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ABSTRACT This paper addresses the tracking control of quadrotors flying outdoors. Two control laws are
combined and tested in real-time experiments. The aircraft attitude and the translational displacement are
controlled using the backstepping approach, while the altitude is controlled using the sliding mode control
strategy. In both cases, new modifications are introduced with respect to the existing classical algorithms.
Concerning the backstepping algorithm, we introduce the dynamical model of the quadrotor in the controller
design and this guarantees that the virtual input is bounded. On the other hand, the proposed sliding mode
control assures that the vehicle’s altitude converges in finite time to the desired reference, even when
uncertainties are considered in the system. The proposed controller is tested in an outdoor environment
and the experiments highlighted the controllers’ reliability. Additionally, the performance of the closed-loop
plant with the proposed controllers is compared with the performance given by a proportional-derivative
controller.

INDEX TERMS Backstepping control, sliding mode control, nonlinear systems, quadrotor.

I. INTRODUCTION

The trajectory tracking task for quadrotors evolving in out-
doors environments is a very common mission [2]. However,
the nonlinear nature of these type of aircrafts makes it dif-
ficult to guarantee the stability of the closed loop control
system. Some common techniques used in nonlinear systems,
in particular in UAVs, are the Backstepping (BS) algorithm
and the Sliding Mode Control (SMC). The former guarantees
stability while the latter provides robustness with respect to
external disturbances, parameters and/or dynamic uncertain-
ties. In the last decade, several control algorithms have been
proposed for unmanned vehicles stabilization, for instance,
in [1] a vision-based stabilization and output tracking control
method for a model helicopter was proposed. Furthermore,
two methods of control were studied: one using a series of
model-based, feedback linearizing controllers and the other
using a BS-like control law, simulation and experimental
results for indoors environment were presented. [3] presents
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a quadrotor controller for the tracking of a moving ground
target. Moreover, to eliminate the need for inverse kinematics
in a full state BS control architecture, the BSmethodwas used
via a re-formulated full state cascaded dynamics. The prob-
lem of designing and experimentally validating a controller
for steering a quadrotor vehicle along a trajectory, while
rejecting constant force disturbances, was addressed in [4].
The proposed solution consists of a linear adaptive state feed-
back controller that asymptotically stabilizes the closed-loop
system in the presence of force disturbances. Experimental
results were presented. In [5], a nonlinear controller for a
quadrotor helicopter, which guarantees the global asymptotic
stabilization was proposed. The controller was synthesized
by Command Filtered BS method. Experimental flight tests
were presented. In [16], a BS-based nonlinear controller
was developed to control the quadrotor in the presence of
constant and time-varying disturbances. Simulation results
were presented.

SMC approaches attract a lot attention in UAV for tra-
jectory tracking and hover flight because of their robustness
properties [6]–[10]. The SMC main advantage is the finite
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time convergence to the sliding manifold [11]. Therefore,
the SMC controller can reject external disturbances. In [8],
a comparative study between Feedback Linearization an
adaptive SMC using augmented input to control a quadrotor
was addressed. Experimental tests of a combination of BS and
SMC for quadrotor control are presented in [12]. The concept
of partial trajectory collapse in SMC has been addressed
in [6], [11], [14] where the sliding manifold is designed in
order to collapse in finite time. This fact is achieved using
a fractional power in the sliding surface [11], [14], [15].
A finite-time hover stabilization was proposed in [13], via
a terminal SMC. Most papers in the literature deal with
modifications to classical algorithms to improve the perfor-
mance when disturbances occur. However such robustness
could sometime be obtained at the Price of spending more
energy [18] and consequently the flight time is reduced [19].
The simplicity of the classical algorithm was highlighted
in [1] for hover flight. However the experimental validation
was carried out indoor only.
In [25], two control techniques were applied to the flight

problem in the formation of UAVs, one based on a PID and
the other a control by integral sliding modes to reject time-
varying disturbances. Experimental results were obtained
using the Vicon vision system. The control signals were
calculated in a ground station. Another similar work is [28]
where a comparison between three algorithms is made: the
classic PID controller, a BS control and a SMC. Simulation
results were presented for the control of the attitude of a four-
rotor aircraft.
In the present paper we retain the simplicity of the original

BS algorithm to control a quadrotor via a simple transfor-
mation. As will be seen later, the proposed transformation
is different from the one used in [1]. We use the fact that
the quadrotor model involves a sinusoidal function for the
subsystems ’y − ϕ’ and ’x − θ ’. This transcendental func-
tion guarantees that the virtual input is always bounded, and
consequently the obtained control input could be smoother
than the input issued from a robust controller. Furthermore,
the proposed control law is experimentally validated for tra-
jectory tracking in outdoors flight. Another objective of this
work is to control the aerial vehicle without separating the
rotational and the translational dynamic models. Such a task
can be carried out by the proposed controller based on the
BS algorithm. Most of the previous papers on the BS control
deal separately with the rotational part of the translational
part. Themain contribution of the paper is the implementation
of the BS control to the whole quadcopter dynamics. The
BS approach is combined with SMC for the altitude control,
to guarantee that the altitude reaches a value arbitrarily close
to the desired value in finite time [11], It allows a better
control in the x and y axis. The SMC presented in this paper is
a new control strategy and, to the best of our knowledge, it has
not been previously reported in the literature. Furthermore,
the singularity in the traditional Terminal SMC when the
trajectory arrives to the sliding surface is avoided, which
represents also a contribution of this paper.

