is the ex-
perimental identification and quantification of the different
contributions to the backscattering and peak splitting. So
far, analysis of measurements on silicon microrings has at-
tributed all backscattering to waveguide roughness, which
is distributed along the ring [10, 16]. The possible contribu-
tion to backreflection from the directional couplers has only
been theoretically proposed [17], but has not yet been exper-
imentally verified and quantitatively characterized. In this
paper, we develop a fitting model that can explain and repro-
duce all kinds of split and non-split resonances, and identify
the origin of asymmetrically split resonances. Moreover,
we propose and experimentally prove that, besides waveg-
uide roughness, the directional couplers indeed contribute
to backscattering in silicon microrings. We also investigate
how the coupler’s gap as well as extra coupling length will
influence coupler-induced backscattering.

In the following section, we introduce our theoretical
analysis and the models for the individual contributions to
the backscattering, as well as the model based on temporal

coupled mode theory (t-CMT) for the complete ring circuit
with backscattering, with which we can fit all resonances
one by one in an automatic way. In section 3, we will then
identify the origin of this asymmetry in most split reso-
nances, namely the backcoupling of directional couplers,
and prove that without this backcoupling we cannot explain
all types of asymmetry. Subsequently, the fitting results for
measured ring spectra and experimentally characterization
of backscattering are presented in section 4. Also, the in-
fluence of coupler gap, ring length and coupling length on
backscattering is shown. In the section after that, we will
make our model more rigorous and complete by revealing
the reason why individual resonances can be so significantly
different within the same spectrum. In this section, we will
improve our fitting model by fitting the circuit and its whole
spectrum instead of fitting the resonances one by one.

Copyright line will be provided by the publisher
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2. t-CMT model for a ring resonator

Temporal Coupled-Mode-Theory (t-CMT) is a very good
and useful model to analyse a single resonance of a ring
resonator [18]. Our model improves upon existing models
in that it includes both distributed and localized (lumped)
backscattering: distributed backscattering is caused by
waveguide sidewall roughness distributed along the ring
circumference, while lumped backscattering is caused by
localized discontinuities in the ring. In most rings, these
discontinuities can be found in the coupling sections.

In this section, we first introduce our t-CMT model for
the microring circuit with backscattering taken into con-
sideration. After that, we discuss the models and analysis
for the individual contributions to backscattering, namely
the directional couplers (lumped) and waveguide roughness
(distributed).

A perfect ring resonator supports two degenerate modes,
a propagating clockwise (CW) and counter-clockwise

(CCW), respectively. Ideally, only one of them is excited
by each input. However, due to backscattering in the ring
waveguide, these two modes can become coupled with each
other, thus excited simultaneously, as shown in Fig. 1b.
When introducing a lumped reflector with field reflectiv-
ity rbs to represent backscattering, t-CMT can also be used
to analyse a non-ideal ring resonator.

Equations (1)-(4) are derived from our t-CMT model de-
scribing the two coupled resonance modes, and the transmis-
sion at drop port and add port, respectively (the equations
for the in and pass port are similar):

dαcw

dt
= j(ω0 + j

1

τtot

)αcw − jµ12αccw − jµiSi (1)

dαccw

dt
= j(ω0 + j

1

τtot

)αccw − jµ21αcw − jµ
′

i Si (2)

Sd =− jµoαcw − jµ
′

oαccw (3)

Sa =− jµ
′

oαcw − jµoαccw (4)

– αccw, αcw are the amplitudes of these two modes respec-
tively [18].

– ω0 is the intrinsic resonant frequency of the ring, depend-
ing on the ring’s physical parameters.

