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Abstrat

In this thesis we study a number of nonlinear control problems motivated by their
appearance in flight control. The results are presented in a general framework and
can also be applied to other areas. The two main topics are backstepping and
control allocation.

Backstepping is a nonlinear control design method that provides an alternative
to feedback linearization. Here, backstepping is used to derive robust linear control
laws for two nonlinear systems, related to angle of attack control and flight path
angle control, respectively. The resulting control laws require less modeling infor-
mation than corresponding designs based on feedback linearization, and achieve
global stability in cases where feedback linearization can only be performed locally.
Further, a method for backstepping control of a rigid body is developed, based on
a vector description of the dynamics. We also discuss how to augment an existing
nonlinear controller to suppress constant input disturbances. Two methods, based
on adaptive backstepping and nonlinear observer design, are proposed.

Control allocation deals with actuator utilization for overactuated systems. In
this thesis we pose the control allocation problem as a constrained least squares
problem to account for actuator position and rate constraints. Efficient solvers
based on active set methods are developed with similar complexity to existing,
approximate, pseudoinverse methods. A method for dynamic control allocation
is also proposed which enables a frequency dependent control distribution among
the actuators to be designed. Further, the relationship between control allocation
and linear quadratic control is investigated. It is shown that under certain circum-
stances, the two techniques give the same freedom in distributing the control effort
among the actuators. An advantage of control allocation, however, is that since the
actuator constraints are considered, the control capabilities of the actuator suite
can be fully exploited.
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Chapter 1

Introdution

Modern fighter aircraft offer a wealth of interesting and challenging control prob-
lems. The governing dynamics are nonlinear, the aerodynamics are uncertain, and
the control input is constrained by position and rate limits. Despite these condi-
tions, the performance requirements on a flight control system are high. Stability
is crucial, the aircraft must be able to operate under a wide range of conditions,
and for maximum maneuverability the control system should utilize the full control
capabilities of the actuator suite.

In this thesis we consider some of these control problems and develop theories
and methods to solve them. Although the primary application is flight control, the
results are presented in a general framework and can be applied also to other areas.
The two main topics are

1. backstepping control of nonlinear systems;

2. actuator redundancy management using control allocation.

1.1 Bakground

The interplay between automatic control and manned flight goes back a long time.
As a consequence, a large number of design methods have been applied to flight
control, ranging from PID control to model predictive control, see, e.g., Magni et al.
(1997). Two of the most successful methods are linear quadratic (LQ) control, used
in the Swedish fighter JAS 39 Gripen, and feedback linearization, also known as
nonlinear dynamic inversion (NDI).

In LQ control, a linear aircraft model is first constructed by linearizing the
dynamics around some operating point. A linear feedback law is then designed
by minimizing a quadratic performance index involving the aircraft state and the
control inputs, given by the deflections of the aerodynamic control surfaces. Since
the aircraft dynamics vary with speed and altitude, this procedure is repeated for
a number of operating points, rendering several linear control laws, each tailored

1



2 Chapter 1 Introdution

for a specific flight case. So called gain scheduling (Rugh and Shamma 2000) is
then used to blend these control laws together using interpolation.

The main benefit of this strategy is that it is based on linear control theory.
This allows the designer to utilize all the standard tools for frequency analysis,
robustness analysis, etc. The price to pay is that nonlinear effects such as nonlin-
earities in the aerodynamics, occurring in particular at high angles of attack, and
the cross-couplings between longitudinal and lateral motion, are neglected in the
model and therefore not accounted for in the control design. This motivates the
use of nonlinear design methods.

Feedback linearization (Isidori 1995) is a nonlinear design method that can ex-
plicitly handle these types of nonlinearities. Using nonlinear feedback, the influence
of the nonlinearities on the controlled variables are cancelled and a linear closed
loop system is achieved. The variations of the dynamics with speed and altitude
can also be dealt with this way, which means that a single controller can be used
for all flight cases. This method has received much attention by the flight control
community including the works of Meyer et al. (1984), Lane and Stengel (1988),
and Enns et al. (1994).

To perform feedback linearization, the system nonlinearities must be completely
known, including their derivatives up to some order depending on how they enter
the dynamics. This is a potential problem in flight control since the aerodynamic
forces and moments cannot be modeled precisely. To achieve robustness against
such model errors, Reiner et al. (1996) propose to augment the feedback lineariza-
tion controller with a linear, robust controller. A different approach is to design
control laws that rely on less precise model information.

Backstepping control design (Krstić et al. 1995) constitutes an alternative to
feedback linearization. With backstepping, system nonlinearities do not have to
be cancelled in the control law. How to deal with nonlinearities instead becomes a
design choice. If a nonlinearity acts stabilizing, and thus in a sense is useful, it may
be retained in the closed loop system. This leads to robustness to model errors
and less control effort may be needed to control the system. This was illustrated
in Krstić et al. (1998) where backstepping was applied to jet engine control.

A weakness of backstepping as well as feedback linearization is that they lack
support for dealing with actuator redundancy. The resulting control laws specify
which total control effort to produce, but not how to produce it. For performance
reasons, and also for safety reasons, modern aircraft are typically over-actuated in
the sense that there are several combinations of control surface deflections that will
give the same aircraft response. In LQ control, the control distribution among the
actuators is determined by a weighting matrix in the optimization criterion. To
distribute the total control demand from a nonlinear controller among the available
actuators, control allocation can be used.

In flight control, performing control allocation means to compute control surface
deflections such that some specified aerodynamic moments in pitch, roll, and yaw
are produced, see, e.g., Durham (1993). If there are more than three control
surfaces, and the aerodynamic moments are assumed to be affine in the control
deflections, this gives an underdetermined linear system of equations to be solved.
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A common way to make the choice of control input unique is to pick the combination
that minimizes some quadratic cost, besides producing the desired moments. A
motivation for this is that the optimal solution then can be written in closed form
as a weighted pseudoinverse solution.

An advantage of performing control allocation separately, rather than letting
the control distribution be decided by the feedback law as in LQ control, is that
actuator position and rate limits can be considered. If one actuator saturates, the
remaining actuators can be used to make up the difference. Including such limits
gives a constrained least squares problem to be solved at each sampling instant.
Most solvers proposed for this problem start from the nominal pseudoinverse so-
lution of the unconstrained problem and then try to adjust it to the constraints
in an iterative manner, see, e.g., Virnig and Bodden (1994) and Bordignon (1996).
However, none of these so called pseudoinverse methods are guaranteed to find the
optimal solution in general.

To use control allocation, the actuator dynamics must be neglected so that the
relationship between the control inputs and the resulting total control effort be-
comes a static mapping. To compensate for this approximation, filtering can be
incorporated into the control allocation procedure, so that the high frequency com-
ponents of the total control effort are produced by the fastest actuators. Davidson
et al. (2001) propose such a strategy where the total control effort is partitioned
into high and low frequency components. These components are then allocated
separately which means that the full control capabilities of the actuator suite may
not be utilized.

1.2 Objetives of the Thesis

There are two primary objectives of this thesis, namely (a) to investigate the use
of backstepping for flight control design, and (b) to develop new tools and efficient
solvers for optimization based control allocation.

In the first part of the thesis the following problems are treated:

• How can backstepping be used to design flight control laws that require mini-
mal modeling information and achieve stability even at high angles of attack?

• Can backstepping be used to control the motion of a generic rigid body?

• How can an existing nonlinear controller be augmented to suppress constant
input disturbances?

In the second part, the following control allocation issues are dealt with within
a least squares framework:

• Can standard methods from numerical optimization be used for real-time
control allocation?

• How can filtering be incorporated into the control allocation procedure while
taking actuator constraints into account?
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Figure 1.1: Block diagram representation of the organization of the thesis.

• What is the relationship between using control allocation and linear quadratic
control to distribute the control effort among the actuators?

1.3 Thesis Outline

This thesis consists of three parts, preceded by an introduction to aircraft control
in Chapter 2. Part I and Part II contain the theoretical contributions of the thesis
and deal with backstepping and control allocation, respectively. The design tools
developed in these parts are then combined and evaluated in Part III. With the
exception of Part III, the organization of the thesis is shown in Figure 1.1.

The first two parts have the same structure. The underlying theory is presented
and an introductory chapter, where relevant publications are also reviewed. The
following three chapters then each deal with one of the problems stated above. A
more detailed outline of these parts can be found in Section 3.7 and Section 7.5,
respectively. In the last part, a simplified flight control system is implemented
and evaluated using the ADMIRE model (ADMIRE ver. 3.4h 2003), maintained
by the Swedish Defence Research Agency (FOI). In the final chapter, some general
conclusions regarding the results presented in this thesis are stated.

Although this thesis is written as a monograph, it can be viewed as a collection
of edited versions of previously published papers, listed on the next page. As a
result, these chapters can be read in any order that the reader may prefer.
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Chapter 2

Airraft Primer

The purpose of this aircraft primer is to introduce the reader to modern fighter air-
craft from an automatic control perspective. This includes developing a dynamical
model, describing the control variables available, and reviewing the most common
control objectives. Based on this we also discuss which model approximations must
be made in order to use backstepping and control allocation, and compare these
with the approximations made when linear control or feedback linearization is used.
The nomenclature introduced in this chapter is summarized in Appendix A.

There is a substantial literature on flight dynamics and the presentation in this
chapter is mainly based on the textbooks by Stevens and Lewis (1992), Nelson
(1998), and Boiffier (1998).

In Section 2.1, the standard variables used to describe the motion of an aircraft
are introduced and a nonlinear dynamical model is developed. In Section 2.2, the
choice of controlled variables for different purposes is considered. Model approxi-
mations for different control design methods are discussed in Section 2.3. Finally,
the ADMIRE model, a non-classified realistic model of a fighter aircraft, is pre-
sented in Section 2.4.

2.1 The Dynamis of Flight

We begin by deriving a nonlinear dynamical model of an aircraft. We will consider
the aircraft as a rigid body and neglect any structural flexibilities. Earth is consid-
ered flat, and regarded as an inertial system so that Newton’s laws of motion can
be applied.

2.1.1 Vetor Notation and Di�erentiation

In our presentation we will make a distinction between a vector and its represen-
tation in a certain coordinate frame, where a frame is a right-handed triple of unit

7
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vectors. In a frame A, a vector v can be expressed as

v = xAx̂A + yAŷA + zAẑA =
(

x̂A ŷA ẑA

)






xA

yA

zA




 = eAvA

where eA contains the basis vectors of the frame, and the component vector vA

contains the coordinates of v in frame A. In a different frame B, the same vector
can be expressed as

v = xB x̂B + yBŷB + zBẑB = eBvB

We will use bold face style for vectors and italic style for component vectors.

Assume now that frame B rotates with an angular velocity of ω with respect
to frame A. Then the theorem of Coriolis (Stevens and Lewis 1992, p. 17) gives us

d

dt

∣
∣
∣
∣
A

v =
d

dt

∣
∣
∣
∣
B

v + ω × v (2.1)

where the subscript on the derivative operator indicates with respect to which
frame the derivative is taken. Since the basis vectors in eB are fixed with respect
to frame B we have that

d

dt

∣
∣
∣
∣
B

v =
d

dt

∣
∣
∣
∣
B

(eBvB) = eB v̇B

where

v̇B =






ẋB

ẏB

żB






contains the time derivatives of the components of v in frame B.

2.1.2 Coordinate Frames

The two coordinate frames most frequently used to describe the motion of an
aircraft are the Earth-fixed frame i, and the body-fixed frame b, see Figure 2.1. In
the Earth-fixed frame, the axes point north, east, and down. This frame is useful
for describing the position and orientation of the aircraft. In the body-fixed frame,
the origin is at the aircraft center of gravity and the axes point forward, over the
right wing, and down (relative to the pilot). In this frame, the inertia matrix of the
aircraft is fixed which makes this frame suitable for describing angular motions.

Another coordinate frame of interest is the wind-axes coordinate frame w. In
this frame the x-axis is directed along the velocity vector of the aircraft, V, as
depicted in Figure 2.1. The orientation of this frame relative to the body-fixed
frame is determined by the angle of attack α and the sideslip angle β. Given any
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x̂b

ŷb

ẑb

x̂i

ŷi

ẑi

x̂w

V

α

β

Figure 2.1: Illustration of the inertial, Earth-fixed coordinate frame i, and the body-fixed
frame b. Also shown is the x-axis of the wind-axes frame w. In the figure, α and β are
both positive.

vector

v = ebvb = ewvw

its component vectors in the two frames are related by

vw = Twbvb

vb = Tbwvw = T T
wbvw

(2.2)

where

Twb =






cosβ sin β 0

− sin β cosβ 0

0 0 1











cosα 0 sinα

0 1 0

− sinα 0 cosα




=






cosα cos β sin β sinα cosβ

− cosα sin β cosβ − sinα sin β

− sinα 0 cosα






Since the body-fixed frame is the most frequently used, we will drop the subscript
b for component vectors related to this frame and simply write v = ebv.
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φ

p

α

γ

θ

q
β

ψ

r

V

V

Figure 2.2: Illustration of the aircraft orientation angles φ, θ, and ψ, the aerodynamic
angles α and β, and the angular rates p, q, and r. In the figure, all angles are positive.

2.1.3 Airraft Variables

Considering the aircraft as a rigid body, its motion can be described by its position,
orientation, velocity, and angular velocity over time.

Position The position vector p is given by

p = ei

(

pN pE −h
)T

in the Earth-fixed coordinate frame, where pN = position north, pE = position
east, and h = altitude.

Orientation The orientation of the aircraft can be represented by the Euler angles

Φ =
(

φ θ ψ

)T

where φ = roll angle, θ = pitch angle, and ψ = yaw angle, see Figure 2.2. These
angles relate the body-fixed frame to the Earth-fixed frame.

Veloity The velocity vector V is given by

V = ebV = ewVw

V =
(

u v w

)T

Vw =
(

VT 0 0

)T

in the body-fixed and in the wind-axes coordinate frames, respectively. Here, u =
longitudinal velocity, v = lateral velocity, w = normal velocity, and VT = total
velocity (true airspeed). Using (2.2) gives

V = TbwVw = VT

(

cosα cosβ sinβ sinα cosβ

)T



Setion 2.1 The Dynamis of Flight 11

Conversely, we have that

VT =
√

u2 + v2 + w2

α = arctan
w

u

β = arcsin
v

VT

(2.3)

When β = φ = 0 we can also define the flight path angle

γ = θ − α

illustrated in Figure 2.2. A general definition of the flight path angle can be found
in Stevens and Lewis (1992, p. 131).

Angular veloity The angular velocity vector ω is given by

ω = ebω = ewωw

ω =
(

p q r

)T

ωw = Twbω =
(

pw qw rw

)T

in the body-fixed and in the wind-axes coordinate frames, respectively. Here, p =
roll rate, q = pitch rate, and r = yaw rate. The wind-axes roll rate pw is also
known as the velocity vector roll rate since x̂w is parallel to the velocity vector V,
see Figure 2.1.

2.1.4 Control Variables

The control variables of an aircraft consist of the engine throttle setting and the
deflections the aerodynamic control surfaces, δ. The control surfaces divert the
airflow to produce aerodynamic forces and moments.

In traditional aircraft configurations, the engine provides speed control while
the motions in pitch, roll, and yaw are goverened by the elevators, the ailerons,
and the rudder, respectively. Modern aircraft typically have more that three con-
trol surfaces, see, e.g., Moir and Seabridge (1992, p. 36–39). This is motivated
by performance issues and redundancy aspects. Figure 2.3 shows an example of a
modern delta canard fighter configuration (Claréus 2001). With this layout, roll
control is achieved by deflecting the elevons1 differentially. Pitch control is achieved
by combining symmetric elevon deflection, which generates a non-minimum phase
response, with deflection of the canards, which produces a response in the com-
manded direction immediately.

The interest in high angle of attack flight has also led to the invention of thrust
vectored control (TVC), see, e.g., Enns et al. (1994). Deflectable vanes are then

1The word “elevon” comes from merging “elevator” with “aileron”.
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Canards

Leading-edge flaps

Rudder

Engine thrust

Elevons

Figure 2.3: A delta canard fighter aircraft configuration.

mounted at the engine exhaust so that the engine thrust can be directed to provide
additional pitching and yawing moments.

The control surfaces of a fly-by-wire aircraft are driven by servo controlled
actuators to produce the deflections commanded by the flight control system, u,
which are the true control variables. The servo dynamics are typically modeled
as first or second order linear systems such that the deflection of the i:th control
surface satisfies

δi = Gi(s)ui, Gi(0) = 1 (2.4)

where Gi has low-pass characteristics.

2.1.5 Rigid Body Motion

Let us now derive a model for the aircraft dynamics in terms of the variables
introduced in the previous sections. Considering the aircraft as a rigid body allows
us to use Newton’s laws of motion to investigate the effects of external forces and
moments. In the inertial, Earth-fixed coordinate frame i, Newton’s second law
states that (Stevens and Lewis 1992, p. 19, 28)

F =
d

dt

∣
∣
∣
∣
i

(mV)

T =
d

dt

∣
∣
∣
∣
i

H

(2.5)

where F = total force, T = total torque, m = aircraft mass, and H = angular
momentum of the aircraft. Using (2.1) allows us to perform the differentiation in
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the body-fixed frame instead:

F =
d

dt

∣
∣
∣
∣
b

(mV) + ω ×mV

T =
d

dt

∣
∣
∣
∣
b

H + ω × H

Since this frame is fixed relative to the aircraft, the inertia matrix I is constant.
This means that the angular momentum can be expressed as

H = ebIω

I =






Ix 0 −Ixz

0 Iy 0

−Ixz 0 Iz






where the zero entries are due to that the body-fixed xz-plane is a symmetry plane
for most aircraft. Expressing all vectors in the body-fixed frame thus gives the
following standard equations for rigid body motion in terms of velocity and angular
velocity:

F = m(V̇ + ω × V )

T = Iω̇ + ω × Iω
(2.6)

Corresponding equations can be derived also for the position and orientation dy-
namics, see Stevens and Lewis (1992). In this thesis we only need the pitch angle
dynamics during level flight (φ = 0) given by

θ̇ = q

2.1.6 Fores and Moments

In (2.5), F and T represent the sum of the forces and moments acting on the aircraft
at the center of gravity. These forces and moments spring from three major sources:
gravity, engine thrust, and aerodynamic effects. Introducing

F = FG + FE + FA

T = TE + TA

(2.7)

we will now investigate each of these components.

Gravity

Gravity only gives a force contribution since it acts at the aircraft center of gravity.
The gravitational force mg is directed along the normal of the Earth plane and is
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considered to be independent of the altitude. This yields

FG = ei






0

0

mg




 = ebmg






− sin θ

sinφ cos θ

cosφ cos θ




 = ewm






g1

g2

g3






where

g1 = g(− cosα cosβ sin θ + sinβ sinφ cos θ + sinα cosβ cosφ cos θ)

g2 = g(cosα sinβ sin θ + cosβ sinφ cos θ − sinα sinβ cosφ cos θ)

g3 = g(sinα sin θ + cosα cosφ cos θ)

(2.8)

using (2.2).

Engine

The thrust force produced by the engine is denoted by FT . Assuming the engine
to be positioned so that the thrust acts parallel to the aircraft body x-axis yields

FE = eb






FT

0

0






Also assuming the engine to be mounted so that the thrust point lies in the xz-
plane of the body-fixed frame, offset from the center of gravity by zTP along the
z-axis gives a pitching moment

TE = eb






0

FT zTP

0






If TVC is used, these expressions will be somewhat different and also depend on
the engine nozzle deflections.

Aerodynamis

The aerodynamic forces and moments, or the aerodynamic efforts for short, are
due to the interaction between the aircraft body and the surrounding air. The
size and direction of the aerodynamic efforts are determined by the amount of air
diverted by the aircraft in different directions (see Anderson and Eberhardt (1999)
for a discussion on various explanations to aerodynamic lift). The amount of air
diverted by the aircraft is mainly decided by

• the speed and density of the airflow: VT , ρ

• the geometry of the aircraft: S (wing area), b (wing span), c̄ (mean aerody-
namic chord)
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X

Ȳ

Z
L̄

M

N

Figure 2.4: Aerodynamic forces and moments in the body-fixed coordinate frame.

• the orientation of the aircraft relative to the airflow: α, β

• the control surface deflections: δ

The aerodynamic efforts also depend on other variables, like the angular rates (p,
q, r) and the time derivatives of the aerodynamic angles (α̇, β̇), but these effects
are not as prominent.

This motivates the standard way of modeling scalar aerodynamic forces and
moments:

Force = q̄SCF (δ, α, β, p, q, r, α̇, β̇, . . .)

Moment = q̄SlCM (δ, α, β, p, q, r, α̇, β̇, . . .)
(2.9)

where the aerodynamic pressure

q̄ =
1

2
ρ(h)V 2

T (2.10)

captures the density dependence and most of the speed dependence, and l is either
b or c̄. The remaining aerodynamic effects are determined by the dimensionless
aerodynamic coefficients CF and CM . These are difficult to model analytically but
can be estimated empirically through wind tunnel experiments and actual flight
tests. Typically, each coefficient is written as the sum of several components,
each capturing the dependence of one or more of the variables involved. These
components can be represented in several ways. A common approach is to store
them in look-up tables and use interpolation to compute intermediate values. In
other approaches one tries to fit the data to some parameterized function.
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In the body-fixed frame we introduce the components

FA = eb







X

Ȳ

Z







where

X = q̄SCx

Ȳ = q̄SCy

Z = q̄SCz

(2.11)

TA = eb







L̄

M

N







where

L̄ = q̄SbCl rolling moment

M = q̄Sc̄Cm pitching moment

N = q̄SbCn yawing moment

(2.12)

These are illustrated in Figure 2.4. The aerodynamic forces are often expressed in
the wind-axes coordinate frame:

FA = ew







−D
Y

−L







where

D = q̄SCD drag force

Y = q̄SCY side force

L = q̄SCL lift force

(2.13)

The sign convention is such that the drag force acts along the negative xw-axis in
Figure 2.1 while the lift force is directed “upwards”, perpendicular to the velocity
vector. Using (2.2), the force components in the two frames are related by

D = −X cosα cosβ − Ȳ sinβ − Z sinα cosβ

Y = −X cosα sinβ + Ȳ cosβ − Z sinα sinβ

L = X sinα− Z cosα

The lift force L opposes gravity and prevents the aircraft from falling down.
The lift generated is mainly decided by the angle of attack, α. Figure 2.5 shows
the lift coefficient CL as a function of α for the ADMIRE model (see Section 2.4).
An increase in α leads to an increase in CL up to α = 32◦ where CL reaches its
maximum. This angle of attack is known as the stall angle. Beyond the stall
angle, CL starts to decrease. In most aircraft applications, in particular for civil
airplanes, one wants to avoid stall for safety reasons (Roskam 1989). However,
in military applications it has been shown that by utilizing high angles of attack,
certain tactical advantages can be achieved (Herbst 1980, Well et al. 1982).

2.1.7 Gathering the Equations

Let us now state the equations that govern the motion of an aircraft by combining
the rigid body dynamics from Section 2.1.5 with the forces and moments from
Section 2.1.6.

Combining (2.6) with (2.7) gives the body-axes equations summarized in Ta-
ble 2.1. The force equations can also be expressed in terms of VT , α, β, and ωw
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Figure 2.5: Typical lift coefficient vs angle of attack relationship. The lift force increases
up to the stall angle, beyond which it starts to decrease.

which gives the wind-axes equations in Table 2.2 (Stevens and Lewis 1992, p. 85).
Finally, Table 2.3 contains the longitudinal equations of motion that result in the
absence of lateral motion, i.e., when p = r = φ = β = 0 (Stevens and Lewis 1992,
p. 88–89).

2.2 Control Objetives

Flight control systems can be designed for several types of control objectives. Let
us first consider general maneuvering. In the longitudinal direction, the normal
acceleration (Stevens and Lewis 1992, p. 263)

nz = − Z

mg

or the pitch rate q make up suitable controlled variables. The normal acceleration,
or load factor2, is the normalized aerodynamic force along the negative body-fixed
z-axis, expressed as a multiple of the gravitational acceleration g. The normal
acceleration experienced by the pilot is given by (Stevens and Lewis 1992, p. 263)

nzp = nz +
q̇xP

g
(2.18)

2The term “load factor” is also often used for the lift-to-weight ratio n = L
mg

, see Stevens and

Lewis (1992, p. 225).
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Body-Axes Fore Equations

X + FT −mg sin θ = m(u̇+ qw − rv)

Ȳ +mg sinφ cos θ = m(v̇ + ru − pw)

Z +mg cosφ cos θ = m(ẇ + pv − qu)

(2.14)

Body-Axes Moment Equations

L̄ = Ixṗ− Ixz ṙ + (Iz − Iy)qr − Ixzpq

M + FT zTP = Iy q̇ + (Ix − Iz)pr + Ixz(p
2 − r2)

N = Iz ṙ − Ixz ṗ+ (Iy − Ix)pq + Ixzqr

(2.15)

Table 2.1: Force and moment equations expressed in the body-fixed frame.

Wind-Axes Fore Equations

V̇T =
1

m
(−D + FT cosα cosβ +mg1)

α̇ =
1

cosβ
(qw +

1

mVT
(−L− FT sinα+mg3))

β̇ = −rw +
1

mVT
(Y − FT cosα sinβ +mg2)

(2.16)

Table 2.2: Force equations expressed in the wind-axes frame.

Longitudinal Motion

V̇T =
1

m
(−D + FT cosα−mg sin γ)

α̇ = q +
1

mVT
(−L− FT sinα+mg cos γ)

γ̇ =
1

mVT
(L+ FT sinα−mg cos γ)

θ̇ = q

q̇ =
1

Iy
(M + FT zTP )

(2.17)

Table 2.3: Longitudinal equations of motion.
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where xP is the distance between the pilot and the aircraft center of gravity mea-
sured along the body-fixed x-axis. The normal acceleration is closely coupled to the
angle of attack α. Since α appears naturally in the equations of motion (2.16), an-
gle of attack command control designs are also common, in particular for nonlinear
approaches.

In the lateral directions, roll rate and sideslip command control systems are
prevalent. For roll control, the body-fixed x-axis may be selected as the rotation
axis, and p as the controlled variable. However, at high angles of attack, this
choice has the disadvantage that angle of attack is turned into sideslip and vice
versa during a roll maneuver. This may not be tolerable since the largest acceptable
amount of sideslip during a roll is in the order of 3–5 degrees (Durham et al. 1994).
To remove this effect, the rotation axis can instead be selected as the x-axis of
the wind-axes frame, which means pw is the controlled variable. Ideally, α and β
then remain constant during a roll. The resulting maneuver is known as a velocity
vector roll.

There also exist situations where other control objectives are of interest. Au-
topilot functions like altitude, heading, and speed hold are vital to assist the pilot
during long distance flight. For firing on-board weapons, the orientation of the
aircraft is crucial. To benefit from the drag reduction that can be accomplished
during close formation flight, the position of the wingman relative to the leader
must be controlled precisely, preferably automatically to relieve the workload of
the wingman pilot (Hall and Pachter 2000). Furthermore, in order to perform
an automated landing of the aircraft it may be of interest to control its descent
through the flight path angle γ.

2.3 Approximations for Control

Equations (2.14)–(2.17) together with the expressions for the aerodynamic forces
and moments (2.9) and the servo dynamics (2.4) constitute a detailed dynamical
model of an aircraft. In fact, most control design methods require some approx-
imations to be made before they can be applied. In this section we review the
approximations needed to use linear control, feedback linearization, backstepping,
and control allocation.

2.3.1 Linear Control

To use linear methods for flight control design, linear approximations of the rigid
body equations (2.14)–(2.17) and the aerodynamic efforts (2.9) must be used. Lin-
earizing the aerodynamics implies that the model is not valid at high angles of
attack where, e.g., the lift force starts to decrease, see Figure 2.5. Linearizing the
rigid body equations includes linearizing the cross-product ω × Iω in (2.6). As a
consequence, (Ix − Iz)pr + Ixz(p

2 − r2) in (2.15) is approximated by zero and not
accounted for in the control design. During a rapid roll, corresponding to a high
value of p, these terms induce an undesired angular acceleration in pitch. This
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effect is known as inertia coupling (Stevens and Lewis 1992, p. 270–271).

A benefit of linearizing the equations of motion is that the longitudinal and
the lateral-directional equations become decoupled. This reduces the complexity
of the control design which can be performed separately for longitudinal and lateral
motion.

2.3.2 Bakstepping and Feedbak Linearization

Backstepping and feedback linearization (nonlinear dynamic inversion) both as-
sume full-state feedback, and hence require all the variables entering the aircraft
model to be measured. Since most modern aircraft carry a full sensor suite, reliable
direct or observer-based measurements of all relevant variables are available (Enns
et al. 1994).

These methods also require the system to be in a lower-triangular form, see
Section 3.3.2. In particular, the control input must enter only at the “bottom” of
the system model. If α and β are controlled variables, this implies that the influence
of the control surface deflections on the aerodynamic forces must be neglected, so
that the control surfaces are seen as pure moment generators affecting only ω̇,
see, e.g., Lane and Stengel (1988), Enns et al. (1994) and Reiner et al. (1996).
Fortunately, this is a good approximation for many types of aircraft, see, e.g.,
Etkin and Reid (1996, p. 33).

Two more approximations are frequently used in feedback linearization designs,
and will also be used for backstepping control design. First, the dependence of the
aerodynamic forces on the angular velocity ω is neglected. Second, the actuator
dynamics are neglected, i.e., (2.4) is replaced by δ = u. These assumptions are not
structurally necessary but substantially simplify the design procedure.

2.3.3 Control Alloation

In flight control applications, control allocation means computing control surface
deflections such that the demanded aerodynamic moments, and possible also forces,
are produced. This requires a static relationship between the commanded control
deflections and the resulting forces and moments, i.e., the servo dynamics (2.4)
need to be neglected.

Further, for linear control allocation methods to be applicable, the aerodynamic
forces and moments must be affine in the control deflections. In terms of the
aerodynamic coefficients in (2.9) this means that

CF (δ, x) = aF (x) + bF (x)δ

CM (δ, x) = aM (x) + bM (x)δ

most hold, where x = (α, β, p, q, r, . . . ).



Setion 2.4 The ADMIRE Model 21

u1, δrc

u2, δlc

u3, δroe

u4, δrie

u5, δlie

u6, δloe

u7, δr

Figure 2.6: ADMIRE control surface configuration. ui are the commanded deflections
and δ∗ are the actual deflections.

2.4 The ADMIRE Model

To illustrate the design tools developed in this thesis, and to evaluate their useful-
ness in flight control design, we will use the ADMIRE 3 aircraft model (ADMIRE
ver. 3.4h 2003), implemented in MATLAB/Simulink and maintained by the Depart-
ment of Autonomous Systems of the Swedish Research Agency (FOI). The model
describes a small single engine fighter aircraft with a delta canard configuration
and with the following characteristics:

• Dynamics: The dynamic model consists of the nonlinear rigid body equations
(2.6) along with the corresponding equations for the position and orientation.
Actuator and sensor dynamics are included, see below.

• Aerodynamics: The aerodata model is based on the Generic Aerodata Model
(GAM) developed by Saab AB (Backström 1997), and was recently extended
for high angles of attack.

• Control surfaces: The actuator suite consists of canards (left and right),
leading-edge flaps, elevons (inboard and outboard, left and right), a rudder,
and also thrust vectoring capabilities. In our control designs, the leading-edge
flaps will not be used due to their low effectiveness for maneuvering. Thrust
vectoring will not be used either due to lack of documentation regarding its
function. The remaining seven actuators—the two canards, the four elevons,
and the rudder—are depicted in Figure 2.6, where u and δ denote the com-
manded and the actual deflections, respectively.

• Actuator models: The servo dynamics of the utilized control surfaces are
given by first order systems with a time constant of 0.05 s, corresponding to

3Aerodata Model in Research Environment
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Control Minimum Maximum Maximum

surface deflection deflection rate

(deg) (deg) (deg/s)

Canards −55 25 50

Elevons −30 30 150

Rudder −30 30 100

Table 2.4: ADMIRE control surface position and rate limits below Mach 0.5.

a bandwidth of 20 rad/s. Actuator position and rate constraints are also in-
cluded. The maximum allowable deflections and deflection rates, valid below
Mach 0.5, are summarized in Table 2.4.

• Flight envelope: The flight envelope covers Mach numbers up to 1.2 and
altitudes up to 6000 m. Longitudinal aerodata are available up to 90 degrees
angles of attack, but lateral aerodata only exist for angles of attack up to 30
degrees.
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Chapter 3

Introdution to Part I

Lyapunov theory has for a long time been an important tool in linear as well as in
nonlinear control theory. However, its use within nonlinear control is often ham-
pered by the difficulties to find a Lyapunov function for a given system. If one can
be found, the system is known to be stable, but the task of finding such a function
is often left to the imagination and experience of the designer.

Backstepping is a systematic method for nonlinear control design, which can be
applied to a broad class of systems. The name “backstepping” refers to the recursive
nature of the design procedure. First, only a small subsystem is considered, for
which a “virtual” control law is constructed. Then, the design is extended in
several steps until a control law for the full system has been constructed. Along
with the control law, a Lyapunov function for the controlled system is successively
constructed.

An important feature of backstepping is that nonlinearities can be dealt with in
several ways. Useful nonlinearities, which act stabilizing, can be retained, and sec-
tor bounded nonlinearities may dealt with using linear control. This is in contrast
to feedback linearizing control (Isidori 1995) where nonlinearities are cancelled us-
ing nonlinear feedback. Retaining nonlinearities instead of cancelling them requires
less precise models and may also require less control effort. Further, the resulting
control laws can sometimes be shown to be optimal with respect to a meaningful
performance index, which guarantees certain robustness properties.

The origin of backstepping is not quite clear due to its simultaneous and often
implicit appearance in several papers in the late 1980’s. However, it is fair to say
that backstepping has recieved much attention thanks to the work of Professor
Petar V. Kokotović and coworkers. The 1991 Bode lecture at the IEEE Confer-
ence on Decision and Control, published in Kokotović (1992), was devoted to the
evolving subject and the year after, Kanellakopoulos et al. (1992) presented a math-
ematical “toolkit” for designing control laws for various nonlinear systems using
backstepping. During the following years, the textbooks by Krstić et al. (1995),
Freeman and Kokotović (1996), and Sepulchre et al. (1997a) were published. The
progress of backstepping and other nonlinear control tools during the 1990’s were

25
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surveyed by Kokotović (1999) at the 1999 IFAC World Congress in Beijing.
In this part of the thesis we will use backstepping to develop control laws for

some nonlinear systems related to flight control. Previous nonlinear flight control
designs are typically based on feedback linearization, or nonlinear dynamic inver-
sion (NDI) as the method is called in the flight control community, see, e.g., Meyer
et al. (1984), Lane and Stengel (1988), and Enns et al. (1994). In comparison, the
backstepping control laws proposed in Chapter 4 rely on less precise aerodynamic
model information, and possess certain robustness properties. The rigid body con-
trol design in Chapter 5 uses a vector form description of the dynamics, rather
than the typically used component form description, and offers a compact way to
design flight control laws.

This chapter introduces the backstepping technique and contains no new ma-
terial. Section 3.1 reviews some concepts and results from Lyapunov theory, and
Section 3.2 introduces the basic ideas in Lyapunov based control design. The back-
stepping method is presented Section 3.3, along with a discussion regarding which
systems it can be applied to and which design choices there are. Some related
designs methods are reviewed in Section 3.4, and previously reported applications
of backstepping are listed in Section 3.5. Section 3.6 deals with inverse optimal
control, i.e., how to find the performance index minimized by a certain control law.
Finally, Section 3.7 outlines the remaining chapters of this part of the thesis.

3.1 Lyapunov Theory

Backstepping control design is based on Lyapunov theory. The aim is to construct
a control law that brings the system to, or at least near, some desired state. That
is to say, we wish to make this state a stable equilibrium of the closed loop system.
In this section we define the notion of stability in the Lyapunov sense, and review
the main tools for proving stability of an equilibrium. This section is based on
Slotine and Li (1991, chap. 3) and Khalil (2002, chap. 4) to which we refer for
proofs of the stability theorems.

Consider the autonomous system

ẋ = f(x) (3.1)

where x is the system state vector. This can be thought of as the closed loop
dynamics of a controlled system. Let x = xe be an equilibrium of the system, that
is, let f(xe) = 0. The stability properties if this equilibrium are characterized by
the following definition.

De�nition 3.1 (Lyapunov stability) The equilibrium point x = xe of (3.1) is

• stable if for each ǫ > 0 there exists δ(ǫ) > 0 such that
∥
∥x(0) − xe

∥
∥ < δ ⇒

∥
∥x(t) − xe

∥
∥ < ǫ, ∀t ≥ 0

• unstable if it is not stable
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• asymptotically stable if it is stable and in addition there exists r > 0 such that

∥
∥x(0) − xe

∥
∥ < r ⇒ lim

t→∞
x(t) = xe

• globally asymptotically stable (GAS) if it is asymptotically stable for all initial
states, that is, if

lim
t→∞

x(t) = xe, ∀x(0)

These definitions involve the trajectory x(t), the solution to (3.1). In general,
x(t) cannot be found analytically. Fortunately there are other ways of proving
stability.

The Russian mathematician and engineer A. M. Lyapunov introduced the idea
of condensing the state vector x(t) into a scalar function V (x), measuring how far
from the equilibrium the system is. If V (x) decreases over time, then the system
must be moving towards the equilibrium. This approach to showing stability is
called Lyapunov’s direct method (or second method). Lyapunov’s original work
can be found in Lyapunov (1992).

Let us first introduce some useful concepts.

De�nition 3.2 A scalar function V (x) is

• positive definite if V (0) = 0 and V (x) > 0, x 6= 0

• positive semidefinite if V (0) = 0 and V (x) ≥ 0, x 6= 0

• negative (semi-)definite if −V (x) is positive (semi-)definite

• radially unbounded if V (x) → ∞ as
∥
∥x
∥
∥→ ∞

We now state the main theorem to be used for proving global asymptotic sta-
bility (Khalil 2002, thm. 4.2).

Theorem 3.1 Consider the system (3.1) and let f(0) = 0. Let V (x) be a positive
definite, radially unbounded, continuously differentiable scalar function. If

V̇ (x) = Vx(x)f(x) < 0, x 6= 0

then x = 0 is a globally asymptotically stable (GAS) equilibrium.