The paper highlights are the following:

• The Backstteping (BS) algorithm was modified to con-
sider a bounded virtual input: a sinusoidal function. The
boundedness of the virtual input guarantees the smooth
of the control law.

• The SMC designed here, allows the finite time conver-
gence, avoiding singularities on the control law.

• The structure of the proposed SMC control law can be
further simplified. Moreover, a simplified translational
control law can be obtained when the modified BS are
calculated.

• In contrast to previous reported results, both proposed
control algorithmswere join to improve the performance
of the quadrotor vehicle, and satisfactory tests (accord-
ing with the hardware limitations) in outdoor environ-
ment were carried out.

• The proposed join control algorithm effectiveness is
demonstrated through successfully outdoor tests.

The article is organized as follows: Preliminaries results
are presented in Section II. Section III describes the controller
synthesis for the quadrotor, the description of the experimen-
tal platform and the implementation of proposed controllers.
Finally the concluding remarks are given in Section IV.

II. BACKSTEPPING AND SLIDING MODE CONTROLLERS

DESIGN

This section presents the quadrotor controller synthesis.
In order to guarantee convergence of the altitude (z and ż) to
its desired value in finite time subject to external bounded
disturbances and unmodeled dynamics, we propose an
SMC controller. Such a controller should improve the per-
formance of the aircraft behavior in closed loop.

A. MODIFIED BACKSTEPPING ALGORITHM USING A SINE

FUNCTION AS VIRTUAL INPUT

In this section, the modified Backstepping method is devel-
oped when the virtual input is the function sin(ζ ), where
ζ ∈ (−π

2 ,
π
2 ), this domain guarantees that the only solution

for sin(ζ ) = 0 is zero. Such a constraint is sufficient to deal
with the case of the quadrotor. Notice that in the classical
algorithm, the virtual input is only ζ [20], [21]. Consider the
following system:

η̇(t) = f (η(t)) + g(η(t)) sin(ζ (t)),

ζ̇ (t) = u, (1)

where η ∈ ℜn, ζ ∈ ℜ, u ∈ ℜ, . In this paper, we assume the
following:

1) The functions f : D ⊆ ℜn −→ ℜn and g : D ⊆
ℜn −→ ℜn are continuously differentiable,

2) f (0) = 0 and η = 0 ∈ D,
3) ζ ∈ (−π

2 ,
π
2 ).

The classical problem is how to find an input u such that
η = 0 and ζ = 0 are asymptotically stable, however for the
structure given by the equation (1), the function sin(·) guar-
antees that this virtual input is always bounded. The control
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strategy proposed in [1] used a different transformation of
state variables. In the present paper we use a modified BS
algorithm in an iterative way. Since the system structure is
given by (1) then the virtual input for the equations of trans-
lational position and velocity are bounded. Now, consider the
following Proposition:
Proposition 1 (Modified BS Control Algorithm): Let the

system given by equation (1), under the assumptions

described above, a control u which locally stabilizes to the

system (1) is given as follows:

u =
∂ϕ
∂η

[f (η)+g(η) sin(ζ )]−k (sin(ζ )-ϕ(η))− ∂V (η)
∂η

g(η)

cos(ζ )
.

(2)

where k > 0, ϕ(η) and V (η) > 0 are known functions.
Proof: The proof is based on the classical Backstep-

ping algorithm [21] and assumes that there exists a function
ϕ(η) such that ϕ(0) = 0 and the system:

η̇ = f (η) + g(η)ϕ(η), (3)

has a stable trivial solution. Then, assume that there exists a
smooth and positive definite function V (η) which satisfies:

dV (η)

dt

∣
∣
∣
∣
(3)

=
∂V

∂η
[f (η) + g(η)ϕ(η)] ≤ −W (η), ∀η ∈ D,

where W (η) is a known positive definite function. Thus,
the state space equation (1) is rewritten as:

η̇ = f (η) + g(η)ϕ(η) + g(η)[sin(ζ ) − ϕ(η)],

ζ̇ = u. (4)

Let ̹ be a deviation variable ̹ , sin(ζ ) − ϕ(η) and its
derivative can be calculated as ˙̹ = cos(ζ )ζ̇ − ϕ̇ = cos(ζ )
u− ϕ̇. Then, system (4) can be expressed as a function of the
̹ variable:

η̇ = f

f̄ (.)
︷ ︸︸ ︷

(η) + g(η)ϕ(η)+g(η)̹,
˙̹ = cos(ζ )u− ϕ̇, (5)

as the classical BS algorithm when ̹ = 0, it is possible to
guarantee that (5) has a stable equilibrium at the origin, and
the time derivative of ϕ is:

ϕ̇(η) =
∂ϕ

∂η
η̇ =

∂ϕ(η)

∂η
[f (η) + g(η) sin(ζ )] .

Now, define ν , cos(ζ )u− ϕ̇, with this expression the system
can be represented as follows:

η̇ = f̄ (η) + g(η)̹,

˙̹ = ν. (6)

On the other hand, consider the following positive definite
function:

Va(η, ̹) = V (η) +
1

2
̹2,

notice that, Va(·) could be a candidate Lyapunov function for
the system (6), then the time derivative of this function is:

dVa(η, ̹)

dt

∣
∣
∣
∣
(6)

=
∂V (η)

∂η
f̄ (η) +

∂V (η)

∂η
g(η)̹ + ̹ν

≤ −W (η) +
∂V (η)

∂η
g(η)̹ + ̹ν.