– 1
τtot

= 1
τl
+ 1

τi
+ 1

τo
, is the total decay rate of the ring

circuit, including the intrinsic loss rate 1
τl

, out- and in-

coupling rate 1
τi

and 1
τo

. We can assume the last two are

identical if the two couplers are designed to be identical,
as is often the case. The relation between decay rate and
mutual coupling is [18]:

µ2
x =

2

τx

(5)

– µi and µo are the mutual forward coupling of two direc-
tional couplers respectively, the dependency on power
forward coupling coefficient in space K = k2 is [18] :

µ2
i = µ2

o = Ki

vg

L
= Ki

c

ngL
(6)

◦ vg is the group velocity in the ring circuit,
◦ L is the physical length of the ring,
◦ c is the light speed in vacuum,
◦ ng is the group index of the ring,

– µ12,µ21 refer to the mutual coupling of a lumped re-
flector inside the ring waveguide, which we use as a
model for the backscattering. Based on the fact that the
strength of backscattering should be independent of the
propagation direction, we assume µ12,µ21 to have the
same amplitudes. However, they might have different
phase due to the stochastic and distributed nature of the
backscattering which we capture in a lumped element:
the effective coupling position for the two modes may
be different, as also in-depth discussed In [19], where a
circuit model for backscattering that takes both ampli-
tude and phase stochastic feature into consideration, is
proposed. The dependency on field reflectivity rbs is:

µ12 = rbs

vg

L
= rbs

c

ngL
(7)

Note that, even though in wavelength domain the field
reflectivity rbs is also reported to show a stochastic nature
[16,19], while in our model, the rbs within one resonance
is considered to be constant, due to the ultra narrow
bandwidth of a ring resonance, which is measured to be
around 10-40 pm.

– µ
′

i and µ
′

o are related to the backcoupling of the coupler.
Similarly to µi, the dependency on power backcoupling

coefficient K
′
= k

′2
is :

µ
′2
i = µ

′2
o = K

′ vg

L
= K

′ c

ngL
. (8)

For simplicity, we introduce a dimensionless factor f to

mathematically describe the backcoupling k
′

relative to
the forward coupling coefficient k:

k
′
= f k, µ

′

i = f µi (9)

Note that f can be complex, so there can be a phase
difference between forward coupling and backcoupling.

– Sx refers to the amplitude of the wave at each port. It is
normalized such that S2

x has the unit of power.

After solving equations (3) and (4), we get the ampli-
tudes at the drop port Sd and add port Sa as equations (10)
and (12). For comparison, the case without any backscatter-
ing is given as equation (11) and (13):

Sd

Si

|bs =
Ad

2
[

BW0
2
(1− f )2

j(ω −ω1)+
BW1

2

+
BW0

2
(1+ f )2

j(ω −ω2)+
BW2

2

] (10)

Sd

Si

|ideal = A0[
BW0

2

j(ω −ω0)+
BW0

2

] (11)

Copyright line will be provided by the publisher
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Sa

Si

|bs =
Aa

2
[−

BW0
2
(1− f )2

j(ω −ω1)+
BW1

2

+
BW0

2
(1+ f )2

j(ω −ω2)+
BW2

2

]

(12)

Sa

Si

|ideal = 0 (13)

– Ax is an dimensionless factor, scaled by potential trans-
mission losses in the circuit. For ideal circuits, where no
extra loss is present, AX = 1.

– BW0 is the 3dB frequency bandwidth of the ring when
there is no backscattering at all, i.e. an ideal ring.

– (ω1,BW1) and (ω2,BW2) are the (central frequencies, fre-
quency bandwidths) of the CW resonance mode (αcw)
and CCW mode (αccw) respectively.

ω1 = ω0 +µ0 cos
φµ

2
(14)

ω2 = ω0 −µ0 cos
φµ

2
(15)

BW1 = BW0 +2µ0 sin
φµ

2
(16)

BW2 = BW0 −2µ0 sin
φµ

2
(17)

with µ0 = |µ12µ21|, φµ = ∠µ12µ21. φµ is dependent on
the effective coupling position between the two circulat-
ing modes, and our fitting results shows that φµ is close to 0,
this means that φµ12

=−φµ21
, in other words, the positions

where coupling between these two modes effectively hap-
pen, are the same. What’s more, this result also reveals that
it’s actually a conservative coupling instead of a dissipative
coupling between these two modes.

From equations (14)-(17), we observe the distortion of
the electric field at the drop port and the emergence of
light at the add port, due to µ12 and f . Instead of a single
resonance with a Lorentzian line shape, there are now two
resonances with their own resonance frequency/wavelength,
bandwidth and peak power. When the separation between
the two resonance frequencies becomes sufficiently large
compared to their bandwidth, a visible peak splitting can be
observed.