A positive definite function V (x) that satisfies V̇ (x) ≤ 0 is called a Lyapunov
function of the system. If such a function can be found, x = 0 is a stable equilib-
rium. In the theorem, the stronger condition V̇ (x) < 0 gives asymptotic stability.
The radial unboundedness of V (x) means that all level curves of V (x) are closed.
This is necessary to guarantee that asymptotic stability holds globally.

In some cases, global asymptotic stability can be shown when V̇ (x) is only
negative semidefinite (Khalil 2002, cor. 4.2).
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Theorem 3.2 Consider the system (3.1) and let f(0) = 0. Let V (x) be a positive
definite, radially unbounded, continuously differentiable scalar function such that

V̇ (x) = Vx(x)f(x) ≤ 0, ∀x

Let S = {x : V̇ (x) = 0} and suppose that no other solution than x(t) = 0 can stay
forever in S. Then, x = 0 is a globally asymptotically stable (GAS) equilibrium.

Note that both these theorems are non-constructive, in the sense that they give
no clue about how to find the function V satisfying the conditions necessary to
show GAS.

3.2 Lyapunov Based Control Design

Let us now turn to control design using Lyapunov theory. Consider the system

ẋ = f(x, u) (3.2)

where x is the system state and u is the control input, and let x = 0 be the control
objective. Stated differently, we want to design a control law

u = k(x)

such that x = 0 is a GAS equilibrium of the closed loop system

ẋ = f(x, k(x))

To show GAS we need to construct a Lyapunov function V (x) satisfying the con-
ditions in Theorem 3.1 or Theorem 3.2. Constructing a control law k(x) and a
Lyapunov function V (x) to go with it is what Lyapunov based control design is
about.

A straightforward approach to find k(x) is to pick a positive definite, radially
unbounded function V (x) and then choose k(x) such that

V̇ = Vx(x)f(x, k(x)) < 0, x 6= 0 (3.3)

For this approach to succeed, V must be carefully selected, or (3.3) will not be
solvable. This motivates the following definition (Krstić et al. 1995, def. 2.4):

De�nition 3.3 (Control Lyapunov funtion) A positive definite, radially unbounded,
smooth scalar function V (x) is called a control Lyapunov function (clf) for (3.2)
if

inf
u
Vxf(x, u) < 0, x 6= 0

Given a clf for the system, we can thus find a globally stabilizing control law. In
fact, the existence of a globally stabilizing control law is equivalent to the existence
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of a clf. This means that for each globally stabilizing control law, a corresponding
clf can be found, and vice versa. This is known as Artstein’s theorem (Artstein
1983).

To illustrate the approach, consider the system

ẋ = f(x) + g(x)u (3.4)

which is affine in the control input, and assume that a clf for the system is known.
For this case Sontag (1989) proposes a particular choice of control law given by

u = k(x) = −a+
√
a2 + b2

b
(3.5)

where

a = Vx(x)f(x)

b = Vx(x)g(x)

This control law gives

V̇ = Vx(x)(f(x) + g(x)u) = a+ b

(

−a+
√
a2 + b2

b

)

= −
√

a2 + b2 (3.6)

and thus renders the origin GAS. Equation (3.5) is known as Sontag’s formula.
Freeman and Primbs (1996) propose a related approach where u is chosen to

minimize the control effort necessary to satisfy

V̇ ≤ −W (x)

for some W . The minimization is carried out pointwise in time (and not over some
horizon). Using an inequality constraint rather than asking for equality (as in
(3.6)) makes it possible to benefit from the system’s inherent stability properties.
If f(x) alone drives the system (3.4) towards the equilibrium such that

V̇ |u=0 = Vx(x)f(x) < −W (x)

it would be a waste of control effort to achieve V̇ = −W (x).

3.3 Bakstepping

The methods above assume that a clf is known for the system to be controlled.
What if this is not the case? How can a control law be constructed along with a
Lyapunov function to show closed loop stability? Backstepping solves this problem
through a recursive design for a class of nonlinear systems. In this section, based
on Krstić et al. (1995), we review the backstepping method, to which systems it
can be applied, and what the design choices are.
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3.3.1 Main Result

The main idea in backstepping is to let certain states act as “virtual controls” of
others. The same idea can be found in cascaded control design and also in singular
perturbation theory (Kokotović et al. 1986).

Consider the system

ẋ = f(x, ξ) (3.7a)

ξ̇ = u (3.7b)

where x ∈ R
n and ξ ∈ R are state variables and u ∈ R is the control input. Assume

that if ξ were the control input, the control law

ξ = ξdes(x) (3.8)

would make the origin x = 0 a GAS equilibrium, shown by the Lyapunov function
W (x). Since ξ is not the true control input, (3.8) is called a virtual control law .
The following theorem, based on Sepulchre et al. (1997c), shows how to “step back”
through the model, and construct a true control law in terms of u given ξdes and
W (x).

Theorem 3.3 (Bakstepping) Consider the system (3.7). Assume that a clf W (x)
and a virtual control law ξ = ξdes(x) are known for the subsystem (3.7a) such that

Ẇ |ξ=ξdes = Wx(x)f(x, ξdes(x)) < 0, x 6= 0

Then, a clf for the augmented system (3.7) is given by

V (x, ξ) = W (x) +
1

2
(ξ − ξdes(x))2 (3.9)

Moreover, the control law

u =
∂ξdes

∂x
(x)f(x, ξ) −Wx(x)

f(x, ξ) − f(x, ξdes(x))

ξ − ξdes(x)
+ ξdes(x) − ξ (3.10)

achieves

V̇ = Wx(x)f(x, ξdes(x)) − (ξ − ξdes(x))2 < 0, x 6= 0, ξ 6= ξdes(0)

and makes x = 0, ξ = ξdes(0) a GAS equilibrium.

The control law (3.10) is neither the only, nor necessarily the best globally
stabilizing control law for (3.7). The value of the theorem is that it shows the
existence of at least one globally stabilizing control law for this type of augmented
systems.
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Proof: We will conduct the proof in a constructive manner to show which design
choices that can be made during the control law construction.

The key idea is to utilize that the virtual control law (3.8) would stabilize the
subsystem (3.7a) if ξ were a control variable. Since we are not in direct control of
ξ we introduce the residual

ξ̃ = ξ − ξdes(x)

and use the true control input u to steer ξ̃ to zero. If ξ̃ goes to zero, ξ will go to
the desired value ξdes and the entire system will be stabilized. In terms of ξ̃, the
system dynamics (3.7) become

ẋ = f(x, ξ̃ + ξdes(x)) , f(x, ξdes(x))
︸ ︷︷ ︸

desired dynamics

+ψ(x, ξ̃)ξ̃ (3.11a)

˙̃
ξ = u− ∂ξdes

∂x
(x)f(x, ξ̃ + ξdes(x)) (3.11b)

where

ψ(x, ξ̃) =
f(x, ξ̃ + ξdes(x)) − f(x, ξdes(x))

ξ̃

In (3.11a) we have separated the desired dynamics from the dynamics due to ξ̃ 6= 0.
To find a clf for the augmented system it is natural to take the clf for the

subsystem, W (x), and add a term penalizing the residual ξ̃. We therefore select

V (x, ξ̃) = W (x) +
1

2
ξ̃2

and find a globally stabilizing control law by making V̇ negative definite.

V̇ = Wx(x)
[

f(x, ξdes(x)) + ψ(x, ξ̃)ξ̃
]

+ ξ̃
[

u− ∂ξdes

∂x
(x)f(x, ξ̃ + ξdes(x))

]

= Wx(x)f(x, ξdes(x))
︸ ︷︷ ︸

<0, x 6=0

+ξ̃
[

Wx(x)ψ(x, ξ̃) + u− ∂ξdes

∂x
(x)f(x, ξ̃ + ξdes(x))

] (3.12)

The first term is negative definite according to the assumptions. The second term,
and thus V̇ , can be made negative definite by selecting

u = −Wx(x)ψ(x, ξ̃) +
∂ξdes

∂x
(x)f(x, ξ̃ + ξdes(x)) − ξ̃

=
∂ξdes

∂x
(x)f(x, ξ) −Wx(x)

f(x, ξ) − f(x, ξdes(x))

ξ − ξdes(x)
+ ξdes(x) − ξ

This yields
V̇ = Wx(x)(f(x, ξdes(x)) − ξ̃2 < 0, x 6= 0, ξ̃ 6= 0

Hence this control law makes x = 0, ξ̃ = 0 a GAS equilibrium. In the original
variables, this implies ξ = ξdes(0). ✷



32 Chapter 3 Introdution to Part I

Let us now deal with some issues related to practical control design using back-
stepping.

3.3.2 Whih Systems Can Be Handled?

The backstepping technique can be extended to other nonlinear systems than (3.7).

Input Nonlinearities

An immediate extension of Theorem 3.3 is to handle systems with input nonlin-
earities (Krstić et al. 1995, p. 61):

ẋ = f(x, ξ)

ξ̇ = g(x, ξ, u)

Introducing ξ̇ = ũ, Theorem 3.3 can be used to find a control law in terms of ũ.
Then u can be determined given that

g(x, ξ, u) = ũ

can be solved for u. If this is possible, we say that g is invertible w.r.t. u.

Feedbak Form Systems

If the system (3.7) is augmented with additional integrators at the input, Theo-
rem 3.3 can be applied recursively. Assume that u is not the actual control input,
but a state variable with the dynamics

u̇ = v (3.13)

Then (3.10) becomes a virtual control law, which along with the clf (3.9) can be
used to find a globally stabilizing control law in terms of v for the system (3.7)
augmented by (3.13).

Now, either v is yet another state variable, in which case the backstepping
procedure is repeated once again, or v is indeed the control input, in which case
we have arrived at a globally stabilizing control law.

Thus, by recursively applying backstepping, globally stabilizing control laws
can be constructed for systems of the following lower triangular form, known as
pure-feedback systems (Krstić et al. 1995, p. 61):

ẋ = f(x, ξ1)

ξ̇1 = g1(x, ξ1, ξ2)

...

ξ̇i = gi(x, ξ1, . . . , ξi, ξi+1)

...

ξ̇m = gm(x, ξ1, . . . , ξm, u)

(3.14)
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For the design to succeed, a globally stabilizing virtual control law ξ1 = ξdes
1 (x),

along with a clf, must be known for the x-subsystem. Also, gi, i = 1, . . . ,m − 1
must be invertible w.r.t. ξi+1 and gm must be invertible w.r.t. u.

Systems for which the “new” variables enter in an affine way, are known as
strict-feedback systems (Krstić et al. 1995, p. 58):

ẋ = a(x) + b(x)ξ1

ξ̇1 = a1(x, ξ1) + b1(x, ξ1)ξ2

...

ξ̇i = ai(x, ξ1, . . . , ξi) + bi(x, ξ1, . . . , ξi)ξi+1

...

ξ̇m = am(x, ξ1, . . . , ξm) + bm(x, ξ1, . . . , ξm)u

(3.15)

Strict-feedback systems are nice to deal with and often used for deriving results
related to backstepping. First, the invertability condition imposed above is satisfied
given that bi 6= 0, although this is not a necessary condition, see Krstić et al. (1995,
ex. 2.9). Second, if (3.7a) is affine in ξ and the dynamics are given by

ẋ = a(x) + b(x)ξ

ξ̇ = u

then the control law (3.10) reduces to

u =
∂ξdes

∂x
(x)(a(x) + b(x)ξ) −Wx(x)b(x) + ξdes(x) − ξ (3.16)

Dynami Bakstepping

Even for certain systems which do not fit into a lower triangular feedback form,
there exist backstepping designs. Fontaine and Kokotović (1998) consider a two
dimensional system where both states are affected by the control input:

ẋ1 = ψ(x1) + x2 + φ(u)

ẋ2 = u

Their approach is to first design a globally stabilizing virtual control law for the
x1-subsystem, considering η = x2 + φ(u) as the input. Then backstepping is used
to convert this virtual control law into a realizable one in terms of u. Their design
results in a dynamic control law, and hence the term dynamic backstepping is used.

3.3.3 Whih Design Choies Are There?

The proof of Theorem 3.3 leaves a lot of room for variations. Let us now exploit
some of these to illustrate the different kinds of design freedom in backstepping.
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Figure 3.1: The dynamics of the uncontrolled system ẋ = −x3 + x. The linear term acts
destabilizing around the origin.

Dealing with Nonlinearities

A trademark of backstepping is that it allows the designer benefit from “useful”
nonlinearities, naturally stabilizing the system. This can be done by choosing the
virtual control laws properly. The following example demonstrates this fundamen-
tal difference to feedback linearization.

Example 3.1 (A useful nonlinearity) Consider the system

ẋ = −x3 + x+ u

and let x = 0 be the desired equilibrium. The uncontrolled dynamics, ẋ = −x3 +x,
are plotted in Figure 3.1. For the origin to be asymptotically stable, the sign of ẋ
should be opposite that of x for all x. For the uncontrolled system, this holds for
large values of

∣
∣x
∣
∣ where the cubic term −x3 dominates the dynamics, but near the

origin, the linear term x dominates and destabilizes the origin.
Thus, to make the origin GAS, only the linear dynamics need to be counteracted

by the control input. This can be achieved by selecting

u = −x (3.17)

A clf is given by

W =
1

2
x2 (3.18)

which yields
Ẇ = −x(−x3 + x+ u) = −x4
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proving the origin to be GAS according to Theorem 3.1.
Applying feedback linearization instead renders the control law

u = x3 − kx, k > 1

Obviously, this control law does not recognize the beneficial cubic nonlinearity but
counteracts it, thus wasting control effort.

Also, the feedback linearizing design is dangerous from a robustness perspective.
If the true system dynamics are ẋ = −0.9x3 + x + u, the feedback linearization
control law yields the closed loop dynamics

ẋ = 0.1x3 − (k − 1)x

for which the origin is only locally asymptotically stable since regardless of k, the
cubic, destabilizing term will dominate for large values of

∣
∣x
∣
∣. The backstepping

control law yields
ẋ = −0.9x3

and the origin remains a GAS equilibrium.

Weighting the CLF

When constructing the combined clf (3.9), we can choose any weighted sum of the
two terms,

V = cW +
1

2
(ξ − ξdes)2, c > 0

In the designs in Chapter 4, c will be used to cancel certain terms in Equation
(3.12). A technical hint is to put the weight on W since it yields nicer expressions.

Non-quadrati CLF

Although quadratic clf:s are frequently used in backstepping, they do not always
constitute the best choice as the following example demonstrates.

Example 3.2 (A useful nonlinearity, ont.) Consider the system in Example 3.1
augmented by an integrator:

ẋ1 = −x3
1 + x1 + x2

ẋ2 = u

To benefit from the useful nonlinearity −x3
1, let us reuse (3.17) as our virtual control

law, i.e.,
xdes

2 (x1) = −x1
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The choice of clf for the x1-subsystem will strongly affect the resulting control law.
To see this we first reuse (3.18) and pick

W =
1

2
x2

1

Introducing
x̃2 = x2 − xdes

2 (x1) = x2 + x1

we can rewrite the system as

ẋ1 = −x3
1 + x̃2

˙̃x2 = u− x3
1 + x̃2

Following the proof of Theorem 3.3, we add a quadratic term to W , to penalize
the deviation from the suggested virtual control law:

V (x1, x2) = W (x1) +
1

2

(
x2 − xdes

2 (x1)
)2

=
1

2
x2

1 +
1

2
x̃2

2

Differentiating w.r.t. time yields

V̇ = x1(−x3
1 + x̃2) + x̃2(u− x3

1 + x̃2) = −x4
1 + x̃2(x1 + u− x3

1 + x̃2)

To render V̇ negative definite, u must clearly dominate the x̃2 term using a control
input of, e.g., −3x̃2. In addition, since the mixed terms between x1 and x̃2 are
indefinite, there seems to be no other choice than to cancel them using the control
law

u = x3
1 − x1 − 3x̃2 = x3

1 − 4x1 − 3x̃2

We note that this control law does not recognize the fact that x1-subsystem is
naturally stabilized for high values of x1 but instead counteracts this effect, thereby
wasting control effort.

So how should we pick W (x1) to avoid this cancellation? One idea is not
to specify the clf beforehand, but instead let the choice of W be decided by the
backstepping design. Thus, we let W be any function satisfying Definition 3.3. As
before, use

V (x1, x2) = W (x1) +
1

2
x̃2

2

and compute its time derivative.

V̇ = W ′(x1)(−x3
1 + x̃2) + x̃2(u− x3

1 + x̃2)

= −W ′(x1)x
3
1 + x̃2(W

′(x1) + u− x3
1 + x̃2)

We now use our extended design freedom and select a W so that the indefinite
mixed terms cancel each other. This is satisfied by

W ′(x1) = x3
1, W (x1) =

1

4
x4

1
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which indeed is a valid choice. We now have

V̇ = −x6
1 + x̃2(u+ x̃2)

Clearly, the control u no longer has to cancel the cubic x1 term but can be chosen
linear in x1 and x2. The control law

u = −3x̃2 = −3x1 − 3x2

renders V̇ = −x6
1 − 2x̃2

2 negative definite and thus makes the origin GAS.

This refinement of backstepping is due to Krstić et al. (1998). The technique
of designing a non-quadratic clf will be used for flight control design in Chapter 4,
where some of the aerodynamic forces also have the property of being nonlinear,
but still stabilizing.

Choie of Virtual Control Input

For the system (3.7) there are cases where it is more convenient to use some function
of ξ as the virtual control input rather than ξ itself.

Example 3.3 Consider the system

ẋ1 = x3
1 + x5

2 + x2

ẋ2 = u

For this system it is easier to find a virtual control law in terms of η = x5
2 + x2

than in terms of x2 itself. With this change of variables the dynamics become

ẋ1 = x3
1 + η

η̇ = (5x4
2 + 1)u , ũ

A clf for the x1-subsystem is given by W (x1) = 1
2x

2
1 which gives

Ẇ = x1(x
3
1 + x5

2 + x2) = x1(x
3
1 + η)

We can now pick ηdes = −2x3
1 which yields Ẇ = −x4

1 negative definite if η = ηdes.
Using (3.16) gives the control law

u =
1

5x4
2 + 1

[

−6x2
1(x

3
1 + x5

2 + x2) − x1 − 2x3
1 − x5

2 − x2

]

Alrifai et al. (1998) use this technique for speed control of a switched reluctance
motor where it is convenient to formulate the virtual control law in terms of the
square current i2.
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3.4 Related Lyapunov Designs

Besides state feedback backstepping, several other constructive nonlinear control
designs exist. We will now outline some of these.

3.4.1 Forwarding

The backstepping philosophy applies to systems of the form (3.7). Another class
of nonlinear systems for which one can also construct globally stabilizing control
laws are those that can be written

ẋ = f(x, u) (3.19a)

ξ̇ = g(x, u) (3.19b)

A clf and a globally stabilizing control law for the dynamics of x in (3.19a) are
assumed to be known. The question is how to augment this control law to also
stabilize the integrator state ξ in (3.19b). This problem, which can be seen as a
dual to the one in backstepping, can be solved using so called forwarding (Sepulchre
et al. 1997b).

By combining feedback (3.7) and feedforward (3.19) systems, interlaced systems
can be constructed. Using backstepping in combination with forwarding, such
systems can also be systematically stabilized (Sepulchre et al. 1997c).

3.4.2 Adaptive, Robust, and Observer Bakstepping

So far we have only considered the case where all the state variables are available
for feedback and where the model is completely known. For the non-ideal cases
where this is not true, there are other flavors of backstepping to resort to.

For systems with parametric uncertainties, there exists adaptive backstepping
(Krstić et al. 1995). Here, a parameter estimate update law is designed such that
closed loop stability is guaranteed when the parameter estimate is used by the
controller. In Chapter 6 we will see how this technique can be used to estimate
and cancel unknown additive disturbances on the control input.

Robust backstepping (Freeman and Kokotović 1996) designs exist for systems
with imperfect model information. Here, the idea is to select a control law such
that a Lyapunov function decreases for all systems comprised by the given model
uncertainty.

In cases where not all the state variables can be measured, the need for ob-
servers arises. The separation principle valid for linear systems does not hold for
nonlinear systems in general. Therefore, care must be taken when designing the
feedback law based on the state estimates. This is the topic of observer backstep-
ping (Kanellakopoulos et al. 1992, Krstić et al. 1995).
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3.5 Appliations of Bakstepping

Although backstepping theory has a rather short history, numerous practical ap-
plications can be found in the literature. This fact indicates that the need for
a nonlinear design methodology handling a number of practical problems, as dis-
cussed in the previous section, has existed for a long time. We now survey some
publications regarding applied backstepping. This survey is by no means com-
plete, but is intended to show the broad spectrum of engineering disciplines in
which backstepping has been used.

Backstepping designs can be found for a wide variety of electrical motors, see,
e.g., Carroll et al. (1993, 1995), Hu et al. (1995, 1996), Alrifai et al. (1998). Tur-
bocharged diesel engines are considered in Fredriksson (2002), Jankovic et al. (2000)
while jet engines are the subject of Krstić et al. (1998). In Grøvlen and Fossen
(1996), Strand et al. (1998), backstepping is used for automatic ship positioning.
In Strand et al. (1998), the controller is made locally H∞-optimal based on results
in Ezal et al. (2000), see Section 3.6. Robotics is another field where backstepping
designs can be found. Tracking control is considered in Jiang and Nijmeijer (1997)
and Bridges et al. (1995) where the latter is a survey of approaches valid for various
assumptions regarding the knowledge of the model.

There also exist some publications combining flight control and backstepping.
Singh et al. (2000) treat formation flight control of unmanned aerial vehicles. Singh
and Steinberg (1996) and Steinberg and Page (1999) use backstepping to design
flight control laws which are adaptive to changes in the aerodynamic forces and
moments due to, e.g., actuator failures. Here, the Lyapunov functions contain
a term penalizing the integral of the tracking error, enhancing the robustness.
Sharma and Ward (2002) consider adaptive flight path angle control using neural
nets. Wänström (2001) and Dahlgren (2002) use backstepping for robust missile
flight control design.

3.6 Inverse Optimal Control

In linear control, one often seeks control laws that are optimal in some sense, due
to their ability to suppress external disturbances and to function despite model
errors, as in the case of H∞ and linear quadratic control (Zhou et al. 1996). It is
therefore natural that efforts have been made to extend these designs to nonlinear
control. The difficulty lies in the Hamilton-Jacobi-Bellman equation that needs to
be solved in order to find the control law. However, the reverse task – to find the
performance index minimized by a certain control law – is easy to perform in some
cases. This route of first deriving a control law and then determining which cost
it minimizes, and thus in which sense it is optimal, is known as inverse optimal
control.

Ezal et al. (2000) apply this technique to strict-feedback systems to construct
backstepping controllers which are locally H∞-optimal, and globally optimal ac-
cording to some performance index that the designer cannot control precisely.
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Löfberg (2000) extends these results and considers a linear quadratic performance
index around the equilibrium.

In this section, we develop tools for inverse optimal control. These will be used
in Chapter 4 to show that some of the proposed backstepping controllers minimize
meaningful performance indices. The material in this section will be presented in
a rather intuitive manner. A mathematically strict treatment of the subject can
be found in Sepulchre et al. (1997a).

In Section 3.6.1 the general infinite horizon optimal control problem is intro-
duced. In Section 3.6.2, systems which are affine in the control input are con-
sidered, and some standard inverse results are derived for cost functionals which
are quadratic in the input. Finally, the well known gain margin result of optimal
control is shown in Section 3.6.3.

3.6.1 Optimal Control

Let us first consider infinite horizon optimal control for nonlinear systems. Given
a dynamic system

ẋ = f(x, u)

where x ∈ R
n is the state vector and u ∈ R

m is the control input, we seek the
control law u(x) that minimizes the cost functional

J =

∫ ∞

0

L(x, u)dt

By choosing L properly, the system is guaranteed to reach steady state as t→ ∞.
The cost to get there, J , the cost-to-go, will depend on the initial state of the
system, x(0). We therefore write this cost J(x).

The optimal control law is denoted u∗(x). When this optimal control law is
applied, J(x) will decrease along the trajectory, since the cost-to-go must contin-
uously decrease by the principle of optimality (Bertsekas 1995). This means that
V (x) = J(x) is a Lyapunov function for the controlled system. At steady state it
must hold that V = 0. Hence, the following holds:

V (x(0)) =

∫ ∞

0

L(x, u∗)dt = −
[
V (x(∞))
︸ ︷︷ ︸

=0

−V (x(0))
]

= −
∫ ∞

0

V̇ (x)dt

Clearly, when the optimal control law is used, L and −V̇ coincide. This motivates
the Hamilton-Jacobi-Bellman (HJB) equation

0 = min
u

[
L(x, u) + Vx(x)f(x, u)

]
(3.20)

for finding the optimal control law u∗ along with a Lyapunov function V (x) for the
controlled system.
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3.6.2 Inverse Optimal Control

It is well known that in general, it is not feasible to solve the HJB equation (3.20).
We therefore restrict our discussion to dynamic systems which are affine in the
control input:

ẋ = f(x) + g(x)u (3.21)

For these systems, the HJB equation is greatly simplified if L is chosen quadratic
in u according to

L(x, u) = q(x) + uTR(x)u

where q(x) is positive definite and R(x) is a symmetric matrix, positive definite for
all x. Inserting this into (3.20) yields

0 = min
u

[
q(x) + uTR(x)u + Vx(x)(f(x) + g(x)u)

]
(3.22)

The equation is solved in two steps. First we find the minimizing u, and then we
solve for equality to zero. The minimization can be done by completion of squares:

q + uTRu+ Vxf + Vxgu =

q + Vxf +
[
u+

1

2
R−1(Vxg)

T
]T
R
[
u+

1

2
R−1(Vxg)

T
]
− 1

4
VxgR

−1(Vxg)
T

The control input u only appears in the “square”, positive definite term. The
minimum therefore occurs when this term is set to zero, which is achieved by

u∗ = k(x) = −1

2
R−1(x)(Vx(x)g(x))T (3.23)

What remains is to insert this control law into (3.22). This gives us

0 = q(x) + Vx(x)f(x) − 1

4
Vx(x)g(x)R−1(x)(Vx(x)g(x))T (3.24)

Equations (3.23) and (3.24) provide the connection between the cost functional,
given by q(x) andR(x), and the optimal control strategy, in terms of k(x) and V (x).
As for the general problem in the previous section, it is in general not feasible to
solve for k(x) and V (x) given q(x) and R(x) of the designer’s choice. However,
we see that the reverse task is simpler. Given a control law k(x) and a clf V (x)
(corresponding to a Lyapunov function for the controlled system), q(x) and R(x),
determining the cost functional that is minimized, can be found by solving

k(x) = −1

2
R−1(x)(Vx(x)g(x))T (3.25)

q(x) = −Vx(x)f(x) − 1

2
Vx(x)g(x)k(x) (3.26)

For a single input system we can explicitly solve for R(x):

R(x) = −Vx(x)g(x)

2k(x)
(3.27)
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To illustrate this technique we revisit Example 3.2 and show that the derived
backstepping control law is optimal w.r.t. a meaningful cost functional, in the sense
that q(x) and R(x) both become positive definite.

Example 3.4 (Exploiting useful nonlinearities is optimal) Consider the system in
Example 3.2. The original dynamics

ẋ1 = −x3
1 + x1 + x2

ẋ2 = u

can be written in the form (3.21) with

f(x) =

(

−x3
1 + x1 + x2

0

)

, g(x) =

(

0

1

)

In Example 3.2,
u = k(x) = −3(x1 + x2)

was shown to make the origin GAS using the Lyapunov function

V (x) =
1

4
x4

1 +
1

2
(x1 + x2)

2

which satisfies
Vx(x) =

(

x3
1 + x1 + x2 x1 + x2

)

Inserting this into (3.26) and (3.27) yields

R(x) =
x1 + x2

2 · 3(x1 + x2)
=

1

6

q(x) = −(x3
1 + x1 + x2)(−x3

1 + x1 + x2) +
1

2
(x1 + x2) · 3(x1 + x2)

= x6
1 +

1

2
(x1 + x2)

2

Thus, the suggested control law minimizes the cost functional

J =

∫ ∞

0

(x6
1 +

1

2
(x1 + x2)

2 +
1

6
u2)dt

3.6.3 Robustness of Optimal Control

Optimal control is not only intuitively appealing, the resulting control laws inher-
ently possess certain robustness properties (Glad 1987). One important property
regards the gain margin.
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u∗ = k(x) Γ(x)
u

ẋ = f(x) + g(x)u
x

Figure 3.2: The optimal control law u∗ = k(x) remains globally stabilizing for any scalar
gain perturbation Γ(x) ≥ 1

2
.

Assume that the prescribed optimal control input (3.23) cannot be produced
exactly, but that the actual control input is

u = Γ(x)u∗ (3.28)

where Γ(x) > 0 is a scalar, see Figure 3.2. Actuator saturation, for example, can
be modeled as gain reduction, Γ(x) < 1. Are optimal controllers robust to such
changes in the gain? The control law (3.28) is globally stabilizing provided that

V̇ = Vxf + Vxgu = Vxf + ΓVxgu
∗

is negative definite. From the assumptions and (3.26) we know that

−q = Vxf +
1

2
Vxgu

∗

is negative definite. Combining these two equations yields

V̇ = −q + (Γ − 1

2
)Vxgu

∗ = −q(x) − (Γ(x) − 1

2
) · 1

2
Vx(x)g(x)R−1(x)(Vx(x)g(x))T

︸ ︷︷ ︸

positive (semi-)definite

Apparently, V̇ is negative definite (at least) for all Γ(x) ≥ 1
2 . Thus, all state

feedback control laws which solve an optimal control problem of the type considered
in Section 3.6.2, have infinite gain margin and a 50% gain reduction tolerance.

Note that the actual tolerable gain reduction may be more than 50%. In Exam-
ple 3.2, any control law u = −kx̃2 where k > 1 makes V̇ negative definite and hence
is globally stabilizing. The selected control law u = −3x̃2 thus remains globally
stabilizing for any gain perturbation Γ(x) > 1

3 .

3.7 Outline of Part I

In the following three chapters, backstepping is used to solve a number of nonlinear
control problems. In Chapters 4 and 5 we design control laws for some specific
nonlinear systems related to flight control, and in Chapter 6 we discuss how to
modify these control laws to suppress the effects of external disturbances.

In Chapter 4 we consider two nonlinear SISO systems appearing in angle of
attack control and flight path angle control, respectively. We show that for both
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these systems, backstepping can be used to design linear control laws with infinite
gain margin and a certain amount of gain reduction tolerance. These control laws
are compared with the corresponding feedback linearization designs.

In Chapter 5 we propose a control law for general rigid body motion, treating
the dynamics as a MIMO system. Under certain assumptions, the resulting control
law can be used to control the speed, angle of attack, sideslip angle, and velocity
vector roll rate of an aircraft.

Chapter 6 deals with output regulation in the presence of constant disturbances
entering at the input of a nonlinear system. Two methods for robustifying a nomi-
nal controller are developed, based on adaptive backstepping and nonlinear observer
techniques, respectively, and compared with adding regular integral control.



Chapter 4

Two Bakstepping Designs

A trademark of backstepping control design is the possibility to benefit from nat-
urally stabilizing nonlinear terms in the system dynamics. This was illustrated in
Example 3.2. To retain such nonlinearities, rather than cancel them using feed-
back as in feedback linearization, has several potential benefits. Less control effort
may be needed to control the system, the resulting control law may depend on less
precise model information which improves the robustness against modeling errors,
and global stability may be achieved in cases where feedback linearization can only
be performed locally.

In this chapter, all of these features will be illustrated as we design backstepping
controllers for two generic nonlinear systems, one second order and one third order
system. The two systems considered are motivated by their appearance in aircraft
flight control—in angle of attack control and flight path angle control, respectively.

The second order system is given by

ẋ1 = φ(x1) + x2

ẋ2 = u
(4.1)

In angle of attack control, u is the pitch angular acceleration produced by the
control surfaces, x1 = α is the angle of attack, x2 = q is the pitch rate, and φ is
determined by the lift force. Another nonlinear system of this type appears in jet
engine control, see Krstić et al. (1998).

Several nonlinear control designs have been suggested for this problem, consid-
ering x1 as the controlled variable. Lane and Stengel (1988) use feedback lineariza-
tion to cancel the effects of φ and obtain a linear closed loop system. The resulting
control law depends on φ(x1) as well as on φ′(x1). Snell et al. (1992), Bugajski and
Enns (1992), Reiner et al. (1996) and Adams et al. (1994) use feedback linearization
combined with time-scale separation (Lu and Shen 2002). With this technique, the
control law only depends on φ(x1), but no precise bounds on the feedback gains for
stability to hold can be given. Krstić et al. (1998) design a backstepping controller
which relies only on the knowledge of the maximum positive slope of φ(x1). The
authors only consider regulation about the origin, and a particular choice of φ.

45
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In this chapter, we extend the results of Krstić et al. (1998) to set-point regu-
lation for a class of nonlinear functions φ. We also use backstepping to show that
for the previously proposed control laws based on feedback linearization and time-
scale separation, simple bounds on the feedback gains exist that guarantee global
asymptotic stability.

The third order system that we consider is given by

ẋ1 = φ(x2 − x1)

ẋ2 = x3

ẋ3 = u

(4.2)

In flight path angle control, u is again the pitch angular acceleration, x1 = γ is
the flight path angle, x2 = θ is the pitch angle, x3 = q is the pitch rate, and
as above, φ is determined by the lift force. Applying feedback linearization, as
suggested by Lane and Stengel (1988), leads to a control law that depends on φ(x),
φ′(x), and φ′′(x). Further, this control law becomes singular when φ′(x) = 0 which
occurs around the stall angle in flight path angle control. In this chapter, a new
backstepping design is proposed, which depends only on the zero crossing of φ and
achieves global stability even in cases where the system is not globally feedback
linearizable.

This chapter is organized as follows. In Section 4.1 and Section 4.2, backstep-
ping control laws for the second order system (4.1), and for the third order system
(4.2), are derived. Their properties are investigated and the control laws are com-
pared with feedback linearizing control laws for the same systems. In Section 4.3,
we apply the designs to flight control, and develop control laws for maneuvering
flight control (angle of attack control, sideslip regulation, and roll control) and
for flight path angle control. Section 4.4 completes the chapter, and contains the
conclusions.

Section 4.1 is based on

O. Härkeg̊ard and S. T. Glad. Flight control design using backstepping.
In Proc. of the 5th IFAC Symposium on Nonlinear Control Systems,
pages 259–264, St. Petersburg, Russia, July 2001b,

and Section 4.2 is based on

O. Härkeg̊ard and S. T. Glad. A backstepping design for flight path
angle control. In Proc. of the 39th Conference on Decision and Control,
pages 3570–3575, Sydney, Australia, Dec. 2000.

4.1 A Seond Order System

Consider the second order nonlinear system

ẋ1 = φ(x1) + x2

ẋ2 = u

y = x1

(4.3)
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(a) System nonlinearity, φ.
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(b) Virtual control law, ψ.

Figure 4.1: Examples of φ and ψ that satisfy (4.4), (4.6)–(4.8). Both functions must be
sector bounded for a globally stabilizing control law of the form (4.5) to exist.

where the nonlinearity φ is characterized below. This system is on strict-feedback
form, see (3.15), and has relative degree two. Hence, backstepping as well as feed-
back linearization can be applied. In Sections 4.1.1–4.1.5 we consider stabilization
around the origin and in Section 4.1.6 we extend the designs to set-point regulation.

4.1.1 Bakstepping Design

To begin with, let the control objective be to achieve GAS at the origin, x1 = x2 =
0. The nonlinearity φ is assumed to satisfy the following conditions, illustrated in
Figure 4.1(a).

Assumption 4.1 Let φ(0) = 0 and let φ satisfy the growth condition

κ = max
x1 6=0

φ(x1)

x1
<∞ (4.4)

The proposed backstepping control law is given by the following theorem. The
proof of the theorem contains the actual backstepping design.

Theorem 4.1 Consider the system (4.3) and let Assumption 4.1 hold. Then the
control law

u = −k(x2 + ψ(x1)) (4.5)
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ψ(·)
xdes

2
Σ

+
−

−1

k
u

ẋ2 = u
x2

ẋ1 = φ(x1) + x2

x1

Figure 4.2: The nonlinear system (4.3) can be globally stabilized using a cascaded control
law.

where k ∈ R and ψ : R 7→ R satisfy

(φ(x1) − ψ(x1))x1 < 0, x1 6= 0 (4.6)

ψ′(x1) > 0, x1 6= 0 (4.7)

k > ψ′(x1), ∀x1 (4.8)

makes the origin GAS.

Figure 4.2 illustrates the control law (4.5) implemented as a cascaded controller,
where the outer loop generates the desired value of x2, x

des
2 = −ψ(x1), which the

inner loop tracks. Figure 4.1 illustrates the conditions on ψ and k in the theorem,
which can be interpreted as follows.

• (4.6): When x2 = xdes
2 , the resulting outer loop dynamics, ẋ1 = φ(x1)−ψ(x1),

must be stable.

• (4.7): ∂u/∂x1 = −kψ′(x1) < 0, that is, the control law must provide negative
feedback from x1 everywhere, even “locally”.

• (4.8): The inner control loop in Figure 4.2 must be faster than the outer loop.

Proof: The proof is based on Krstić et al. (1998).

Step 1: Start by finding a globally stabilizing virtual control law for the dynamics
of x1 in (4.3), regarding x2 as the control variable. Pick a virtual control law of
the form

xdes
2 = −ψ(x1) (4.9)

along with the clf

W (x1) =
1

2
x2

1

Taking the time derivative of W yields

Ẇ |x2=xdes
2

=
(
φ(x1) − ψ(x1)

)
x1
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which is negative definite if (4.6) holds.

Step 2: Continue by introducing the residual

x̃2 = x2 − xdes
2 = x2 + ψ(x1)

and rewrite the dynamics (4.3) in terms of x1 and x̃2.