By selecting: ν , −k̹ − ∂V (η)
∂η

g(η), where k > 0, and
substituting in the previous equation, we get:

V̇a(η, ̹)
∣
∣
(6) ≤ −W (η) − k̹2 < 0, (7)

so, the system given by (6) has an asymptotically stable trivial
solution (η = 0 and ̹ = 0). The input u can be obtained
from (5) as follows

u=
˙̹ +ϕ̇
cos(ζ )

=
ν+ϕ̇
cos(ζ )

=
−k (sin(ζ )−ϕ(η))− ∂V (η)

∂η
g(η)+ ∂ϕ

∂η
[f (η)+g(η) sin(ζ )]

cos(ζ )
,

cos(ζ ) 6= 0.

and this concludes the proof. �

The above control law based on the modified BS algorithm
stabilizes system (1). It can be applied outdoors to control the
quadrotor flight. The SMC control synthesis is presented in
the next section and the experimental tests are afterward.

B. PARTIAL TRAJECTORY COLLAPSE VIA TERMINAL SMC

WITHOUT SINGULARITIES

Consider the following nonlinear system:

ξ̇1 = ξ2, ‖f (ξ, t)‖ ≤ δ1 < ∞,

ξ̇2 = f (ξ, t) + ḡ(ξ )u, ξ (0) = ξ0, a. e. t ∈ ℜ+, (8)

where ξ = [ξ1, ξ2]T is the state space, f : ℜ → ℜ is a
nonlinear function which includes uncertain dynamics and/or
external disturbances, u ∈ ℜ is the control input and its realiz-
ing function is denoted by ḡ(ξ ) ∈ ℜ. The aim of this section
is to guarantee that the trajectory convergence ξ1 = 0 and
ξ2 = 0 be reached in finite time. This control objective can
be achieved by using SMC, see for instance [11], section 2.8.
To this end, the sliding manifold is established, in such a way,
that the ξ1 converges to zero in finite time. From (8), notice
that ξ̇1 = ξ2, thus, if the trajectory ξ1 converges to zero
in finite time, the error ξ2 converges too. Next proposition
establishes the sliding surface which will guarantee the finite
time convergence.
Proposition 2 (Finite Time Convergence): Consider the

sliding manifold

S = ξ2 + Rξ1|ξ1|−
1
3 , 0 < R ∈ ℜ, (9)

if S = 0 for all t ≥ tr , then, from the trajectory ξ = 0 in time

T =
3

R
|ξ1(0)|

1
3 + tr . (10)

40638 VOLUME 7, 2019



O. García et al.: Backstepping and Robust Control for a Quadrotor in Outdoors Environments

Proof: Under the assumption that ξ̇1 = ξ2, where S = 0
is fulfilled, then

ξ̇1 = −Rξ1|ξ1|−
1
3 , ξ1(0) = ξ01 ,

therefore the next ordinary differential equation with discon-
tinuous right hand side is obtained

−Rdt =
|ξ1|

1
3 dξ2

ξ1
,

integrating over the integration variable τ ∈ [tr , t)

−R
∫ t

tr

dτ =
∫ t

tr

|ξ1|
1
3 dξ2

ξ1
.

The solution of the previous equation gives

ξ1(t) = ±

∣
∣
∣
∣
∣

(

|ξ1(tr )|
1
3 −

R

3
(t − tr )

)3
∣
∣
∣
∣
∣
,

by substituting t = T , where T is given by equation (10),
it follows the trajectory ξ1(t) converges to zero in finite time,
and the Proposition is proven. �

Once the sliding manifold is fixed, the control function
design which guarantees the finite time convergence of slid-
ing manifold, is presented in the next proposition.
Proposition 3 (On the Sliding Control Function): If the

control action for the system (8) is defined as

u =











−
1

ḡ(ξ )

{
2

3
Rξ2|ξ1|−

1
3 +ρSign(S)

}

, ξ1 6=0

−
1

ḡ(ξ )
ρSign(S), ξ1 = 0

(11)

then, the sliding manifold S converges to zero in the following

finite time

tr =
√
2

α2
V

1
2
1 (S(t0)) + t0, (12)

where α2 = ρ2 − δ2 > 0.
Proof: Consider next quadratic storage function

V (S) =
1

2
S2.

Its time variations along the trajectories to the system (8),
fulfills next relation

V̇ (S)
∣
∣
(8) =S

{

ξ̇2+Rξ̇1|ξ1|−
1
3 +Rξ1

(

−
1

3
|ξ1|−

4
3
d

dt
|ξ1|

)}

.

(13)

Notice that, the time derivative of |ξ1| yields
d

dt
|ξ1| =

d

dt
(ξ21 )

1
2 =

1

2
(ξ21 )

− 1
2
d

dt
ξ21 = (ξ21 )

− 1
2 ξ1

d

dt
ξ1

= (ξ21 )
− 1

2 ξ1ξ̇1 =
ξ1

|ξ1|
ξ̇1 = Sign(ξ1)ξ̇1.