Obviously, µ12, i.e. backscattering in the ring, is respon-
sible for the separation of the resonance frequencies, which
is in agreement with models formerly published in litera-
ture [20]. In terms of the relative power in these two modes,
there seems to be a dependence on both the bandwidth and
the backcoupling factor f . The existence of backcoupling
can thus be deduced from experimental data. Table 1 shows
the characteristics of different split resonances from the
same ring resonator. If there were no backcoupling at all
( f = 0), the only reason that there could be an asymmetry
in the peak power of the two modes is that their bandwidths
are different, as can be seen in the denominator of equa-
tion (10). As a consequence, a larger bandwidth will lead
to a lower peak power, and a large difference between peak

Figure 5: A measured spectrum containing 3 split reso-
nances.

Resonance 1 Resonance 2 Resonance 3

BW1/pm 16.7188 14.1098 21.0971

BW2/pm 15.6252 19.4137 22.5090
∆BW
BW0

6.76% 31.6% 6.47%

P1 0.1447 0.1236 0.099

P2 0.0892 0.0807 0.110
∆P
P0

47.5% 42.0% 10.5%

Table 1: The detailed data of above spectrum in Fig. 5. The
existence of f can be inferred from a comparison of the
first and third resonance. The peak with larger bandwidth
has a higher peak power; comparing the first and second
resonance, the relative difference in bandwidths of first res-
onance is only 6.7%, whereas that in second resonance
is 31.6%, but the first one shows a even larger difference
in peak power (47.5%) than the second one (42%); This
uncoupling between relative peak power and bandwidth can
only be explained with a non-zero f .

power should correspond with a large difference in peak
bandwidth. However, we observe something different in the
measured spectra shown in Table 1. In the first and third
resonance, the peak with the larger bandwidth actually has a
higher peak power. In addition, when comparing the first and
the second resonance we also find a discrepancy: in the first
resonance, the two peaks have a much smaller difference
in bandwidth (6.7%) than in the second resonance (31.6%),
but at the same time the first resonance has a larger differ-
ence in power (47.5%) than the second resonance (42%).
We already explained that φµ is very close to 0, meaning
that the difference in bandwidth can be very small. All of
these phenomena reveal that, besides bandwidth, there must
be another factor that introduces an asymmetry in order to
explain the difference in peak power of a split resonance.

We can back this observation with t-CMT simulations
in the circuit simulator Caphe [21, 22] by Luceda Photonics.
When we simulate a ring resonator with backscattering,
but without backcoupling in the directional coupler, we
only get symmetrically split resonances. After introducing
backcoupling into coupler model, we clearly observe the
asymmetrically split resonances, as shown in Fig. 6.

Copyright line will be provided by the publisher
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Figure 6: A sweep of different f factor using circuit simu-
lator Caphe. When f = 0 and φµ = 0, we get the red line,
which is a symmetric split resonance; And when we increase
f, the degree of asymmetry increases.

3. Individual contributions to backscattering

A ring resonator consists of a circular waveguide and one or
two directional couplers. Each component can potentially
introduce unwanted reflection or scattering, contributing to
the total backscattering in ring. We will now discuss these
contributions in more detail.

3.1. Sidewall Roughness-Induced
Backscattering

For the ring waveguide itself, roughness-induced backscat-
tering is the only verified and detailed analyzed contribution
to backscattering in the ring. Other potential contributions
from the ring waveguide could include the transitions be-
tween a bend and a straight waveguide. In [23], the bend
radius of ring resonator is chosen as large as 20µm. At
such large radii, the transition between bend and straight
waveguide is almost perfect in silicon wire waveguides [24],
which might explain why only roughness induced backscat-
tering was observed. For sharper bend radii, 5µm or even
smaller, the interface between bend and straight section can
introduce additional reflections.