ẋ1 = φ(x1) − ψ(x1) + x̃2

˙̃x2 = u+ ψ′(x1)
(
φ(x1) − ψ(x1) + x̃2

) (4.10)

As in Example 3.2, we use a nonquadratic clf to avoid having to cancel the x1

dependencies in ˙̃x2 with the control signal u, and pick the clf

V (x1, x̃2) = F (x1) +
1

2
x̃2

2

for the total system (4.10). Here, F is any valid clf for the x1-subsystem, see
Definition 3.3. Specifically this means that

Ḟ (x1)|x2=xdes
2

= F ′(x1)
(
φ(x1) − ψ(x1)

)
= −U(x1) (4.11)

where U(x1) is positive definite. Differentiating V w.r.t. time we get

V̇ = F ′(x1)
[
φ(x1) − ψ(x1) + x̃2

]
+ x̃2

[
u+ ψ′(x1)

(
φ(x1) − ψ(x1) + x̃2

)]

= −U(x1) + x̃2

[
F ′(x1) + u+ ψ′(x1)

(
φ(x1) − ψ(x1)

)
+ ψ′(x1)x̃2

]

The complexity of the second term is reduced by selecting F such that the x1 terms
inside the brackets cancel each other. This is achieved by

F ′(x1) = −ψ′(x1)
(
φ(x1) − ψ(x1)

)
, F (0) = 0 (4.12)

Inserting this into (4.11) yields

U(x1) = ψ′(x1)
(
φ(x1) − ψ(x1)

)2

For U(x1) to be positive definite, (4.7) must hold. Note that φ(x1) 6= ψ(x1) holds
according to (4.6). We now have that

V̇ = −U(x1) + x̃2

[
u+ ψ′(x1)x̃2

]

To make V̇ negative definite, select u such that the positive definite, destabilizing
term ψ′(x1)x̃

2
2 is cancelled. If ψ′(x1) is bounded from above, then u can be selected

linear in x̃2.
u = −kx̃2 = −k

(
x2 + ψ(x1)

)
(4.13)

renders
V̇ = −U(x1) − (k − ψ′(x1))x̃

2
2
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negative definite if (4.8) holds, thus making the origin of (4.3) GAS. Assumption 4.1
must hold or ψ′(x1) will not be bounded since

ψ′(x1) ≥
ψ(x1)

x1
>
φ(x1)

x1

according to (4.6). ✷

4.1.2 Inverse Optimality

Before discussing which choices of ψ that might be of interest, let us examine the
robustness properties of the derived control law (4.5). Using the tools in Section 3.6,
the control law can be shown to be optimal with respect to a meaningful cost
functional, provided that k is chosen properly.

Theorem 4.2 If
k > 2 · max

x1

ψ′(x1) (4.14)

then the control law (4.5) is inverse optimal w.r.t. the cost functional
∫ ∞

0

(

ψ′(x1)(φ(x1) − ψ(x1))
2 + (

k

2
− ψ′(x1))(x2 + ψ(x1))

2 +
1

2k
u2
)

dt

Proof: The system (4.3) is affine in the control input, hence the tools in Section 3.6
can be used. In this proof, we will use the transformed system description (4.10) to
compute the cost functional that is minimized since the expressions then become
simpler. Comparing (4.10) with (3.21), we have that

f(x) =

(

φ(x1) − ψ(x1) + x̃2

ψ′(x1)(φ(x1) − ψ(x1) + x̃2)

)

, g(x) =

(

0

1

)

From (4.12) we also have that

Vx =
(

F ′(x1) x̃2

)

=
(

−ψ′(x1)(φ(x1) − ψ(x1)) x̃2

)

Inserting this into (3.26) and (3.27) yields

R(x) =
x̃2

2kx̃2
=

1

2k

q(x) = ψ′(x1)(φ(x1) − ψ(x1))(φ(x1) − ψ(x1) + x̃2)

− x̃2ψ
′(x1)(φ(x1) − ψ(x1) + x̃2) +

1

2
x̃2 · kx̃2

= ψ′(x1)(φ(x1) − ψ(x1))
2 + (

k

2
− ψ′(x1))x̃

2
2

Apparently, to make q(x) positive definite, which is required for the cost functional
to be “meaningful”, k should be chosen such that

k > 2 · max
x1

ψ′(x1) ✷
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This inverse optimality property of the control law means that it has certain
robustness properties, such as infinite gain margin, 50% gain reduction tolerance,
and 60◦ phase margin (Glad 1987). Note that the gain reduction tolerance follows
from that the lower limit for inverse optimality (4.14) is twice the limit for GAS
(4.8).

4.1.3 Seleting the Virtual Control Law

Theorem 4.1 specifies a family of control laws, all of which globally asymptotically
stabilize the system (4.3) at the origin. How should the virtual control law xdes

2 =
−ψ(x1) be chosen? Let us investigate two particular choices, one that has control
law simplicity in focus, and one that aim at linearizing the dynamics.

Linear Control

First consider the linear control choice ψ(x1) = k1x1. This is the control law
proposed by Krstić et al. (1998).

Corollary 4.1 Consider the system (4.3) and let Assumption 4.1 hold. Then the
linear control law

u = −k2(x2 + k1x1) (4.15)

where

k2 > k1 > max{0, κ}

with κ as defined in (4.4), makes the origin GAS. In addition, for k2 > 2k1 the
control law minimizes the meaningful cost functional

∫ ∞

0

(

k1(φ(x1) − k1x1)
2 + (

k2

2
− k1)(x2 + k1x1)

2 +
1

2k2
u2
)

dt

Proof: Selecting ψ(x1) = k1x1 and k = k2 in Theorem 4.1 yields the control law
u = −k2(x2 + k1x1) and leads to the conditions

• (4.6): (φ(x1) − k1x1)x1 ≤ (κ− k1)x
2
1 < 0, x1 6= 0 ⇐⇒ k1 > κ

• (4.7), (4.8): k2 > k1 > 0

The cost functional follows directly from Theorem 4.2. ✷

Note how little information about the system nonlinearity φ this control law is
dependent of. Only an upper bound on its growth rate, κ, is needed. In particular,
if φ is known to lie in the second and fourth quadrants only, thus intuitively being
useful for stabilizing x1, we do not need any further information, since then κ < 0
and the parameter restriction k1 > 0 becomes active.
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Linearizing Control

Next, consider the linearizing virtual control law ψ(x1) = k1x1 +φ(x1), which aims
at cancelling the natural dynamics of x1.

Corollary 4.2 Consider the system (4.3) and let Assumption 4.1 hold. Then the
partially linearizing control law

u = −k2(x2 + k1x1 + φ(x1)) (4.16)

where

k1 > max{0,−min
x1

φ′(x1)} (4.17)

k2 > k1 + max
x1

φ′(x1)

makes the origin GAS, provided that such upper and lower bounds on φ′ exist. In
addition, for k2 > 2(k1 + maxx1

φ′(x1)) the control law minimizes the meaningful
cost functional

∫ ∞

0

(

(k1 + φ′(x1))k
2
1x

2
1 + (

k2

2
− k1 − φ′(x1))(x2 + k1x1 + φ(x1))

2 +
1

2k2
u2
)

dt

Proof: Selecting ψ(x1) = k1x1+φ(x1) and k = k2 in Theorem 4.1 yields the control
law u = −k2(x2 + k1x1 + φ(x1)) and the conditions

• (4.6): (φ(x1) − k1x1 − φ(x1))x1 = −k1x
2
1 < 0, x1 6= 0 ⇐⇒ k1 > 0

• (4.7): k1 + φ′(x1) > 0 ⇐⇒ k1 > −minx1
φ′(x1)

• (4.8): k2 > k1 + φ′(x1) ⇐⇒ k2 > k1 + maxx1
φ′(x1)

The cost functional follows directly from Theorem 4.2. ✷

This control law corresponds to selecting the virtual control law

xdes
2 = −φ(x1) − k1x1

If this virtual control law could be produced exactly it would cancel the nonlinear
dynamics of x1 and replace them with linear dynamics, −k1x1. Condition (4.17)
states that it is all right to cancel the natural dynamics, φ(x1), as long as the new
dynamics, −k1x1, provide at least the same amount of negative feedback. This is
sound also from an optimality point of view. Intuitively, it must be suboptimal to
use the control signal to slow down the natural system dynamics.
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4.1.4 Feedbak Linearization

In the preceding sections, we have used backstepping to design globally stabilizing
control laws for the system (4.3). The backstepping control laws are inverse optimal
with respect to meaningful cost functionals, and depend on the nonlinearity φ at
a varying extent.

We will now instead use feedback linearization for control design. We will
use regular feedback linearization (Isidori 1995), as well as feedback linearization
based on time-scale separation (Lu and Shen 2002) between the two dynamics of
x1 and x2.

Feedbak Linearization

To perform feedback linearization, we introduce the new variables

ẋ1 = φ(x1) + x2 , x̃2

˙̃x2 = φ′(x1)(φ(x1) + x2) + u , ũ

This leads to the system description

ẋ1 = x̃2

˙̃x2 = ũ

which is a double integrator from ũ to x1. To stabilize this system, any linear
control law

ũ = −l1x1 − l2x̃2, l1 > 0, l2 > 0

can be selected. In the original variables we get the control law

u = −l1x1 − l2(φ(x1) + x2) − φ′(x1)(φ(x1) + x2)

= −l1x1 − (l2 + φ′(x1))(φ(x1) + x2)
(4.18)

This control law differs from the backstepping control law (4.16) only in the last
term φ′(x1)(φ(x1) + x2). The first two terms can be made equal to (4.16) by
selecting l1 = k1k2, l2 = k2.

Feedbak Linearization with Time-Sale Separation

Next, we consider feedback linearization coupled with time-scale separation. In
time-scale separation, the idea is to stabilize one loop at the time, assuming the
inner loops to be much faster than the outer loops (Lu and Shen 2002).

First consider the dynamics of x1 and design a linearizing control law regarding
x2 as the control variable. This gives

xdes
2 = −φ(x1) − k1x1
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Now consider xdes
2 as a reference for x2 and use u to steer x2 towards xdes

2 .

ẋ2 = u = k2(x
des
2 − x2)

which can be rewritten as

u = −k2(x2 + k1x2 + φ(x1)) (4.19)

To ensure stability based on time-scale separation arguments, k2 ≫ k1 must be
selected (Lu and Shen 2002). However, note that (4.19) is identical to the back-
stepping control law (4.16). For the latter control law we know from Corollary 4.2
that k2 > k1 + maxx1

φ′(x1) suffices to guarantee stability.

4.1.5 Example

Consider the system

ẋ1 = x1 sinx1 + x2

ẋ2 = u

which matches the second order system (4.3) with φ(x1) = x1 sinx1, illustrated in
Figure 4.3. Let the control objective be to stabilize this system around the origin.
φ satisfies Assumption 4.1 with

κ = max
x1 6=0

φ(x1)

x1
= max

x1 6=0
sinx1 = 1

Applying Corollary 4.1 gives the linear backstepping control law

u = −k2(x2 + k1x1)

where k2 > k1 > κ = 1 to make the origin GAS. With k1 = 1.2, k2 = 2.5 this
control law minimizes the cost functional

∫ ∞

0

(

1.2(1.2 − sinx1)x
2
1 + 0.05(x2 + 1.2x1)

2 + 0.2u2
)

dt

The partially linearizing backstepping control law in Corollary 4.2 cannot be ap-
plied here since φ′(x1) = sinx1 + x1 cosx1 is unbounded for x1 ∈ R. The feedback
linearization control law (4.18) becomes

u = −l1x1 − (l2 + sinx1 + x1 cosx1)(x1 sinx1 + x2)

which is quadratic in x1. Selecting l1 = 2, l2 = 3 places the closed loop poles in
−1 and −2.

Figure 4.4 shows the simulation results when the two control laws are applied.
Each control law is tested for the initial conditions x1(0) = ±20 and x2(0) =
−φ(x1(0)) so that ẋ1(0) = 0.
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Figure 4.3: The nonlinearity φ(x1) = x1 sin x1. The dots represent the two initial condi-
tions in the simulations.

With feedback linearization, the x1 response is that of a second order linear
system with poles in −1 and −2. Note for example that the responses for x1(0) =
±20 are the same but with opposite signs. The price to pay for this linearity is
that x2 and u become very oscillatory.

With backstepping, the response in x1 is no longer linear, and its convergence
properties vary with the initial condition. The benefit is that neither x2 nor u
oscillate, and that less overall control effort is needed to stabilize the system.

4.1.6 Set-Point Regulation

We now extend our results to set-point regulation and consider the problem of
making y = x1 = r a GAS equilibrium. To do this, we need to update Assump-
tion 4.1.

Assumption 4.2 Let φ satisfy

κ = max
x1 6=r
r∈R

φ(x1) − φ(r)

x1 − r
= max

x1

φ′(x1) <∞

The following corollary extends Theorem 4.1.

Corollary 4.3 Consider the system (4.3) and let Assumption 4.2 hold. Let r be a
constant reference signal. Then the control law

u = −k(φ(r) + x2 + ψ(x1 − r)) (4.20)
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Figure 4.4: Simulation results using backstepping (left) and feedback linearization (right)
for the initial conditions x1(0) = 20 (solid) and x1(0) = −20 (dashed). Feedback lin-
earization gives x1 linear convergence properties at the price of large oscillations in x2

and u.
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where

(φ(x1) − φ(r) − ψ(x1 − r))(x1 − r) < 0, x1 6= r

ψ′(x1) > 0, x1 6= r

k > ψ′(x1), ∀x1

makes y = r a GAS equilibrium.

Proof: Introduce

z1 = x1 − r

z2 = x2 + φ(r)

which gives the control objective z1 = z2 = 0 and the dynamics

ż1 = φ(z1 + r) − φ(r)
︸ ︷︷ ︸

ηr(z1)

+z2

ż2 = u

where ηr satisfies Assumption 4.1 for all r ∈ R. Applying Theorem 4.1 gives the
control law

u = −k(z2 + ψ(z1)) = −k(x2 + φ(r) + ψ(x1 − r))

The requirements on k and ψ follow directly from (4.6)–(4.8). ✷

It is straightforward to also extend Corollary 4.1 and Corollary 4.2 to set-
point regulation. Note that κ, used in Corollary 4.1, should be redefined as in
Assumption 4.2.

4.2 A Third Order System

In this section, we consider control of the third order system

ẋ1 = φ(x2 − x1)

ẋ2 = x3

ẋ3 = u

y = x1

(4.21)

where φ is characterized below. For this system, we propose a new backstepping
design, which also leads to a linear control law.

4.2.1 Bakstepping Design

We start by considering stabilization around the origin.
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Figure 4.5: Example of a φ that satisfies Assumption 4.3. The linear control law (4.23) is
globally stabilizing for all functions φ that only pass through the first and third quadrants.

Assumption 4.3 Let φ satisfy the sign condition

xφ(x) > 0, x 6= 0 (4.22)

Figure 4.5 illustrates the assumption. The key idea in the backstepping design
below is the following. For x2 = 0, we get ẋ1 = φ(−x1), which acts stabilizing
since φ(−x1) is φ(x1) mirrored about the y-axis, and thus lies in the second and
fourth quadrants. Using backstepping, we will show how to utilize this inherent
stability property.

Theorem 4.3 Consider the system (4.21) and let Assumption 4.3 hold. Then the
linear control law

u = −k3(x3 + k2(x2 + k1x1)) (4.23)

where
k1 > −1

k2 > 0

k3 >







k2 if k1 ≤ 0

k2(1 + k1) if k1 > 0

(4.24)

makes the origin GAS.

Figure 4.6 illustrates the linear control law (4.23), implemented as a cascaded
controller. Note that the theorem gives precise bounds on the feedback gains in
the three loops for GAS to hold.
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Figure 4.6: The nonlinear system (4.21) is globally stabilized by a linear cascaded con-
troller.

Proof: In this proof, ki are constants which parameterize the control law, while
ci are “dummy constants” whose values will be assigned during the derivation to
simplify various expressions.

Step 1: As usual, start by considering only the x1-subsystem of (4.21). To find
a globally stabilizing virtual control law, we use the clf

V1 =
1

2
x2

1 (4.25)

Considering x2 as our virtual control input

V̇1 = x1φ(x2 − x1)

= x1φ(−(1 + k1)x1 + x2 + k1x1)

= x1φ(−(1 + k1)x1) < 0, x1 6= 0

can be achieved by selecting

x2 = xdes
2 = −k1x1, k1 > −1 (4.26)

The fact that k1 = 0 is a valid choice means that x1 feedback is not necessary
for the sake of stabilization. However, it provides an extra degree of freedom for
tuning the closed loop performance.

Step 2: Since we cannot control x2 directly, we continue by introducing the
deviation from the virtual control law.

x̃2 = x2 − xdes
2 = x2 + k1x1

Including the x2 dynamics in (4.21) we get

ẋ1 = φ(ξ)

˙̃x2 = x3 + k1φ(ξ)

where
ξ = −(1 + k1)x1 + x̃2 (4.27)
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has been introduced. We will also need

ξ̇ = −(1 + k1)φ(ξ) + x3 + k1φ(ξ) = −φ(ξ) + x3

A regular backstepping design would proceed by expanding the clf (4.25) with a
term penalizing x̃2. We do this, but also add a term F (ξ) as an extra degree of
freedom, where F is required to be positive definite. Hence,

V2 =
c1
2
x2

1 +
1

2
x̃2

2 + F (ξ), c1 > 0

We compute its time derivative to find a new virtual control law, xdes
3 .

V̇2 = c1x1φ(ξ) + x̃2(x3 + k1φ(ξ)) + F ′(ξ)(−φ(ξ) + x3)

= (c1x1 + k1x̃2 − F ′(ξ))φ(ξ) + (x̃2 + F ′(ξ))xdes
3 + (x̃2 + F ′(ξ))(x3 − xdes

3 )

Although it may not be obvious, we can again find a stabilizing function indepen-
dent of φ. Choosing

xdes
3 = −k2x̃2, k2 > 0 (4.28)

F ′(ξ) = c2φ(ξ), F (0) = 0, c2 > 0 (4.29)

where (4.29) is an implicit but perfectly valid choice of F , yields

V̇2|x3=xdes
3

= (c1x1 + (k1 − k2c2)x̃2
︸ ︷︷ ︸

(k1−k2c2)ξ

)φ(ξ) − c2φ(ξ)2 − k2x̃
2
2

To make the first term negative definite using the assumed property (4.22), we
select c1 to make the factor in front of φ(ξ) proportional to −ξ, see (4.27). This is
achieved by

c1 = −(1 + k1)(k1 − k2c2), k2c2 > k1 (4.30)

With this choice,

V̇2|x3=xdes
3

= (k1 − k2c2)ξφ(ξ) − c2φ(ξ)2 − k2x̃
2
2

becomes negative definite. The benefit of using the extra term F (ξ) shows up in
Equation (4.30). F (ξ) ≡ 0 (or equally, c2 = 0) leads to c1 = −(1 + k1)k1 > 0 and
the severe restriction −1 < k1 < 0 implying positive feedback from x1.

Step 3: The final backstepping iteration begins with introducing the third resid-
ual

x̃3 = x3 − xdes
3 = x3 + k2x̃2

We also update the system description

ẋ1 = φ(ξ)

˙̃x2 = x̃3 − k2x̃2 + k1φ(ξ)

˙̃x3 = u+ k2(x̃3 − k2x̃2 + k1φ(ξ))

(4.31)
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Furthermore,
ξ̇ = −φ(ξ) + x̃3 − k2x̃2

V3 is constructed by adding a term penalizing x̃3 to V2.

V3 = c3V2 +
1

2
x̃2

3, c3 > 0

We get

V̇3 = c3
[
(k1 − k2c2)ξφ(ξ)
︸ ︷︷ ︸

negative definite

−c2φ(ξ)2 − k2x̃
2
2 + x̃3(x̃2 + c2φ(ξ))

]

+ x̃3

[
u+ k2(x̃3 − k2x̃2 + k1φ(ξ))

]

≤− c2c3φ
2(ξ) − k2c3x̃

2
2 + x̃3

[
u+ k2x̃3 + (c3 − k2

2)x̃2 + (k1k2 + c2c3)φ(ξ)
]

once again using (4.22). Select c3 = k2
2 to cancel the x̃2x̃3 cross-term and try yet

another linear control law.

u = −k3x̃3, k3 > k2 (4.32)

is a natural candidate and with this we investigate the resulting clf time derivative.

V̇3 ≤ −k2
2c2φ

2(ξ) − k3
2x̃

2
2 − (k3 − k2)x̃

2
3 + (k1k2 + k2

2c2)x̃3φ(ξ)

In order to investigate the impact of the last cross-term, we complete the squares.

V̇3 ≤ − k3
2x̃

2
2 − (k3 − k2)(x̃3 −

k1k2 + k2
2c2

2(k3 − k2)
φ(ξ))2

− (k2
2c2 −

(k1k2 + k2
2c2)

2

4(k3 − k2)
)φ2(ξ)

V̇3 is negative definite provided that the φ2(ξ) coefficient is negative, which is true
for

k3 > k2(1 +
(k1 + k2c2)

2

4k2c2
) (4.33)

We now pick c2 to minimize this lower limit under the constraints c2 > 0 and
k2c2 > k1.

For k1 ≤ 0, we can make k1 + k2c2 arbitrarily small whereby Equation (4.33)
reduces to

k3 > k2

i.e., the same restriction as in (4.32). For k1 > 0 the optimal strategy can be shown
to be selecting c2 arbitrarily close to the bound k1/k2. This yields

k3 > k2(1 + k1) (4.34)

To summarize, under the parameter restrictions in (4.26), (4.28), (4.32), and
(4.34), the control law (4.32) makes the origin GAS. ✷
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4.2.2 Robustness

For this design we refrain from investigating inverse optimality due to the compli-
cated expressions involved. Regardless of this, the control law (4.23) can be shown
to provide some robustness. For example, in the case of k1 > 0, we can introduce
a multiplicative gain perturbation

Γ >
k2(1 + k1)

k3
(4.35)

at the input (see Figure 3.2) without violating Γk3 > k2(1+ k1) from (4.24), hence
retaining global asymptotic stability at the origin.

4.2.3 Feedbak Linearization

It is rewarding to compare the preceding backstepping design with a control design
based on feedback linearization. Such a design makes the open loop system a chain
of integrators by defining new coordinates according to

ẋ1 = φ(x2 − x1) , x̃2

˙̃x2 = φ′(x2 − x1)(x3 − x̃2) , x̃3

˙̃x3 = φ′′(x2 − x1)(x3 − x̃2)
2 + φ′(x2 − x1)(u − x̃3) , ũ

We can now select

ũ = −l1x1 − l2x̃2 − l3x̃3

to achieve any desired linear relationship between ũ and x1. Solving for the actual
control input u to be produced, we get

u = x̃3 +
ũ− φ′′(x2 − x1)(x3 − x̃2)

2

φ′(x2 − x1)
(4.36)

Two things are worth noting about this expression.

• The feedback linearization control law depends not only on φ (through x̃2),
but also on its first and second derivatives, which therefore must be known.

• φ′ is in the denominator of (4.36) implying that the control law has a singu-
larity where φ′ = 0. Thus, global stability cannot be achieved using feedback
linearization unless φ is a strictly increasing function.

Our backstepping design did not suffer from any of the problems above, since all
we required from φ was for xφ(x) to be positive definite, see Assumption 4.3.



Setion 4.2 A Third Order System 63

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

φ

x

Figure 4.7: Illustration of the nonlinearity φ(x) = x − 0.5 sin x. The dots represent the
two initial conditions in the simulations.

4.2.4 Example

Consider the system

ẋ1 = x2 − x1 − 0.5 sin(x2 − x1)

ẋ2 = x3

ẋ3 = u

This system matches the generic system (4.21) with φ(x) = x − 0.5 sinx which
satisfies Assumption 4.3, see Figure 4.7.

Theorem 4.3 gives the linear backstepping control law

u = −k3(x3 + k2(x2 + k1x1))

The gains k1 = 0.5, k2 = 0.5, k3 = 1 achieve GAS at the origin. The feedback
linearization control law (4.36) can also be used since φ′(x) = 1 − 0.5 cosx > 0
means that the system is globally feedback linearizable. We select the feedback
gains l1 = 0.75, l2 = 1.5, l3 = 2 to achieve a similar convergence in x1 as for
the backstepping control law. This choice gives the same closed loop poles as the
backstepping control law would give for φ(x) = x.

The simulation results are shown in Figure 4.8. The responses in x1 for the two
control laws are almost identical, but the further down the chain of integrators in
the system one looks, the greater is the difference.

4.2.5 Set-Point Regulation

Let us now consider set-point regulation of system (4.21) with y = x1 as the
controlled variable. Here we allow for φ to cross zero at an arbitrary position, x0.
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Figure 4.8: Simulation results using backstepping (left) and feedback linearization (right)
for the initial conditions x1(0) = 20 (solid) and x1(0) = −20 (dashed). Although the
responses in x1 are very similar, the control signals differ a lot.



Setion 4.3 Appliations to Flight Control 65

Assumption 4.4 Let φ satisfy the sign condition

(x− x0)φ(x − x0) > 0, x 6= x0

Corollary 4.4 Consider the system (4.21) and let Assumption 4.4 hold. Let r be a
constant reference signal. Then the linear control law

u = k3k2(1 + k1)r − k3(x3 + k2(x2 + k1x1)) + k3k2x0

where k1, k2, and k3 satisfy (4.24), makes y = r a GAS equilibrium.

Proof: At steady state, ẋ1 = φ(x2 − x1) = 0. Since φ(x0) = 0, y = x1 = r implies
x2 = r + x0. Introduce the residual variables z1 = x1 − r, z2 = x2 − r − x0, and
the shifted function η(x) = φ(x + x0), which satisfies Assumption 4.3. This gives
the dynamics

ż1 = η(z2 − z1)

ż2 = x3

ẋ3 = u

Applying Theorem 4.3 now gives the control law

u = −k3(x3 + k2(z2 + k1z1)) = −k3(x3 + k2(x2 − r − x0 + k1(x1 − r)))

= k3k2(1 + k1)r − k3(x3 + k2(x2 + k1x1)) + k3k2x0

where k1, k2, and k3 must satisfy (4.24). ✷

4.3 Appliations to Flight Control

The two nonlinear systems studied in Section 4.1 and Section 4.2 are generalizations
of two nonlinear control problems that appear in high angle of attack flight control.
In this section, we apply the derived backstepping control laws to maneuvering
flight control (angle of attack control, sideslip regulation, and roll control) and to
flight path angle control.

4.3.1 Maneuvering Flight Control

First consider maneuvering flight control, where the aim is to control the aircraft
variables involved in the fast flight modes—the angle of attack, α, the sideslip
angle, β, and the components of the angular velocity vector ωw, i.e., pw, qw, and
rw. We choose to express the angular velocity in the wind-axes coordinate frame
in order to roll about the velocity vector rather than about the body x-axis, as
discussed in Section 2.2. The control objective is to make

pw = pref
w

α = αref

β = 0
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a globally asymptotically stable equilibrium.

The dynamics of α and β are given by (2.16). We will assume the aerodynamic
forces L and Y to depend only on α and β and not on ωw or the control surface
deflections, see Section 2.3. If we consider

u = ω̇w

as the control input, the open loop dynamics are given by

ṗw = u1 (4.37a)

α̇ =
1

cosβ
(qw +

1

mVT
(−L(α, β) − FT sinα+mg3)) (4.37b)

q̇w = u2 (4.37c)

β̇ = −rw +
1

mVT
(Y (α, β) − FT cosα sinβ +mg2) (4.37d)

ṙw = u3 (4.37e)

where

g2 = g(cosα sinβ sin θ + cosβ sinφ cos θ − sinα sinβ cosφ cos θ)

g3 = g(sinα sin θ + cosα cosφ cos θ)

are the gravitational contributions from (2.8). Given a control law in terms u = ω̇w,
we can determine which net torque T (in the body-fixed frame) that is required
to produce this angular acceleration. Combining (2.2) with (2.6) and disregarding
the dynamics of α and β in the transformation matrix Tbw yields

T = Iω̇ + ω × Iω ≈ ITbwu+ ω × Iω (4.38)

Determining control surface deflections such that this torque is produced is known
as control allocation, which is the topic of Part II.

The control design will be based on the backstepping designs in Section 4.1.
These designs are not directly applicable since the generic system (4.3) is SISO
whereas (4.37) is a MIMO system. However, (4.37) can be separated into three
SISO systems if the couplings between the dynamics of α and β are neglected.

To achieve this separation, all variables except α and qw will be regarded as
constants in the angle of attack control design. Accordingly, in the sideslip control
design, all variables except β and rw will be regarded as constants. This includes
slower varying variables such as the aircraft velocity, VT , and the orientation of
the aircraft, which affects the gravitational terms, g2 and g3. With this, the roll
dynamics (4.37a), the angle of attack dynamics (4.37b)–(4.37c), and the sideslip
dynamics (4.37d)–(4.37e), are each described by a SISO system.

The angle of attack and sideslip dynamics are both of second order and match
those of the generic nonlinear system (4.3). Table 4.1 summarizes the relationships
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General system α dynamics β dynamics

(4.3) (4.37b)–(4.37c) (4.37d)–(4.37e)

x1 α β

x2 qw/ cosβ −rw
φ fα/ cosβ fβ

u u2/ cosβ −u3

y α β

r αref 0

Table 4.1: The relationships between the general nonlinear system (4.3) and the angle of
attack and sideslip dynamics in (4.37).

between the systems. The nonlinearities are given by

fα(α) =
1

mVT
(−L(α, β) − FT sinα+mg3) (4.39)

fβ(β) =
1

mVT
(Y (α, β) − FT cosα sinβ +mg2) (4.40)

where the dependence on variables that are regarded as constants are not included
as arguments of fα and fβ . The characteristics of these functions are decided
mainly by the lift force, L(α, β), and the side force, Y (α, β). The corresponding
aerodynamics coefficients, CL and CY , are shown in Figure 4.9 for the ADMIRE
model (ADMIRE ver. 3.4h 2003). Recall from (2.13) that L = q̄SCL and Y =
q̄SCY .

We now propose state feedback control laws for each of the three control ob-
jectives. Each control law provides global asymptotic stability around the desired
reference level provided that all other variables are held constant, as described
above.

Veloity Vetor Roll Control

Controlling the velocity vector roll rate is straightforward. Given the dynamics in
(4.37a) and the roll rate command pref

w , the proportional control law

u1 = kp(p
ref
w − pw) (4.41)

makes pw = pref
w a GAS equilibrium if kp > 0.

Angle of Attak Control

Combining Corollary 4.3 (set-point regulation) and Corollary 4.1 (linear control)
yields the angle of attack control law

u2 = −kq(qw + kα cosβ(α − αref) + fα(αref)) (4.42)
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Figure 4.9: Lift force coefficient, CL (left), and side force coefficient, CY (right), as
functions of α and β for the ADMIRE model. At low angles of attack, both forces act
stabilizing in the aircraft dynamics (4.37).
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Figure 4.10: The backstepping control law (4.42) moves the dependence on CL outside
the control loop, thereby enhancing the robustness.

where fα is given by (4.39). The control law is illustrated in Figure 4.10. Although
implementing this control law requires knowledge of the lift force, and thereby the
lift force coefficient, CL, we note that the lift force dependent computation is per-
formed in the prefilter outside the feedback loop. Therefore, imperfect knowledge
of CL does not jeopardize closed loop stability but only shifts the equilibrium.

The feedback gains kα and kq should satisfy

kα > max{0, κα}
kq > 2 · kα

(4.43)

for the control law to be globally stabilizing and also minimize a meaningful cost
functional. Setting β = 0, the growth coefficient κα can be approximately com-
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puted as

κα = max
α

f ′
α(α) ≈ max

α
− 1

mVT

∂L(α, β)

∂α
= − q̄S

mVT
min

α

∂CL(α, β)

∂α
(4.44)

At low angles of attack, ∂CL

∂α is positive and at high angles of attack, in the post-

stall region, ∂CL

∂α is negative, see Figure 4.9. This means that if the flight envelope
does not include high angles of attack then κα < 0, and kα > 0 suffices to guarantee
stability. On the other hand, if the control law is to provide stability also in the
post-stall region, then kα > κα > 0 must hold.

Note that κα also depends on the speed and altitude of the aircraft due to the
factor q̄/VT . To handle this, one can either select kα and kq such that (4.43) holds
for all flight cases, or schedule kα and kq with speed and altitude.

An alternative control law can be found by applying Corollary 4.2, where a
linearizing virtual control law was selected. This gives us

u2 = −kq(qw + kα cosβ(α − αref) + fα(α)) (4.45)

The only difference to (4.42) is that now fα depends on α rather than on αref. This
causes the feedback loop to depend on CL, and robustness against model errors in
CL becomes more difficult to analyze.

The control law (4.45) matches the angle of attack control law proposed by
Snell et al. (1992), which was derived using feedback linearization and time-scale
separation arguments. Using our Lyapunov based backstepping approach, we have
thus shown this control law to be not only globally stabilizing, but also inverse
optimal w.r.t. a meaningful cost functional, according to Corollary 4.2.

Sideslip Regulation

Finally, we consider sideslip regulation. Since β = 0 is the control objective,
Theorem 4.1 (stabilization around the origin) can be used if we adjust for that

fβ(0) =
1

VT
g cos θ sinφ

may not be zero. This gives the sideslip control law

u3 = kr(−rw + kββ +
1

VT
g cos θ sinφ) (4.46)

The feedback gain restrictions

kβ > max{0, κβ}
kr > 2 · kβ

ensure the control law to be globally stabilizing and also optimal w.r.t. a meaningful
cost functional. Here,

κβ = max
β

fβ(β) − fβ(0)

β
≈ max

β

Y (α, β)

β
=

q̄S

mVT
max

β

CY (α, β)

β
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At low angles of attack, κβ < 0 holds according to Figure 4.9 and the parameter
restrictions above reduce to

kr > 2 · kβ > 0

In this case no further knowledge of the side force is necessary to implement the
control law (4.46). At high angles of attack, κβ > 0, which means kβ > κβ must
hold for yaw stability to be guaranteed.

4.3.2 Flight Path Angle Control

Let us now consider control of the flight path angle, γ, which for example may
be of interest for controlling the ascent or descent of an unmanned aerial vehicle.
Restricting ourselves to longitudinal control, the relevant dynamics are given by
the last three equations of (2.17). If we again assume the lift force to depend only
on the angle of attack, α = θ−γ, this system matches the third order system (4.21)
considered in Section 4.2, except for the last term in γ̇, mg cos γ. To circumvent
this problem, we make the approximation cos γ ≈ cos γref which gives the dynamics

γ̇ =
1

mVT

(
L(α) + FT sinα−mg cos γref

)

θ̇ = q

q̇ =
1

Iy
(M + FT zTP )

(4.47)

This system matches (4.21) with

x1 = γ

x2 = θ

x3 = q

u =
1

Iy
(M + FT zTP )

φ(x2 − x1) =
1

mVT

(
L(α) + FT sinα−mg cos γref

)

From Figure 4.9 we see that Assumption 4.4 holds even at high angles of attack,
since φ is dominated by the lift force term. The assumption breaks down around
α = 90◦.

Applying Corollary 4.4 yields the flight path angle control law

u = −k3(q + k2(θ + k1(γ − γref) − γref − α0))

where α0 is the angle of attack at steady state, solving γ̇ = φ(α0) = 0, and where
the feedback gains must satisfy (4.24). Alternatively, α can be used for feedback
rather than θ. Using θ = α+ γ gives the equivalent control law

u = −k3(q + k2(α− α0 + (1 + k1)(γ − γref))) (4.48)
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The aerodynamic pitching moment required to produce this angular acceleration
is given by

M = Iyu− FT zTP (4.49)

This backstepping control law guarantees stability up to and beyond the stall
angle, where the lift force starts to decrease. In contrast, the feedback linearization
control law (4.36) can only be used for low angles of attack, since (4.36) is singular
when φ′ = 0, which occurs around the stall angle.

4.3.3 Simulation Results

In this section we use the ADMIRE model, described in Section 2.4, to illustrate
the behavior of the proposed angle of attack and flight path angle control laws at
high angles of attack. The considered flight case is Mach 0.3, 1000m. In addition
to the backstepping control laws, the control system contains a control allocator,
distributing the desired aerodynamic moment to the control surfaces. For γ control,
integral control is also included to achieve set-point regulation despite model errors.
For example, a fixed value of α0, selected as the angle of attack at trimmed flight, is
used in the control law. For α control, no integral action is included. In Chapter 11,
the overall control system is presented in detail and other properties are evaluated.

Angle of Attak Control

Figure 4.11 shows the simulation results when the control law (4.42) is used with
kq = 5.7 and kα = 1.3. For αref = 20 deg and αref = 30 deg, the aircraft response is
satisfactory. For αref = 40 deg, which is in the post-stall region, the control system
fails to achieve the control objective. The is due to that the control allocator fails
to produce the aerodynamic pitching moment required to stabilize the aircraft. As
can be seen from the control surface plots, the canards and the elevons all saturate
temporarily, either in position or in rate, when αref = 40 is applied. This means
that no fair evaluation of the control law properties at high angles of attack can
be made. A possible remedy for this would be to also use the thrust vectoring
capabilities included in the model.

Flight Path Angle Control

Figure 4.12 shows the resulting flight trajectory when the control law (4.48) is used
with k1 = 1.0, k2 = 1.3, and k3 = 5.7, and γref = 30 deg is commanded. Although
the angle of attack reaches a maximum of 36 degrees, and the canards and the
elevons saturate in rate and in position, respectively, stability is retained.

4.4 Conlusions

In this chapter, backstepping has been used to design linear, robust control laws
for two generic nonlinear systems. With a linear control law, the closed loop
system remains nonlinear. This is the converse of feedback linearization, in which



72 Chapter 4 Two Bakstepping Designs

0 1 2 3 4 5
0

20

40

60

α 
(d

e
g
)

Angle of attack

0 1 2 3 4 5
0

2

4

6

n
z
 (

g
)

Load factor

0 1 2 3 4 5
0

20

40

60

80

100

θ 
(d

e
g
)

Pitch angle

0 1 2 3 4 5
−100

0

100

200

q
w
 (

d
e
g
/s

)

Pitch angular velocity

0 1 2 3 4 5
−10

0

10

20

30

40

γ 
(d

e
g
)

Flight path angle

0 1 2 3 4 5
0

50

100

150

V
T
 (

m
/s

)

Total velocity

0 1 2 3 4 5
−60

−40

−20

0

20

δ c
 (

d
e
g
)

Time (s)

Canards

0 1 2 3 4 5
−40

−20

0

20

40

δ e
 (

d
e
g
)

Time (s)

Elevons

αref

Figure 4.11: Simulation results for three different angle of attack commands: αref =
20 deg (solid), αref = 30 deg (dashed), and αref = 40 deg (dash-dotted).
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Figure 4.12: Simulation results when γref = 30 deg is commanded.
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the closed loop system is rendered linear using nonlinear feedback. A benefit of
not forcing a linear output response is that less control effort may be needed, as
illustrated in the examples.