Thus, the derivative (13), is given by

d

dt
V (S)

∣
∣
∣
∣
(8)

= S

{

f (ξ, t) + ḡ(ξ )u+
2

3
Rξ2|ξ1|−

1
3

}

,

by using the control function given by (11), then

d

dt
V (S) = S

{

f (ξ, t) −
(
2

3
Rξ2|ξ1|−

1
3 + ρSign(S)

)

+
2

3
Rξ2|ξ1|−

1
3

}

= S {f (ξ, t) − ρSign(S)} .

Since ‖f (ξ, t)‖ ≤ δ1, at least from the local point of view,
if ρ > δ1, previous equation yields

d

dt
V (S) = Sf (ξ, t) − SρSign(S) = −ρ|S| + Sf (ξ, t)

≤ −ρ|S| + |S||f (ξ, t)| ≤ −ρ|S| + |S|δ
≤ −(ρ − δ)|S| ≤ −α|S|,

then

V̇1(S) ≤ −α2|S| = −α2
√
2 V

1
2
1 (S), (14)

and previous differential inequality fulfills next solution

V
1
2
1 (S(t)) ≤ V

1
2
1 (S(t0)) −

α2√
2
(t − t0),

which means that the sliding variable converges to the origin
in the finite time (12). After this specific time, the sliding
motion S = 0 for all t ≥ tr , which means that ξ̇1 =
−Rξ1|ξ1|−

1
3 , and the control action takes place as

u = −
1

ḡ(ξ )

{
2

3
Rξ2|ξ1|−

1
3 + ρSign(S)

}

= −
1

ḡ(ξ )

{

−
2

3
R2ξ1|ξ1|−

2
3 + ρSign(S)

}

however, ξ1 = |ξ1|Sign(ξ1), thus

u = −
1

ḡ(ξ )

{

−
2

3
R2

|ξ1|Sign(ξ1)
|ξ1|−

2
3

+ ρSign(S)

}

= −
1

ḡ(ξ )

{

−
2

3
R2Sign(ξ1)|ξ1|

1
3 + ρSign(S)

}

and this is a non singular control action. Furthermore, for the
case when ξ2 = 0, it is evident that S > 0 and S < 0 implies
that −α ≤ ξ̇2 ≥ α, this means that in general ξ2 = 0 is
not an attractor. However, for the case where ξ1 = 0 and
ξ2 6= 0, the sliding surface takes place as S = ξ2, so the
time derivative of its storage function has next format

d

dt
V (S)

∣
∣
∣
∣
(8)

= S {f (ξ, t) + ḡ(ξ )u} ,

and the controller which satisfies (14) is given by

u = −
ρSign(S)

ḡ(ξ )

showing that ξ2 = 0 is an attractor when ξ1 = 0, which
completes the proof. �

Previous Proposition established that the sliding vari-
able (9) converges to zero in finite time. Thus, Filippov’s con-
cept for differential equations with discontinuous right-hand
sides implies that the sliding variable S remains around the
origin for all future time t ≥ tr . Thismeans that, Proposition 2
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is fulfilled too, thus, the trajectory ξ1 → 0 when t → T ,
remains equal to zero for all future time. Finally if ξ1 = 0 for
all t ≥ T , then its time variations are zero, which implies that
ξ̇1 = ξ2 = 0.

III. QUADCOPTER MODEL

The quadcopter is an aerial vehicle that consists of 4 rotors,
the mathematical model can be divided into two parts,
the translational part and the rotational part. In order to make
the control synthesis, the following equations were used that
describe the movement of a rigid body [27] which are based
on the Euler-Lagrange formalism:

mz̈ = ucosθ cosϕ

mẍ = −u sin θ
mÿ = ucosθ sinϕ (15)

θ̈ = φ̇ψ̇

(
Ix − Iz

Iy

)

+
l

Iy
τθ

ϕ̈ = θ̇ ψ̇

(
Iy − Iz

Ix

)

+
l

Ix
τϕ

ψ̈ = ϕ̇θ̇

(
Iy − Ix

Iz

)

+
l

Iz
τψ (16)

where (x, y, z) are the Cartesian Coordinates ie. the relative
position of the mass center of the quadcopter with respect
to an inertial frame, (ϕ, θ, ψ) represent the attitude of the
vehicle, these angles are known as (roll, pitch and yaw) and τϕ
τθ , τψ are the torques that allow the movement of roll, pitch
and yaw respectively.m is the mass of the vehicle, l is the arm
length. Ix , Iy, Iz are the moments of inertia in 3 axes.
This model can be divided into subsystems which will be
described later.
For this type of vehicle the following assumptions are
considered:

• The quadcopter has a rigid and symmetrical structure.
• The center of gravity of the vehicle coincides with the
origin of the body frame.

• The propellers are rigid with fixed pitch.
• At low speeds, aerodynamic effects can be neglected.
• The rotor dynamics is approximately equal to one,
because the time constant in the first-order transfer func-
tion is small (See [26]).

• The angles φ, θ and ψ are bounded between −π/4
and π/4.

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS

A trajectory tracking task in outdoors environment for a
quadrotor is a crucial mission in this type of unmanned
vehicles. Actually, this class of systems is exposed to exter-
nal disturbances that may provoke instability. In this sense,
an important issue for the control technology of these sys-
tems, deals with robust controllers design which guarantees
a suitable performance. In order to improve the performance
of quadrotor outdoors, in this section the controllers designed
in previous section and its real-time application is presented.
To this end, the system is divided into four subsystems.