According to [16], roughness-induced backscattering
can be considered as a statistical process, where the re-
flectivity’s spectral characteristics (mean value, standard
deviation and correlation length) depend on the waveg-
uide length. Using optical frequency-domain reflectrometry

(OFDR), Morichetti [16, 25] demonstrated a linear relation-
ship between reflected power Rw and waveguide length if
the waveguide is short compared to the decay length of the
propagation losses. For a ring resonator, the same technique
clearly shows how a coherent addition of the reflections
for each roundtrip in the ring increases the reflected power
around resonance wavelength. This linear relationship is:

Rw = r2
w = Hw ×Lw (18)

Here, Hw is a parameter dependent on waveguide dimension
and sidewall quality.

3.2. Coupler-Induced Backscattering

In addition to the waveguide roughness, the directional cou-
plers should also be considered as a source of backscattering.
Ideally, a directional coupler shown in Fig. 1c does not have

any reflection r
′

to the in port and backcoupling k
′

to the
port adjacent to the in port, leaving only forward coupling
k and transmission t. But this is not always the case: the
experimentally determined increase in loss in coupling sec-
tions [26] indicates that this reflection component can be
non-negligible in microrings.

There can be two different types of backscattering asso-
ciated to a directional coupler (Fig. 1d):
1. The existence of an adjacent waveguide is actually a

perturbation to the refractive index of the original waveg-
uide. So the beginning and end interface of a directional
coupler behave like scatterers due to a too abrupt change
in effective index. This scattering can couple to the back-
ward propagating waveguide modes, i.e. an unwanted

field backreflection r
′

to the input port and a backcou-

pling k
′

to the adjacent port. The more abrupt this tran-
sition from an isolated waveguide to a pair, the stronger
we can expect the scattering to be. The abruptness in-
creases for smaller bend radii, so we can expect a larger
backscattering of the coupling sections in rings with a
smaller bend radius.

2. For directional couplers with long (straight) coupling
section, the power is exchanged back and forth between
the two waveguides, increasing locally the field intensity
at the gap walls, this is verified by FDTD simulation
provided by Lumerical as illustrated in Fig. 7. There-
fore, for the same waveguide length, there can be sig-
nificantly higher backscattering by sidewall roughness
compared to a single waveguide. We indicate the cou-
pler roughness-induced backscattering as rc. Similar to
waveguides (equation (18)), the total reflected power
Rc = r2

c has a form of:

Rc = Hc ×Lc, where Hc > Hw (19)

3.3. Separation of Distributed and Lumped
Backscattering

In our t-CMT model for a ring resonator, we include both
backscattering rbs and backcoupling f . The backscattering
rbs consists of distributed backscattering caused by waveg-
uide roughness (rw), whose power reflectivity has a lin-
ear dependence on ring length L, and lumped reflection

introduced by couplers (r
′

and rc), whose power reflectivity
should be independent on ring length, but dependent on
couplers parameters, for instance, gap and coupling length.
Based on this knowledge, assuming a low average total re-
flectivity during one roundtrip, only first order reflection
contributions are taken into account. When the ring length
L<< 1

2αloss
we propose for low-field reflectivity rbs a simple

linear approximation of power reflectivity Rbs = r2
bs:

Rbs = H0L+C0 (20)

Copyright line will be provided by the publisher
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Figure 7: Three mode profiles extracted from commercial
FDTD simulator provided by Lumerical. Blue and green
indicate two directional couplers with a gap of 200 nm
and 300 nm respectively, while red one refers to a single
mode waveguide. Clearly, the electric field magnitude at the
sidewall of a directional coupler is stronger than that of a
waveguide.

H0L0 refers to the distributed backscattering caused by
waveguide roughness and C0 covers the contribution from
the couplers.

4. Experiment results

A set of rounded rectangular add-drop microrings (fixed
6.5µm coupling length and 4.5µm bend radius) with 7 dif-
ferent total ring lengths (150-1000 µm) and 6 different
coupling gaps (150-400 nm) were measured in order to
verify the model proposed in equation (20). With this, we
intend to verify that the sources of backscattering include
circular waveguide roughness as well as directional cou-
plers. We analyzed all resonances between 1520 nm and
1560 nm, using a 1pm resolution wavelength scan with a
continuous-wave tunable laser and power meter in a vertical
coupling setup. The devices were designed with the IPKISS
framework [27] and fabricated at IMEC in a passive silicon
photonics technology [28]. The waveguide dimensions are
450 nm × 220 nm, embedded in oxide and excited with TE
polarization using grating fiber couplers.