We have also shown the connection between our backstepping designs and con-
trol design based on time-scale separation. Both render cascaded controllers, but
with backstepping, actual bounds on the feedback gains in the different loops that
guarantee global stability are achieved.

Unfortunately, it is not clear how these backstepping designs can be extended
to other nonlinear systems. For example, it is an open question whether the second
order system (4.3) can be augmented with an integrator at the input and still be
controlled by a linear control law. This could be of interest for including actuator
dynamics in the flight control case.

The application of backstepping to flight control is relevant since the nonlinear-
ities due to the aerodynamic forces cannot be modeled precisely, and since these
forces typically act stabilizing and therefore do not need to be cancelled. The pro-
posed control law for maneuvering flight control and for flight path angle control
give stability even for high angles of attack.



Chapter 5

Bakstepping Control of a

Rigid Body

Controlling the motion of a rigid body is important in many applications. For
example aircraft, missiles, cars, ships, and submarines can often be regarded as
rigid bodies, at least for the purpose of control. There are several ways of designing
controllers for rigid bodies, see, e.g., Woolsey and Leonard (1999) and Woolsey et al.
(2001). In this chapter we develop a method for backstepping control of rigid body
motion. The design can then be specialized to aircraft control problems or the
control of other types of vehicles.

Starting from the standard equations for rigid body motion (2.6),

V̇ = −ω × V +
1

m
F

Iω̇ = −ω × Iω + T

we will derive a control law to make V = Vo, ω = ωo a globally asymptotically
stable equilibrium. Controlling V , the components of the velocity vector expressed
in body-fixed coordinates, can be interpreted as controlling the total velocity, VT ,
the angle of attack, α, and the sideslip angle, β, since they are related through

V = VT

(

cosα cosβ sinβ sinα cosβ

)T

We will retain the model on vector form for the control design. This idea can
also be found in Fossen and Grøvlen (1998) who consider rigid body motion in
two dimensions to derive control laws for ship control. In contrast, many previous
designs, like Lane and Stengel (1988) and Grøvlen and Fossen (1996), treating
flight control and ship control respectively, use a component form description of
the model. The same goes for the backstepping designs in the previous chapter.

The vector form is convenient to work with and leads to reduced complexity
of the expressions involved in the control design. Also, treating the problem as
a multivariable control problem allows us to account for the cross-term ω × V

75
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correctly, which was not done in the previous chapter. A disadvantage is that it
less clear how to utilize the characteristics of F and T to achieve a robust controller.

This chapter is organized as follows. In Section 5.1, the rigid body dynamics are
presented and the assumptions used in the control design are stated. In Section 5.2,
possible steady states of the considered rigid body motion are investigated. The
backstepping control design is performed in Section 5.3 and illustrated with an
example in Section 5.4. Section 5.5 contains the conclusions of the chapter.

The chapter is based on

S. T. Glad and O. Härkeg̊ard. Backstepping control of a rigid body.
In Proc. of the 41st IEEE Conference on Decision and Control, pages
3944–3945, Las Vegas, NV, Dec. 2002.

5.1 Rigid Body Dynamis

We assume that the controlled object is a rigid body with mass m. We describe
the motion in a body-fixed coordinate system with the origin at the center of mass
and obtain the equations

V̇ = −ω × V +
1

m
F (5.1a)

Iω̇ = −ω × Iω + T (5.1b)

where V is the velocity, ω is the angular velocity, F is the external force, and T is
the external torque (all these quantities are vectors with three components). I is
the moment of inertia. We will assume that the force has the form

F = m(Fa(V ) + uV V̂ ) (5.2)

where V̂ = 1
|V |V and uV is a control variable. The first part, Fa, corresponds to

aerodynamic or hydrodynamic forces, and the second part approximately models
the thrust action of an engine aligned with the velocity vector. The torque T is
assumed to depend on V , ω, and control variables.

5.2 Stationary Motion

Let us first examine the possible steady states of the rigid body dynamics (5.1).
The following relationships are useful for rearranging cross product expressions:

a× b = −b× a

(a× b) × c = (aT c)b − (bT c)a

a× (b× c) = (aT c)b − (atb)c

a× a = 0

aT (a× b) = 0

aT (b× c) = bT (c× a)
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Consider a motion with V = Vo, ω = ωo where Vo and ωo are constant vectors.
The velocity equation (5.1a) then becomes

ωo × Vo = Fa(Vo) + uV V̂o

Multiplying with V̂ T
o shows that uV has to satisfy

uV = −V̂ T
o Fa(Vo) (5.3)

To determine possible values of ωo given Vo we rewrite ωo as

ωo = ω⊥ + λV̂o

where ω⊥ and V̂o are orthogonal and λ is a constant scalar. Inserting (5.3) this
gives us

ωo × Vo = ω⊥ × Vo = Fa(Vo) − [V̂ T
o Fa(Vo)]V̂o

Since only ω⊥ is left, this shows that the angular velocity component parallel to
the velocity vector, λV̂o, can be selected arbitrarily. This corresponds to the rolling
motion about the velocity vector.

To solve for ω⊥, we take the cross product with V̂o,

V̂o × (ω⊥ × Vo) =
∣
∣Vo

∣
∣ω⊥ = V̂o × (Fa(Vo) − [V̂ T

o Fa(Vo)]V̂o) = V̂o × Fa(Vo)

which yields

ω⊥ =
1
∣
∣Vo

∣
∣
V̂o × Fa(Vo)

To summarize, V = Vo, ω = ωo is a possible steady state if ωo satisfies

ωo =
1
∣
∣Vo

∣
∣
V̂o × Fa(Vo) + λV̂o

where λ is an arbitrary constant. Thus, the angular velocity at steady state is
determined by the velocity except for the component parallel to the velocity, cor-
responding to the velocity vector roll rate.

5.3 Bakstepping Design

In this section we develop a backstepping design to make Vo, ωo a stable equilibrium.
Introduce the angular acceleration

uT = I−1(T − ω × Iω)

and regard uT as the control signal. Then the dynamics are given by

V̇ = −ω × V + Fa(V ) + uV V̂

ω̇ = uT
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Step 1: First regard the angular velocity ω (together with uV ) as the control
variable. Introduce the Lyapunov candidate

W1 =
1

2
(V − Vo)

T (V − Vo)

and the virtual control law ω = ωdes. This gives

Ẇ1 = (V − Vo)
T (−ωdes × V + Fa(V ) + uV V̂ )

Since the characteristics of Fa(V ) are unknown, we cancel its influence by selecting
control laws of the form

uV = ūV − V̂ TFa(V )

ωdes = ω̄ +
1

|V | V̂ × Fa(V )

This gives

Ẇ1 = (V − Vo)
T
(

−ω̄ × V + ūV V̂ + Fa(V ) − [V̂ TFa(V )]V̂ − 1

|V | [V̂ × Fa(V )] × V
)

= (V − Vo)
T (−ω̄ × V + ūV V̂ )

since

1

|V | [V̂ × Fa(V )] × V = [V̂ × Fa(V )] × V̂ = Fa(V ) − [V̂ TFa(V )]V̂

We now select ω̄ and ūV to make Ẇ1 negative. Ẇ1 can be rewritten as

Ẇ1 = (V − Vo)
T (−ω̄ × V + ūV V̂ )

= V T
o (ω̄ × V ) + ūV (V − Vo)

T V̂

= ω̄T (V × Vo) + ūV (V − Vo)
T V̂

The choices

ūV = k1(Vo − V )T V̂

ω̄ = k2(Vo × V ) + λV̂o

where the term λV̂o reflects the velocity vector roll control objective, achieve

Ẇ1 = −k1((Vo − V )T V̂ )2 − k2

∣
∣Vo × V

∣
∣
2

, −U(V, Vo) ≤ 0

In this expression Ẇ1 = 0 only if V = Vo, provided the singularity V = 0 is avoided.
The control laws

uV = k1(Vo − V )T V̂ − V̂ TFa(V )

ωdes = k2(Vo × V ) +
1

|V | V̂ × Fa(V ) + λV̂o



Setion 5.3 Bakstepping Design 79

along with the Lyapunov function W1 thus guarantee convergence to the desired
V = Vo if ω = ωdes can be achieved.

Step 2: Define

ξ = ω − ωdes ⇐⇒ ω = ωdes + ξ

In the new variables the dynamics are

V̇ = −ωdes × V + Fa(V ) + uV V̂
︸ ︷︷ ︸

desired dynamics

−ξ × V

ξ̇ = uT − φ(V, ξ)

where

φ(V, ξ) =
d

dt
ωdes

Extending the Lyapunov function to

W2 = k3W1 +
1

2
ξT ξ =

k3

2
(V − Vo)

T (V − Vo) +
1

2
ξT ξ (5.4)

gives

Ẇ2 = k3(V − Vo)
T (−ωdes × V + Fa(V ) + uV V̂ − ξ × V ) + ξT (uT − φ)

= −k3U(V, Vo) + k3 V
T
o (ξ × V )
︸ ︷︷ ︸

ξT (V ×V0)

+ξT (uT − φ)

= −k3U(V, Vo) + ξT (uT + k3(V × Vo) − φ)

= −k3U(V, Vo) − k4ξ
T ξ ≤ 0

if we select the control law

uT = k3(Vo × V ) − k4ξ + φ

Since Ẇ2 = 0 only occurs for V = Vo, ξ = 0 (except for the singular case V = 0)
there will be convergence to V = Vo, ξ = 0, which implies ω = ωo.

The following theorem summarizes our results.

Theorem 5.1 Consider the rigid body dynamics (5.1). Let the force F have the
form

F = m(Fa(V ) + uV V̂ )

and introduce the angular acceleration

uT = I−1(T − ω × Iω)
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Then the control laws

uV = k1(Vo − V )T V̂ − V̂ TFa(V )

uT = k3(Vo × V ) + k4(ω
des − ω) + φ(V, ω)

where

ωdes = k2(Vo × V ) +
1

|V | V̂ × Fa(V ) + λV̂o

φ(V, ω) =
d

dt
ωdes

and k1, k2, k3, k4 > 0, make

V = Vo

ω =
1
∣
∣Vo

∣
∣
V̂o × Fa(Vo) + λV̂o

a GAS equilibrium except for the singular point V = 0.

Let us make a few comments regarding the backstepping design and the result-
ing control laws.

• Design parameters. The scalar design parameters ki can be replaced by posi-
tive definite matrices Ki. This requires the expressions to be modified some-
what. For example, the total Lyapunov function in (5.4) can be replaced
by

V =
1

2
(V − Vo)

TK3(V − Vo) +
1

2
ξT ξ

• Roll axis. In the virtual control law ωdes, the term λV̂o implies that we wish
to roll about the steady state velocity vector. A perhaps more natural choice
would be to use λV̂ instead, to roll about the current velocity vector. The
disadvantage of this choice is that the expression for φ = dωdes/dt becomes
more complicated.

• Control law interpretation. The different terms in the control laws can be
interpreted as follows.

uV = k1(Vo − V )T V̂ control of
∣
∣V
∣
∣

− V̂ TFa(V ) cancel (parts of) Fa

uT = k3(Vo × V ) control of V ’s direction

+ k4(ω
des − ω) control of ω

+ φ(V, ω) compensate for non-constant ωdes(t)
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5.4 Example

In this section we illustrate the properties of the backstepping control. For sim-
plicity we let Fa = 0, that is we consider a rigid body traveling in free space. This
allows us to focus on the effects of the cross term ω × V in the dynamics given by

V̇ = −ω × V + uV V̂

ω̇ = uT

To make a connection to flight control, let the controlled variables be the total
velocity, VT =

∣
∣V
∣
∣, the angle of attack, α, the sideslip angle, β, and the roll rate

about the velocity vector, pw. Given the reference values of these variables, the
desired equilibrium is given by

Vo = V ref
T






cosαref cosβref

sinβref

sinαref cosβref






ωo = pref
w V̂o

From Theorem 5.1 we get the control law

uV = k1(Vo − V )T V̂

uT = k3(Vo × V ) + k4(ω
des − ω) + φ(V, ω)

where

ωdes = k2(Vo × V ) + λV̂o

φ(V, ω) =
d

dt
ωdes = k2Vo ×

(

−ω × V + (k1(Vo − V )T V̂ )V̂
)

The design parameters are selected as k1 = k4 = 1, k2 = k3 = 0.2.

Figure 5.1 illustrates the simulated maneuver. An increase in the total velocity
is followed by a 30 degrees angle of attack command. Note that since Fa = 0 there
is no external force affecting the object. This means that the object will continue
to travel in the same direction as before but with a different orientation. Finally,
a velocity vector roll is commanded. If the axis of rotation coincides exactly with
the velocity vector, α and β will not be affected. The sideslip reference is zero
throughout the maneuver.

The simulation results are shown in Figures 5.3 and 5.4. In Figure 5.3, the com-
mands are applied sequentially as described above and in Figure 5.4, the commands
are applied simultaneously. In both cases, the system converges to the specified
states as expected. Further, the controlled variables are fairly decoupled in both
cases. This can be regarded as a bonus since only stability was addressed in the
backstepping design. Some more specific comments can also be made.
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V ref
T = 2 m/s

αref = 0 deg

pref
w = 0 deg /s

Vo = (2 0 0)T

V ref
T = 4 m/s

αref = 0 deg

pref
w = 0 deg /s

Vo = (4 0 0)T

V ref
T = 4 m/s

αref = 30 deg

pref
w = 0 deg /s

Vo = (2
√

3 0 2)T

V ref
T = 4 m/s

αref = 30 deg

pref
w = 150 deg /s

Vo = (2
√

3 0 2)T

Figure 5.1: Maneuver used in the simulations. With Fa = 0, a change in α does not
change the direction of motion but only the orientation of the object.

• In Figure 5.3, the total velocity decreases for a short period of time when the
angle of attack command is applied. This is due to that V (t) does not follow
a circle segment with constant radius from (4 0 0)T to (2

√
3 0 2)T , see

Figure 5.2. To achieve better decoupling between α and VT , the control law
for uV could be adjusted so that uV = 0 when

∣
∣V
∣
∣ =

∣
∣Vo

∣
∣.

• In Figure 5.3, the velocity vector roll is perfectly performed without affecting
α or β. In Figure 5.4, the result is somewhat degraded with a worst case
sideslip of −5 degrees. The reason for this may be that the axis of rotation
specified in ωdes is the desired velocity vector, V̂o, rather than the current
one, V̂ , and that these two differ just after the commands are applied at
t = 2.

5.5 Conlusions

We have proposed a backstepping control law that steers the velocity and angular
velocity vectors of a rigid body to desired values. The control law uses external
torques and a force along the velocity vector. This configuration is similar to, but
not precisely equal to the one used in aircraft control, where control surfaces gener-
ate torques and the engine gives a longitudinal force. However, our proposed rigid
body control could inspire new aircraft control designs. An interesting extension
would be to take the orientation into account, which would make it possible to
include the effect of gravity.
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Figure 5.2: Trajectory generated by the first and third components of V when the com-
mands are applied sequentially as in Figure 5.3. From t = 6 to t = 10, V does not follow
the circle segment corresponding to a constant value of VT =

∣
∣V
∣
∣.



84 Chapter 5 Bakstepping Control of a Rigid Body

0 5 10 15
0

1

2

3

4

5
V

T
 (

m
/s

)
Total velocity

0 5 10 15
−10

0

10

20

30

40

α 
(d

e
g
)

Angle of attack

0 5 10 15
−10

−5

0

5

10

β 
(d

e
g
)

Sideslip

0 5 10 15
−50

0

50

100

150

200

p
w
 (

d
e
g
/s

)

Time (s)

Velocity vector roll rate

0 5 10 15
−1

−0.5

0

0.5

1

1.5

2
u

V

Force control

0 5 10 15
−2

−1

0

1

2

3

4

u
M

Time (s)

Torque control

Figure 5.3: Simulation results when the reference commands (thin lines) in VT , α, and
pw are applied sequentially. Note that uV is used for control during the α step response,
causing a dip in the VT response.
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Figure 5.4: Simulation results when the reference commands (thin lines) in VT , α, and
pw are applied simultaneously. The oscillations in β indicate that the axis of rotation in
roll does not quite coincide with the velocity vector.
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Chapter 6

Output Regulation with

Constant Input Disturbanes

For a controller to function in practice, it needs to be robust against uncertainties
such as modeling errors and external disturbances. A special case is when the
uncertainty and the control input are “matched” in the sense that they enter the
dynamics in the same way. The system

ẋ = f(x) +B(u + δ(x, u)) (6.1)

satisfies this matching condition. In this chapter we consider the case where a con-
troller has been designed for the nominal case δ = 0, and we want to robustify this
controller. In flight control the uncertainty δ corresponds to a torque disturbance
acting on the aircraft, due to, e.g., unmodeled aerodynamic effects.

Two related methods for such robustification are Lyapunov redesign (Khalil
2002) and nonlinear damping (Krstić et al. 1995). In these methods, the nomi-
nal control law is augmented with a term that dominates the uncertainty δ. A
weakness is that if a continuous control law is desired, and δ is nonzero at the
desired operating point, only boundedness of the solution can be guaranteed, and
not asymptotic stability. To achieve asymptotic stability, a discontinuous control
law must be used which may lead to chatter in the control input.

In this chapter we focus on achieving asymptotic stability in the presence of
a nonvanishing input uncertainty, using a continuous control law. We restrict our
discussion to the case of a constant disturbance δ(x, u) = θ and consider the system

ẋ = f(x) +B(u+ θ)

This can be interpreted as compensating for the effects of δ at the desired operating
point and disregarding its variation with x and u.

A general result from output regulation theory is that to suppress a disturbance,
the controller should incorporate an internal model of the disturbance (Byrnes and

87
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Isidori 2000). For a constant disturbance θ, this means that an integrator should
be included in the controller.

Su et al. (2001) consider a nonlinear system subject to input disturbances, and

propose to augment the nominal control law with an integral term ε
∫ t

0
(r − y)dt

where r is the reference signal to be tracked by the system output y. Using singular
perturbation methods, the authors show that given a Lyapunov function for the
nominal system, an upper bound on ε can be computed such that the augmented
controller yields complete disturbance suppression.

Here, two other methods for suppressing the disturbance θ are developed. One
is based on adaptive backstepping and the other on nonlinear observer techniques.
Compared to adding integral control as in Su et al. (2001), the proposed meth-
ods provide faster suppression of input disturbances, but do not achieve output
regulation when disturbances are introduced elsewhere.

The remainder of this chapter is organized as follows. In Section 6.1 the control
problem is stated in detail. In Section 6.2, the adaptive backstepping approach is
presented, and in Section 6.3, the observer based approach is pursued. The methods
are illustrated in Section 6.4 with a simulation example and also experiments using
a magnetic levitation system. Section 6.5 contains the conclusion of the chapter.

This chapter is based on

O. Härkeg̊ard and S. T. Glad. Control of systems with input nonlinear-
ities and uncertainties: An adaptive approach. In Proc. of the European
Control Conference, pages 1912–1917, Porto, Portugal, Sept. 2001a.

6.1 Problem Formulation

Consider the nonlinear system

ẋ = f(x) +B(u+ θ) (6.2)

where x ∈ R
n is the state vector, u ∈ R

m is the control input, and θ ∈ R
m is

an unknown, constant disturbance. Let u = k(x) be a control law satisfying the
following assumption.

Assumption 6.1 Assume that a nominal control law u = k(x) and a Lyapunov
function V (x) are known such that

V̇ (x) = Vx(x)(f(x) +Bk(x)) = −W (x) < 0, x 6= 0

Thus, if θ was known, the control law

u = k(x) − θ

would make x = 0 a GAS equilibrium of the closed loop system according to
Theorem 3.1. How do we deal with the fact that θ is not available? A straightfor-
ward solution is to replace θ by an estimate θ̂ and form the certainty equivalence
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k(x) ΣΣ
+

+

+
−

θ̂

u

θ

ẋ = f(x) +B(u+ θ)
x

Estimator

Figure 6.1: Illustration of the system (6.2) and the certainty equivalence controller (6.3).
The aim is for the estimator to achieve θ̂ = θ so that the input disturbance θ is completely
cancelled.

controller

u = k(x) − θ̂ (6.3)

Figure 6.1 illustrates the approach. This strategy is intuitively appealing, but leads
to two important questions:

• How can we estimate θ?

• Can we retain global stability using θ̂ for feedback?

Two approaches to the problem will be pursued. In Section 6.2, we use adaptive
backstepping to find an estimator that guarantees closed loop stability without ad-
justing the control law (6.3). In Section 6.3, the starting point is that a converging
estimator is given, based on nonlinear observer techniques. The question then is
how to possibly adjust the control law to retain stability.

In both approaches, B ∈ R
n×m is assumed to have rank m. If rankB = k < m,

then B can be factorized as B = B1B2 where B1 ∈ R
n×k and B2 ∈ R

k×m both
have rank k. This gives the dynamics

ẋ = f(x) +B1(B2u+B2θ) , f(x) +B1(ũ + θ̃)

The methods that we develop can be used to estimate θ̃, which is what is needed
for disturbance suppression since if θ̃ is known, the control law

u = k(x) −Gθ̃

where G is any right inverse of B2 such that B2G = I, achieves

ẋ = f(x) +B1B2(k(x) −Gθ̃) +B1θ̃ = f(x) +Bk(x)

and thus makes x = 0 a GAS equilibrium.
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6.2 Adaptive Bakstepping

In adaptive backstepping (Krstić et al. 1995), unknown parameters are dealt with
by extending the Lyapunov function with a term that penalizes the parameter
estimation error. The parameter update law is then designed to achieve a negative
time derivative of the Lyapunov function. Using adaptive backstepping to estimate
and adapt to the input disturbance in (6.2) gives the following result.

Theorem 6.1 Consider the system (6.2) and assume that B has rank m. Let k(x)
and V (x) satisfy Assumption 6.1. Then, the control law

u = k(x) − θ̂ (6.4a)

˙̂
θ = Γ(Vx(x)B)T (6.4b)

where Γ ∈ R
m×m is any symmetric, positive definite matrix, makes x = 0, θ̂ = θ a

GAS equilibrium.

Proof: Define the extended Lyapunov function

Va(x, θ̃) = V (x) +
1

2
θ̃T Γ−1θ̃

where θ̃ = θ − θ̂ and Γ is a positive definite matrix. Introduce the update rule

˙̂
θ = τ(x, θ̂)

When the control law (6.4a) is applied we get

V̇a = Vx(x)(f(x) +B(k(x) − θ̂ + θ)) − τ(x, θ̂)T Γ−1θ̃

= −W (x) + (Vx(x)B − τ(x, θ̂)T Γ−1)θ̃

The first term is negative definite according to the assumptions, and the second,
mixed term is indefinite. Since θ̃ is not available, we cancel the second term by
selecting

τ(x, θ̂) = τ(x) = Γ(Vx(x)B)T

The resulting closed loop system becomes

ẋ = f(x) +B(k(x) + θ̃) (6.5)

˙̃θ = −Γ(Vx(x)B)T

which satisfies
V̇a(x, θ̃) = −W (x)

This expression is zero only when x = 0. For x to remain at the origin, Bθ̃ = 0
must hold. This implies θ̃ = 0 since B has full column rank. Thus, x = 0, θ̂ = θ is
a GAS equilibrium according to Theorem 3.2. ✷
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The control law (6.4a) can be rewritten as

u(t) = k(x(t)) −
∫ t

0

Γ(Vx(x(s))B)T ds

Thus, using adaptive backstepping to estimate and compensate for a constant input
disturbance corresponds to adding integral action from certain states, which depend
on the Lyapunov function V (x).

6.3 Observer Based Adaptation

In the previous section, the θ estimator was a result of assigning a negative Lya-
punov function time derivative. In this section, we first design an estimator and
then investigate how to adjust the certainty equivalence control law (6.3).

An exponentially converging θ estimate can be achieved by viewing θ as a con-
stant state and using the output injection method proposed by Krener and Isidori
(1983) to design a nonlinear observer. However, since the separation principle valid
for linear systems does not hold for nonlinear systems in general, closed loop sta-
bility may be lost when θ̂ is used for feedback as in (6.3). The following theorem
states how to augment the control law to guarantee global asymptotic stability.

Theorem 6.2 Consider the system (6.2) and assume that B has rank m. Let k(x)
and V (x) satisfy Assumption 6.1. Then, the control law

u = k(x) − Γ(Vx(x)B)T − θ̂ (6.6)

together with the observer

˙̂x = f(x) +B(u+ θ̂) +K1(x− x̂)

˙̂
θ = K2(x − x̂)

(6.7)

where Γ ∈ R
m×m is any symmetric, positive definite matrix and the observer gains

K1, K2 are such that

(

−K1 B

−K2 0

)

is Hurwitz1, makes x = 0, x̂ = x, θ̂ = θ a GAS

equilibrium.

Proof: Viewing θ as a constant state yields the augmented dynamics

d

dt

(

x

θ

)

=

(

f(x) +B(u + θ)

0

)

=

(

f(x)

0

)

+

(

0 B

0 0

)

︸ ︷︷ ︸

A

(

x

θ

)

+

(

B

0

)

u

y = x =
(

I 0

)

︸ ︷︷ ︸

C

(

x

θ

) (6.8)

1A matrix is Hurwitz if all its eigenvalues are in the open left half plane.
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Since the nonlinearity f(x) is a function of measurable states only, an observer for
θ is given by

d

dt

(

x̂

θ̂

)

=

(

f(x) +B(u + θ̂)

0

)

+

(

K1

K2

)

(x− x̂) (6.9)

Including the nonlinear dynamics in the observer is known as output injection
(Krener and Isidori 1983). The estimation error ε = (x̃ θ̃)T = (x − x̂ θ − θ̂)T

has linear dynamics:

ε̇ =

(

−K1 B

−K2 0

)

ε = Aεε (6.10)

Since (A, C) is observable (due to that rankB = m), the eigenvalues of Aε can be
placed arbitrarily.

Next, we determine a Lyapunov function for the observer. For any observer
gains K1, K2 such that Aε is Hurwitz, we can find a symmetric, positive definite
matrix Q that satisfies

d

dt
εTQε = −εT

(

In 0

0 Γ−1

)

︸ ︷︷ ︸

M

ε = −x̃T x̃− θ̃T Γ−1θ̃ (6.11)

where Γ is any symmetric, positive definite matrix, by solving the Lyapunov equa-
tion (Rugh 1996, p. 124)

QAε +AT
ε Q = −M

To investigate closed loop stability, we combine the original Lyapunov function
V (x) with εTQε and form

Vo(x, ε) = V (x) + εTQε

We also augment the control law (6.3) with an extra term ū to compensate for

using θ̂ for feedback. The resulting control law

u = k(x) + ū− θ̂ (6.12)

yields

V̇o = Vx(x)(f(x) +B(k(x) + ū− θ̂ + θ)) − εTMε

= −W (x) − x̃T x̃+ Vx(x)B(ū + θ̃) − θ̃T Γ−1θ̃

By choosing
ū = −Γ(Vx(x)B)T (6.13)

we can perform a completion of squares.

V̇o = −W (x) − x̃T x̃− VxBΓ(VxB)T + VxBθ̃ − θ̃T Γ−1θ̃

= −W (x) − x̃T x̃− 3

4
θ̃T Γ−1θ̃ −

[
(VxB)T − 1

2
Γ−1θ̃

]T
Γ
[
(VxB)T − 1

2
Γ−1θ̃

]

< 0, x 6= 0, x̃ 6= 0, θ̃ 6= 0
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Thus, the control law (6.12) in combination with the observer (6.9) makes x = 0,

x̂ = x, θ̂ = θ a GAS equilibrium. ✷

From the proof one can note that the error dynamics (6.10) of the observer
are independent of the system trajectory x(t) and the control input u(t). Since

θ̂ = θ + θ̃, the same goes for the estimate θ̂. This is not true for the adaptive
backstepping estimate in (6.4b), which on the contrary is driven by x(t).

In some cases, the extra term in (6.6) is unnecessary, and the original certainty
equivalence controller (6.3) by itself achieves closed loop stability. One such case is
when the nominal state feedback control law k(x) solves a common optimal control
problem.

Corollary 6.1 Consider the system (6.2) and let B have rank m. Assume that for
θ = 0, u = k(x) solves an optimal control problem of the form

min
u

∫ ∞

0

(q(x) + uTR(x)u)dt (6.14)

where q(x) is a positive definite function and R(x) is a symmetric positive definite
matrix satisfying

uTR(x)u ≤ uTR0u, ∀x

where R0 is positive definite. Then, the control law

u = k(x) − θ̂

together with the observer (6.7) makes x = 0, x̂ = x, θ̂ = θ a GAS equilibrium.

Proof: From Section 3.6.2 we known that if u = k(x) is optimal w.r.t. (6.14) it can
be expressed as

k(x) = −1

2
R−1(x)(VxB)T

for some Lyapunov function V (x) solving the corresponding Hamilton-Jacobi-Bellman
equation. Furthermore, V satisfies

V̇ = −W (x) = −q(x) − 1

4
VxBR

−1(x)(VxB)T

when the optimal control law is used.
Selecting Γ = R−1

0 in (6.11) and ū = 0 in (6.12) yields

V̇o = −q(x) − x̃T x̃− 1

4
VxBR

−1(x)(VxB)T + VxBθ̃ − θ̃TR0θ̃

= −q(x) − x̃T x̃− θ̃T (R0 −R(x))θ̃

−
[1

2
(VxB)T −R(x)θ̃

]T

R−1(x)
[1

2
(VxB)T −R(x)θ̃

]

< 0, x 6= 0, x̃ 6= 0, θ̃ 6= 0
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u

u+ θ−θ

x2

x1

√
x2

√
x1

Figure 6.2: Two tanks connected in series. Due to the pipe leakage, the net inflow to the
upper tank is u+ θ where θ ≤ 0.

Hence the control law u = k(x) − θ̂ together with the observer (6.7) makes x = 0,

x̂ = x, θ̂ = θ a GAS equilibrium. ✷

Thus, in this case we do not need to augment the certainty equivalence control
law (6.3) with an extra state feedback term in order to guarantee global stability.
An intuitive interpretation of this result is that some of the optimal control effort
can be sacrificed in order to compensate for using the estimate θ̂ for feedback.

6.4 Examples

We now illustrate the properties of the two strategies using a water tank simulation
example, and experiments with a magnetic levitation system.

6.4.1 A Water Tank Example

Consider two water tanks connected as in Figure 6.2. The objective is to control
the water level in the lower tank and achieve x2 = r. The control input u is the
waterflow through the valve of the input pipe. Due to the leakage θ ≤ 0 of the
pipe, the net flow into the upper tank is u + θ. Using Bernoulli’s equation and
setting all constants to unity, the system dynamics become

ẋ1 = −√
x1 + u+ θ

ẋ2 = −√
x2 +

√
x1

(6.15)
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where x1 and x2 are the water levels of the upper and lower tank. respectively.
This system fits (6.2) with B = (1 0)T .

Let us first find a globally stabilizing control law u = k(x) for the case θ = 0.
We do this using an ad hoc Lyapunov approach. At the desired steady state,
x1 = x2 = r. This motivates the control Lyapunov function

V (x) =
1

2
(x1 − r)2 +

a

2
(x2 − r)2, a > 0

which satisfies

V̇ (x) = (x1 − r)(−√
x1 + u) + a(x2 − r)(−√

x2 +
√
x1)

= −(x1 − r)(
√
x1 −

√
r) − a(x2 − r)(

√
x2 −

√
r)

︸ ︷︷ ︸

−W1(x)

+ (x1 − r)(u −√
r) + a(x2 − r)(

√
x1 −

√
r)

= −W1(x) + (
√
x1 −

√
r)
[

(
√
x1 +

√
r)(u −√

r) + a(x2 − r)
]

= −W1(x) − b(x1 − r)2 < 0, x1 6= r, x2 6= r

if we use the control law

u = k(x) =
√
r + b(r − x1) +

a√
x1 +

√
r
(r − x2) a > 0, b ≥ 0 (6.16)

The parameters are selected as a = 1, b = 0.5.
Let us now evaluate the expressions involved in the two approaches for com-

pensating for the leakage in the control law.

• Observer based adaptation: Since only x1 is directly affected by θ we use the
reduced observer

˙̂x1 = −√
x1 + u+ θ̂ + k1(x1 − x̂1)

˙̂
θ = k2(x1 − x̂1)

Computing the input-output description of this observer gives us

θ̂ =
k2

s2 + k1s+ k2
(sx1 − (−√

x1 + u)) =
k2

s2 + k1s+ k2
θ

if we replace sx1 with the expression for ẋ1. Thus, θ̂ is θ filtered through
a low-pass filter. Choosing the observer gains k1 = 1, k2 = 0.5 places the
observer poles in −0.5 ± 0.5i.

The additional term in the control law (6.6) becomes γo(r − x1). However,
since b = 0.5 > 0 in the nominal controller (6.16), we can regard this term
as included in the control law already, and we may select γo = 0 and use the
control law

u = k(x) − θ̂
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• Adaptive backstepping: The update rule (6.4b) for estimating θ becomes

˙̂
θ = γa(VxB)T = γa(x1 − r), γa > 0 (6.17)

With this, the control law (6.4a) becomes

u = k(x) + γa

∫ t

0

(r − x1(s))ds (6.18)

Thus, using adaptive backstepping in this case corresponds to adding integral
action from control error in the upper tank. Here we select γa = 0.3.

• Integral control: The results of Su et al. (2001) on nonlinear integral control
can also be used to suppress θ. Since x2 is the controlled variable this gives
the control law

u = k(x) + γi

∫ ∞

0

(r − x2(s))ds

Comparing with (6.3) we can interpret this as using the estimator

˙̂
θ = γi(x2 − r)

Here we select γi = 0.1.

The following scenario is simulated. The initial water level, which is also fed to
the observer, is 1m in both tanks. The control objective is for the lower tank x2 to
reach the reference level r = 4m and maintain this level. At t = 40 s a pipe leakage
of θ = −3m3/s occurs. At t = 70 s, an extra inflow of 1m3/s to the lower tank is
introduced. Note that this disturbance was not included in the model (6.15).

Figure 6.3 shows the simulation results. The observer based approach does the
best job in estimating and adapting to the pipe leakage θ. Note though that this
method is “blind” to the extra inflow at t = 70 s, which does not affect θ̂, and
gives a steady state error. Adaptive backstepping also does a good job in dealing
with the pipe leakage, but displays poor performance in dealing with the inflow
disturbance. This is due to that the control law (6.18) forces the upper tank to
maintain its nominal level x1 = 4.

The integral control approach is the least direct in estimating the pipe leakage
θ, since it relies only on x2 measurements, and gives the longest response time
(increasing γi yields very oscillatory responses). However, it is the only method
that achieves regulation of the lower tank level despite the extra inflow. To reduce
the oscillations, the control law could be adjusted to only integrate the difference
between x2 and the nominal closed loop x2 response that would result in the absence
of model errors and disturbances.

6.4.2 Magneti Levitation System

Consider next a magnetic levitation system, illustrated in Figure 6.4, in which an
electromagnet is used to counteract gravity and make a steel ball levitate. The
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Figure 6.3: Lower tank level (top), leakage estimate (middle), and control input (bottom)
when the observer based approach (solid), adaptive backstepping (dashed), and regular
integral control (dotted) is used to suppress external disturbances. All methods handle
the leakage at t = 40 s well, but only regular integral control suppresses the unmodeled
inflow in the lower tank at t = 70 s.
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Figure 6.4: A magnetic levitation system in which an electromagnet is used to make a
steel ball levitate.

dynamics of the levitating ball are

ẋ1 = x2

ẋ2 = g − F

m

where x1 = ball position (air gap between ball and magnet plus offset), x2 = ball
velocity, g = gravitational acceleration, F = magnetic force, and m = ball mass.
The system is equipped with a sensor measuring the air gap x1. The quality of
this sensor is high enough for the velocity x2 to be determined by numerically
differentiating the x1 signal.

A model of the magnetic force, based on Gentili and Marconi (2001) and Yang
and Miyazaki (2001), is given by

F = k
(u+ U0)

2

(x1 +X0)2

where u = voltage input and k, U0, and X0 are constants. The following param-
eter estimates were achieved from simple experiments using the built-in hardware
controller:

k/m = 23.9

X0 = 0.88

U0 = 0.46
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To control the airgap x1, a state feedback control law will not suffice, but needs
to be complemented with some form of integral action. First of all, the parameter
estimates above are rather uncertain. Thus, using a static control law will give
a steady state position error. Secondly, the system properties are time varying
and depend on how long the electromagnet has been switched on. This calls for
some kind of adaptivity in the controller. We also want to the controller to handle
variations in the mass resulting from, e.g., adding a second steel ball.

We therefore rewrite the dynamics as

ẋ =

(

0 1

0 0

)

x+

(

0

1

)

(v + θ)

where v = g − F/m is nominal acceleration based on the parameter estimates
above. The uncertainty θ represents additional, unmodeled contributions to the
net acceleration. This is a very coarse way to model uncertainties in the individual
parameters, but allows us to use the methods developed earlier in the chapter to
achieve zero steady state position error.

The observer based approach from Section 6.3 is used to estimate θ. For the
case θ = 0, the following PD-controller brings the ball position to the reference
level x1 = r:

v = k(x) = KP (r − x1) −KDx2

With KP = 14, KD = 100 this control law is optimal w.r.t. the LQ performance
index

min
v

∫ ∞

0

(196(x1 − r)2 + 9972x2
2 + v2)dt

which according to Corollary 6.1 means that the certainty equivalence controller

v = k(x) − θ̂ (6.19)

can be used. Using only x2 to estimate θ gives the observer

˙̂x2 = v + θ̂ + k1(x2 − x̂2)

˙̂
θ = k2(x2 − x̂2)

The observer gains k1 = 1.4, k2 = 1.0 place the observer poles in −0.7 ± 0.7i.
Solving for the true control input u gives

u =

√
m

k
(g − v)(x1 +X0) − U0 (6.20)

Figures 6.5 and 6.6 show the results from two different experiments. In these
figures, −x1 is plotted instead of x1 so that the curves illustrate the position of the
ball relative to the ground instead of relative to the electromagnet.