First, the altitude subsystem is controlled by the SMC, see
Proposition 3. The other subsystems, yaw ψ , x− θ and y−ϕ
subsystems, are controlled by the modified-BS algorithm, see
Proposition 1.

A. SLIDING MODE CONTROL APPLIED TO

THE DYNAMICS OF z

The simplified mathematical model for a quadrotor could
be found in the specialized literature, for example see [19].
In that work, the equations are split into subsystems: altitude
subsystem represented by z, the yaw subsystem called ψ ,
the translational and roll subsystem denoted by x − θ and
translational and pitch subsystem defined y−ϕ, [19]. In order
to maintain the quadrotor altitude close to its desired value,
under uncertainty dynamics and/or external bounded distur-
bances, in this subsection the partial trajectory collapse for
quadrotor altitude via Terminal SMC is presented. Just notice
that, the dynamics of subsystem z is described as follows [19]:

mz̈ = u cos(θ ) cos(ϕ) − mg.

To apply the terminal SMC proposed in this paper, consider
the next change of variables: ξ1 = z, ξ2 = ż, thus, the above
equation can be written as

ξ̇1 = ξ2,

ξ̇2 =
u

m
cos(θ) cos(ϕ) − g+ δ(t), (17)

where the parameter m and g are the vehicle mass and the
gravity constant, respectively. For this system, notice that
f (ξ, t) = −g+δ(t), and |δ(t)| ≤ δ0 so, δ1 = g+δ0, where δ(t)
represents the external bounded disturbances. Furthermore,
ḡ(ξ ) = 1

m
cos(θ ) cos(ϕ) is bounded. In this way, from Propo-

sition 3, the attitude flight control for (17) is characterized
by

u =
{

ū, ξ1 6= 0

− 1
ḡ(ξ )ρSign(ξ2), ξ1 = 0

ū = −
1

ḡ(ξ )

{
2

3
Rξ2|ξ1|−

1
3 +ρSign

(

ξ2+Rξ1|ξ1|−
1
3

)
}

(18)

and under assumption that, for hover flight θ ≈ 0 and ϕ ≈ 0,
the control law is approximated as

u =
{

− 2
3Rξ2|ξ1|

− 1
3 − ρSign(ξ2 + Rξ1|ξ1|−

1
3 ), ξ1 6= 0,

−ρSign(ξ2), ξ1 = 0,

which means that before time

T =
3

R
|ξ1(0)|

1
3 +

1

α2
|S(ξ2(0) + Rξ1(0)|ξ1(0)|−

1
3 )| + t0,

attitude system converges in the finite time T to the Set Point.
Notice that, for this class of systems, the SMC applied in
altitude regulation is not directly applied on the actuator, i.e.
the altitude control is given from a forces combination given
by each rotor. Moreover, the control signal (18), is computed
in the Pixhawk autopilot and it is traduced to voltage input for
each motor by using power interface based on PWM. In this
way, the chattering effect given by SMC is attenuated by the
hardware of the plant.
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B. SUBSYSTEM ψ

The second subsystem to be controlled describes the yaw
angle dynamics [19], and it is represented as:

ψ̈ = ϕ̇θ̇k1 + g1τψ ,

where k1 = (Iy−Ix )
Iz

, g1 = l
Iz

and Ix , Iy, Iz are the Inertia
Matrix parameters. While the following change of variable
x3 = ψ , x4 = ψ̇ is considered, under pre-compensation
τψ = 1

g1
(−ϕ̇θ̇k1 + uaψ ), previous subsystem is rewritten as a

double integrator system as:

ẋ3 = x4

ẋ4 = uaψ .

Now, by selecting x4 = ϕ(x3) = −αψx3, as is described
in (1), the above double integrator systems can be rewritten
as

ẋ3 = −αψx3
ẋ4 = uaψ .

Thus, according to Proposition 1, an associate Lyapunov
function can be defined as:

Vψ (x3) =
1

2
x23 ,

and the control input uaψ has the following structure:

uaψ = −kψ̹ −
∂Vψ (η)

∂η
g(η) +

∂(ϕ)

∂η
[f (η) + g(η)ζ ] . (19)

by assuming that, ̹ = x4 + αψx3, ζ = x4, η = x3, f (η) = 0,
g(η) = 1, the control law which stabilizes the yaw subsystem
is given by:

uaψ = −αψx4 − x3 − kψ
(

x4 + αψx3
)

.

C. SUBSYSTEM x − θ

Let the subsystem which describes the translational move-
ment in the x axis and the pitch angle [19]. Notice that the
subsystem x − θ is described as follows:

ẍ = −
1

m
sin(θ )u

θ̈ = ϕ̇ψ̇k2 + g2τθ ,

where k2 = (Ix−Iz)
Iy

and g2 = l
Iy
, where Ix , Iz and Iy are

the inertia moments in the respective frame. Notice that u
does not depend on variables x, ẋ, θ, θ̇ , so, the control action
u in the subsystem x − θ , is only a bounded time function,
and as it is established in the previous section, it converges
to a fixed value in finite time. Now, consider the following
variable changes: x5 = x, x6 = ẋ, x7 = θ , x8 = θ̇ , where its
state space representation is:

ẋ5 = x6

ẋ6 = −
1

m
sin(x7)u (t)

ẋ7 = x8

ẋ8 = ϕ̇ψ̇k2 + g2τθ ,

where, |u(t)| ≤ δ2, δ2 < ∞. Taking the first and the second
equation from the state space representation and choosing a
virtual input u1x :

u1x = sin(x7) = −
m

u (t)
uax (20)

where uax is the control input. Now, it follows that:

ẋ5 = x6
ẋ6 = uax .