4.1. Fitting

First of all, we verify our model by testing its capability to fit
all the peaks of the different ring resonators. Equation (10) is
implemented into our Python modeling code and the param-
eters are fit to the resonance spectrum of the drop port using
a least-square algorithm. With small modifications, the same
procedure can be applied to the pass port spectrum. The free
parameters in frequency domain are [Pp, ω0, BW0|ω , µ0, f ,
φµ ], or similarly in wavelength domain [Pp, λ0, BW0|λ , µ0,
f , φµ ], which correspond to [peak power, central frequency,
3dB bandwidth, amplitude of backscattering, backcoupling
factor, phase of backscattering], respectively. The values
of Pp, ω0 and BW0|ω correspond to the resonance of the

ideal ring as if there was no backscattering present, while
the other parameters µ0, f , and φµ describe the perturbation
due to the backscattering.

Figure 8: Comparison of fitting results with 3 different mod-
els. Measured data is shown in blue solid line; in green
dashed line we fit with traditional Lorentzian shape. The
black dashed line gives the fitting with our t-CMT model but
without backcoupling factor f . Clearly, only symmetrically
split resonances are correctly handled. The fitting results of
our improved t-CMT model with f is shown in red dashed
line, which closely matches the measurements.

Figure 8 gives some examples of 3 different ring mod-
els. The green line is the result of a traditional Lorentzian
method. It fails to fit every resonance with even a small
amount of peak splitting. The black curve fits the resonances
with a t-CMT model with backscattering, but without back-
coupling ( f = 0). Only symmetrically split resonances can
be represented by this model, and it performs poorly for
asymmetric peaks. Our improved t-CMT model with a non-
zero backcoupling factor f is plot in a red dashed line. It
accurately fits both non-split, symmetrically split and asym-
metrically split resonances.

Figure 9 plots the f -factor for a typical example of our
measured rings. The amplitude of f factor varies from 0 to
0.4, which means that there can be as much as 40% of the

Figure 9: A measured spectrum with fitted amplitude of f

factor at each resonance. Similar in other measured spectra,
the amplitude of f is in the range of 0 to 0.4.

Copyright line will be provided by the publisher



8

LASER
&PHOTONICS
REVIEWS

A. Li et al.: Backscattering in Silicon Microring Resonators: A Quantitative Analysis

cross-coupled field coupled back to the adjacent port of in

port. Such a large value explains the significant difference
in peak power in some split resonances.

4.2. Extracting the Backscattering

With an accurate peak-fitting model we can now look deeper
into the actual backscattering in SOI microrings. First of all,
we will mathematically extract the strength of the backscat-
tering from measured spectra. By analyzing the transmission
spectra at the drop port and the add port, we can extract
the field backreflectivity rbs for each individual resonance.
As the rbs variation with wavelength has a strong stochastic
component, we look at the mean and standard deviation for
rbs over the different resonances within the transmission
spectrum of a single ring. For resonances that are visibly
split, we calculate rbs as:

Rbs = r2
bs = µ2

0

ngL

c
= µ2

0

λ 2
0

c×FSRλ

, (21)

where FSRλ is the free spectral range in wavelength
domain, λ0 is the central wavelength of the fitted resonance.
All of these parameters, λ0, FSRλ and µ0 can be directly
extracted from the fit of the peak. From equations (14) and
(15) we could get equation (22):

∆ωbs = ω1 −ω2 = 2µ0 cos
φµ

2
=

2πc

λ 2
0

∆λbs (22)

And as discussed in section 2, the φµ is always very
close to 0, we further simply it as equation:

µ0 =
πc

λ 2
0

∆λbs (23)

Now in combination with equation (7), equation (24)
can be generated.

∆λbs

BWλ

=
Frbs

π
, (24)

where ∆λbs refers to the wavelength spacing between

the two peaks of a split resonance. F =
FSRλ
BWλ

is the finesse

of the ring, where F/2π is the number of roundtrips light
makes during the cavity lifetime. This equation formulates
mathematically how at resonance the backreflection during
one roundtrip is coherently added up for each of the F/2π
roundtrips.