In the first experiment, a single steel ball was inserted under the electromagnet.
Measurement data were collected for a square wave reference signal using the con-
trol law (6.20), with and without the θ̂ bias correction term in (6.19). In Figure 6.5
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Figure 6.5: Top: Reference trajectory, −r (thin line), together with ball position, −x1,
when adaptation is turned on (thick, solid line) and off (dashed line). Bottom: Bias
estimate, θ̂. Without adaptation there is a steady state position error.

we see that without adaptation, there is a steady state position error (dashed line).
This error vanishes when the adaptation is switched on (solid line). The figure also
shows the bias estimate which varies between −0.45 and −0.85 depending on the
operating point.

In the second experiment, the reference signal was held constant while a second
steel ball was attached to an already levitating ball of the same size. The results
are shown in Figure 6.6. Again, the steady state error converges to zero as the bias
estimate picks up the effects of the second ball. Note that if the electromagnet had
no effect on this second ball, attaching this ball would correspond to a twice as
large gravitational pull as before, i.e., an increase in θ of 9.8. In the figure we see
that θ̂ only increases by about 5.

6.5 Conlusions

In this chapter we have proposed two methods for estimating and adapting to a con-
stant input disturbance, given a globally stabilizing control law for the undisturbed
system. The nonlinear observer approach gives a control law which efficiently sup-
presses the input disturbance θ, but may be “blind” to disturbances entering the
dynamics elsewhere. Adaptive backstepping results in adding integral control from
those states directly affected by the input disturbance. The resulting controller may
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Figure 6.6: Top: Reference trajectory, −r (thin line), and ball position, −x1 (thick line).
Bottom: Bias estimate, θ̂. Between t = 2 and t = 3, a second ball is attached to the first
one. As the bias estimate converges, the position error returns to zero.

behave poorly when other disturbances are introduced. In comparison, adding in-
tegral control from the controlled variables, as in Su et al. (2001), in general gives
slower suppression of input disturbances, but can also be used to suppress other
types of disturbances.
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Chapter 7

Introdution to Part II

This part of the thesis is about control allocation. Control allocation is useful
for control of overactuated systems, and deals with distributing the total control
demand among the individual actuators. Using control allocation, the actuator
selection task is separated from the regulation task in the control design.

To introduce the ideas behind control allocation, consider the system

ẋ = u1 + u2

where x is a scalar state variable, and u1 and u2 are control inputs. x can be
thought of as the velocity of a unit mass object affected by a net force v = u1 + u2

produced by two actuators. Assume that to accelerate the object, the net force
v = 1 is to be produced. There are several ways to achieve this. We can choose to
utilize only the first actuator and select u1 = 1, u2 = 0, or to gang the actuators
and use u1 = u2 = 0.5. We could even select u1 = −10, u2 = 11, although this
might not be very practical. Which combination to pick is the control allocation
problem.

This type of actuator redundancy can be found in several applications. In
aerospace control, effectors like aerosurfaces, thrust vectoring vanes, and reaction
control system jets are used to produce the net torque acting on the vehicle, gov-
erning its motion (Durham 1993, Shertzer et al. 2002). To perform dynamic posi-
tioning of marine vessels, a set of thrusters is used to produce translational forces
and yawing moment, in order to keep the vessel in place with the heading in the
desired direction (Lindfors 1993, Berge and Fossen 1997, Sørdalen 1997). In yaw
control for cars, the net yawing moment depends on the individual brake forces
generated by each wheel (Kiencke and Nielsen 2000, sec. 8.2). In cruise control for
trucks, the engine, the wheel brakes, and the retarder contribute to the net acceler-
ation (Axehill and Sjöberg 2003). Cement mixing is another example (Westerlund
et al. 1980, Lundán and Mattila 1974). Here the composition of the cement raw
meal, which is to be held constant, is governed by the output from five different
silos containing raw material. Since the resulting composition is characterized by
only three composition ratios, there is a certain degree of freedom.

105
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Figure 7.1: Control system structure when control allocation is used. The control system
is made up by a control law, specifying which total control effect, v, should be produced,
and a control allocator, which distributes this control demand among the individual actua-
tors, u. In the system, the actuators generate a total control effect, vsys, which determines
the system behavior. If the control allocation is successful, vsys = v.

Today, control allocation is a research topic in aerospace control and marine
vessel control.

For these types of overactuated systems, it is possible to split the control design
into the following two steps.

1. Design a control law specifying which total control effort to be produced (net
torque, force, etc.).

2. Design a control allocator that maps the total control demand onto individual
actuator settings (commanded aerosurfaces deflections, thrust forces, etc.).

Figure 7.1 illustrates the configuration of the overall control system.
So why should the control design be split into two separate tasks? In nonlinear

control theory the separation comes naturally with design methods like feedback
linearization and backstepping. The resulting control laws specify which total
control effect to produce but not how to produce it, and hence the need for control
allocation arises. In linear control theory, there is a wide range of control design
methods, like LQ design and H∞ control, which perform control allocation and
regulation in one step (Zhou et al. 1996). Thus, the usefulness of control allocation
for linear systems is not so obvious.

There are however other, more practical reasons to use a separate control allo-
cation module, even for linear systems. One benefit is that actuator constraints can
be taken into account. If one actuator saturates, and fails to produce its nominal
control effect, another actuator may be used to make up the difference. This way,
the control capabilities of the actuator suite are fully exploited before the closed
loop performance is degraded (Durham 1993). The way the system performance
degrades can also be affected. For example, in flight control, it might be crucial to
maintain yaw control performance to avoid yaw departure, while roll control may
be less important (Enns 1998).

Another benefit is that reconfiguration can be performed if the effectiveness
of the actuators change over time, or in the event of an actuator failure, without
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having to redesign the control law (Eberhardt and Ward 1999a, Wise et al. 1999).

A third major benefit is that the actuator utilization can be treated indepen-
dently and can be optimized for the application considered. The actuator redun-
dancy can be used for several purposes. Most commonly, the extra degrees of
freedom are used to optimize some secondary objective, like total aerosurface de-
flections, drag, wing load, or radar signature in aircraft applications (Virnig and
Bodden 1994, Wise et al. 1999, Eberhardt and Ward 1999a, Buffington 1997), or
total thrust in ship control applications (Lindfors 1993, Sørdalen 1997). Another
possibility is to include filtering in the control allocation procedure, to obtain dif-
ferent control distributions among the actuators at different frequencies (Davidson
et al. 2001, Papageorgiou et al. 1997).

The remainder of this introductory chapter is organized as follows. In Sec-
tion 7.1, we formalize the control allocation problem, investigate its properties and
introduce some notation. In Section 7.2 we investigate to which classes of systems,
linear and nonlinear, that control allocation can be applied in order to resolve ac-
tuator redundancy, and also point out two obstacles to using control allocation.
Existing methods for control allocation are surveyed in Section 7.3, and in Sec-
tion 7.4 corresponding numerical methods are presented. Finally, in Section 7.5,
the contents of the remaining chapters on control allocation are outlined.

7.1 The Control Alloation Problem

Publications on control allocation are almost exclusively application driven. As a
result, the notion and terminology used depend on the application in mind. In this
section, an effort is made to develop a generic statement of the control allocation
problem, and to introduce proper notation and terminology to be used throughout
this thesis.

Mathematically, a control allocator1 solves an underdetermined, typically con-
strained, system of equations. The input to the control allocator is the total control
effect to be produced, the virtual control input2 v(t) ∈ R

k. The output of the con-
trol allocator is the true control input u(t) ∈ R

m, where m > k.

Given v(t), u(t) is sought such that

g(u(t)) = v(t) (7.1)

where g : R
m 7→ R

k is the mapping from the true to the virtual control input in
the system to be controlled. In the control allocation literature, the linear case is
almost exclusively studied, for which (7.1) becomes

Bu(t) = v(t) (7.2)

where the control effectiveness matrix B is a k ×m matrix with rank k.

1Also known as control mixer, control blender, control selector, or control distributor.
2Also known as generalized control input or pseudo-control input.
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To incorporate actuator position constraints we require that

umin ≤ u(t) ≤ umax (7.3)

where the inequalities apply componentwise. If actuator rate constraints also exist,
we further require that

ρmin ≤ u̇(t) ≤ ρmax (7.4)

Since the control allocator is part of a digital control system, it is reasonable to
approximate the time derivative as

u̇(t) ≈ u(t) − u(t− T )

T
(7.5)

where T is the sampling time (Durham and Bordignon 1996). This enables the rate
constraints to be rewritten as position constraints. Combining (7.3)-(7.5) yields

u(t) ≤ u(t) ≤ u(t) (7.6)

where
u(t) = max{umin, u(t− T ) + Tρmin}
u(t) = min{umax, u(t− T ) + Tρmax}

(7.7)

are the overall position constraints at time t.
Equation (7.2) constrained by (7.6) constitute the standard formulation of the

linear control allocation problem. Dropping the time dependence yields

Bu = v (7.8a)

u ≤ u ≤ u (7.8b)

which is the standard constrained linear control allocation problem.
The solution set is given by the intersection between the hyperplane Bu = v

and the position constraints hyperbox u ≤ u ≤ u. Since both of these are convex
sets, the solution set will be convex. Thus, trying to solve (7.8) has three possible
outcomes:

1. There is an infinite number of solutions,

2. there is one unique solution, or

3. no solution exists.

Example 7.1 Consider two control inputs, u1 and u2, contributing to one virtual
control input, v, through

v = 2u1 + u2
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Figure 7.2: Virtual control demand 2u1 + u2 = v for different values of v (black lines),
and position constraints −1 ≤ u1, u2 ≤ 1 (shaded box). For v = 1 there are infinitely
many solutions, for v = 3 there is one unique solution, and for v = 5 there is no feasible
solution.

Let there be position constraints given by

−1 ≤ u1 ≤ 1

−1 ≤ u2 ≤ 1

Using the notation of (7.8) we have

B =
(

2 1

)

, u =

(

−1

−1

)

, u =

(

1

1

)

Figure 7.2 illustrates the situation for different values of v. For v = 1 there is
a set of solutions given by the part of the line tagged “v = 1” that satisfies the
box constraints. For v = 3, u = (1 1)T is the only solution. For v = 5 there is
no solution to the problem, i.e., there is no actuator combination that yields the
desired virtual control input.

In case 1, there is some degree of freedom in choosing the control input while
satisfying (7.8), i.e., without affecting the closed loop dynamics. As we will see
in our survey of control allocation methods in Section 7.3, this freedom can be
used for example to optimize some objective like minimum use of control input
(optimization based control allocation), or to prevent the use of certain actuators
until all other actuators have saturated (daisy chaining).

In case 2, where there is one unique control input that produces the desired
virtual control input, the task for the control allocator is to find this control input.
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In case 3, the desired virtual control input cannot be produced, and one has to
settle for a different (typically “lower”) value of v which is attainable. This is known
as command limiting. Buffington (1997) suggests to decompose v into a number
of terms with different priority depending on their function (e.g., stabilization,
reference following, etc.), and then start by limiting the term with the lowest
priority. Bodson and Pohlchuk (1998) suggest a number of alternatives including
scaling the reference inputs and reducing the control requirements, e.g., the closed
loop bandwidth.

Command limiting can also be implemented as a part of the control allocation
scheme. This is done by letting the control allocator determine a feasible u such
that the produced virtual control input, Bu, approximates v well in some sense.
The approximation can be such that some, possibly weighted, norm of Bu − v
is minimized (optimization based control allocation), or such that u produces the
maximum virtual control input possible in the direction of v (direct control alloca-
tion).

7.2 When Can Control Alloation Be Used?

So when can control allocation be used to resolve actuator redundancy? Essentially,
for control allocation to be applicable, the system needs to be separable as shown in
Figure 7.1. This is not the case for all systems where the number of control inputs
exceeds the number of controlled variables. Let us therefore investigate to which
classes of linear and nonlinear systems that control allocation can be applied.

7.2.1 Linear Systems

Consider first a linear dynamic system on state space form,

ẋ = Ax+Buu (7.9)

where x ∈ R
n is the state vector, u ∈ R

m is the control input, A ∈ R
n×n, and Bu ∈

R
n×m. Assume that Bu has rank k < m. Then Bu has a nullspace of dimension

m− k in which we can perturb the control input without affecting ẋ. Thus, there
are several choices of control input that gives the same system dynamics. This is
the type of redundancy that can be resolved using control allocation.

Since Bu is rank deficient it can be factorized as

Bu = BvB (7.10)

where Bv ∈ R
n×k and B ∈ R

k×m both have rank k. Introducing the virtual control
input

v = Bu

where v ∈ R
k, we can rewrite the systems dynamics (7.9) as

ẋ = Ax+Bvv (7.11)
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Now, control design can be performed in two steps, as outlined in the introduction.
In cases where Bu is not rank deficient, but ill-conditioned, Virnig and Bodden

(1994) suggest to use the singular value decomposition (see Appendix B) to ap-
proximately factorize Bu and enable for control allocation to be used. The authors
apply this idea to aircraft flight control design.

7.2.2 Nonlinear Systems

The same ideas can be used to deal with nonlinear systems of the form

ẋ = f(x, g(x, u)) (7.12)

where f : R
n × R

k 7→ R
n and g : R

n × R
m 7→ R

k where k < m. Introducing the
virtual control input

v = g(x, u) (7.13)

where v ∈ R
k, we can rewrite (7.12) as

ẋ = f(x, v)

and again use a two-step control design.
A special class of nonlinear systems is systems of the form

ẋ = f(x) + gu(x, u)

gu(x, u) = Bvg(x, u)

where Bv ∈ R
n×k and f and g are nonlinear mappings as above. Again introducing

v = g(x, u) yields

ẋ = f(x) +Bvv

Note that these resulting dynamics are affine in v, which simplifies many nonlinear
design methods like, for example, backstepping.

Solving (7.13) for u, while considering the actuator constraints (7.8b), amounts
to performing constrained nonlinear programming. Since control allocation is to
be performed in real time, this may not be computationally feasible. One way
to resolve this problem is to approximate (7.13) locally with an affine mapping.
Linearizing g around u0 yields

g(x, u) ≈ g(x, u0) +
∂g

∂u
(x, u0)

︸ ︷︷ ︸

B(x)

·(u− u0) (7.14)

which leads to the linear control allocation problem

v̄ = B(x)u



112 Chapter 7 Introdution to Part II

where

v̄ = v − g(x, u0) +B(x)u0 (7.15)

and methods for linear control allocation can be used. In Bordignon (1996, chap. 12)
and Doman and Oppenheimer (2002), u0 is picked as the previously applied control
input, u(t− T ).

7.2.3 Obstales

In the preceding sections we have discussed techniques for dividing a control de-
sign for an overactuated system into a feedback design part and a linear control
allocation part. In this section we discuss two important obstacles to using these
techniques.

Atuator Dynamis

A first obstacle is actuator dynamics. Consider the linear case and assume that the
system description (7.9) does not capture the dynamics of the actuators. That is,
u represents the true actuator positions rather than the commanded ones. If the
actuators are independently controlled and have first order dynamics, the actuator
dynamics can be described by

u̇ = Ba(ucmd − u) (7.16)

where Ba is a diagonal m×m matrix and ucmd ∈ R
m represents the commanded

actuator positions, i.e., the true control input. Combining (7.9) and (7.16) we get

(

ẋ

u̇

)

=

(

A Bu

0 −Ba

)(

x

u

)

+

(

0

Ba

)

ucmd

We note that the resulting B-matrix, (0 BT
a )T , has full column rank (m) and

therefore cannot be factorized into two matrices with lower dimension as in (7.10).
Hence, control allocation cannot be used directly.

Actuator dynamics are certainly present in aircraft applications where v typi-
cally represents the aerodynamic moments to be produced in pitch, roll, and yaw,
and ucmd and u represent the commanded and actual deflections of the aerody-
namics control surfaces, respectively.

The most common solution to the problem is to simply neglect the actuator
dynamics, and consider u to be the actual control input in (7.9). This works
as long as the closed loop system is designed to be substantially slower than the
actuator servo systems, since then (7.16) can be approximated by the steady state
relationship u = ucmd.

In cases where this assumption breaks down, Venkataraman and Doman (2001)
and Page and Steinberg (2002) propose to speed up the actuator dynamics by
augmenting the existing actuator servo with an additional controller.
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Figure 7.3: Aerodynamic moment coefficients for the ADMIRE model in roll, Cl (left),
and in pitch, Cm (right), as functions of the left outboard elevon deflection, δloe, at
2000 m, Mach 0.8. The fact that Cl(δloe) is nonmonotonic may be a problem if control
allocation based on local linearization is used.

Nonmonotoni Nonlinearities

Nonmonotonic nonlinearities in the mapping (7.13) from u to v constitute another
important obstacle (Doman and Oppenheimer 2002). If the mapping is not mono-
tonic, the linearization (7.14) may be misleading.

There are several examples where nonmonotonic mappings appear in aircraft
control allocation. Figure 7.3 shows an example of this for the ADMIRE model
(ADMIRE ver. 3.4h 2003), based on aerodata from the Generic Aerodata Model
(GAM) (Backström 1997). In the figure, the aerodynamic moment coefficients
in roll, Cl, and pitch, Cm, are plotted as functions of the left outboard elevon
deflection, δloe, at 2000 m, Mach 0.8. While Cm(δloe) is monotonically decreasing,
Cl(δloe) is nonmonotonic. Consider now, for example, a situation where δloe(t −
T ) = −25◦ and the new roll demand is Cl(t) = 0. Linearizing Cl around −25◦,
as in (7.14), tells us that to increase Cl, δloe should be decreased. However, since
∣
∣δloe

∣
∣ ≤ 30◦ is a constraint, we will fail to achieve Cl = 0 with this strategy.

A remedy for this problem, proposed by Doman and Oppenheimer (2002), is to
alter the position limits and use only the monotonic part of the mapping, in our case
−21◦ ≤ δloe ≤ 13◦. However, as noted by the authors, altering the position limits
may be undesirable in a multivariate case where using the full control authority
may be beneficial for producing some other virtual control component. In our case
we see that using the full δloe range is beneficial for producing pitching moment.

Another example of a nonmonotonic mapping is given in Bordignon (1996,
chap. 12), based on F-18 simulation data. Here, the yawing moment coefficient,
Cn, is plotted as a function of the right aileron deflection, δra. The result is a
V-shaped curve with Cn > 0 for all values of δra except δra = 0.
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7.3 Control Alloation Methods

Let us now survey the most common methods for control allocation appearing in
the literature, all of which consider the constrained linear control allocation prob-
lem (7.8). Many proposed “methods” correspond to different ways of computing
the solution for a certain control allocation objective, rather than different objec-
tives. In this presentation, the aim is to make a clear distinction, for each control
allocation method, between which solution is sought and how the solution can be
computed numerically. The latter issue is the topic of Section 7.4.

7.3.1 Optimization Based Control Alloation

Optimization based methods rely on the following pragmatic interpretation of the
control allocation problem. Given a virtual control command v, determine a feasible
control input u such that Bu = v. If there are several solutions, pick the best one.
If there is no solution, determine u such that Bu approximates v as well as possible.

Desription of Method

As a measure of how “good” a solution or an approximation is, the lp norm is used.
For a particular p, we will refer to this as lp-optimal control allocation. The lp
norm of a vector u ∈ R

m is defined as

∥
∥u
∥
∥

p
=

(
m∑

i=1

∣
∣ui

∣
∣
p

)1/p

for 1 ≤ p ≤ ∞ (7.17)

The optimal control input is given by the solution to a two-step optimization prob-
lem.

u = argmin
u∈Ω

∥
∥Wu(u− ud)

∥
∥

p

Ω = arg min
u≤u≤u

∥
∥Wv(Bu − v)

∥
∥

p

(7.18)

Here, ud is the desired control input and Wu and Wv are weighting matrices.
Equation (7.18) should be interpreted as follows: Given Ω, the set of feasible
control inputs that minimize Bu − v (weighted by Wv), pick the control input
that minimizes u− ud (weighted by Wu).

In (7.18), ud, Wu, and Wv are design parameters. ud is the desired control input
to which solution of (7.18) is attracted if there is no unique feasible minimizer of
∥
∥Wv(Bu − v)

∥
∥

p
. This situation certainly occurs when (7.8) has several solutions,

but may also occur when (7.8) has no solution, as noted by Bodson (2002). The
choice of ud may correspond to minimum control deflections, drag, radar signature,
or wing loading. Wu allows for actuator prioritization, i.e., which actuators should
be used primarily. Similarly, Wv allows for prioritization among the virtual control
inputs when (7.8) has no solution. In the aircraft case, for example, this corresponds
to prioritizing among the moments produced in pitch, roll, and yaw.
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On the Choie of Norm

The l2 norm is the most frequently used (Virnig and Bodden 1994, Eberhardt and
Ward 1999a, Buffington 1997, Enns 1998, Reiner et al. 1995, Snell et al. 1992). This
is much due to that the unconstrained minimum norm control allocation problem

min
u

∥
∥u
∥
∥

2

subject to Bu = v

has an explicit solution given by

u = B†v

where B† = BT (BBT )−1 is the pseudoinverse of B, see Appendix B. A similar
result can be derived for the general case, ud 6= 0, Wu 6= I, see Lemma B.1. This
fact is exploited in many of the numerical schemes for computing the solution to
(7.18), see Section 7.4.3.

Using the l1 norm has also been proposed (Lindfors 1993, Enns 1998, Buffington
et al. 1999, Ikeda and Hood 2000, Shertzer et al. 2002). A motivation for this choice
is that in general, a linear program can be solved faster than a quadratic one.

Let us compare the characteristics of these two norms by applying optimization
based control allocation to the system in Example 7.1.

Example 7.2 Consider the control allocation problem in Example 7.1 where B =
(2 1) and let v = 1 be the desired virtual control input. Let the optimization
objective be given by (7.18) with ud = (0 0)T , Wu = I, Wv = 1. Since v = 1 is
attainable, (7.18) reduces to

min
u

∥
∥u
∥
∥

p
(7.19a)

subject to Bu = 1 (7.19b)

u ≤ u ≤ u (7.19c)

Figure 7.4 illustrates the situation. The optimal solution is the point that lies
inside the box (7.19c), on the line (7.19b), and on the level curve that corresponds
to the lowest possible value of

∥
∥u
∥
∥

p
. For p = 1 we get

u =

(

0.5

0

)

while for p = 2, the optimal solution is given by

u = B† · 1 =

(

0.4

0.2

)

The example points out some characteristics of the two norms.
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Figure 7.4: Virtual control demand Bu = 1 (thick line) and control constraints u ≤ u ≤ u
(shaded box) along with level curves (thin lines) of the cost function

∥
∥u
∥
∥

p
for p = 1 (left)

and p = 2 (right). The black dots mark the optimal solutions.

• Both norms favor the use of effective control inputs. In the example, u1 is
more effective than u2 since it has a higher entry in B. Consequently, u1 > u2

in both solutions. Note that in general the solution also depends on the choice
of Wu.

• The l2 norm distributes the virtual control demand among all of the control
inputs, while the l1 solution utilizes as few control inputs as possible to satisfy
the virtual control demand. In general, using the l1 norm, all but k control
inputs will be either saturated or at their preferred position (given by ud)
(Enns 1998, Bodson 2002).

• The l2 solution varies continuously with the problem parameters, while the
l1 solution does not. For example, with B = (2 b2) in the example, where
b2 ≥ 0, we get the l2 solution

u = B† =
1

4 + b22

(

2

b2

)

which varies continuously with b2. The l1 solution,

u =







(

0.5 0

)T

if b2 < 2
(

0 b−1
2

)T

if b2 > 2

achieved by inspecting Figure 7.4, has a discontinuity at b2 = 2 for which the
optimal solution is not unique.
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• If Wu is nonsingular, (7.18) has a unique solution for p = 2. For p = 1,
this is not always the case, as shown above. In both cases, Ω is convex since
it results from minimizing a convex function over a convex set. For p = 2,
∥
∥Wu(u− ud)

∥
∥

p
is strictly convex which leads to a unique minimum.

7.3.2 Diret Control Alloation

Direct control allocation was introduced by Durham (1993). In direct control
allocation, the choice of control input is made unique by geometric reasoning.

Desription of Method

In the original papers on direct control allocation (Durham 1993, 1994b), the
method was described as follows. Given a virtual control demand v, first find
the feasible control input u∗ that generates the virtual control input v∗ = Bu∗ of
maximum magnitude in the direction of v. Let

a =

∥
∥v∗
∥
∥

2∥
∥v
∥
∥

2

and select the control input u according to

u =







1
au

∗ if a > 1

u∗ if a ≤ 1
(7.20)

Bodson (2002) condensed this verbal description into the following optimization
problem. Let a, u∗ solve

max
a,u

a

subject to Bu = av

u ≤ u ≤ u

(7.21)

Then assign u as in (7.20).

Example 7.3 Consider Example 7.1 and let v = 1. Since v is scalar, finding the
maximum virtual control input in v’s direction corresponds to finding the largest
positive v that can be generated. Figure 7.5 shows the set of feasible control inputs,
−1 ≤ u1, u2 ≤ 1, mapped onto the set of feasible virtual control inputs, −3 ≤ v ≤ 3.
This gives us

v∗ = 3

which is achieved for

u∗ =

(

1

1

)
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(a) Control input, u.

B7−→
−4 −3 −2 −1 0 1 2 3 4

v

(b) Virtual control input, v.

Figure 7.5: The set of feasible control inputs (left) are mapped onto a set of feasible
virtual control inputs (right). The black dots in (a) and (b) represent u and v, while the
stars represent u∗ and v∗.

u∗ and v∗ are represented by stars in Figure 7.5(a) and 7.5(b), respectively. Further,
a = 3/1 > 1 gives the control input

u =
1

3
u∗ =

(

1/3

1/3

)

according to (7.20).

Comments

Let us make a few comments regarding the direct control allocation method.

• There are no design variables to be selected. The solution to the control allo-
cation problem is completely determined by the control effectiveness matrix
B, and the control constraints u and u.

In Bordignon and Durham (1995, chap. 13), a modified version of direct
allocation was developed in which the control redundancy is used for function
optimization by taking incremental steps along the gradient of some user
specified function. In Durham and Bolling (1997), these ideas were used for
drag minimization.

• For a > 1, no element in u will be saturated (Durham 1994b). That is to
say, if v lies strictly inside the set of feasible virtual control inputs, u will lie
strictly inside the set of feasible control inputs.
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• Direct control allocation performs command limiting by direction preserva-
tion. If v is not feasible, the generated virtual control input is Bu = a−1v,
which has the same direction as v, but smaller magnitude.

• The control constraints u ≤ u ≤ u must include the origin (Bodson 2002).
That is, u = 0 must be a feasible control input. This follows from the con-
struction of u in (7.20). When rate constraints are included, as in (7.7), this
is typically not the case. A modified method to also handle rate constraints
was developed in Durham and Bordignon (1996).

• The choice of u∗ is not always unique (Durham 1994a). For example, consider
three control inputs, all constrained by −1 and 1, producing two virtual
control inputs

v =

(

1 1 0

0 0 1

)

u

For v = (0 1)T , (7.21) is solved by a = 1, u∗ = (w − w 1)T , where
−1 ≤ w ≤ 1. The reason why u∗ is not unique is that the virtual control
inputs produced by u1 and u2 are collinear. Durham (1994a) showed that
this problem occurs if not all k × k submatrices of B have full rank.

Methods to make the choice of u∗ unique include perturbing the elements of
B to avoid rank deficiency (Durham 1994a), and averaging over (a subset of)
the possible control inputs (Petersen and Bodson 2000), which in our case
would lead to u∗ = (0 0 1)T .

7.3.3 Daisy Chain Control Alloation

In daisy chain control allocation (Buffington and Enns 1996, Bordignon 1996,
Durham and Bordignon 1996), the allocator suite is divided into groups which
are successively employed to generate the total control effort.

Desription of Method

To begin with, the m control inputs are divided into M groups,

u =







u1

...

uM







after possibly reordering the control inputs. The control effectiveness matrix is
partitioned accordingly,

B =
(

B1 . . . BM

)

The control allocation problem (7.8a) can now be restated as solving

B1u
1 +B2u

2 + · · · +BMuM = v
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The daisy chain idea is to first try and satisfy this virtual control demand using
only the first group of actuators by solving

B1u
1 = v (7.22)

for u1. If rankB1 ≥ dim v = k, (7.22) is solved by

u1 = P1v (7.23)

where P1 is any right inverse of B1, see Appendix B. If rankB1 < k, v can, in
general, not be produced using only the control inputs in u1. In this case, we also
pick a solution of the form (7.23), but have to settle for a P1 producing only an
approximate solution to (7.22).

If u1 satisfies (7.22), as well as the actuator position and rate constraints, the
allocation was successful and the procedure halts. Otherwise, u1 is saturated ac-
cording to its position and rate constraints,

u1 = satu1(P1v)

and the second group of actuators is employed by solving

B2u
2 = v −B1u

1 (7.24)

for u2, yielding some, possibly approximate, solution u2 = P2(v−B1u1). Again, if
u2 fails to satisfy (7.24) or violates some constraint, the solution is saturated and
u3 is employed to make up the difference. This procedure is repeated until either
the virtual control demand is met, or all actuator groups have been employed.

The daisy chain control allocation procedure can be summarized as

u1 = satu1(P1v)

u2 = satu2

(

P2

(
v −B1u

1
))

...

uM = satuM

(

PM

(
v −

M−1∑

i=1

Biu
i
)
)

(7.25)

where BiPi = I, if possible, and satui(·) saturates its argument with respect to
the position and rate constraints of actuator group i, for i = 1, . . . ,M . Figure 7.6
illustrates the procedure for M = 2.

Example 7.4 Consider again Example 7.1 where B = (2 1). Assume that it is
preferable to use u1 for control, and that u2 should be used only if necessary. To
enforce this we use daisy chain control allocation with the two actuator groups

u1 = u1

u2 = u2
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Position and
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Figure 7.6: Daisy chain control allocation illustrated for the case of two control input
groups. u2 is nonzero only if the virtual control demand v cannot be produced using u1

alone.

with control effectiveness B1 = 2 and B2 = 1, respectively, which gives P1 = 1/2
and P2 = 1. The procedure thus becomes

u1 = u1 = satu1

(
1

2
v

)

u2 = u2 = satu2
(v − 2u1)

where

satu1
(x) = satu2

(x) =







−1 if x < −1

x if − 1 ≤ x ≤ 1

1 if x > 1

For v = 1 we get

u1 = satu1
(0.5) = 0.5

u2 = satu2
(1 − 2 · 0.5) = 0

Comments

• The design choices consist of the actuator groupings and the Pi matrices.
Note that if k actuators are placed in each group, and the resulting square
submatrices Bi have full rank, each Pi is uniquely determined by BiPi = I.

• The method may fail to produce virtual control inputs which are indeed
feasible (Bordignon 1996, chap. 6), (Bordignon and Durham 1995). In our
example though, where v is a scalar, the daisy chain method is able to produce
all attainable virtual control inputs, −3 ≤ v ≤ 3.
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• In aircraft applications, daisy chain control allocation is often used when
thrust vectoring (see Section 2.1.4) is available, see, e.g., Adams et al. (1994)
and Enns et al. (1994). Conventional control surfaces, such as elevator,
aileron, and rudder, are then primarily used for control, and the thrust vec-
toring vanes are used for auxiliary control.

7.4 Numerial Methods for Control Alloation

In the previous section, three different methods for control allocation were reviewed.
For daisy chain control allocation, (7.25) defines the method, including how to
actually compute the control input, u. For optimization based control allocation
and direct control allocation, (7.18) and (7.20)–(7.21) define the methods. However,
these expressions only specify which solutions are sought, and do not tell us how
to find them. In this section, we survey the literature for numerical methods for
optimization based and direct control allocation.

7.4.1 Optimization Based Control Alloation

Regardless of the choice of norm, a common trick is to approximately reformulate
the sequential optimization problem (7.18) as a weighted optimization problem,

uW = arg min
u≤u≤u

(∥
∥Wu(u − ud)

∥
∥

p

p
+ γ
∥
∥Wv(Bu− v)

∥
∥

p

p

)

(7.26)

To emphasize that primarily, Bu − v should be minimized, a large value of the
weighting factor γ can be used. In Björck (1996, p. 192) it is shown that for p = 2,

lim
γ→∞

uW (γ) = uS

where uS is the solution to (7.18). This reformulation allows the optimization to
be performed in one step, which may be more efficient than solving the origonal
sequential optimization problem.

7.4.2 l1-Optimal Control Alloation

First consider l1-optimal control allocation. In this case, (7.18) and (7.26) can be
rewritten as linear programming problems (Buffington et al. 1999, Bodson 2002),
which enables for standard linear programming tools to be used, such as the simplex
method (Luenberger 1984). Bodson (2002) considers the weighted formulation
(7.26) and proposes the revised simplex method (Luenberger 1984, pp. 59-65) to
exploit that m≫ k in control allocation applications. Ikeda and Hood (2000) also
use (7.26) and report the use of a Boeing in-house optimization scheme “similar to
simplex method”.
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7.4.3 l2-Optimal Control Alloation

For l2-optimal control allocation, there is a much richer selection of numerical
methods proposed.

Pseudoinverse Methods

Most existing methods can be classified as pseudoinverse methods. These methods
exploit the fact that if we disregard the actuator constraints, (7.18) reduces to

min
u

∥
∥Wu(u − ud)

∥
∥

2

subject to Bu = v

which, using Lemma B.1, has the closed form solution

u = (I −GB)ud +Gv

G = W−1
u (BW−1

u )†
(7.27)

where † is the pseudoinverse operator, see Appendix B. Different methods corre-
spond to different ways of adjusting the nominal solution (7.27) to the actuator
constraints.

Durham (1993) considers the case ud = 0, and poses the question whether there
is any G such that the pseudoinverse solution (7.27) is feasible for all attainable
values of v. Durham refers this set as the attainable moment3 subset (AMS).
Hence, is there a G such that (7.27) solves the control allocation problem for the
entire AMS? Durham shows that there is no such choice in general. Further, two
methods are proposed for finding the “best” G considering two different objectives.
One that allows the user to tailorG in different directions in v-space such that (7.27)
becomes feasible for certain values of v on the boundary of the AMS. The second
method determines the G that maximizes the part of the AMS in which feasible
solutions are computed.

Snell et al. (1992) suggest a much simpler way to determine G to avoid infeasible
solutions. Each control input is weighted with the inverse of its maximum value
(assuming symmetric position limits and no rate limits), corresponding to

Wu = diag(1/u1, . . . , 1/um)

This way, actuators with large operating regions are used more than those with
stricter position limits.

As stated above, the pseudoinverse solution (7.27) will not be feasible for all
attainable virtual control inputs v, and certainly not for unattainable virtual control
inputs. Various ways to accommodate to the constraints have been proposed. The
simplest alternative is to truncate (7.27) by clipping those components that violate
some constraint. However, since this typically causes only a few control inputs

3The word moment refers to the fact that Durham discusses the problem from an aircraft
control perspective.
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to saturate, is seems natural to use the remaining control inputs to make up the
difference.

Virnig and Bodden (1994) propose a redistributed pseudoinverse (RPI) scheme,
in which all control inputs that violate their bounds in the pseudoinverse solution
(7.27) are saturated and removed from the optimization. Then, the control alloca-
tion problem is resolved with only the remaining control inputs as free variables.

Bordignon (1996) proposes an iterative variant of RPI. Instead of only redis-
tributing the control effect once, the author proposes to keep redistributing the
control effect until either, the pseudoinverse solution is feasible, or, all control
inputs are saturated. This is known as the cascaded generalized inverse (CGI)
approach. It is notable that the interpretation of RPI is ambiguous. In Eberhardt
and Ward (1999b) and Bodson (2002), RPI is described as iterative, and then co-
incides with CGI. Enns (1998) also suggests to compute the pseudoinverse solution
iteratively, as in CGI, but to only saturate one control input per iteration.

What is interesting, and important to point out, is that neither of these re-
distribution schemes are guaranteed to find the optimal solution to the original
allocation problem (7.18), or even to achieve Bu = v when possible (Bodson 2002).
Let us illustrate this with a simple example.

Example 7.5 Let us apply CGI (Bordignon 1996) to the control allocation problem

2u1 + u2 =
(

2 1

)

︸ ︷︷ ︸

B

u = v

constrained by
(

0

0

)

≤ u ≤
(

1

2

)

with the design parameters in (7.18) set to ud = (0 0)T , Wu = I, Wv = 1. We
will study the case of v = 3.5, illustrated in Figure 7.7(a).

Computing the pseudoinverse solution (7.27) yields the first iterate

u1 = B†v =

(

1.4

0.7

)

(7.28)

Here, u1 is infeasible and saturates at u1 = 1. Hence, the control allocation problem
is resolved with only u2 as a free variable. This corresponds to replacing the original
B matrix by B̃ = 1. Further, the virtual control input that should be produced by
u2 is given by ṽ = v − 2u1 = 1.5. The solution is given by

u2 = B̃†ṽ = 1.5

which is feasible, and the algorithm stops.
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Figure 7.7: Illustration of the cascaded generalized inverse (CGI) method. The lines rep-
resents the virtual control demand Bu = v, the boxes represent the actuator constraints,
and the circles are the level curves of

∥
∥Wu(u−ud)

∥
∥. Although the optimal solution is the

same in both cases, it is only found in the first case (Figure 7.7(a)).

In this case, CGI was successful since the output,

u =

(

1

1.5

)

(7.29)

is the true optimal solution. Let us now look at a case where CGI fails.

Example 7.6 Consider the same allocation problem as in the previous example,
but let the constraints instead be

(

0

1

)

≤ u ≤
(

1

2

)

see Figure 7.7(b). Such tight position constraints could result from including rate
constraints as in (7.7). Note that this is a subset of the constraints in Example 7.5.
Hence, (7.29) is still the optimal solution.

By construction, CGI starts by neglecting the constraints. This means that the
first iterate will again be given by (7.28). This time, both control inputs violate
their position constraints. Saturating with respect to the constraints yields

u =

(

1

1

)
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Since no free variables remain, the algorithm stops. Note that the CGI solution
fails to meet the virtual control demand and only achieves v = Bu = 3.

In Chapter 8 we will return to this example and show how active set methods
can be used to determine the optimal solution.