According to the BS control algorithm, x6 = ϕ(x5) =
−α1xx5, where α1x > 0 and we obtain:

ẋ5 = α1xx5
ẋ6 = uax .

For the last subsystem, an associate Lyapunov function is
proposed as:

V1x(x5) =
1

2
x25 , (21)

so, according to BS algorithm control, the input uax can be
computed as:

uax = (−x5 − α1xx6 − k1x(x6 + α1xx5)) ,

and substituting the control uax into (20), it follows that:

u1x = −
m

u (·)
(−x5 − α1xx6 − k1x(x6 + α1xx5)) .

Applying the iterative BS control algorithm, the following
representation is obtained:

ẋ5 = x6

ẋ6 = −
1

m
sin(x7)u (t)

ẋ7 = x8. (22)

By using Proposition 1, next statement follows:
[

ẋ5
ẋ6

]

=
[

x6
0

]

+
[

0

− u(·)
m

]

sin(ζ0)

ζ̇0 = x8 = u2x ,

where ζ0 = x7. Following the iterative BS algorithm, a new
Lyapunov function is proposed:

V2x (x5, x6) =
1

2
x25 +

α2x

2
(x6 + α1xx5)

2 , (23)

where α2x is a proposed parameter to set the convergence
speed. The virtual input ϕ1x = sin(ζ0) and according to the
iterative BS algorithm, it is defined by the previous virtual
input u1x , then:

ϕ1x (x5, x6) = −
m

u (·)
(−x5 − α1xx6 − k1x(x6 + α1xx5)),

then, following Proposition 1, the partial derivatives of ϕ1x
and V2x are obtained as:

∂ (ϕ1x (x5, x6))

∂x5
=

m

u (t)
(α1xk1x + 1),

∂ (ϕ1x (x5, x6))

∂x6
=

m

u (t)
(α1x + k1x),
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∂ (V2x (x5, x6))

∂x5
= α2x5α

2
1x + α2xx6α1x + x5,

∂ (V2x (x5, x6))

∂x6
= α2x6 + α1xα2xx5.

Considering expression (2), the virtual input u2x is:

u2x =
1

m

u (·)
cos(x7)

(α2xx6 + α1xα2xx5)−
k2x sin(x7)

cos(x7)

−
k2xm

cos(x7)u (·)
(x5 + α1xx6 + k1x (x6 + α1xx5))

−
1

cos(x7)
(sin(x7)) (α1 + k1x)

+
m

u (·)
x6

cos(x7)
(α1xk1x + 1).

Finally, the last state variable is considered:

ẋ5 = x6
ẋ6 = − 1

m
sin(x7)u (·)

ẋ7 = x8
ẋ8 = ϕ̇ψ̇k2 + g2τθ ,

(24)

and by the BS control algorithm the control τθ is obtained as:

τθ =
1

g2
(−ϕ̇ψ̇k2 + τθa).

Substituting the value of τθ in (24)

ẋ5 = x6

ẋ6 = −
1

m
sin(x7)u (·)

ẋ7 = x8

ẋ8 = τθa.

Similar to the previous subsystem, the last subsystem can be
represented as:





ẋ5
ẋ6
ẋ7



 =





x6
−u (·) sin(x7)

0



+





0
0
1



 ζ1

ζ̇1 = τθa,

where ζ1 = x8, and, the Lyapunov function V for this stage
is proposed as:

V3x (x5, x6, x7)

=
1

2
x25 +

α2x

2
(x6 + α2x5)

2

+
α3x

2

(

sin(x7)−
m

u (·)
(x5+α1xx6+k1x (x6+α1xx5))

)2

.

The virtual input ϕ3x is associated by u2x

ϕ3x (x5, x6, x7)

=
1

m

u (·)
cos(x7)

(α2xx6+α1xα2xx5)

−
k2x

cos(x7)

(

sin(x7)−
m

u (·)
(x5+α1xx6+k1x(x6+α1xx5))

)

−
1

cos(x7)
(sin(x7))(α1x+k1x)+

m

u (·)
x6

cos(x7)
(α1xk1x+1).

Finally, the input τθa is

τθa = −k3x (x8 − ϕ3x (x5, x6, x7))

−
∂ (V3x (x5, x6, x7))

∂x7
+ x6

∂ (ϕ3x (x5, x6, x7))

∂x5

−
(
u(·) sin(x7)

m

)
∂ (ϕ3x (x5, x6, x7))

∂x6

+x8
∂ (ϕ3x (x5, x6, x7))

∂x7
.

In this way, the nonlinear control for the subsystem x − θ is
calculated. In the next section, the controller synthesis for the
subsystem y− ϕ is presented.