However, for non-split peaks, the fitted parameter µ0

is not always reliable, as the envelope shape of the com-
bined peak is less unambiguously dependent on the exact
properties of the individual resonance peaks: there are often
multiple solutions for the resonance modes αcw and αccw.
Instead, we can use the relative peak intensity at the add

and drop port to calculate rbs. After some transformations
of equations (10) and (12), we get

PA

PD

=
(∆λbs

BWλ
)2

1+(∆λbs
BWλ

)2
=

(Frbs
π )2

1+(Frbs
π )2

(25)

Similar to equation (24), the dependency on Frbs reflects the
coherent addition of reflection per roundtrip at resonance.

4.3. Separating Distributed and Lumped
Backscattering

In equation (20) we separated the total backscattering into
contributions by lumped scatterers (C0) and contributions by
distributed scatterers (H0), like sidewall roughness. H0 de-
pends on the electric field strengths at the sidewalls and the
quality of sidewall roughness. A lower value of H0 can be
obtained by using a better etch process, broader waveguides,
or by using the TM polarization [25, 29].

We applied our model and extraction procedures to rings
with different roundtrip length and coupling gaps. The prop-
agation losses in the measured waveguides are of the order
of < 2dB/cm [8]. This makes, even if the additional losses
in the coupling sections of small gap resonators are con-
sidered, the linear approximation in equation (20) a valid
assumption.

We plot the power reflectivity Rbs in Fig. 10, which
confirms that the highest power reflection Rbs per roundtrip
is of the order of 0.01, and therefore higher order reflection
contributions can indeed be safely neglected in equation
(20).

Figure 10: Power backscattering per roundtrip for rings with
different roundtrip length and different directional coupler
gap. We see a linear increase of the backscattering for longer
rings, which corresponds to distributed scattering H0. We
also see a decrease in backscattering for larger coupler gap,
corresponding to lumped scattering C0 in the directional
couplers.

We clearly see that the reflected power increases linearly
with the ring length, confirming the length-dependent model
from equation (20). We also see that for a larger coupler
gap, the curve shifts down. This confirms that the directional
coupler plays an important role in the lumped scattering
contribution C0, and that smaller gaps will lead to stronger
discontinuities and backscattering.
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Figure 11: Fitted parameters H0 and C0 versus coupler gap.
H0 remains constant for different gaps, as it only depends on
the circular waveguide roughness. The value is well matched
with formerly reported value. C0 decreases for increasing
gap, as the larger gap is, the smaller influence of directional
coupler will be.

We see this confirmed in Fig. 11 where dependence of
C0 and H0 on the coupler gap is plotted. For all gaps, H0 is
quite stable at the value around 6-8 m−1, which corresponds
well with the value reported in [16]. As H0 represents the
backscattering caused by sidewall roughness, we indeed
expect it to be independent of the gap. In terms of C0, it is
clearly shown in the same figure that rings with larger gap
have smaller C0, meaning less backscattering is induced by
the couplers.

4.4. Analysis of the Coupler-Induced
Backscattering

C0 is more complicated to understand than H0. For simplic-
ity, let us assume that the lumped contributions to backscat-
tering solely originate in the directional couplers (actually,
the bend/straight transition might introduce extra lumped
reflections. This could be considered as a weak incremen-
tal to the C0, and this incremental should be independent
on couplers parameters). The bend radius, the gap and the
coupling length have been experimentally proven to play a
role. We investigated the effect of the couplers by measuring
another set of rings with a fixed coupler gap (200 nm), 7 dif-
ferent ring roundtrip lengths (150-1000 µm), and 6 different
coupling lengths (5-15 µm).

Figure 12 again plots Rbs as function of ring length,
but now for directional couplers with 3 different coupler
lengths. The curves with the longer coupling lengths Lc

show a higher backscattering. Figure 13 quantifies how C0

increases with coupling length Lc. H0 also shows a slight
increase, but less pronounced, and still within the range
reported in [16]. The change in H0 can also be due to a
secondary effect: longer coupler lengths increase the ring
linewidth, which affects the quality of the fit.