Fix-point Method

Burken et al. (2001) propose a fix-point iteration algorithm, based on Barnard
(1976) and Lu (1996), for solving the weighted l2-optimal control allocation problem
(7.26). The authors only consider the case of ud = 0 in which the algorithm becomes

uk = sat
(

(1 − ε)ωBTQ1v − (ωH − I)uk−1
)

, k = 1, . . . , N

where N is the maximum number of iterations and

ε =
1

γ + 1

Q1 = WT
v Wv

Q2 = WT
u Wu

H = (1 − ε)BTQ1B + εQ2

w =
∥
∥H
∥
∥
−1

F
=

( m∑

i=1

m∑

j=1

h2
ij

)− 1

2

where hij are the elements of H .
∥
∥H
∥
∥

F
is known as the Frobenius norm of H

(Golub and Van Loan 1996). sat(·) is a vector saturator with components

sati(u) =







ui, ui < ui

ui, ui ≤ ui ≤ ui

ui, ui > ui

, i = 1, . . . ,m

The algorithm can be interpreted as a gradient search method, where w decides
the step length, and where the iterates are clipped to satisfy the constraints.

To improve the efficiency, the authors suggest to select the starting point u0

as the control input from the previous sampling instant, i.e., u0 = u(t − T ). As
N → ∞, the outcome uN converges to the unique optimum of (7.26).

Ellipsoidal Constraints Method

Enns (1998) presents an approximate method for solving (7.18), where the 2m box
constraints (7.8b) are replaced by one ellipsoidal constraint. The new problem is
shown to be solved efficiently using a bisection method.
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Ative Set Methods

So far, only numerical methods from the control allocation literature have been
listed. However, since (7.18) and (7.26) are regular least squares problems, methods
from numerical optimization are also of interest.

In the standard optimization literature, so called active set methods are often
recommended for small to medium-scale quadratic programming problems, see,
e.g., (Björck 1996, Nocedal and Wright 1999). In most aircraft control allocation
applications there are k = 3 virtual control inputs to be produced (in pitch, roll,
and yaw), while the number of actuators, m, is typically about 10. Hence, active
set methods could be a viable alternative for control allocation. Despite this, there
are to the author’s knowledge no papers published on active set methods for l2-
optimal control allocation. Note that in the l1-case, the simplex method, which is
an active set method, has been proposed for control allocation, see Section 7.4.2.

For an active set method to be efficient, it should make use of the special
structure of the least squares problems at hand, in particular the fact that the
constraints are so called box constraints. An example of this is Lötstedt (1984),
who considers a special case of the sequential least squares problem (7.18), namely
the minimal least squares problem

u = arg min
u∈Ω

∥
∥u
∥
∥

Ω = arg min
u≤u≤u

∥
∥Wv(Bu − v)

∥
∥

(7.30)

where the minimal length solution is picked if
∥
∥Wv(Bu−v)

∥
∥ does not have a unique

feasible minimizer. Lötstedt suggests the use of active set methods for solving the
problem.

The sequential least squares problem (7.18) can not always be cast into a mini-
mal least squares problem like (7.30) since in the new variables ũ = Wu(u−ud) the
actuator constraints will in general no longer be simple box constraints. However,
if Wu is a diagonal matrix, corresponding to pure scaling of the variables, the box
constraint property is preserved.

Efficient active set methods for control allocation is the topic of Chapter 8.

7.4.4 Diret Control Alloation

Let us now consider direct control allocation, and review numerical methods for
finding the solution to (7.20)-(7.21).

For k = dim v = 3, Durham has proposed a number of methods (Durham
1994b,a, 1999, 2001), all of which are based on the notion of an attainable mo-
ment subset (AMS). The AMS is the k-dimensional image of the m-dimensional
hyperbox (7.8b) mapped through the control effectiveness matrix B. Most of the
methods solve the problem by associating the faces of the AMS with the faces of
the constraints hyperbox. Extensions of these ideas to k ≥ 4 can be found in Beck
(2002).



128 Chapter 7 Introdution to Part II

Recently, Bodson (2002) proposed to use the simplex method to solve the direct
allocation problem for arbitrary values of k.

7.5 Outline of Part II

In the remaining three chapters of this part we deal with different aspects of l2-
optimal control allocation for the linear control allocation problem (7.8). Flight
control examples are used to illustrate the presented ideas and results. The chapters
deal with three different subjects and can be read independently of eachother.

In Chapter 8 we investigate the use of active set methods to numerically com-
pute the optimal solution. Efficient algorithms, that exploit the special structure
of the control allocation problem, are developed. The algorithms are shown to be
similar in complexity with the pseudoinverse methods in Section 7.4.3.

Chapter 9 is devoted to dynamic control allocation. The performance index in
(7.18) is extended with a term to also penalize the actuator rates. This results in
a frequency dependent distribution of control among the actuators which can be
tuned using weighting matrices.

Finally, in Chapter 10 the relationship between control allocation and linear
quadratic control design is investigated, in terms of resolving actuator redundancy.
It is shown that for a certain class of linear systems, they are in fact equivalent in
that they give the same design freedom.



Chapter 8

Ative Set Methods for

Optimization Based Control

Alloation

The control allocation problem is often stated as a constrained least squares prob-
lem, see Section 7.3.1. Despite this, standard tools for constrained programming
from numerical optimization are typically not used to find the solution. Instead,
numerous approximate schemes have been proposed, such as the pseudoinverse
methods and the fix-point method reviewed in Section 7.4.3, none of which are
guaranteed to find the optimum in a finite number of iterations.

In this chapter we investigate the use of active set methods to solve the l2-
optimal control allocation problem (7.18):

u = arg min
u∈Ω

∥
∥Wu(u− ud)

∥
∥

Ω = arg min
u≤u≤u

∥
∥Wv(Bu − v)

∥
∥

(8.1)

where
∥
∥ ·
∥
∥ =

∥
∥ ·
∥
∥

2
for notational convenience. Active set methods are used

in many of today’s commercial solvers for constrained quadratic programming,
and can be shown to find the optimal solution in a finite number of iterations
(Nocedal and Wright 1999, pp. 466–467). Active set methods resemble the iterative
pseudoinverse methods in that inequality constraints are either disregarded, or
regarded as equality constraints. What differs are the rules for which constraints
to activate, i.e., which control variables to saturate. In the control allocation
case, efficiency is achieved by exploiting that the optimization problem does not
change much between two samples, and that the actuator constraints are simple
box constraints.

Two active set methods are proposed, one for finding the optimal solution to the
control allocation problem formulated as a sequential optimization problem, (8.1),
and one for the weighted formulation (7.26). Open loop simulations show that

129
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the methods are similar in computation time to the cascaded generalized inverse
method of Bordignon (1996), and the fix-point method of Burken et al. (2001), and
produce solutions with better accuracy.

The chapter is organized as follows: Section 8.1 contains an introduction to
active set methods. In Section 8.2 the use of active set methods in control allocation
is motivated. In Section 8.3, the active set methods tailored for control allocation
are developed. The numerical details of the methods can be found in Section 8.4.
In Section 8.5, the methods are evaluated numerically. Finally, conclusions are
drawn in Section 8.6.

This chapter is based on

O. Härkeg̊ard. Efficient active set algorithms for solving constrained
least squares problems in aircraft control allocation. In Proc. of the
41st IEEE Conference on Decision and Control, pages 1295–1300, Las
Vegas, NV, Dec. 2002b.

8.1 Ative Set Methods

Consider the bounded and equality constrained least squares problem

min
u

∥
∥Au− b

∥
∥ (8.2a)

Bu = v (8.2b)

Cu ≥ U (8.2c)

where C =
(

I
−I

)
and U =

( u
−u

)
so that (8.2c) is equivalent to u ≤ u ≤ u. An

active set method (Björck 1996, Nocedal and Wright 1999) solves this problem
by solving a sequence of equality constrained problems. In each step some of the
inequality constraints are regarded as equality constraints, and form the working
set W , while the remaining inequality constraints are disregarded. The working
set at the optimum is known as the active set of the solution.

Note that this is much like the cascaded generalized inverse method of Bor-
dignon (1996), see Section 7.4.3. The difference is that an active set method is
more careful regarding which variables to saturate, and has the ability to free a
variable that was saturated in a previous iteration. To check if an iterate is optimal,
the Karush-Kuhn-Tucker conditions are used (Nocedal and Wright 1999, p. 328).
Specifically, it is checked that all the Lagrange multipliers of the active inequalities
are positive.

Algorithm 8.1 describes, in pesudocode, an active set method for solving (8.2),
based on Björck (1996, alg. 5.2.1) and Nocedal and Wright (1999, alg. 16.1). The
Lagrange multipliers used for optimality checking are determined by

AT (Au − b) =
(

BT CT
0

)
(

µ

λ

)

(8.3)
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Algorithm 8.1 (Ative set method for problem (8.2))

Let u0 be a feasible starting point. A point is feasible if it satisfies (8.2b)
and (8.2c). Let the working set W contain (a subset of) the active inequality
constraints at u0.

for i = 0, 1, 2, . . .
Given a suboptimal iterate ui, find the optimal perturbation p, considering
the inequality constraints in the working set as equality constraints and
disregarding the remaining inequality constraints. Solve

min
p

∥
∥A(ui + p) − b

∥
∥

Bp = 0

pi = 0, i ∈ W

if ui + p is feasible
Set ui+1 = ui + p and compute the Lagrange multipliers in (8.3).

if all λ ≥ 0
ui+1 is the optimal solution to (8.2). Stop with u = ui+1.

else

Remove the constraint associated with the most negative λ from
the working set.

else

Determine the maximum step length α such that ui+1 = ui + αp is
feasible. Add the bounding constraint at ui+1 to the working set.

end

where C0 contains the rows of C that correspond to constraints in the working set
(Björck 1996, p. 200). µ is associated with (8.2b) and λ with the active constraints
in (8.2c).

8.2 Why Use Ative Set Methods?

So why should active set methods be suited for control allocation?

Active set methods are the most efficient when a good estimate of the optimal
active set is available. Then the number of changes in the working set, i.e., the
number if iterations, will be small. In control allocation, a very good estimate is
often given by the active set of the solution in the previous sampling instant. This
holds as long as the virtual control trajectory, v(t), varies slowly compared to the
sampling time. Then, if it was optimal to saturate an actuator in position or in
rate in the previous sampling instant, there is a good chance that it is still optimal
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to let it saturate.
Another appealing property is that in each iteration, a feasible iterate ui+1 is

produced that yields a lower value of the cost function than the previous iterate,
ui. Thus, the maximal number of iterations can be set to reflect the computation
time available.

Furthermore, the calculations to be performed at each iteration are computa-
tionally rather cheap, consisting mainly of solving an equality constrained least
squares problem, just as in the iterative pseudoinverse methods in Section 7.4.3. In
our implementation, QR decompositions are used for this purpose, see Section 8.4.

8.3 Ative Set Methods for Control Alloation

In this Section, the active set methods will be presented at an algorithmic level.
The numerical details involved are covered in Section 8.4.

8.3.1 Preliminaries

Let us first list some preliminaries regarding the active set methods to be presented.
The only information forwarded from one optimization, i.e., from one sampling

instant, to the next, is the resulting solution and the set of active constraints. All
problem parameters, i.e., B, ud, Wu, Wv, u, u, and, of course, v, can be changed
to reflect the current control effectiveness of the actuators, the demand for virtual
control input, etc. We will require though, that the previous solution is feasible
with respect to the new position constraints, i.e., that u(t) ≤ u(t−T ) ≤ u(t) holds.

The initial working set W of each optimization is selected as the optimal active
set in the previous sampling instant. The components of the starting point, u0

i ,
i = 1, . . . ,m, are selected as as follows. If ui did not saturate in the previous
sampling instant, then u0

i = ui(t − T ) is used. If ui(t − T ) did saturate, then
u0

i = u(t) or u0
i = u(t) is used, depending on whether ui saturated at its upper or

lower total position limit. Note that this total position limit includes the rate limit
of the actuator.

When the control allocator is initiated, and there is no previous solution avail-
able, u0 = (u+ u)/2 and W = ∅ are selected.

The sequential least squares solver requires that no k control inputs produce
linearly dependent control efforts, where k = dim v. This is equivalent to that all
k×k submatrices of B must have full rank. This restriction can be removed at the
cost of a more complicated algorithm.

The weighting matrices Wu and Wv are assumed to be nonsingular. Wu be-
ing nonsingular ensures that the posed optimization problems both have a unique
optimal solution, see Section 7.3.1.

8.3.2 Sequential Least Squares

First consider the sequential least squares (SLS) formulation (8.1) of the l2-control
allocation problem.
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Algorithm 8.2 (Sequential least squares (SLS) ontrol alloation)

Phase 1:

1. Let W be the resulting working set from the previous sampling instant,
and assign u0 as described in Section 8.3.1.

2. Solve

uΩ = arg min
u

∥
∥Wv(Bu− v)

∥
∥

u ≤ u ≤ u

using Algorithm 8.1 with the following modification. When the number of
free variables exceeds k = dim v, in which case the optimal perturbation
p is not uniquely determined, pick the minimum perturbation.

3. If BuΩ = v, move to phase 2. Otherwise stop with u = uΩ.

Phase 2:

1. Let u0 = uΩ and let W be the resulting solution and working set from
phase 1.

2. Solve
u = argmin

u

∥
∥Wu(u − ud)

∥
∥

Bu = v

u ≤ u ≤ u

using Algorithm 8.1.

Recall from Section 7.4.3 that the minimal least squares (MLS) method of
Lötstedt (1984) is an active set method that can be used when Wu is diagonal,
since then the change of variables ũ = Wu(u− ud) will preserve the box constraint
property.

For the general case, Algorithm 8.2 solves this problem in two phases. In
phase 1, some point uΩ ∈ Ω is determined by minimizing

∥
∥Wv(Bu − v)

∥
∥. If

BuΩ = v, then uΩ is used as the starting point for phase 2, in which the secondary
objective,

∥
∥Wu(u − ud)

∥
∥, is minimized. If BuΩ 6= v, the demanded virtual control

input is infeasible, and the algorithm stops.

Example 8.1 Let us revisit Example 7.6, in which the cascaded generalized inverse
method failed, and see how the SLS method solves the problem. The control
allocation problem is defined by B = (2 1), v = 3.5, u = (0 1)T , and u =
(1 2)T , and the design parameters are given by ud = (0 0)T , Wu = I, and
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Figure 8.1: Illustration of the SLS method. The solid line represents the virtual control
demand Bu = v, the box represents the actuator constraints, and the circles are the level
curves of

∥
∥Wu(u− ud)

∥
∥. In phase 1, u1 is determined as the closest point to the starting

point u0 that satisfies the virtual control demand. In phase 2,
∥
∥Wu(u−ud)

∥
∥ is minimized.

The optimal solution is given by u = u3.

Wv = 1. Figure 8.1 illustrates the situation.

The algorithm is initiated with u0 = (0.7 1.7)T , assuming this was the previ-
ous solution, and no active inequality constraints in W . Solving for the minimum
perturbation that minimizes

∥
∥Bu − v

∥
∥ yields u1 = uΩ = (0.84 1.82)T , see Fig-

ure 8.1. Since BuΩ = v, phase 2 is entered.

In phase 2, since no box constraint is active, the algorithm starts by solving

min
p

∥
∥uΩ + p

∥
∥

Bp = 0

This yields uΩ + p = (1.4 0.7)T which is infeasible with respect to u1 = 1. Hence,
the maximum step length α is solved for, resulting in u2 = (1 1.5)T , and u1 = 1
is added to the working set W .

In the next iteration, the optimal perturbation is zero, implying u3 = u2. The
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Algorithm 8.3 (Weighted least squares (WLS) ontrol alloation)

1. Let W be the resulting working set from the previous sampling instant,
and assign u0 as described in Section 8.3.1.

2. Rewrite the cost function as

∥
∥Wu(u − ud)

∥
∥

2
+ γ
∥
∥Wv(Bu− v)

∥
∥

2
=

∥
∥
∥
∥
∥

(

γ
1

2WvB

Wu

)

︸ ︷︷ ︸

A

u−
(

γ
1

2Wvv

Wuud

)

︸ ︷︷ ︸

b

∥
∥
∥
∥
∥

2

and solve

u = arg min
u

∥
∥Au− b

∥
∥

u ≤ u ≤ u

using Algorithm 8.1.

Lagrange multiplier of the active inequality constraint is computed using (8.3).

u3 =

(

1

1.5

)

=

(

2 −1

1 0

)(

µ

λ

)

gives λ = 2 ≥ 0, which confirms that u = u3 = (1 1.5)T is the optimal solution
the the problem.

8.3.3 Weighted Least Squares

Consider now the approximate weighted least squares formulation (7.26) of the
l2-optimal control allocation problem:

u = arg min
u≤u≤u

∥
∥Wu(u− ud)

∥
∥

2
+ γ
∥
∥Wv(Bu− v)

∥
∥

2
(8.4)

where γ ≫ 1 to emphasize that primarily, Bu − v should be minimized. Recall
from Section 7.4.1 that the solution of (8.4) converges to that of (8.1) as γ → ∞.

Algorithm 8.3 describes the proposed active set based solution1. The gain
from weighting the two optimization criteria into one is that the two phases of
Algorithm 8.2 are now merged into one. In step 2, the weighted constraint rows
are ordered first in A and b to avoid numerical problems, see Björck (1996, pp.
192-193).

1In Härkeg̊ard (2002b), γ was, incorrectly, used instead γ
1

2 in Algorithm 8.3.
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Let us briefly discuss the choice of γ. Note that the “effective” penalty on the
residuals in the second term of (8.4), relative to the penalty on the residuals in
the first term, depends not only on γ but also on Wu, Wv, and B. For example,
scaling γ by a factor 100 is equivalent to scaling Wv by 10, or scaling Wu by 0.1. It
would be desirable to have an automatic procedure for determining γ, given Wu,
Wv, and B, such that the WLS solution approximates the SLS solution well.

To this end, introduce the effective weight

γ0 = γ
σ(WvB)2

σ(Wu)2

which incorporates the effects of all the variables affecting the “effective” scaling
as discussed above. Given γ0, selected by the user, we get

γ = γ0
σ(Wu)2

σ(WvB)2
(8.5)

to be used in the WLS method. Simulations indicate that γ0 ≥ 100 gives good
results.

8.4 Computing the Solution

The main computational steps in the methods proposed in the previous section are
to compute

• the optimal perturbation, p

• the Lagrange multipliers, λ

The Lagrange multipliers are determined by (8.3). To compute p we need to solve
least squares problems of the form

min
p

∥
∥Ap− b

∥
∥

A numerically stable and efficient way of solving least squares problems is to use QR
decomposition, see Appendix B. If A has full column rank it can be decomposed
into

A = QR =
(

Q1 Q2

)
(

R1

0

)

where Q is orthogonal (QTQ = I) and R1 is upper triangular and nonsingular.
Since premultiplying with QT does not affect the norm we get

∥
∥Ap− b

∥
∥

2
=
∥
∥Rp−QT b

∥
∥

2
=
∥
∥R1p−QT

1 b
∥
∥

2
+
∥
∥QT

2 b
∥
∥

2

The minimum norm is obtained for

p = R−1
1 QT

1 b
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Note that since R1 is upper triangular we do not need to form R−1
1 explicitly, but

p can be solved from R1p = QT
1 b by backsubstitution. For convenience, introduce

the short hand notation
p = A\b

for the least squares solution.
Let us now investigate the numerical computations involved in the two methods

in some detail.

8.4.1 Sequential Least Squares

First consider Algorithm 8.2.

Phase 1: Optimization problem:

min
u

∥
∥Au− b

∥
∥

Cu ≥ U

where A = WvB, b = Wvv, C =
(

I
−I

)
and U =

( u
−u

)
.

Solution Update:

min
p

∥
∥A(ui + p) − b

∥
∥

pi = 0, i ∈ W

For convenience, assume that p is partitioned as p =
( pf

0

)
, where pf are the free

variables. Let dim pf = mf and A =
(

Af A0

)

. This yields

∥
∥A(ui + p) − b

∥
∥ =

∥
∥Afpf − d

∥
∥

where d = b−Aui. For mf ≤ k, the unique minimizer given by

pf = Af\d (8.6)

For mf > k, a parameterization of the minimizing solutions can be obtained from
the QR decomposition ofAT

f . Note thatAT
f has full column rank if the requirements

on Wv and B from Section 8.3.1 are fulfilled.

AT
f = QR =

(

Q1 Q2

)
(

R1

0

)

= Q1R1

along with the change of variables

pf = Qq =
(

Q1 Q2

)
(

q1

q2

)

= Q1q1 +Q2q2
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gives us
∥
∥Afpf − d

∥
∥ =

∥
∥RT

1 Q
T
1 (Q1q1 +Q2q2) − d

∥
∥ =

∥
∥RT

1 q1 − d
∥
∥ = 0

for
q1 = R−T

1 d

This means that the set of minimizing solutions can be written as

pf = Q1R
−T
1 d+Q2q2

where q2 is a free variable. Since the columns of Q1 and Q2 are orthonormal,
∥
∥pf

∥
∥,

and thereby also
∥
∥p
∥
∥, is minimized for

q2 = 0

Lagrange Multipliers: Comparing with (8.3) we get

AT (Au− b) = CT
0 λ

Since C0C
T
0 = I, multiplying by C0 from the left yields

λ = C0A
T (Au− b) (8.7)

Phase 2: Optimization problem:

min
u

∥
∥Au− b

∥
∥

Bu = v

Cu ≥ U

where A = Wu, b = Wuud, and C and U as defined in phase 1.

Solution Update:

min
p

∥
∥A(ui + p) − b

∥
∥

Bp = 0

pi = 0, i ∈ W
⇐⇒

min
p

∥
∥Ap− d

∥
∥

Ep =

(

B

C0

)

p = 0

where d = b−Aui. Using the QR decomposition

ET = QR =
(

Q1 Q2

)
(

R1

0

)

= Q1R1 (8.8)

and introducing

p = Qq =
(

Q1 Q2

)
(

q1

q2

)

= Q1q1 +Q2q2
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gives us

Ep = RT
1 Q

T
1 (Q1q1 +Q2q2) = RT

1 q1 = 0 ⇐⇒ q1 = 0

since R1 is nonsingular. Inserting p = Q2q2 into the optimization criterion yields

∥
∥Ap− d

∥
∥ =

∥
∥AQ2q2 − d

∥
∥ = min

for

q2 = (AQ2)\d

Essentially, this is where our method differs from the minimal least squares method
proposed by Lötstedt (1984). Since Lötstedt considers the minimum norm case,
corresponding to A = Wu = I, the optimal solution is simply given by q2 = QT

2 d.

Lagrange Multipliers: Comparing with (8.3) we get

AT (Au− b) = ET Λ = Q1R1Λ

Premultiplying both sides with R−1
1 QT

1 yields the solution

Λ =

(

µ

λ

)

= R−1
1 QT

1 A
T (Au − b)

from which the relevant Lagrange variables λ can be extracted.

8.4.2 Weighted Least Squares

In Algorithm 8.3 the optimization problem is given by

min
u

∥
∥Au− b

∥
∥

Cu ≥ U

where A and b were defined in Algorithm 8.3, C =
(

I
−I

)
, and U =

( u
−u

)
. This

problem coincides with the phase 1 problem of sequential least squares. Here,
since A has full column rank, the unique optimal perturbation in each iteration is
determined by (8.6) and the Lagrange multipliers by (8.7).

8.5 Simulations

Let us now evaluate the two proposed methods and compare them with some of
the existing alternative methods discussed in Section 7.4.3. We will discuss the
quality of the solutions produced, the computation times of the methods, and
finally comment on some implementation issues.
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8.5.1 Numerial Methods

The methods used in the evaluations are:

SLS Sequential least squares (Algorithm 8.2)

MLS Minimal least squares (Lötstedt 1984)

WLS Weighted least squares (Algorithm 8.3)

WLS2 WLS with a maximum of 2 iterations

CGI Cascaded generalized inverse method (Bordignon 1996)

FXP Fixed-point method (Burken et al. 2001) (50 iterations)

LSQLIN lsqlin (MATLAB Optimization Toolbox)

In MLS and FXP, which both solve the weighted problem (8.4), γ was selected as
in (8.5) with γ0 = 100.

All methods (except LSQLIN) have been implemented as MATLAB M-files
which can be downloaded from

http://www.control.isy.liu.se/~ola/

The MLS implementation is based on the direct method described in Lötstedt
(1984), which uses QR decompositions. QR decompositions are also used to com-
pute the pseudoinverse solutions needed in the CGI method. This was found to be
the faster than computing the pseudoinverse matrix explicitly as in (7.27). FXP is
implemented according to the description in Section 7.4.3.

LSQLIN, based the standard least squares solver lsqlin from the MATLAB
Optimization Toolbox, is used as a reference to confirm that the sequential and
minimal least squares methods indeed find the optimal solution to (8.1). However,
it is only applicable when the virtual control demand is known to be feasible, since
lsqlin handles problems of the form (8.2).

8.5.2 Airraft Simulation Data

Aircraft data are taken from the example used by Durham and Bordignon (1996),
in which the control effectiveness matrix

B = 10−4 ×





253.8 −253.8 274.3 −274.3 19.22 −250.0 250.0 4.5

−3801 −3801 −349.5 −349.5 0.1681 1125 1125 0

−16.81 16.81 −92.51 92.51 −382.7 0 0 −750.0





the position constraints

umin =
(

−24 −24 −25 −25 −30 −30 −30 −30

)T

· π

180
rad

umax =
(

10.5 10.5 42 42 30 30 30 30

)T

· π

180
rad
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Figure 8.2: Virtual control trajectory v(t) =
(
Cl(t) Cm(t) Cn(t)

)T
to be produced. For

small values of the final time tf , rate saturation occurs.

and the rate constraints

−ρmin = ρmax =
(

100 100 100 100 100 100 100

)T

· π

180
rad/s

are loosely based on an F-18 airplane at 10.000 ft, Mach 0.23, and 30◦ angle of
attack.

The 8-dimensional control input u consists of left and right horizontal tails (u1,
u2), left and right ailerons (u3, u4), combined rudders (u5), left and right thrust
vectoring nozzles (u6, u7), operating in the same manner as horizontal tails, and
yaw thrust vectoring (u8).

The components of the 3-dimensional virtual control input v are the commanded
aerodynamic moment coefficients Cl, Cm, and Cn. The virtual control trajectory,
consisting of 85 samples, is shown in Figure 8.2, and corresponds to the helical
path with radius 0.06 used in Durham and Bordignon (1996). By varying tf , the
final time of the trajectory, different “helical rates” are achieved. When the rate is
too high, some parts of the trajectory become infeasible due to the actuator rate
constraints.

8.5.3 Simulation Results

Three different cases were simulated:

Case 1: Feasible trajectory (tf = 25 s, helical rate = 0.045) with Wu and Wv

set to identity matrices and ud set to the zero vector. See Table 8.2 and
Figure 8.4 for simulation results.

Case 2: Same trajectory as in case 1 but with

Wu = diag(10, 10, 1, 1, 1, 1, 1, 1) (8.9)
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This corresponds to penalizing the use of the horizontal tails for control. See
Table 8.3 and Figure 8.5.

Case 3: Partially infeasible trajectory (tf = 4 s, helical rate = 0.28) with the
same parameter settings as in case 1. See Table 8.4 and Figure 8.6.

In the figures, the SLS results are used to represent WLS also, since the discrepancy
is very small.

The simulations were performed in MATLAB 6.1 running on a 800 MHz Pen-
tium III computer. In Tables 8.2–8.4, the tic and toc commands were used to
determine the computation times which were averaged over 1000 runs. The mean
and max errors given correspond to the mean and max values of

∥
∥Bu(t) − v(t)

∥
∥

over time. Furthermore, the average number of saturated actuators in the solutions
are given and also the average number of iterations performed by each method.

8.5.4 Comments

Solution Quality

All methods produce solutions which satisfy both actuator position and rate con-
straints, see Figures 8.4–8.6.

By construction, SLS and MLS both generate the exact solution to the control
allocation problem formulated as the sequential least squares problem (8.1). WLS
only solves an approximation of the original problem, see (8.4), but with the weight
γ chosen large enough, as in the simulations, WLS comes very close to recovering
the true optimal solution. Note that in case 3, the virtual control errors are actually
smaller for WLS than for SLS and MLS. This unexpected result is due to that the
actuator bounds at time t depends on u(t − T ), see (7.7). Since u(t − T ) differs
between the methods, so do the bounds, which allows for WLS to perform slightly
better on the average.

WLS2 uses at most two iterations, corresponding to at most two changes per
sample in the set of active actuator constraints. For the feasible trajectory, WLS2
almost exactly recovers the optimal solution, while for the infeasible trajectory, the
solution quality is somewhat degraded. The reason for WLS2 being so successful
can be seen from Figure 8.3. In most sampling instants, in particular for the feasible
trajectory, WLS (without any restriction on the number of iterations) finds the
optimum in only one or two iterations. In those instants where WLS needs three
or more iterations, WLS2 only finds a suboptimal solution, but can be thought of as
retrieving the correct active set a few sampling instants later. Similar restrictions
could also be introduced in SLS and MLS.

The CGI performance seems difficult to predict. In case 1, the CGI solution
satisfies Bu = v at each sampling instant although some control surface time
histories differ slightly from the optimal ones produced by SLS and MLS. However,
in case 2, the CGI solution is rather degraded. The same goes for case 3 where
especially the pitching coefficient is poorly reproduced. The general flaw with CGI
is the heuristic rule it is based on which claims that it is optimal to saturate all
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Figure 8.3: Histograms showing the number of iterations performed by WLS for the three
simulated cases. In all cases, it holds that in less than half of the sampling instants more
than two iterations are required to find the optimal solution.

control surfaces that violate their bounds in some iteration. Note that CGI yields
the highest average number of actuator saturations in all cases.

In all of the simulated cases, FXP generates rather poor, although continuous,
solutions to the control allocation problem. The FXP method relies on gradient
search methods to update the solution. Gradient search methods are the most
successful when the level curves of the cost function are circular so that the gradient
points towards the minimum. Here, however, the level curves are stretched out to
ellipsoids due to the scaling of the two objectives in (8.4). This also explains the
degradation in quality in case 2 where further weighting is introduced. Changing
γ (10 ≤ γ ≤ 1000) had no significant effect on the FXP results. Increasing the
number of iterations yields better results, but even for N = 1000 iterations, FXP is
outperformed by WLS in all test cases, in terms of the mean virtual control error.

Computation Time

Overall, the computation time for the different methods (except LSQLIN) are
within the same order of magnitude. Thus, if CGI is considered a viable alter-
native for real-time applications, then so should SLS, MLS, and definitely WLS
be. For comparison, the typical sampling frequency in modern aircraft is 50-100
Hz which corresponds to a sampling time of 10-20 ms.

WLS2 and FXP both have a maximal computation time which by construction
is independent of the trajectory type. This is appealing since it makes the control
allocation task easy to schedule in a real-time implementation.

Table 8.1 shows the benefits of warmstarting the active set methods. When u(t−
T ) is ignored and u0 =

(
u(t) + u(t)

)
/2 is used instead, the mean SLS computation

time increases by 45-210 % (85-245 % for WLS). The increase in the maximum
computation time is less dramatic, 20-40 % for SLS (50-60 % for WLS).
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SLS WLS

Case Mean time (ms) Max time (ms) Mean time (ms) Max time (ms)

1 1.12 (1.62) 2.44 (2.91) 0.52 (0.97) 1.03 (1.65)

2 1.30 (2.45) 3.41 (4.69) 0.60 (1.45) 1.83 (2.80)

3 0.80 (2.51) 3.28 (4.31) 0.71 (2.45) 2.30 (3.54)

Table 8.1: The benefits of warmstarting the SLS and WLS methods. The numbers
correspond to reusing the solution from the previous sample, and ignoring it, respectively
(the latter numbers in parentheses).

Implementation

FXP is the most straightforward method to implement, consisting mainly of matrix
multiplications and saturations, see Section 7.4.3.

CGI is also easy to implement and relies heavily on computing pseudoinverse
solutions to underdetermined least squares problems, which in the implementation
is done using QR decomposition.

SLS, MLS, and WLS are active set based methods and as such they all require
bookkeeping and maintenance of the working set of active constraints. Solving
constrained least squares problems is also central to active set methods and in the
implementation this is done using QR decomposition.

8.6 Conlusions

The main conclusion that can be drawn from our investigations is that classical
active set methods seem well suited for the solving l2-optimal control allocation
problem (8.1).

First of all, the problem structure lends itself to an efficient active set im-
plementation. The output from the previous sampling instant can be used as a
starting point for the optimization, the constraints are simple box constraints, and
the problem size is small. Also, feasible suboptimal solutions are produced in each
iteration, which can be used if not enough time is available to compute the optimal
solution.

Second, active set methods are closely related to the approximate pseudoinverse
methods that are often used today in aircraft control allocation. Instead of using
heuristics to decide which actuators should saturate, active set methods rely on
the theory of constrained programming.

Further, our simulations show that the timing properties of the proposed meth-
ods proposed are similar to those of the comparison methods—the cascaded gen-
eralized inverse method of Bordignon (1996) and the fix-point method of Burken
et al. (2001)—and that the solutions produced are in general of the same or better
quality.
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Algo- Mean Max Mean Max Mean Mean

rithm time (ms) time (ms) error error satur. iter.

SLS 1.12 2.44 0 0 1.8 2.5

MLS 1.01 1.83 0 0 1.8 2.5

WLS 0.52 1.03 6.14e-4 1.08e-3 1.7 1.4

WLS2 0.51 0.84 7.54e-4 7.53e-3 1.7 1.4

CGI 0.91 1.50 0 0 2.0 2.4

FXP 1.97 2.01 1.38e-2 2.74e-2 1.6 50.0

LSQLIN 15.04 18.57 0 0 1.8 –

Table 8.2: Control allocation results for case 1.

Algo- Mean Max Mean Max Mean Mean

rithm time (ms) time (ms) error error satur. iter.

SLS 1.30 3.41 0 0 2.9 2.9

MLS 1.12 2.75 0 0 2.9 2.8

WLS 0.60 1.83 5.38e-5 3.31e-4 2.9 1.8

WLS2 0.56 0.81 1.24e-3 2.13e-2 3.2 1.6

CGI 1.09 1.84 1.11e-2 9.03e-2 4.3 3.0

FXP 1.98 2.01 2.68e-2 6.10e-2 2.5 50.0

LSQLIN 16.84 22.00 0 0 2.8 –

Table 8.3: Control allocation results for case 2.

Algo- Mean Max Mean Max Mean Mean

rithm time (ms) time (ms) error error satur. iter.

SLS 0.80 3.28 4.51e-3 1.25e-2 6.1 2.5

MLS 0.89 2.52 4.51e-3 1.25e-2 6.1 2.5

WLS 0.71 2.30 3.09e-3 1.15e-2 5.4 2.5

WLS2 0.56 0.81 1.24e-3 2.13e-2 3.2 1.6

CGI 0.94 1.46 3.00e-2 1.09e-1 7.6 2.6

FXP 1.97 2.01 1.35e-2 2.43e-2 3.1 50.0

Table 8.4: Control allocation results for case 3.
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Figure 8.4: Simulation results for case 1. Left: Commanded (thin lines) vs. generated
(thick lines) virtual control inputs. Middle and right: Left horizontal tail (u1) position
and rate. The dashed lines mark the actuator constraints.
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Figure 8.6: Simulation results for case 3. Left: Commanded (thin lines) vs. generated
(thick lines) virtual control inputs. Middle and right: Left horizontal tail (u1) position
and rate. The dashed lines mark the actuator constraints.



Chapter 9

Dynami Control Alloation

The foundation of control allocation is that there are several ways to apportion
the control among the actuators, all of which make the system behave the same
way. This design freedom is often used to optimize some static performance index,
like minimum control, or to prioritize among the actuators. This can be thought
of as affecting the distribution of control effect in magnitude among the actuators.
Regardless of method (optimization based allocation, daisy chain allocation, direct
allocation, etc.), the resulting mapping from virtual to true control input can be
written as a static relationship

u(t) = f
(
v(t)

)

A possibility that has been little explored is to also affect the distribution of the
control effect in the frequency domain, and use the redundancy to have different
actuators operate in different parts of the frequency spectrum. This requires the
mapping from v to u to depend also on previous values of u and v, hence

u(t) = f
(
v(t), u(t− T ), v(t− T ), u(t− 2T ), v(t− 2T ), . . .

)

where T is the sampling interval. We will refer to this as dynamic control allocation.
Some practical examples where filtering has been introduced in the control

allocation can be found in the literature. Papageorgiou et al. (1997) consider a
flight control case, where canards and tailerons are available for pitch control. To
achieve a fast initial aircraft response, and to make use of the fast dynamics of the
canards, the high frequency component of the required pitching moment is fed to
the canards while the remaining low frequency component is fed to the tailerons,
which are used solely at trimmed flight.

Another flight control example can be found in Reiner et al. (1996), in which
thrust vectored control (TVC) is available. To prevent the TVC vanes from suffer-
ing thermal damage from the jet exhaust, the TVC deflection command is fed to a
wash-out filter (static gain zero), so that the vanes do not remain deflected on the
exhaust for long periods of time.

149
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Berge and Fossen (1997) consider control of marine vessels, equipped with az-
imuth (rotatable) thrusters. Essentially, the authors use the low frequency compo-
nent of the total thrust demand to decide the azimuth angles, which are then used
to compute the force to be produced by each thruster.

Davidson et al. (2001) use rate saturation problems in flight control as a moti-
vation for dynamic control allocation, or frequency-apportioned control allocation,
as the authors call it. The high and low frequency components of the moment de-
mand are each multiplied by a weighted pseudoinverse of the control effectiveness
matrix, B, with the weights based on the rate and position bounds of the actuators,
respectively. With this strategy, fast actuators are used for high frequency control,
and the chances of rate saturation are reduced.

Hence, there are practical cases where dynamic control allocation is desirable. In
this chapter, a new systematic method for dynamic control allocation is proposed.
The method is an extension of regular l2-optimal control allocation with an extra
term to penalize actuator rates. When no saturations occur, the control allocation
mapping becomes a linear filter of the form

u(t) = Fu(t− T ) +Gv(t)

The frequency characteristics of this filter are decided by the weighting matrices
used in the optimization criterion. Thus, unlike the previous methods, no filters
are to be explicitly constructed by the control designer.

The chapter is organized as follows. In Section 9.1, the proposed method is
presented. The static and dynamic properties of the resulting dynamic control
allocator are investigated in Section 9.2. Section 9.3 contains a flight control design
example illustrating the potential benefits of the method. Finally, conclusions are
drawn in Section 9.4.