D. SUBSYSTEM y − ϕ

Consider the subsystem y−ϕ, which describes the movement
on the y axis and the roll angle, as follows:

ÿ =
u

m
cos(θ) sin(ϕ)

ϕ̈ = θ̇ ψ̇k3 + g3τϕ,

where k3 = (Iy−Iz)
Ix

and g3 = l
Ix
, consider x9 = y, x10 = ẏ,

x11 = ϕ, x12 = ϕ̇. So, the state space representation is

ẋ9 = x10

ẋ10 =
u (·)
m

cos(x7) sin(x11)

ẋ11 = x12

ẋ12 = θ̇ ψ̇k3 + g3τϕ .

For the first step, consider:

ẋ9 = x10

ẋ10 =
u (·)
m

cos(x7) sin(x11), (25)

if the virtual input u1y is selected as:

u1y = sin(x11) =
m

u (·) cos(x7)
(uay), (26)

by substituting the virtual control (26) into (25) it follows that:

ẋ9 = x10

ẋ10 = uay. (27)

Defining x10 = ϕ(x9) = −α1yx9, (27) can be rewritten as

ẋ9 = α1yx9

ẋ10 = uay.

For the last dynamic, define a Lyapunov function as follows:

V1y(x9) =
1

2
x29 . (28)

By using of the iterative BS algorithm, the input uay can be
calculated as:

uay = −k1y
(

x10 − α3yx9
)

− x9 − α3y (x10) , (29)

and substituting (29) into (26), the input u1y is:

u1y =
m
(

−k1y
(

x10 − α1yx9
)

− x9 − α1y (x10)
)

u (·) cos(x7)
.
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In the second step, the variable ẋ11 is considered, and the state
space is

ẋ9 = x10

ẋ10 =
u (·)
m

cos(x7) sin(x11)

ẋ11 = x12, (30)

by using Proposition 1, system (30) can be rewritten as:
[

ẋ9
ẋ10

]

=
[

x10
0

]

+
[

0
u(·) cos(x7)

m

]

sin(ζ2)

ζ̇2 = x12 = u2y,

where ζ2 = x11. At this point, the augmented Lyapunov
function is considered as:

V2y (x9, x10) =
1

2
x29 +

α2y

2

(

x10 + α1yx9
)2
,

where α2y is a positive constant. Now, the virtual input ϕ1y is
defined by:

u1y = ϕ1y (x9, x10)

=
m

u (·) cos(x7)
(

−k1y
(

x10 − α1yx9
)

− x9 − α1y (x10)
)

,

and by the iterative BS algorithm we obtain:

∂ (ϕ1x (x9, x10))

∂x9
=

m

u (·) cos (x7)
(α1yk1y + 1)

∂
(

ϕ1y (x9, x10)
)

∂x6
=

m

u (·)
(α1y + k1y)

∂
(

V2y (x9, x10)
)

∂x9
= α2yx5α

2
1y + α2yx10α1y + x9

∂
(

V2y (x9, x10)
)

∂x10
= α2yx10 + α1yα2yx9.

So, the new virtual input is:

u2y =
1

cos(x11)
(sin(x11))

(

α1y + k1y
)

+
1

m
u (·)

cos(x7)

cos(x11)

(

α2yx10 + α1yα2yx9
)

−
mk2y

(

x9 + α1yx10 + k1y
(

x10 + α1yx9
))

u(·) cos(x11) cos(x7)

−
m

u (·)
x10

cos(x7) cos(x11)

(

α1yk1y + 1
)

−
k2y sin(x11)

cos(x11)
.

For the last step, the dynamic of x12 is considered, so:

ẋ9 = x10

ẋ10 =
u (·)
m

cos(x7) sin(x11)

ẋ11 = x12

ẋ12 = θ̇ ψ̇k3 + g3τϕ . (31)

Define the control action as:

τϕ =
1

g3
(−θ̇ ψ̇k2 + τϕa). (32)

Substituting (32) into the system given by (31) we get:

ẋ9 = x10

ẋ10 =
u (·)
m

cos(x7) sin(x11)

ẋ11 = x12

ẋ12 = τϕa.

Considering the iterative BS algorithm, the previous subsys-
tem is:





ẋ9
ẋ10
ẋ11



 =





x10
u (·) cos(x7) sin(x11)

0



+





0
0
1



 ζ3

ζ̇3 = τϕa,

where ζ3 = x12. The Lyapunov function for this step, follows
the value of V2y

V3y (x9, x10, x11)

=
1

2
x29+

α2y

2

(

x10+α1yx9
)2

+
α3y

2

(

sin(x11)+
m
(

x9+α1yx10+k1y
(

x10+α1yx9
))

u (·) cos(x7)

)2

,

and ϕ3y is defined by

ϕ3y

=
(sin(x11))

(

α1y+k1y
)

cos(x11)
+
u (·) cos(x7)

(

α5yx10+α1yα2yx9
)

m cos2(x11)

−
k2y sin(x11)

cos(x11)
−
k2ym

(

x9+α1yx10+k1y
(

x10+α1yx9
))

u (·) cos(x7) cos(x11)
−

m

u (·)
x10

cos(x7) cos(x11)

(

α1yk1y+1
)

.

Finally, the input τϕa is described as in (33).