All of the data shown above tell us that the coupler
sections indeed introduce considerable reflections, and the
strength of that reflection depends on both gap and coupling
length.

Figure 12: Power backscattering as function of ring
roundtrip length for different coupling lengths Lc. The
backscattering increases with larger roundtrip lengths, and
with larger coupling length.

Figure 13: Fitted backscattering contributions H0 and C0 for
different coupling lengths Lc. C0 increases with increasing
coupling length, indicating more backscattering caused by
directional couplers. H0 remains in the expected range of
6-8m−1

5. Wavelength-dependent Model for
Full-Spectrum Fitting

With the model discussed in the previous section, we could
accurately fit every individual resonance separately.

However, in reality, there should be a constant set of pa-
rameters for the ring circuit instead of set of parameters for
each of the resonances. By claiming that each resonance has
different parameters, i.e. backcoupling and backscattering,
we could explain the differences between resonances in a
single spectrum. However, the question still remains how to
physically explain the differences between the parameters
of different resonances.

When we go back to our former analysis, we remind our-
selves that there are two individual contributions: roughness-
induced backscattering and directional couplers. It has al-
ready been reported in [16] that the roughness-induced
backscattering exhibits a degree of randomness, which
might be a reason for the different shapes of resonances
in a single spectrum. However, our analysis and measure-
ment results in previous sections reveal that the strength
of backscattering only influences the spectral separation of
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the two split peaks. In other words, backscattering only in-
fluences the resonances’ wavelengths (frequency) and their
bandwidths. The asymmetry and large differences in band-
width in each split-resonance can not be explained by the
randomness in backscattering.

When we consider the layout of the system, we see that
for an add-drop filter, we have two couplers, so four scatter-
ers in total. These four scatterers plus backscattering will
form a complicated multi-cavity system in the ring circuit,
which will show a certain wavelength dependency. In order
to verify this, we use the circuit simulator Caphe with a de-
tailed model for the ring circuit to fit our measured data. The
fitting procedure used is differential evolution [30]. In this
model, a basic directional coupler contains two waveguides
with different effective index simulated by FIMMWAVE,
each supporting a supermode. We add extra scatterers at
the input and output sides of a directional coupler to in-
clude their parasitic reflection and backcoupling. Figure

Figure 14: Fitting of a narrow span of a 75um long ring;
here we use our circuit simulator CAPHE to fit a ring circuit,
or in other words, the complete spectrum instead of fitting
individual resonance one by one

14 and 15 show the fitting of two relatively narrow spans.
Due to the limited number of resonances in the spectrum,
the randomness of the backscattering does not play a signif-
icant role. Even if in our model we use a constant value for
backscattering, we have still have a relatively good match
between simulation and measured data, as well as with the
previously fitted and simulated values. For example, the
power coupling ratio is in the order of 1× 10−3, similar
to the value simulated by Lumerical which is 3.6× 10−3.
The fitted value of backcoupling of the directional coupler
is in the order of 10−5, in good correspondence with the
previously reported f -factor for the electric field, which is
from 0 to 0.3, so from 0 to 0.09 for power.

Figure 16 shows the fitting result of a longer ring, with
more than 10 peaks. Due to the large number of resonances
here, the randomness of the backscattering can become quite
influential and will have an impact on the fitting quality, as
for this fitting procedure we use a constant amplitude value
of the backscattering in our circuit model. As expected, the

Figure 15: Fitting of a narrow span of a 100um long ring,
shows the reproducibility of our circuit fitting model

Figure 16: Fitting of a narrow span of a 300um long ring; We
expect larger mismatch due to the randomness of roughness
induced backscattering, which is not included in our model.
However, there is still a good match and it clearly shows the
randomness in split resonances caused by multi-scatters in
the ring circuit

fitting mismatch increases, which can actually be considered
as a measure for randomness of the distributed backscatter-
ing. Still, we can extract trends from this fitting.