This chapter is based on

O. Härkeg̊ard. Dynamic control allocation using constrained quadratic
programming. In AIAA Guidance, Navigation, and Control Conference
and Exhibit, Monterey, CA, Aug. 2002a.

9.1 Dynami Control Alloation Using QP

The dynamic control allocation method that we propose fits into the standard
framework for optimization based control allocation presented in Section 7.3.1.
The sequential optimization problem to be solved is given by

u(t) = arg min
u(t)∈Ω

∥
∥W1(u(t) − us(t))

∥
∥

2
+
∥
∥W2(u(t) − u(t− T ))

∥
∥

2
(9.1a)

Ω = arg min
u(t)≤u(t)≤u(t)

∥
∥Wv(Bu(t) − v(t))

∥
∥ (9.1b)

where u ∈ R
m is the true control input, us ∈ R

m is the desired steady state control
input, v ∈ R

k is the virtual control input, B ∈ R
k×m is the control effectiveness
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matrix, and W1, W2, and Wv are square matrices of the proper dimensions.
∥
∥ ·
∥
∥ =

∥
∥ ·
∥
∥

2
denotes the l2-norm, see (7.17). Given Ω, the set of feasible control inputs

(with respect to position and rate constraints as in (7.7)) that minimize the virtual
control error (weighted by Wv), we pick the control input that minimizes the cost
function in (9.1a).

What is new in this formulation, compared to (7.18), is that not only the
position error u(t)−us(t), but also the change in the control input, u(t)−u(t−T ), is
penalized in the cost function in (9.1a). This corresponds to penalizing the actuator
rates. Hodel and Callahan (2002) pose almost the exact same problem, but without
motivating why the rate term should be included, and without analyzing the effects
of including this term.

In (9.1a), us(t) is the desired steady state distribution of control effort among
the actuators. We will discuss the choice of us in Section 9.2.3. W1 and W2 are
weighting matrices whose (i, i)-entries specify whether it is important for the i:th
actuator, ui, to quickly reach its desired stationary value, or to change its position
as little as possible. With this interpretation, a natural choice is to use diagonal
weighting matrices but in the analysis to follow we will allow arbitrary matrices
with the following restriction.

Assumption 9.1 Assume that the weighting matrices W1 and W2 are symmetric
and such that

W =
√

W 2
1 +W 2

2

is nonsingular.

See Appendix B for a definition of the matrix square root. This assumption certifies
that there is a unique optimal solution to the control allocation problem (9.1), see
Section 7.3.1.

For computational purposes, the two terms in (9.1a) can be merged into one
term without affecting the solution, see Lemma 9.1. Thus, any solver suitable for
real-time implementation, such as the CGI and FXP methods in Section 7.4.3, or
the active set methods developed in Chapter 8, can be used to compute the solution
to (9.1).

9.2 The Nonsaturated Case

How do the design variables, us, W1, and W2, affect the solution, u(t)? To answer
this question, let us investigate the case where no actuators saturate in the solution
to (9.1). Then the actuator constraints can be disregarded and (9.1) reduces to

min
u(t)

∥
∥W1(u(t) − us(t))

∥
∥

2
+
∥
∥W2(u(t) − u(t− T ))

∥
∥

2
(9.2a)

subject to Bu(t) = v(t) (9.2b)
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9.2.1 Expliit Solution

Let us begin by stating the closed form solution to (9.2).

Theorem 9.1 Let Assumption 9.1 hold. Then the control allocation problem (9.2)
has the solution

u(t) = Eus(t) + Fu(t− T ) +Gv(t) (9.3)

where

E = (I −GB)W−2W 2
1

F = (I −GB)W−2W 2
2

G = W−1(BW−1)†

The † symbol denotes the pseudoinverse operator defined as

A† = AT (AAT )−1

for a k ×m matrix A with rank k ≤ m, see Appendix B.
The theorem shows that the optimal solution to the control allocation problem

(9.2) is given by the first order linear filter (9.3). The properties of this filter will
be further investigated in Sections 9.2.2 and 9.2.3.

To prove the theorem, the following lemma is useful.

Lemma 9.1 Let Assumption 9.1 hold. Then the cost function
∥
∥W1(x− x1)

∥
∥

2
+
∥
∥W2(x− x2)

∥
∥

2

has the same minimizing argument as
∥
∥W (x− x0)

∥
∥

where

W =
√

W 2
1 +W 2

2

x0 = W−2(W 2
1 x1 +W 2

2 x2)

Proof:
∥
∥W1(x− x1)

∥
∥

2
+
∥
∥W2(x − x2)

∥
∥

2
=

(x− x1)
TW 2

1 (x− x1) + (x− x2)
TW 2

2 (x− x2) =

xT (W 2
1 +W 2

2 )x− 2xT (W 2
1 x1 +W 2

2 x2) + . . . =

(x− x0)
TW 2(x− x0) + . . . =

∥
∥W (x− x0)

∥
∥

2
+ . . .

where

W =
√

W 2
1 +W 2

2

x0 = W−2(W 2
1 x1 +W 2

2 x2)
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The terms represented by dots do not depend on x, and hence they do not affect
the minimization. ✷

We now state the proof of Theorem 9.1.

Proof: From Lemma 9.1 we know that the optimization criterion (9.2a) can be
rewritten as

min
u(t)

∥
∥W (u(t) − u0(t))

∥
∥

where

W =
√

W 2
1 +W 2

2

u0(t) = W−2(W 2
1 us(t) +W 2

2 u(t− T ))

Applying Lemma B.1 to this criterion constrained by (9.2b) yields

u(t) = F̄ u0(t) +Gv(t)

F̄ = I −GB

G = W−1(BW−1)†

from which it follows that

u(t) = (I −GB)W−2W 2
1

︸ ︷︷ ︸

E

us(t) + (I −GB)W−2W 2
2

︸ ︷︷ ︸

F

u(t− T ) +Gv(t)

which completes the proof. ✷

To analyze the filter (9.3), for example by plotting its frequency characteristics
in a Bode diagram, it is convenient to describe it in state space form.

Corollary 9.1 The linear filter (9.3) can be written in state space form as

x(t+ T ) = Fx(t) + F (Eus(t) +Gv(t))

u(t) = x(t) + Eus(t) +Gv(t)

Proof: Introducing the shift operator q, such that qu(t) = u(t+ T ), (9.3) becomes

u(t) = q−1Fu(t) + Eus(t) +Gv(t)
︸ ︷︷ ︸

w(t)

Multiplying by q and solving for u(t) yields

u(t) = (qI − F )−1qw(t) = (qI − F )−1(qI − F + F )w(t)

= (I + (qI − F )−1F )w(t)

Comparing with the standard state space form to transfer function relationship

x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
↔ y(t) = (C(qI −A)−1B +D)u(t)



154 Chapter 9 Dynami Control Alloation

gives us the state space description

x(t + 1) = Fx(t) + Fw(t) = Fx(t) + F (Eus(t) +Gv(t))

u(t) = x(t) + w(t) = x(t) + Eus(t) +Gv(t) ✷

9.2.2 Dynami Properties

Let us now study the dynamic properties of the filter (9.3). Note that the opti-
mization criterion in (9.2) does not consider future values of u(t). It is therefore
not obvious that the resulting filter (9.3) is stable. The poles of the filter, which
can be found as the eigenvalues of the feedback matrix F , are characterized by the
following theorem.

Theorem 9.2 Let F be defined as in Theorem 9.1 and let Assumption 9.1 hold.
Then the eigenvalues of F , λ(F ), satisfy

0 ≤ λ(F ) ≤ 1

If W1 is nonsingular, the upper eigenvalue limit becomes strict, i.e.,

0 ≤ λ(F ) < 1

Proof: We wish to characterize the eigenvalues of

F = (I −GB)W−2W 2
2

= (I −W−1(BW−1)†B)W−2W 2
2

= W−1(I − (BW−1)†BW−1)W−1W 2
2

(9.4)

Let the singular value decomposition (see Appendix B) of BW−1 be given by

BW−1 = UΣV T = U
[

Σr 0

]
[

V T
r

V T
0

]

= UΣrV
T
r

where U and V are orthogonal matrices, and Σr is a k × k diagonal matrix with
strictly positive diagonal entries (since BW−1 has rank k). This yields

I − (BW−1)†BW−1 = I − VrΣ
−1
r UTUΣrV

T
r = I − VrV

T
r = V0V

T
0

The last step follows from the fact that V V T = VrV
T
r + V0V

T
0 = I. Inserting this

into (9.4) gives us
F = W−1V0V

T
0 W

−1W 2
2

Now use the fact that the nonzero eigenvalues of a matrix product AB, λnz(AB),
satisfy λnz(AB) = λnz(BA), see Zhang (1999, p. 51), to get

λnz(F ) = λnz(V
T
0 W

−1W 2
2W

−1V0)
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From the definition of singular values in Appendix B we get

λ(V T
0 W

−1W 2
2W

−1V0) = σ2(W2W
−1V0) ≥ 0

This shows that the nonzero eigenvalues of F are real and positive and thus, λ(F ) ≥
0 holds.

What remains to show is that the eigenvalues of F are bounded by 1. To do
this we investigate the maximum eigenvalue, λ(F ).

λ(F ) = σ2(W2W
−1V0) =

∥
∥W2W

−1V0

∥
∥

2 ≤
∥
∥W2W

−1
∥
∥

2 ∥
∥V0

∥
∥

2

Since
∥
∥V0

∥
∥

2
= λ(V T

0 V0
︸ ︷︷ ︸

I

) = 1

we get

λ(F ) ≤
∥
∥W2W

−1
∥
∥

2
= sup

x 6=0

xTW−1W 2
2W

−1x

xTx

Introducing y = W−1x yields

λ(F ) ≤ sup
y 6=0

yTW 2
2 y

yTW 2y
= sup

y 6=0

yTW 2
2 y

yTW 2
1 y + yTW 2

2 y
≤ sup

y 6=0

yTW 2
2 y

yTW 2
2 y

= 1 (9.5)

since yTW 2
1 y =

∥
∥W1y

∥
∥

2 ≥ 0 for any symmetric W1. If W1 is nonsingular, we get

yTW 2
1 y =

∥
∥W1y

∥
∥

2
> 0 for y 6= 0 and the last inequality in (9.5) becomes strict,

i.e., λ(F ) < 1 in this case. ✷

The theorem states that the poles of the linear control allocation filter (9.3) lie
between 0 and 1 on the real axis. This has two important practical implications:

• If W1 is nonsingular the filter poles lie strictly inside the unit circle. This
implies that the filter is asymptotically stable. W1 being nonsingular means
that all actuator positions except u = us render a nonzero cost in (9.1a). IfW1

is singular, only marginal stability can be guaranteed (although asymptotic
stability may hold).

• The fact that the poles lie on the positive real axis implies that the actuator
responses to a step in the virtual control input are not oscillatory.

9.2.3 Steady State Properties

In the previous section we showed that the control allocation filter (9.3) is asymptot-
ically stable under practically reasonable assumptions. Let us therefore investigate
the steady state solution for a constant virtual control input.
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Theorem 9.3 Let us satisfy
Bus = v0

where v(t) = v0 is the desired virtual control input. Then, if W1 is nonsingular,
the steady state control distribution of (9.3) is given by

lim
t→∞

u(t) = us

Proof: IfW1 is nonsingular, the linear filter (9.3) is asymptotically stable according
to Theorem 9.2. This means that in the limit, u(t) = u(t − T ) holds. Then (9.2)
reduces to

min
u

∥
∥W1(u− us)

∥
∥

2

subject to Bu = v0
(9.6)

If us satisfies Bus = v0, then u = us is obviously one optimal solution to (9.6).
Further, if W1 is nonsingular, u = us is the unique optimal solution. ✷

The theorem essentially states that if u = us can be achieved, it will be achieved,
eventually. If we feed our dynamic control allocation scheme with a feasible, de-
sirable control distribution, us, which solves Bus = v, the filter (9.3) will render
this distribution at steady state. If Bus 6= v, the resulting steady state control
distribution will depend not only on us, but also on W1. This is undesirable since
the role of the design parameter W1 then becomes unclear.

So how do we find a good feasible steady state solution? In simple cases, we
may be able to do it by hand but for larger cases the following method can be
applied. Pick us as the solution to the static control allocation problem

min
us

∥
∥Ws(us − ud)

∥
∥

subject to Bus = v
(9.7)

Here, ud represents some fixed preferred, but typically infeasible control distribu-
tion, which, e.g., would give minimum drag. In the simplest case, with Ws = I and
ud = 0, we get the pseudoinverse solution us = B†v.

In certain cases, some steady state actuator positions should be scheduled with,
e.g., speed and altitude, rather than depend on v. This can be handled by intro-
ducing additional equality constraints

us,i = up,i (9.8)

for those actuators i whose steady state positions have been predetermined. The
optimal solution to (9.7)–(9.8) can be found using Lemma B.1.

9.3 Design Example

Let us now illustrate how to use the proposed design method for dynamic control
allocation. The ADMIRE model (ADMIRE ver. 3.4h 2003), described in Section 2.4
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Control reallocation

r
ADMIRE

ADMIRE
FCS

uAdm

g(x, u)
Lineariza-

tion

Control
allocation
Eq. (9.1)

uv

x

Figure 9.1: Overview of the closed loop system used for simulation. The control input
produced by the ADMIRE flight control system is reallocated using dynamic control
allocation.

u1, δrc

u2, δlc

u3, δroe

u4, δrie

u5, δlie

u6, δloe

u7, δr

Figure 9.2: ADMIRE control surface configuration. ui are the commanded deflections
and δ∗ are the actual deflections.

is used for simulation. ADMIRE is a Simulink based model of a fighter aircraft, and
includes actuator dynamics and nonlinear aerodynamics. The existing ADMIRE
flight control system is used to compute the aerodynamic moment coefficients,
g(x, uAdm), to be produced in roll, pitch, and yaw, see Figure 9.1. The control
allocator then solves (9.1) for the commanded control surface deflections, u.

Since the g(x, u) is nonlinear, the linearization techniques from Section 7.2.2 are
used. The control effectiveness matrix B is recomputed at each sampling instant by
linearizing g(x, u) around the current measurement vector, x(t), and the previous
control input, u(t− T ). In the ADMIRE model, T = 0.02 s. The constrained least
squares problem (9.1) is solved at each sampling instant using the sequential least
squares solver from Chapter 8 (Algorithm 8.2).
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The control input,

u =
(

u1 . . . u7

)T

consists of the commanded deflections for the canard wings (left and right), the
elevons (inboard and outboard, left and right), and for the rudder, in radians, see
Figure 9.2 where δ∗ denote the actual actuator positions. The actuator position
and rate constraints are given by

δmin =
(

−55 −55 −30 −30 −30 −30 −30

)T

deg

δmax =
(

25 25 30 30 30 30 30

)T

deg

−ρmin = ρmax =
(

50 50 150 150 150 150 100

)T

deg /s

At trimmed flight at Mach 0.5, 1000 m, the control effectiveness matrix is given
by

B = 10−2 ×






0.5 −0.5 −4.9 −4.3 4.3 4.9 2.4

8.8 8.8 −8.4 −13.8 −13.8 −8.4 0

−1.7 1.7 −0.5 −2.2 2.2 0.5 −8.8




 rad−1

from which it can be seen, e.g., that the inboard elevons are the most effective actu-
ators for producing pitching moment while the rudder provides good yaw control,
as expected. This is the B-matrix used in the design and analysis of the control
allocation filter below.

Let us now consider the requirements regarding the control distribution. At
trimmed flight, it is beneficial not to deflect the canards at all to achieve minimum
drag. We therefore select the steady state distribution us as the solution to

min
us

∥
∥us

∥
∥

subject to Bus = v

us,1 = us,2 = 0

(9.9)

which yields
us(t) = Sv(t)

where

S =
















0 0 0

0 0 0

−5.4 −1.6 −0.4

−4.6 −2.6 −2.4

4.6 −2.6 2.4

5.4 −1.6 0.4

3.0 0 −10.1
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During the initial phase of a pitch maneuver, on the other hand, utilizing the
canards counteracts the unwanted nonminimum phase tendencies that the pilot
load factor, nzp, typically displays. In the computation of nzp, defined in (2.18),
we will assmue that the pilot is positioned 1 m in front of the aircraft center of
gravity. Thus, the canards should be used to realize parts of the high frequency
content of the pitching moment. Selecting

W1 = diag(2, 2, 2, 2, 2, 2, 2)

W2 = diag(5, 5, 10, 10, 10, 10, 10)

with the lowest rate penalty on the canards, and using Theorem 9.1, yields the
control allocation filter

u(t) = Fu(t− T ) +Gtotv(t)

where

F = 10−1 ×
















5.5 −1.4 2.9 3.4 4.3 1.8 −5.0

−1.4 5.5 1.8 4.3 3.4 2.9 5.0

0.7 0.4 6.4 −3.4 1.3 1.9 0.7

0.9 1.1 −3.4 5.5 0.7 1.3 −0.8

1.1 0.9 1.3 0.7 5.5 −3.4 0.8

0.4 0.7 1.9 1.3 −3.4 6.4 −0.7

−1.3 1.3 0.7 −0.8 0.8 −0.7 2.2
















Gtot = G+ ES =
















1.7 2.8 −5.3

−1.7 2.8 5.4

−5.3 −0.8 −0.6

−4.7 −1.3 −2.2

4.7 −1.3 2.2

5.3 −0.8 0.6

2.4 0 −8.2
















in the nonsaturated case. Let us now evaluate the properties of this filter.
The eigenvalues of F are given by

λ(F ) = 0, 0, 0, 0, 0.88, 0.91, 0.96, 0.96

which is in agreement with Theorem 9.2.
The frequency characteristics of the filter are illustrated in Figure 9.3, which

shows a magnitude plot of the transfer functions from v to u, calculated using
Corollary 9.1. Each transfer function has been weighted with its corresponding
entry in B to show the proportion of v that the actuator produces. In roll, the
elevons produce most of the control needed while in pitch, the canards contribute
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substantially at high frequencies. Yaw control is produced almost exclusively by
the rudder.

Figure 9.5 shows the simulation results from a pitch up command followed by a
roll command. In accordance with the designed frequency distributions, the canard
wings react quickly to the pitch command while at steady state only the elevons
and the rudder are deflected.

Note that the discrepancies between p and pref, and between q and qref, are
due to the design of the ADMIRE control system and not the choice of control
allocation algorithm. Figure 9.6 shows the simulation results when the original
ADMIRE flight control system is used, and no control reallocation is performed.
The control signals differ in the two cases, but the output signals are almost the
same.

It is interesting to compare the designed dynamic control allocator with two
static alternatives. Figure 9.7 shows the simulation results when W2 = 0. In this
case, we get the distribution u(t) = us(t) when no saturations occur. In Figure 9.7
the canard deflections are zero except around t = 3 when they are needed because
the elevons saturate.

Figure 9.8 show the results when W2 = 0 and us = 0. Then the control
allocation objective (9.1a) becomes the often used min

∥
∥u
∥
∥ criterion, sinceW1 = 2I.

Figure 9.3 shows the frequency characteristics of the control allocator in this case.
Since the actuator rates are not included in the control allocation objective, no
dynamics are introduced and accordingly, the characteristics are the same for all
frequencies.

What benefits does dynamic control allocation offer in this case? The overall
behavior of the output signals is nearly the same regardless of the control allocation
scheme, see Figure 9.5 to Figure 9.8. This is due to that they all generate the same
aerodynamic moments, which is what mainly affects the aircraft behavior. Let
us therefore focus on two details: the undershoot in the nonminimum phase load
factor response, and the drag coefficient at trimmed flight.

Table 9.1 displays the value of the drag coefficient, CD, at trimmed flight just
before the maneuver starts (t = 0.9 s) for the different control allocation strategies.
Only the minimum control strategy stands out, which gives a drag increase of 2%
compared to the others.

Figure 9.4 shows a blowup of the load factor behavior at t = 1, which is when the
pitch command is applied. The curve with the largest undershoot comes from when
the canards are not used at all. The dynamic control allocator, which produces
the largest canard deflections of all methods just after t = 1 s, yields the smallest
undershoot.

Hence, the benefit in this case of using dynamic control allocation is that the
high frequency control distribution, affecting the initial aircraft response to a pi-
lot command, and the steady state control distribution, determining the drag at
trimmed flight, can be selected different. In this way, good pitch response charac-
teristics and minimum drag can be achieved in one design.

Note that the minimum norm control allocator could be modified to also achieve
minimum drag by minimizing

∥
∥u−ud

∥
∥ instead, where ud is the particular constant
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Method CD (−)

δc for high freq. 0.01452

ADMIRE FCS 0.01453

δc = 0 0.01452

min
∥
∥u
∥
∥ 0.01481

Table 9.1: Drag coefficient, CD, at trimmed flight for different control allocation methods.

distribution that yields minimum drag at trimmed flight. However, this would
require for ud to be determined explicitly for all flight cases of interest.

9.4 Conlusions

In this chapter a new method for dynamic control allocation has been developed.
Dynamic control allocation offers an extra degree of freedom compared to static
control allocation, in that the distribution of control effort among the actuators
need not be the same for all frequencies.

This can be useful if the actuators have different bandwidths but this was not
taken into account in the underlying control design. Then slow actuators can be
utilized only to produce the low frequency contents of the virtual control input,
while the fast actuators may operate over the whole frequency range.

Another case where dynamic allocation may be useful is when the actuators
affect the system behavior somewhat differently. This was illustrated in the aircraft
design example, where the canards were used to produce high frequency pitching
moment to reduce the nonminimum phase behavior of the pilot load factor.

The proposed framework for dynamic control allocation has several advantages.
Posing the problem as a constrained optimization problem provides automatic re-
distribution of control effort when one actuator saturates in position or in rate.
Further, using the l2-norm gives the problem nice analytical properties, since the
solution is a linear filter when no saturations occur.



162 Chapter 9 Dynami Control Alloation

10
−2

10
0

10
2

10
−4

10
−3

10
−2

10
−1

10
0

M
a

g
n

it
u

d
e

10
−2

10
0

10
2

10
−3

10
−2

10
−1

10
0

M
a

g
n

it
u

d
e

10
−2

10
0

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

M
a

g
n

it
u

d
e

Roll

Frequency  (rad/sec)

Pitch

Frequency  (rad/sec)

Yaw

Frequency  (rad/sec)

10
−2

10
0

10
2

10
−4

10
−3

10
−2

10
−1

10
0

M
a

g
n

it
u

d
e

10
−2

10
0

10
2

10
−3

10
−2

10
−1

10
0

M
a

g
n

it
u

d
e

10
−2

10
0

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

M
a

g
n

it
u

d
e

Canard wings
Outboard elevons
Inboard elevons
Rudder

Roll

Frequency  (rad/sec)

Pitch

Frequency  (rad/sec)

Yaw

Frequency  (rad/sec)
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Figure 9.6: Simulation results when the original ADMIRE flight control system is used
and no reallocation is performed. Left: aircraft trajectory. Right: commanded (thick
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Figure 9.7: Simulation results when the canards are used only when the elevons saturate.
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Chapter 10

Control Alloation vs

Linear Quadrati Control

Actuator redundancy is one issue to be dealt with when designing controllers for
systems with more inputs than outputs. A common approach is to use some optimal
control design method, like linear quadratic (LQ) control or H∞ control, to shape
the closed loop dynamics as well as the actuator control distribution in one step
(Zhou et al. 1996). Figure 10.1 illustrates the resulting controller structure.

An alternative, as we have seen previously in this thesis, is to separate the
regulation task from the control distribution task. With this strategy, the control
law specifies only which total control effect should be produced. The distribution
of control among the actuators is decided by a separate control allocation module,
see Figure 10.2.

In this chapter we derive some connections between these two strategies when
quadratic performance indices are used both for control law design and for control
allocation. Hence, LQ control and l2-optimal control allocation will be used to
design the control system building blocks in Figure 10.1 and Figure 10.2. This
comparison is particularly interesting from a flight control perspective since LQ
design today is a commonly used design method (Stevens and Lewis 1992, Amato
et al. 1997), and control allocation is possibly becoming one.

The main result that we will show is that in the linear case, the two design
strategies offer precisely the same design freedom. Given one design, we show how
to select the parameters of the other design to obtain the same control law. We
also motivate what benefits a modular design, with a separate control allocator,
offers. In particular, actuator constraints can be handled in a potentially better
way.

The chapter is organized as follows. In Section 10.1, linear quadratic regulation
(LQR), the cornerstone of LQ control, is reviewed. In Section 10.2, the class of
systems to which our results apply is presented, followed by the actual control
designs that correspond to the two strategies outlined above. Section 10.3 contains

169
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Figure 10.1: Standard control system structure.
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Figure 10.2: Control system structure when control allocation is performed separately.

two theorems connecting the strategies to each other, followed by a discussion on
the benefits of using a separate control allocator. In Section 10.4, the results are
illustrated using a realistic flight control example, and conclusions are drawn in
Section 10.5.

This chapter is based on

O. Härkeg̊ard. Resolving actuator redundancy—control allocation vs
linear quadratic control. In Proc. of the European Control Conference,
Cambridge, UK, Sept. 2003. Accepted for presentation.

10.1 Linear Quadrati Regulation

Consider a linear, controllable system

ẋ = Ax +Bu

y = Cx
(10.1)

where x ∈ R
n is the system state, u ∈ R

m is the control input, and y ∈ R
p is the

system output to be controlled. Let rank(C) = p and rank(B) = k ≥ p. Assume
that x is measured, i.e., consider the full-state feedback case.

Let the control objective be to bring the state x to zero while minimizing the
quadratic performance index

J =

∫ ∞

0

(
x(t)TQx(t) + u(t)TRu(t)

)
dt (10.2)

where Q is a positive semidefinite matrix and R is a positive definite matrix. This is
the standard infinite-time linear quadratic regulation (LQR) problem, see Anderson
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and Moore (1989). Q and R are selected by the designer to achieve a trade-
off between (a) quick convergence towards x = 0, and (b) moderate use of the
actuators. The optimal control law is given by

u = −Lx

where
L = R−1BTS (10.3)

and S is the unique positive semidefinite and symmetric solution to

ATS + SA+Q− SBR−1BTS = 0 (10.4)

known as the algebraic Riccati equation (ARE). The optimal performance index
is given by Jopt = x(0)TSx(0).

10.2 LQ Designs for Overatuated Systems

As stated in the introduction, control design for overactuated dynamic systems
can be performed in two fundamentally different ways; either a separate control
allocator is used, or the control allocation is embedded in the control law design.
In this section, the control laws resulting in the two cases are derived for a class of
linear systems.

10.2.1 System Desription

We will consider linear systems of the form

ẋ = Ax+Buu

y = Cx
(10.5)

where x ∈ R
n is the system state, u ∈ R

m is the control input, and y ∈ R
p is

the system output to be controlled. Assume x to be measured so that full state
information is available.

Let rank(Bu) = k ≤ m so that Bu can be factorized as

Bu = BvB

where Bu is n×m, Bv is n× k, and B is k ×m. With this, an alternative system
description is

ẋ = Ax+Bvv

v = Bu

y = Cx

(10.6)

where v ∈ R
k is the virtual control input.

We will restrict our discussion to the case k = p, i.e., when the number of
virtual control inputs equals the number of variables to be controlled. The results
can probably be extended to the general case k ≥ p.
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10.2.2 Control Design

Let the control objective be for the output y to track a constant reference signal r,
so that y = r is achieved asymptotically.

Standard LQ Design

In the first approach we consider (10.5) and use LQ design to achieve stability as
well as to distribute the control effort among the control inputs.

Design 1: Determine the control input u(t) by solving

min
u

∫ ∞

0

(
(x− x∗)TQ1(x − x∗) + (u− u∗)TR1(u− u∗)

)
dt (10.7)

where x∗, u∗ solve
min
x,u

uTR1u

subject to Ax+Buu = 0

Cx = r

(10.8)

Hence, if there are several choices of u that achieve ẋ = 0 and y = r, we pick u
such that uTR1u is minimized. The optimal control law is given by the following
theorem, based on Glad and Ljung (2000, Theorem 9.2, p. 244).

Theorem 10.1 The optimal control law for Design 1 is given by

u(t) = Lrr − Lx(t)

Lr = R
− 1

2

1 (G0R
− 1

2

1 )†

L = R−1
1 BT

u S1

(10.9)

Here,
G0 = C(BuL−A)−1Bu

and S1 is the unique positive semidefinite and symmetric solution to

ATS1 + S1A+Q1 − S1BuR
−1
1 BT

u S1 = 0

Proof: Introduce the new variables x̃ = x − x∗, ũ = u − u∗. The dynamics of x̃
become

˙̃x = ẋ = Ax+Buu = Ax̃+Buũ

where the last step follows from that Ax∗ +Buu
∗ = 0. Using the LQR results from

Section 10.1 gives the optimal control law

ũ = −Lx̃
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with L as in (10.9). In the original variables we get

u = u∗ + Lx∗
︸ ︷︷ ︸

ur

−Lx

Inserting this into (10.8) gives us

min
x,ur

(ur − Lx)TR1(ur − Lx)

subject to Ax+Bu(ur − Lx) = 0

Cx = r

Solving for x, and using Bu = BvB, the constraints become

x = (BuL−A)−1Bv Bur
︸︷︷︸

vr

C(BuL−A)−1Bv
︸ ︷︷ ︸

D

vr = r

Assuming that D (p × p) is nonsingular (or the control problem would not be
feasible), we see that vr, and consequently x, are completely determined by r.
Hence, x can be removed from the minimization, and the optimization problem
becomes

min
ur

(ur − Lx)TR1(ur − Lx)

subject to Bur = D−1r

which according to Lemma B.1 has the solution

ur = (I −R−1
1 BT (BTR−1

1 BT )−1B)Lx+R−1
1 BT (BR−1

1 BT )−1D−1

︸ ︷︷ ︸

Lr

r

Since L = R−1
1 BTBT

v S1, the first term is zero. This gives ur = Lrr. Introducing
G0 = DB = C(BuL−A)−1Bu, Lr can be rewritten as Lr = R−1

1 GT
0 (G0R

−1
1 GT

0 )−1,

or, equivalently, Lr = R
− 1

2

1 (G0R
− 1

2

1 )†. ✷

LQ Design and Control Alloation

Our second LQ based control design springs from the divided system description
(10.6). We first design a stabilizing virtual control law using LQ design and then use
l2-optimal control allocation to distribute the control effect among the individual
control inputs.
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Design 2: Determine the virtual control input v(t) by solving

min
v

∫ ∞

0

(
(x− x∗)TQ2(x− x∗) + (v − v∗)TR2(v − v∗)

)
dt

where x∗, v∗ solve

Ax+Bvv = 0

Cx = r

Then determine the control input u(t) by solving the control allocation problem

min
u

∥
∥Wv

∥
∥

subject to Bu = v

Theorem 10.2 The optimal control law for Design 2 is given by

u(t) = Pv(t)

P = W−1(BW−1)†

where the optimal virtual control input is given by

v(t) = Lrr − Lx(t)

Lr = G−1
0

L = R−1
2 BT

v S2

Here,
G0 = C(BvL−A)−1Bv

and S2 is the unique positive semidefinite and symmetric solution to

ATS2 + S2A+Q2 − S2BvR
−1
2 BT

v S2 = 0

Proof: The expression for L follows directly from Theorem 10.1. Lr also follows

from Theorem 10.1 as a special case. Since G0 is square we get R
− 1

2

1 (G0R
− 1

2

1 )† =
G−1

0 . P = W−1(BW−1)† follows from Lemma B.1. ✷

10.3 Main Results

We will now present two results which connect Design 1 and Design 2 in terms
of the resulting virtual control input, v(t), and true control input, u(t). In the
presentation, subscripts 1 and 2 are used to specify which design a certain entity
(u, v, etc.) is related to.
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Theorem 10.3 Consider Design 1 and Design 2. Given Q1 and R1,

Q2 = Q1

R2 =
(
BR−1

1 BT
)−1 (10.10)

achieve v2(t) = v1(t). Conversely, given Q2 and R2,

Q1 = Q2

R1 =
(
B†R−1

2 (B†)T
)−1 (10.11)

achieve v1(t) = v2(t).

Proof: From Theorem 10.1 and Theorem 10.2 we get

u1(t) = −R−1
1 BT

u S1x(t) = −R−1
1 BTBT

v S1x(t)

v2(t) = −R−1
2 BT

v S2x(t)

where S1 and S2 solve

ATS1 + S1A+Q1 − S1BuR
−1
1 BT

u S1 = 0

ATS2 + S2A+Q2 − S2BvR
−1
2 BT

v S2 = 0

For Design 1 we get the virtual control signal

v1(t) = Bu1(t) = −BR−1
1 BTBT

v S1x(t)

By inspection we see that

Q2 = Q1

R−1
2 = BR−1

1 BT

give the same solutions to the ARE:s, S1 = S2 = S, and also the same virtual
control signals, v1(t) = v2(t), which proves (10.10). Solving for R−1

1 gives R−1
1 =

B†R−1
2 (B†)T as one of many solutions, which proves (10.11). ✷

Theorem 10.4 Consider Design 1 and Design 2. Given Q1 and R1,

Q2 = Q1

R2 =
(
BR−1

1 BT
)−1

W = R
1

2

1

(10.12)

achieve u2(t) = u1(t). Conversely, given Q2, R2, and W ,

Q1 = Q2

R1 = W 2 +BT
(
R2 − (BW−2BT )−1

)
B

(10.13)

achieve u1(t) = u2(t).
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Proof: For the control signals to be equal, the virtual control signals must be equal.
From Theorem 10.3 we know that this holds if

Q2 = Q1

R−1
2 = BR−1

1 BT

Further, according to Theorem 10.2,

u2(t) = W−1(BW−1)†v2(t) = W−2BT (BW−2BT )−1v2(t)

Using this along with the expressions for u1(t) and v2(t) from the previous proof
yields

u1(t) = −R−1
1 BTBT

v Sx(t)

u2(t) = −W−2BT (BW−2BT )−1BR−1
1 BTBT

v Sx(t)

The choice W 2 = R1 yields

u2(t) = −R−1
1 BT (BR−1

1 BT )−1BR−1
1 BT

︸ ︷︷ ︸

=I

BT
v Sx(t)

= u1(t)

which proves (10.12). Note that the choice of W is not unique.
Deriving (10.13) is not quite as straightforward. To do this, consider Design 2

but with a different control allocation objective,

min
u

∥
∥W̃u

∥
∥ subject to Bu = v (10.14)

From above we know that this gives the same control signal as Design 1 if

Q2 = Q1

R−1
2 = BR−1

1 BT

W̃ 2 = R1

Further, (10.14) gives the same control law as Design 2 if

W̃ 2 = W 2 +BTXB

for any symmetric X such that W̃ 2 is positive definite. This is true since under
the constraint Bu = v it holds that

argmin
u

∥
∥W̃u

∥
∥ = argmin

u
uT W̃ 2u = argmin

u
uT (W 2 +BTXB)u

= argmin
u
uTW 2u+ vTXv = arg min

u
uTW 2u = arg min

u

∥
∥Wu

∥
∥
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Thus, u1 = u2 is achieved for

Q1 = Q2

R1 = W 2 +BTXB

if there exists a symmetric matrix X that solves

R−1
2 = BR−1

1 BT = B(W 2 +BTXB)−1BT

and makes R1 positive definite.
First solve for X . Using the matrix inversion formula

(A+BD)−1 = A−1 −A−1B(I +DA−1B)−1DA−1

gives us

R−1
2 = B(W 2 + BTXB)−1BT

= B
(

W−2 −W−2BT (I +X BW−2BT
︸ ︷︷ ︸

M

)−1XBW−2
)

BT

= M −M(I +XM)−1XM

Rearranging gives

XM = (I +XM)M−1(M −R−1
2 ) = I −M−1R−1

2 +XM −XR−1
2

which has the solution

X = R2 −M−1 = R2 − (BW−2BT )−1

This yields
R1 = W 2 +BT

(
R2 − (BW−2BT )−1

)
B

What remains is to check that R1 is positive definite.

uTR1u = uTW
(

I +W−1BT
(
R2 − (BW−2BT )−1

)
BW−1
︸ ︷︷ ︸

N

)

Wu
︸︷︷︸

ũ

= ũT
(
I +NT (R2 − (NNT )−1)N

)
ũ

= ũT
(
I +NTR2N −NT (NNT )−1N

)
ũ

Using the singular value decomposition

N = U
(

Σr 0

)
(

V T
r

V T
0

)

= UΣrV
T
r

gives
NT (NNT )−1N = VrΣrU

T (UΣ2
rU

T )−1UΣrV
T
r = VrV

T
r



178 Chapter 10 Control Alloation vs Linear Quadrati Control

Parameterize ũ as
ũ = Vrũr + V0ũ0

This yields

uTR1u = ũT
r ũr + ũT

0 ũ0 + ũT
r ΣrU

TR2UΣrũr − ũT
r ũr

= ũT
0 ũ0 + ũT

r ΣrU
TR2UΣr

︸ ︷︷ ︸

pos. def.

ũr > 0, u 6= 0

which shows that R1 is indeed positive definite. ✷

Let us now discuss the implications of these two “conversion theorems”, relating
traditional LQ design to l2-optimal control allocation.

The main message is that the two approaches give the designer the exact same
freedom to shape the closed loop dynamics and to distribute the control effort
among the actuators. Given the design parameters of one design, Theorem 10.4
states how the parameters of the other design should be selected to achieve precisely
the same control law.

So why then bother to split the control design into two separate tasks? Let us
list some benefits of using a modular control design.

• Facilitates tuning. In Design 1, modifying an element of the control input
weighting matrix, R1, will affect the control distribution as well as the closed
loop behavior of the system. In Design 2, the tuning of the closed loop
dynamics is separated from the design of the control distribution.

• Easy to reconfigure. An actuator failure can often be approximately mod-
eled as a change in the B-matrix. In Design 2 this only affects the control
allocation. Hence, if the failure is detected, the new B-matrix can be used
for control allocation, while the original virtual control law can still be used,
provided that damaged system is still controllable.

• Arbitrary control allocation method. From (10.6) we see that the system
dynamics are completely determined by the virtual control input, v. Hence,
Theorem 10.3 allows us to use any control allocation mapping u = h(v) in
Design 2, such that Bh(v) = v, without altering the close loop dynamics from
Design 1.

• Actuator constraints. With a separate control allocator, actuator constraints
can be handled to some extent. If at time t, the control input is bounded
by u(t) ≤ u(t) ≤ u(t), considering position and rate constraints (see (7.6)),
the control allocation problem in Design 2 can be reformulated as (cf. Sec-
tion 7.3.1)

u = arg min
u∈Ω

∥
∥Wu

∥
∥

Ω = arg min
u≤u≤u

∥
∥Wv(Bu − v)

∥
∥

(10.15)
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This way, the control capabilities of the actuator suite can be fully exploited
before the closed loop performance is degraded. Also, when Bu = v is not
attainable, Wv allows the designer to prioritize between the components of
the virtual control input.

Remark: It should be stressed that including the constraints in the control
allocation is not equivalent to including the constraints in the original LQ
problem in Design 1.

Apparently, a modular design has potential benefits. Unfortunately, it is not
always possible to perform the division even when the number of actuators ex-
ceeds the number of controlled variables. Recall, for example, the discussion
in Section 7.2.3 where it was shown that the rank assumption in Section 10.2.1
(rank(Bu) = p) breaks down in the presence of actuator dynamics. Hence, to
achieve modularity, some model approximations may be necessary, as we will see
in the design example in the following section.

10.4 Flight Control Example

To investigate the potential benefits of a modular LQ design, we use a flight control
example, based on the ADMIRE model (ADMIRE ver. 3.4h 2003), see Section 2.4.
To induce actuator saturations, we consider a low speed flight case, Mach 0.22,
altitude 3000 m, where the control surface efficiency is poor.

System Desription

The commanded variables are the angle of attack, α, and the roll rate, p. The
sideslip angle, β, is to be regulated to zero. Hence,

y =
(

α β p

)T

Beside these, we also include the pitch rate, q, and the yaw rate, r, in the system
state,

x =
(

α β p q r

)T

The control surface vector

δ =
(

δc δre δle δr

)T

contains the positions of the canard wings, the right and left elevons, and the
rudder, see Figure 2.6. The left and right canard wings, as well as the inner and
outer elevons on each side, have been ganged. For the considered flight case, the
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actuator position constraints are given by

δmin =
(

−55◦ −30◦ −30◦ −30◦
)T

δmax =
(

25◦ 30◦ 30◦ 30◦
)T

(10.16)

The actuator rate constraints are not considered in this example.
At trimmed flight,

x = x0 =
(

12.7◦ 0 0 0 0

)T

δ = δ0 =
(

0 5.4◦ 5.4◦ 0

)T

Introducing the deviations x̃ = x − x0 and δ̃ = δ − δ0, the linearized ADMIRE
dynamics become

˙̃x = Ax̃+Bδ̃

where

A =











−0.5432 0.0137 0 0.9778 0

0 −0.1179 0.2215 0 −0.9661

0 −10.5128 −0.9967 0 0.6176

2.6221 −0.0030 0 −0.5057 0

0 0.7075 −0.0939 0 −0.2127











B =











0.0069 −0.0866 −0.0866 0.0004

0 0.0119 −0.0119 0.0287

0 −4.2423 4.2423 1.4871

1.6532 −1.2735 −1.2735 0.0024

0 −0.2805 0.2805 −0.8823











The actuator dynamics are given by

˙̃
δ = Bδ(ũ − δ̃)

Bδ = 20I

where ũ = u − δ0 and u is the control input consisting of the commanded control
surface positions. This corresponds to first order dynamics with a time constant
of 0.05 s. The total aircraft dynamics become

(

˙̃x
˙̃
δ

)

=

(

A B

0 Bδ

)(

x̃

δ̃

)

+

(

0

Bδ

)

ũ (10.17)

Since rank(Bδ) = 4 6= 3, this model does not satisfy the requirements in Sec-
tion 10.2.1. We therefore make the following two approximations:
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• The actuator dynamics are neglected, and δ = u is used.

• The α̇ and β̇ dependencies on δ, corresponding to the top two rows in B, are
neglected.

This gives the approximate model

˙̃x = Ax̃+ B̃uũ (10.18)

where

B̃u = B̃vB̃

and where

B̃v =

(

02×3

I3×3

)

B̃ =






0 −4.2423 4.2423 1.4871

1.6532 −1.2735 −1.2735 0.0024

0 −0.2805 0.2805 −0.8823






The resulting virtual control input, v = B̃ũ, contains the angular accelerations in
roll, pitch, and yaw produced by the control surfaces.

Control Design

Three different control strategies are investigated.

1. Standard LQ design for the approximate model (10.18), see Design 1, with
weighting matrices Q1, R1.

2. LQ design and l2-optimal control allocation for the approximate model (10.18),
see Design 2, with Q2 and R2 selected as in Theorem 10.4. To handle the
actuator position constraints, the extended control allocation formulation
(10.15) is used with two different choices of Wv.

3. Standard LQ design for the full model (10.17). L is selected as in Section 10.1,
with weighting matrices

Q =

(

Q1 0

0 0

)

R = R1

and Lr is selected as in Theorem 10.1.
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Q1 andR1 are selected by tuning design 3 to fulfill the requirements in St̊ahl Gun-
narsson (1999) regarding the damping (ζ) and natural frequency (ωn) of the short
period mode and the dutch roll mode, and the time constant (τ) of the roll mode.

Q1 = diag(10, 10, 2, 1, 10)

R1 = diag(10, 10, 10, 10)

yields

ζsp = 0.98

ωn,sp = 1.84

ζdr = 0.58

ωn,dr = 1.72
τroll = 0.42

Simulation Results

The full model (10.17) is used for simulation. The reference trajectory is shown in
Figure 10.3.

Figure 10.3 shows the simulation results when the actuator constraints (10.16)
are not included in the aircraft model. Since no saturations occur, designs 1 and
2 give the exact same results. The difference in the results between these two and
design 3 is that design 3 is based on the full model. This explains why only design
3 achieves the commanded angle of attack.

Figure 10.4 shows the results when the actuator constraints are included. Recall
that this is a case where we expect control allocation to be useful. When the roll
command is applied at t = 3 s, the left elevons saturate. In designs 1 and 3,
this causes an overshoot in the pitch variables, α and q. In design 2, the control
allocator copes with this saturation by redistributing as much of the lost control
effect as possible to the right elevons and to the canards. The result is that the
nominal trajectory from Figure 10.3 is almost completely recovered.

Finally, Figure 10.5 shows the effects of the axis prioritization matrix Wv. The
choice Wv = diag(1, 1, 1), corresponding to equal priorities for all three axes, gives
a large overshoot in the sideslip angle at t = 4 s. To improve the yaw response,
Wv = diag(1, 1, 100) is selected (which was the choice in Figure 10.4). This puts
a large penalty on the discrepancy between the demanded and the produced yaw
angular acceleration in the control allocation, see (10.15). This forces the elevons
and the rudder to be used primarily for yaw control. The result is a slightly slower
initial roll response (barely visible), and an overall superior response in yaw as well
as in roll.

10.5 Conlusions

Let us conclude this chapter on control allocation vs linear quadratic control.

For the considered class of linear systems, described in Section 10.2.1, stan-
dard LQ design, and LQ design in combination with l2-optimal control allocation,
both offer the exact same design freedom in shaping the closed loop response and
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Figure 10.3: Aircraft trajectory, x (left), and control surface positions, δ (right), for
control design 1, 2 (both solid), and 3 (dashed), when actuator constraints (dotted) are
not included.
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Figure 10.4: Aircraft trajectory, x (left), and control surface positions, δ (right), for con-
trol design 1 (dash-dotted), 2 (solid), and 3 (dashed), when actuator constraints (dotted)
are included.
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Figure 10.5: Aircraft trajectory, x (left), and control surface positions, δ (right), for
control design 2 with Wv = diag(1, 1, 100) (solid) and Wv = diag(1, 1, 1) (dashed), respec-
tively. In the first case, yaw control is prioritized resulting in a better sideslip response.
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distributing the control effect among the actuators. Theoretically, this is an in-
teresting result in itself since it ties together two useful tools for aircraft control
design.

There are also practical implications. Given an existing LQ controller, we have
shown how to split this into a new LQ controller, governing the closed loop dynam-
ics, and a control allocator, distributing the control effect among the actuators. In
the control allocator, actuator position and rate constraints can be considered, so
that when one actuator saturates, the remaining actuators can be used to make up
for the loss of control effect, if possible.

Unfortunately, not all systems with more actuators than controlled variables fit
into the considered class of systems. In some cases, reasonable approximations may
enable for the proposed modularity to be achieved, as in our flight control example.
In such cases, the benefits of using a separate control allocator must be weighed
against the disadvantages of using an approximate model for control design.
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Chapter 11

Appliation to Flight Control

In the two preceding parts, backstepping and control allocation has been used to
develop design tools applicable to flight control. In this chapter we use a selection
of these tools to build a simplified flight control system.

In Section 11.1, the proposed control system is presented, and its different build-
ing blocks are described in detail. How to select the design variables of the control
system is the topic of Section 11.2. The qualitative properties of the proposed con-
troller are discussed in Section 11.3, and in Section 11.4 simulation results based
on the ADMIRE model are presented. Conclusions are drawn in Section 11.5.

11.1 Building the Control System

The proposed control system configuration is shown in Figure 11.1. Given the
(modified) reference signal r̄, and the measured state vector x, the control laws
compute the aerodynamic moment coefficients to be produced in pitch, roll, and
yaw. In the control allocation module, this virtual control input is distributed
among the available control surfaces so that the desired moments will be produced.
The output of this block are the demanded control surface deflections, u. Both
the control laws and the control allocator are designed based on a nominal aircraft
model. To achieve robustness against model errors and external disturbances,
integral control is used to modify the reference signal entering the control laws.

We will now present these three building blocks in detail and write down the
computations involved for each of them.

11.1.1 Control Laws

The control laws are responsible for the regulation task of the control system. Here
we will use the backstepping control laws derived in Chapter 4 for maneuvering
flight control and for flight path angle control. For maneuvering flight control, the

189
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Figure 11.1: Control system configuration.

control objectives are

pw = pref
w

α = αref

β = 0

and for flight path angle control, the control objective is given by

γ = γref

For maneuvering flight control, the rigid body control laws from Chapter 5 could
also be used.

Speed control is handled separately in both cases. For maneuvering flight con-
trol the throttle setting is held constant at the trim value of the particular flight
case. For flight path angle control, a simple proportional controller is used.

Let us now list the computations involved in evaluating the control laws in the
two cases.

Maneuvering Flight Control

1. Compute the desired angular acceleration in the wind-axes frame,

ω̇des
w =

(

a1 a2 a3

)T
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whose components are given by (4.41), (4.42), and (4.46):

a1 = kp(p
ref
w − pw)

a2 = −kq(qw + kα cosβ(α − αref)+

1

mVT
(−L(αref, β, p, q, r, δ) +mg3(α

ref, β, θ, φ)))

a3 = kr(−rw + kββ +
1

VT
g cos θ sinφ)

(11.1)

where kp, kq, kr, kα, and kβ are design parameters. In the evaluation of fα

in (4.42), the thrust force component is neglected since FT is not measured.
Further, the dependencies on the angular rates as well as on the control
surface deflections are included in the computation of the lift force, although
they were neglected in the control design. Including these effects reduces the
workload of the integrator.

2. Compute the net torque, in the body-fixed coordinate frame, required to
produce the desired angular acceleration, see (4.38):

T = ITbw(α, β)ω̇des
w + ω × Iω (11.2)

Neglecting the torque contribution from the engine, T contains the aerody-
namic moments to be produced in roll, pitch, and yaw.

3. Compute the aerodynamic moment coefficients to be produced, see (2.12):

v =
(

Cl Cm Cn

)T

=
1

Sq̄
diag(b, c̄, b)−1T

Flight Path Angle Control

1. Compute the desired pitch angular acceleration, see (4.48),

a = −k3(q + k2(α− α0 + (1 + k1)(γ − γref)))

where k1, k2, and k3 are design parameters.

2. Compute the pitching moment required to produce this angular acceleration,
see (4.49):

M = Iya

Again, the thrust force component has been neglected.

3. Compute the corresponding aerodynamic coefficient, see (2.12), and set the
rolling and yawing moment coefficients to zero:

v =
1

Sq̄c̄

(

0 M 0

)T
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11.1.2 Control Alloation

The control allocator computes commanded control surface deflections, considering
actuator position and rate limits, such that the desired aerodynamic moments
coefficients are produced. Here we will use the dynamic control allocation method
from Chapter 9 to achieve different control distributions at different frequencies.

1. Compute the control effectiveness matrix from the aerodynamic coefficients
CM = (Cl Cm Cn)T , see (7.14):

B =
∂CM

∂δ
(α, β, p, q, r, δ0)

The choice of δ0 is discussed in Section 11.2.2.

2. Compute the modified virtual control input, see (7.15):

v̄ = v − CM (α, β, p, q, r, δ0) +Bδ0

3. Determine the set of feasible control surface deflections with respect to posi-
tion and rate constraints, see (7.7),

u(t) = max{umin, u(t− T ) + Tρmin}
u(t) = min{umax, u(t− T ) + Tρmax}

where T is the sampling time.

4. Perform l2-optimal dynamic control allocation, see (9.1):

u(t) = arg min
u(t)∈Ω

∥
∥W1(u(t) − us(t))

∥
∥

2

2
+
∥
∥W2(u(t) − u(t− T ))

∥
∥

2

2

Ω = arg min
u(t)≤u(t)≤u(t)

∥
∥Wv(Bu(t) − v̄(t))

∥
∥

2

Here, W1, W2, Wv, and us are design variables.

11.1.3 Integral Control

The integral control part of the control system is included to achieve output regu-
lation in the presence of model errors and constant external disturbances acting on
the system. In the proposed configuration, integral control is used to modify the
reference signal, r, rather than the control input, u. This unconventional design
choice was inspired by Su et al. (2001). Note that if the control laws are linear in
r̄, this is equivalent to adding the integral action to the virtual control input, v.

Theoretically, this strategy guarantees that constant disturbances appearing at
the input of the control laws, thus contributing to r̄, are suppressed. In practice,
this strategy may also achieve output regulation when disturbances are introduced
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elsewhere in the system, see Section 6.4.1, and when the true system differs from
the nominal model used for control design, see Su et al. (2001).

The integrator input is given by the difference between the output of a reference
model of the closed loop system, and the actual values of the controlled variables.
This way, the integral controller is only active when the output signal y deviates
from its predicted value. Thus, the following steps are to be performed in the
integral control part of the control system:

1. Filter the reference signal r through a reference model of the nominal closed
loop system. This gives the nominal output signal ynom.

2. Integrate the output error and adjust the reference signal according to

r̄ = r + kI

∫ t

0

(ynom(τ) − y(τ))dτ

where kI contains the integrator gains for the different controlled variables.

11.2 Tuning the Control System

Each block in the control system in Figure 11.1 contains a number of design pa-
rameters to be tuned. In this section we discuss how to select these parameters to
achieve a desirable total system behavior.

11.2.1 Control Laws

For maneuvering flight control, the design parameters are the feedback gains kp,
kq, kr, kα, and kβ . If the flight envelope does not include high angles of attack, it
was shown in Section 4.3.1 that the conditions kα > 0, kβ > 0, kp > 0, kq > kα,
and kr > kβ guarantee closed loop stability.

A systematic way to select these parameters is to use reference models of the
desired responses,

pw =
1

sτroll + 1
pref

w

α =
ω2

n,sp

s2 + 2ζspωn,sp + ω2
n,sp

αref

β =
ω2

n,dr

s2 + 2ζdrωn,dr + ω2
n,dr

βref

(11.3)

where τroll is the roll time constant, ζsp and ωn,sp are the damping and the nat-
ural frequency of the short period mode, and ζdr and ωn,dr are the damping and
the natural frequency of the dutch roll mode. Reference models of this kind are
frequently used for flight control design, see, e.g., St̊ahl Gunnarsson (1999).

Comparing the roll reference model with the true closed loop dynamics

ṗw = kp(p
ref
w − pw)
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found by combining (4.37a) with (4.41), gives

kp =
1

τroll

For the angle of attack, the linearized closed loop dynamics are found by combining
(4.37b)–(4.37c) with (4.41), which gives

α̇ = q̃w + aα

˙̃qw = −kq(q̃w + kα(α− αref))

where a = f ′
α(αref) and q̃w = qw + fα(αref). Comparing with the reference model

above gives

kq = 2ζspωn,sp + a

kα =
ω2

n,sp

kq
+ a

Similarly, for sideslip regulation we get

kr = 2ζdrωn,dr + b

kβ =
ω2

n,dr

kr
+ b

where b = f ′
β(0) assuming that βref = 0.

Note that the parameters a and b depend on the flight case. This can be handled
either by selecting fixed feedback gains based on a representative flight case in the
middle of the flight envelope, or by scheduling the feedback gains with the flight
case using the analytical expressions above.

Similar rules can be developed for the feedback gains defining the flight path
angle control law.

11.2.2 Control Alloation

The design parameters for dynamic control allocation are given by the weighting
matricesW1, W2, andWv, and the control distribution at steady state, us. Another
design choice to be made regards δ0 which is used for linearizing the aerodynamic
moment coefficients.

A systematic method to select us was presented in Section 9.2.3. Wv determines
which aerodynamic moment to prioritize in case the demanded virtual control
input is infeasible with respect to the actuator constraints. For example, selecting
Wv = diag(1, 10, 100) puts the highest priority on the yawing moment, and the
lowest priority on the rolling moment.

A similar strategy can be used to select W1 and W2 whose entries penalize actu-
ator position errors (relative to us) and actuator rates, respectively. For example,
a large rate penalty for a certain actuator means that this actuator will be used to
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produce low frequency virtual control input if there are other actuators that can
be used to produce high frequency virtual control input. However, which types of
transfer functions from v to u that can be achieved, and how to obtain a certain
frequency characteristic for an actuator, remains to be investigated.

As discussed in Section 7.2.2, δ0 can be selected as the previously commanded
control input, u(t−T ). With this choice the local variations in control effectiveness
are considered. However, if the control effectiveness of an aerodynamic surface does
not vary monotonically with the surface deflection, the linearization will be zero at
some point. This can cause the B matrix to be rank deficient which may lead to
numerical problems in the control allocation. A more robust choice is to linearize
around some fixed value of δ0, for example δ = 0, and let the integral controller
handle the resulting model error.

11.2.3 Integral Control

For the integral controller, the design variables are the reference model of the
nominal aircraft response and the integrator gains in kI .

The reference models for the different controlled variables should be designed to
reproduce the characteristics of the nominal closed loop system. These models may
include nonlinearities as well as the previously neglected dynamics in the actuators
and in the sensors. A straightforward choice is to pick the same linear reference
models that were used for tuning the control law parameters, see (11.3).

As for the feedback gains in Section 11.2.1, the integrator gains in kI could
be selected using pole placement techniques. However, this issue remains to be
investigated further. Su et al. (2001) derive an upper bound for kI in order for
the closed loop system to be stable. This bound relies on the characteristics of a
Lyapunov function for the closed loop system without the integrator.

11.3 Control System Properties

Let us now evaluate the proposed control system structure from a qualitative per-
spective.

• Which particular system properties are dealt with?

The backstepping control laws are based on the nonlinear rigid body equations
(2.6). Hence the couplings between longitudinal and lateral motion, including
inertia coupling (see Section 2.3.1), are explicitly considered. Further, the design
parameters can be selected to achieve stability also at high angles of attack, see
Section 4.3.1.

The control allocation algorithm takes actuator position and rate limits into
account. If an actuator saturates, the control effort is redistributed among the
remaining actuators to make up the difference. Further, using dynamic control
allocation allows for the bandwidths of the actuators to be considered in the sense
that slow actuators can be fed with low frequency position command signals.
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• Which system properties are not considered?

All actuator and sensor dynamics are neglected. The dependence of the aerody-
namic forces on the control surface positions is also essentially neglected. Including
this dependence in the computation of the lift force as in (11.1) means that the
influence of the control surfaces at steady state is accounted for in the control
laws, rather than leaving this task to the integral controller. However, no stability
guarantees can be made since this effect was not considered in the control design.

• What aerodynamic data does the control system rely on?

In the angle of attack control laws, the value of lift coefficient needs to be com-
puted, and for control allocation, the values and the first order derivatives of the
aerodynamic moment coefficients are required. Further, the proposed method for
tuning the feedback gains depends on the derivatives of CL and CY with respect
to α and β, respectively. Consequently, it is fairly straightforward to adjust the
control system if an updated set of aerodynamic data for the aircraft is obtained.

• What design requirements can be handled?

The tuning method in Section 11.2.1 allows the designer to specify the charac-
teristics of the roll mode, the short period mode, and the dutch roll mode. The
control laws can also be tuned to achieve stability at high angles of attack, see
Section 4.3.1.

The dynamic control allocator handles requirements regarding control surface
activity, including frequency apportioning. Further, since the control allocation is
performed at each sample, new information about the status of the control surfaces
(jammed, flee-floating, etc.) can be directly incorporated. This can be viewed as
handling certain safety requirements.

• What is the computational complexity of the control system?

The main computational burden consists of performing the control allocation,
where at each sampling instant a constrained least squares problem must be solved.
In Chapter 8 we developed active set methods for this purpose. Using active set
methods, a trade-off can be made between the computation time and the optimal-
ity of the solution. Since these methods have not yet been implemented in any
compiling language, no realistic timing data are available.

• What is the implementational complexity of the control system?

Implementing the control system requires a constrained least squares solver to be
programmed. The active set methods in Chapter 8 are fairly complex to imple-
ment. The pseudoinverse methods reviewed in Section 7.4.3 are straightforward to
implement but may not perform as well, as demonstrated in Section 8.5.

Further, if the aerodynamic data is stored in look-up tables, numerical dif-
ferentiation is needed to perform the linearization of the aerodynamic moment
coefficients for control allocation.
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11.4 ADMIRE Simulations

The control system in Figure 11.1 has been implemented in MATLAB/Simulink
and integrated with the ADMIRE model (see Section 2.4), replacing the existing
flight control system. The properties of the angle of attack control law and the flight
path angle control law at high angles of attack were investigated in Section 4.3.3.
In this section we investigate other properties of the maneuvering flight control
laws.

11.4.1 Design Parameters

The design parameters in the control system were selected as follows.

Control Laws

For maneuvering flight control, the feedback gains were selected as described in
Section 11.2.1. The requirements

τroll = 0.4
ζsp = 0.9

ωn,sp = 4.0

ζdr = 0.7

ωn,dr = 3.0

at Mach 0.5, 1000 m, give

kp = 2.5
kq = 5.7

kα = 1.3

kr = 3.9

kβ = 2.0

For flight path angle control,

k1 = 1.0 k2 = 1.3 k3 = 5.7

were selected, based on the angle of attack control parameters above.

Control Alloation

The parameters governing the dynamic properties of the of the control allocator
were selected as in the design example in Section 9.3, i.e.,

W1 = diag(2, 2, 2, 2, 2, 2, 2)

W2 = diag(5, 5, 10, 10, 10, 10, 10)

us(t) = Sv̄(t)

with S determined by (9.9). This causes the canards to be used only for high
frequencies so that only the elevons and the rudder are deflected at steady state,
see Figure 9.3. The axis prioritization was selected as

Wv = diag(1, 10, 100)
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The aerodynamic moment coefficients are linearized around δ0 = δ(t − T ),
which is computed by incorporating a model of the actuator dynamics in the con-
trol system. Algorithm 8.3 (weighted least squares) is used to solve the control
allocation problem at each sample. This choice was motivated by the fact that
WLS is numerically stable even when the control effectiveness matrix B becomes
rank deficient.

To reduce the number of variables to be plotted, the two canards are ganged
(δrc = δlc = δc), as well as the two right elevons (δroe = δrie = δre) and the two
left elevons (δloe = δlie = δle), in all simulations except the control surface failure
simulation where only the canards were ganged.

Integral Control

For maneuvering flight control, the closed loop reference model was selected as in
(11.3) with the coefficients given above. For flight path angle control, the reference
model was selected as the linearization of the nominal closed loop system at Mach
0.3, 1000 m. In both cases the integrator gain was set to

kI = 0.2

for each controlled variable.

11.4.2 Simulation Results

• Variations with speed and altitude: Figure 11.2 illustrates the closed loop
behavior for three different initial conditions: Mach 0.5, 1000 m (which is
the flight case the parameters were tuned for), Mach 0.22, 200 m (low speed
and altitude), and Mach 0.8, 5000 m (high speed and altitude). To be able
to compare the responses, the angle of attack at trimmed flight, α0, has
been subtracted from the α response. The controlled variables α, β, and pw

essentially behave the same in all cases.

• Decoupling: Figure 11.3 illustrates the decoupling properties of the controller.
Recall that the backstepping control laws were derived considering the dy-
namics in roll, pitch, and yaw, as three separate systems. In the figure we
see that the α and pw responses are virtually the same regardless of the
commanded value of the other variable.

• Control surface hardover: Figure 11.4 shows the results of a control surface
hardover. At t = 1 s, a failure occurs in the right outer elevon which is
driven to −30 degrees. This causes an undesired rolling, pitching and yawing
motion to which the control system reacts rather slowly. At t = 1.5 s, the
fault is assumed to be detected and the information is sent to the control
allocator which is able to compensate for the hardover using the remaining
control surfaces. Note that the roll maneuver commanded at t = 4 s is almost
perfectly executed.
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• Inertia coupling: Figure 11.5 shows the effects of not compensating for inertia
coupling. The dashed line corresponds to neglecting the terms (Ix − Iz)pr +
Ixz(p

2 + r2) in the pitch rate dynamics in (2.14) when the desired torque
to be produced in computed in (11.2). Recall from Section 2.3.1 that these
terms induce a pitching motion. When this effect is not accounted for, the
angle of attack increases quickly as the roll command is applied at t = 2 s.

• Robustness: Figure 11.6 and Figure 11.7 illustrate the robustness of the sys-
tem for two different types of model error. In both figures, the response of
the perturbed system is compared with the nominal system response from
Figure 11.2.

Figure 11.6 shows the results of a 30% increase of the aircraft mass, m. This
leads to an overshoot in α, but as the integral controller starts to work, the
control error goes to zero.

Figure 11.7 shows the effects of a 33% decrease, and a 50% increase, in the
modeled control efficiency compared to the true efficiency. This model error
is obtained by multiplying CM used in Section 11.1.2 by 0.67 and 1.5, re-
spectively. Form the figure we see that underestimating the control efficiency
yields a system response that is faster than desired, but not oscillatory. Over-
estimating the control efficiency gives a slower system response. Due to the
integral controller, this leads to an overshoot in the controlled variables α
and pw.

• High angles of attack: The stability properties at high angles of attack were
investigated in Section 4.3.3.

11.5 Conlusions

In this chapter we have shown how to combine the backstepping control laws from
Part I with the control allocation tools from Part II to construct a flight control
system capable of dealing with the nonlinear dynamics of an aircraft as well as
actuator redundancy and actuator position and rate constraints.

The control laws can be systematically tuned based on the requirements on the
different modes of the aircraft (roll, short period, and dutch roll). This does not
require any insight into the backstepping method used to construct the control laws.
The control allocator can also be systematically tuned using weighting matrices to
achieve the desired control distribution among the control surfaces.

Simulations indicate that the controller gives a similar response for different
flight cases and possesses certain robustness properties. Further, considering the
full nonlinear aircraft dynamics enables the controller to efficiently counteract the
inherent couplings between lateral and longitudinal motion, including inertia cou-
pling. A final important conclusion is that the results indicate that the approxi-
mations made during the control design were reasonable.
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Figure 11.2: Simulation results when the same control commands (thin lines) are applied
for three different flight cases: Mach 0.5, 1000 m (solid), Mach 0.22, 200 m (dashed), and
Mach 0.8, 5000 m (dotted).
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Figure 11.3: Illustration of the decoupling properties of the controller: commanded values
(thin lines), aircraft response for a pure pitch command (dashed), a pure roll command
(dotted), and both commands applied simultaneously (solid).
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Figure 11.4: Results from a control surface hardover at t = 1 s. Left: commanded (thin
lines) and actual (thick lines) aircraft response. Right: Commanded (thin lines) and
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Figure 11.5: Illustration of the effects of inertia coupling: control commands (thin lines)
and the resulting aircraft response with (solid) and without (dashed) compensation for
inertia coupling, respectively.
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Figure 11.6: Robustness towards mass perturbations: nominal aircraft response (thin
lines) and response for a 30% increase in the aircraft mass (thick lines).
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Figure 11.7: Robustness towards control efficiency perturbations: nominal aircraft re-
sponse (thin lines) along with the response for a 33% decrease (solid) and a 50% increase
(dashed) in the modeled control efficiency.
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Chapter 12

Conlusions

Let us end this thesis with some overall conclusions.
The use of backstepping for flight control design seems promising. Compared

with feedback linearization, backstepping requires the same model approximations
to be made, while the resulting control laws can be designed to rely on less pre-
cise aerodynamic model information. An advantage over linear flight control is
that a nonlinear framework allows for effects like inertia coupling to be explicitly
accounted for. Under some assumptions, backstepping can also be applied to the
control of a general rigid body, subject to external forces and moments.

A disadvantage of backstepping is that the design complexity grows rapidly
with the system order which makes it difficult to include, e.g., actuator dynamics.
Another drawback is that state feedback is required.

For control allocation, the least squares formulation used in this thesis consti-
tutes a nice analytical framework since it provides a smooth transition from the
nonsaturated case, where a linear control distribution is achieved, to the case where
some of the actuators are saturated. It also allows for filtering to be incorporated
to shape the frequency responses of the control signals.

To solve the control allocation problem in real-time, classical active set meth-
ods from numerical optimization provide a possible alternative to the pseudoinverse
methods frequently used today. They are similar in terms of computational com-
plexity, but unlike the pseudoinverse methods, active set methods are guaranteed
to find the optimal solution. Further, a feasible suboptimal solution is produced
in each iteration, which can be used if there is not enough time to compute the
optimal solution.

A final conclusion is that control allocation may be useful also for control of
linear systems. Compared with linear quadratic design, control allocation offers
the same degree of freedom to shape the control distribution for those systems that
both techniques can be applied to. The advantage of using control allocation is that
actuator constraints can be considered which means that the control capabilities
can be fully utilized.
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Appendix A

Airraft Nomenlature

State variables

Symbol Unit De�nition

α rad angle of attack

β rad sideslip angle

γ rad flight path angle

V = eb(u v w)T velocity vector

u m/s longitudinal velocity

v m/s lateral velocity

w m/s normal velocity

VT m/s total velocity

ω = ebω = ewωw angular velocity vector

ω = (p q r)T body-axes components

ωw = (pw qw rw)T wind-axes components

p rad/s roll rate

q rad/s pitch rate

r rad/s yaw rate

p = ei(pN pE − h)T position vector

pN m position north

pE m position east

h m altitude

Φ = (φ θ ψ)T orientation in Euler angles

φ rad roll angle

θ rad pitch angle

ψ rad yaw angle

nz g load factor, normal acceleration

nzp g pilot load factor
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Coordinate frames

Symbol De�nition

ei = (x̂i ŷi ẑi) inertial, Earth-fixed frame

eb = (x̂b ŷb ẑb) body-fixed frame

ew = (x̂w ŷw ẑw) wind-axes frame

Control surfae deetions

Symbol Unit De�nition

δrc rad right canard deflection

δlc rad left canard deflection

δroe rad right outer elevon deflection

δrie rad right inner elevon deflection

δlie rad left inner elevon deflection

δloe rad left outer elevon deflection

δr rad rudder deflection

Fores and moments

Symbol Unit De�nition

g m/s2 gravitational acceleration

FT N engine thrust force

D = q̄SCD N drag force

L = q̄SCL N lift force

Y = q̄SCY N side force

L̄ = q̄SbCl Nm rolling moment

M = q̄Sc̄Cm Nm pitching moment

N = q̄SbCn Nm yawing moment

Airraft data

Symbol Unit De�nition

m kg aircraft mass

I =






Ix 0 −Ixz

0 Iy 0

−Ixz 0 Iz




 kg m2 aircraft inertial matrix

S m2 wing planform area

b m wing span

c̄ m mean aerodynamic chord

zTP m zb-position of engine thrust point

xP m xb-position of the pilot
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Atmosphere

Symbol Unit De�nition

ρ kg/m3 air density

q̄ N/m2 dynamic pressure
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Appendix B

Some Results from

Matrix Theory

In this appendix, some facts and results from matrix theory are presented. The
material can be found in many textbooks, and for this review, Golub and Van Loan
(1996), Björck (1996), Zhang (1999), Zhou et al. (1996), and Strang (1980) were
consulted.

The two main topics are

• matrix decompositions: QR (used in Chapter 8) and SVD (Chapters 9 and 10)

• the pseudoinverse (used throughout Part II)

B.1 Norms and Singular Values

Let us first review the standard definitions of vector and matrix norms, and the
singular values of a matrix.

Let x be an n× 1 vector. The p-norm of x is defined as

∥
∥u
∥
∥

p
=

(
m∑

i=1

∣
∣ui

∣
∣
p

)1/p

for 1 ≤ p ≤ ∞

For p = 1, 2,∞ we get

∥
∥x
∥
∥

1
=

n∑

i=1

∣
∣xi

∣
∣

∥
∥x
∥
∥

2
=

√
√
√
√

n∑

i=1

x2
i =

√
xTx

∥
∥x
∥
∥
∞

= max
1≤i≤n

∣
∣xi

∣
∣
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Let A be an m× n matrix. The induced p-norm of A is defined as

∥
∥A
∥
∥

p
= sup

x 6=0

∥
∥Ax

∥
∥

p
∥
∥x
∥
∥

p

The singular values of A are given by the positive square roots of the eigenvalues
of ATA,

σi(A) =
√

λi(ATA), i = 1, . . . , n

ordered such that σ1 ≥ · · · ≥ σr > σr+1 = · · · = σn = 0 where r = rank(A)1. With
this, the 2-norm of A satisfies

∥
∥A
∥
∥

2

2
= sup

x 6=0

∥
∥Ax

∥
∥

2∥
∥x
∥
∥

2

= sup
x 6=0

xTATAx

xTx
= λ(ATA) = σ(A)2

where λ and σ denote the largest eigenvalue and singular value, respectively.
In the remainder of this appendix, we will drop the index for the 2-norm and

use the notation
∥
∥ ·
∥
∥ =

∥
∥ ·
∥
∥

2

B.2 Matrix Deompositions

We will now present three useful ways of decomposing, or factorizing, a matrix:

• the QR decomposition

• the singular value decomposition (SVD)

• the square root of a matrix

A frequently used matrix property is that A ∈ R
n×n is said to be orthogonal if

ATA = AAT = I.

The QR Deomposition

Let A ∈ R
m×n where m ≥ n. Then the QR decomposition of A is given by

A = QR

where Q ∈ R
m×m is orthogonal and R ∈ R

m×n is upper triangular. If m ≥ n and
rank(A) = n (full column rank), then

A =
(

Q1 Q2

)
(

R1

0

)

= Q1R1

1In the literature one can find several slightly different singular value definitions, and the
resulting number of singular values may be r, min{m, n}, m, or, as in our case, n. However, the
nonzero eigenvalues remain the same.
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where R1 is nonsingular. Since Q is orthogonal, we have the relationships

QQT = Q1Q
T
1 +Q2Q

T
2 = I

QTQ =

(

QT
1Q1 QT

1Q2

QT
2Q1 QT

2Q2

)

=

(

I 0

0 I

)

The QR decomposition is a useful tool for solving least squares problems.

The Singular Value Deomposition (SVD)

Let A ∈ R
m×n with rank(A) = r. Then the singular value decomposition (SVD)

of A is given by

A = UΣV T = U

(

Σr 0

0 0

)

V T

where U ∈ R
m×m and V ∈ R

n×n are orthogonal matrices and

Σr = diag(σ1, σ2, . . . , σr)

contains the nonzero singular values of A.

The Square Root of a Matrix

Let A ∈ R
n×n be symmetric and positive semidefinite. Then the SVD of A is given

by A = UΣUT , and the we can define the square root of A, satisfying A
1

2A
1

2 = A,
as

A
1

2 = UΣ
1

2UT

where Σ
1

2 = diag(
√
σ1, . . . ,

√
σr, 0, . . . , 0). Note that A

1

2 also is symmetric and
positive semidefinite.

B.3 The Pseudoinverse

Let A ∈ R
m×n where m ≤ n and rank(A) = m. Consider solving

Ax = y

for x ∈ R
n, given y ∈ R

m. If m < n, there is no unique solution. Any generalized
inverse of A, G, satisfying AG = I, i.e., any right inverse of A, gives a solution

x = Gy

A common way to make the choice of x unique is to pick the minimum norm
solution and solve

min
x

∥
∥x
∥
∥

subject to Ax = y
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This problem has the unique solution

x = A†y (B.1)

where
A† = AT (AAT )−1 (B.2)

is the pseudoinverse, or the Moore-Penrose inverse, of A.
More generally, let A be any m×n matrix, without the restrictions above, with

the SVD

A = U

(

Σr 0

0 0

)

V T

Then the problem

min
x∈Ω

∥
∥x
∥
∥

Ω = argmin
x

∥
∥Ax− y

∥
∥

where arg min gives the set of minimizing solutions, has the solution

x = A†y

where

A† = V T

(

Σ−1
r 0

0 0

)

U

When m ≤ n and rank(A) = m, this expression coincides with (B.2).
The pseudoinverse can also be applied when a weighted, shifted performance

index is used.

Lemma B.1 The least squares problem

min
x

∥
∥W (x− x0)

∥
∥

subject to Ax = y

where W is nonsingular, is solved by

x = Fx0 +Gy

F = I −GA

G = W−1(AW−1)†

Proof: The change of variables

e = W (x− x0) ⇐⇒ x = x0 +W−1e
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gives the equivalent minimum norm problem

min
e

∥
∥e
∥
∥

subject to A(x0 +W−1e) = y ⇐⇒ AW−1e = y −Ax0

Using (B.1) we get

e = (AW−1)†(y −Ax0) ⇐⇒
x = x0 +W−1(AW−1)†(y −Ax0)

= (I −W−1(AW−1)†A)
︸ ︷︷ ︸

F

x0 +W−1(AW−1)†
︸ ︷︷ ︸

G

y ✷
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M. Krstić, D. Fontaine, P. V. Kokotović, and J. D. Paduano. Useful nonlinearities
and global stabilization of bifurcations in a model of jet engine surge and stall.
IEEE Transactions on Automatic Control, 43(12):1739–1745, Dec. 1998.
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yawing moment, 16
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