In summary, we identify two reasons in order to explain
why individual resonances in the same ring can be quite
different, not only in split ratio, but also in asymmetry and
bandwidths. The first one is due to the previously reported
randomness in waveguide-roughness-induced backscatter-
ing, and this will affect the split ratio of the resonances.
The second contribution is from the complicated directional
couplers, which contain not only lumped multi-scatterers
that introduce extra reflection and backcoupling but also
distributed backscattering due to the sidewall roughness of
the extra coupling length.
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6. Methods to suppress resonance splitting

Understanding the origin of the resonance peak splitting, we
can now suggest a number of techniques to reduce or avoid
resonance splitting. Generally, the methods to suppress res-
onance splitting can be classified into four categories:
1. Improving the lithography and etching technology to

reduce the sidewall roughness [25].
2. Using TM polarisation or rib waveguides so that the

sidewall sees weaker electric field [25, 29].
3. Lowering the Q factor of the ring, i.e. strengthening the

coupling coefficient of the directional coupler(s). Among
the 6 measured sets of rings with gaps from 0.15 µm to
0.4 µm, there is a clear observable trend that resonance
splitting is very rare in rings with gap of 0.15 µm. While
on the other hand, rings with a gap larger than 0.25 µm,
almost invariably exhibit severe resonance splitting due
to a narrower bandwidth/higher Q factor, as illustrated in
Fig. 3.

4. By design optimization: we could tailor either the
backscattering rbs inside the ring waveguide or the back-
coupling ( f factor) of the whole ring circuit. The former
method relies on an intentional reflector inside the ring,
whose reflectivity as well as phase could be tuned, to
compensate the parasitic backscattering rbs. As a con-
sequence, the total ring circuit can be made to suffer
no backscattering at all. The second method tunes the f

factor to be 1, so that the coupling from the input wave
contributes equally to CW and CCW modes. As in equa-
tion (10) shows, when f = 1, one of the peaks of a split
resonance disappears, with only one resonance left. In
such a case, the parasitic backscattering as well as the res-
onance splitting still occurs, but one peak is suppressed
at the output.

7. Conclusions

This paper explains quantitatively the wide variation of res-
onance splitting in ring resonators. For this, we performed a
comprehensive and in-depth analysis of backscattering, one
of the most severe as well as frequently observable problems
in silicon microring resonators, based on measurements of
abundant devices fabricated in mature CMOS technology.
This quantitative analysis demonstrated the high probability
of resonance splitting and the dominance of asymmetric
ones in those resonance splitting. It also illustrated the prob-
lem of wide variations in resonance splitting of a single
ring’s spectrum is observed and proposed.

In order to explain and model the resonance splitting
( especially the asymmetric splitting, which was hitherto
impossible to model accurately ), we developed a model
based on temporal coupled-mode theory, which incorporates
the parasitic processes of backscattering (distributed and
lumped) as well as backcoupling in the coupler sections.
We get a good fitting in numerous ring spectra with both
single and split resonances, symmetric or asymmetric. We
also theoretically and experimentally proved that the origin
of the asymmetry in split resonances is the backcoupling

in the directional couplers. This model enabled us to get a
deeper understanding of the mechanisms that controbute to
backscattering in SOI microrings. The measurement results
confirmed our hypothesis that backscattering is not only
caused by sidewall roughness but also by the directional
couplers. We also characterized in more detail the relative
influence of coupler’s gap and coupling length.

After successfully characterizing the splitting in a sin-
gle ring resonance, we improved our behavioral model to
explain the wide variations in resonance splitting within one
transmission spectrum. In this improved model, the direc-
tional coupler is modeled in more detail by decomposing it
into multiple sections: two scatterers at the beginning and
end section that can introduce lumped reflection and back-
coupling, and backscattering ’waveguides’ corresponding
to the two supermodes in the directional coupler. The satis-
fying fitting results confirm that the very diverse cases of
resonance splitting within one spectrum is indeed caused by
the complicated multi-cavity system.

These models and characterization results will be in-
valuable to improve the performance of silicon microring
resonators and suppress the resonance splitting. The model
can also help to use the parasitic backscattering and reso-
nance splitting for more useful purpose, such as reflectors
for a dual wavelength laser or novel sensing schemes.

Key words: Optical filters, optical waveguides, silicon photonics,

integrated optics, curve fitting
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