τϕa = x10
∂
(

ϕ3y (x9, x10, x11)
)

∂x9

+
(
u (·)
m

cos(x7) sin(x7)

)
∂
(

ϕ3y (x9, x10, x11)
)

∂x10

+x12
∂
(

ϕ3y (x9, x10, x11)
)

∂x11
−
∂
(

V3y (x9, x10, x11)
)

∂x11

−k3y
(

x12 − ϕ3y (x9, x10, x11)
)

. (33)

These controllers are implemented in the experimental plat-
form which is described in the following section.

E. EXPERIMENTAL PLATFORM

The aerial vehicle is built on a carbon fiber Frame of 550mm.
A Pixhawk autopilot is mounted onboard. This autopilot has
a high performance, its main clock runs at 168 MHz, and
its processor is a 32 bit STM32F427 Cortex M4 core with
FPU. It has two accelerometers, a gyroscope and two mag-
netometers which give accurate measurements of the vehicle
attitude. AMEASMS5611 barometer is added to estimate the
altitude. Its weigh is just 38g and (50mm; 15.5mm; 81.5mm)
for (H,W,L). It has RC signal input ports compatible with
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FIGURE 1. Experimental platform used for test the proposed controller.

Futaba and Spektrum radios. Furthermore it has 8 PWM
main outputs are used to control the motors. In order to
know the longitudinal positions an external Ublox NEO-
M8N GPS is installed which has an accuracy of 0.6m to
0.9m. This GPS has an internal magnetometer to estimate the
yaw angle. The batteries used are LiPo technology, with a
capacity of 4000mA and a discharge rate C of 15. The vehicle
has four 10 inches long propellers mounted and 4.5 pro-
peller pitch. On the other hand, the desired trajectory was
programmed into the autopilot by using a parametric circle
equation, the parameter is the time t .

F. EXPERIMENTAL RESULTS USING THE BS AND SM

CONTROL

In this subsection, experimental results of UAV flights are
presented for both controllers, the modified BS and the SMC.
In order to track a given trajectory in the translational space
(x, y, z) and keep the rotational space (θ, ϕ, ψ) around the
origin, the UAV flight task is given in three dimensional
(x, y, z) space, and it is described in three paths: The first one
is the takeoff in the time period [0, 10) seconds. The trajectory
is described by a straight line equation, where the references
are xref = 0, yref = 0 and zref = 1

2 t . Notice that, the proposed
control methods do not require the calculations of the wanted
angles for a desired x−y position, i.e. it obtains the necessary
torques to be able to move the vehicle in a desired attitude
(fixed to zero) and indirectly a desired position as well. Once
the vehicle reaches the desired altitude, the second stage starts
in the time period [10, 58) seconds where the UAV tracks a
trajectory given by a parametric circle equation. The system
references for the second path are

xref = −10 cos
( π

180
(t − 10)

)

m

yref = −10 sin
( π

180
(t − 10)

)

m

zref = 5m. (34)

Finally, in the time period [58, 73) seconds a straight line
equation with negative slope is designed for UAV landing.

For this period the desired references is given by xref = 0,
yref = 0, and zref = 1

3 (73 − t). The sampling time (T) used
in the flight test presented in this work, is T = 0.01 seconds.
Moreover, for the desired altitude, a discretized straight line
is used: 0.5 t , where t = kT seconds, k = 0, 1, 2, 3, ...,
and the performance of the take off task could be improved.
The system parameters of this UAV are: Quad-rotor mass
m = 1.3 kg, the Inertia moments Ix = Iy = 0.0023
and Iz = 0.0054 Kg · m2. All the parameters of the plant
were obtained by using the Solid Work software, introducing
the frame characteristics into the software, and this gives an
approximation of the plant parameters.
As mentioned earlier, a robust SMC algorithm was pro-

posed to regulate the UAV altitude around the set-point. The
set of parameters for the real time implementation of the SMC
are ρ = 18, R = 34, p = 1 and q = 3. On the other
hand, to improve the trajectory tracking behavior for sub-
systems ψ , x − θ and y− ϕ, the modified BS algorithm was
designed in the present paper. Table 1, presents the modified
BS control parameters introduced in the real time experiment.
Actually, a PD controller is used to control the vehicle and
its performance is compared to the proposed controllers. The
PD controller is heuristically tuned by using the specifical
time parameters overshot and settling time in closed loop, for
details see [19].
Remark 1: Numerous tests were conducted using only the

SMC and the BS algorithms (without the joint of both con-

trollers) to regulate all the dynamics of the vehicle (these

experimental results are omitted in this article because it was

considered that they are not relevant to this contribution),

however the combining of the SMC and modified BS con-

trollers improve the performance of the closed loop system.

The SMC applied to the x and y dynamics, the hardware

(drivers and rotors) does not react with the necessary velocity

to the control signal, which presents a relative high frequency

compared to the hardware time response (490 Hz). The alti-

tude control using SMC, gets better response, because the Set

Point is fixed and the inertia moment Iz is greater than Ix

and Iy inertia moments. Now, concerning the modified

BS algorithm, the SMC approach applied to the altitude

control allows to obtain control laws for the x − θ and

y − ϕ subsystems, relatively simpler, please notice that the

control law for the altitude, appears as a disturbance on

the x − θ and y − ϕ subsystems, so we want to assure

that the altitude control is bounded and converges in finite

time. These characteristics are given by using the proposed

SMC approach.

The gain ρ used in SMC, was characterized in such a way
that this controller rejects external disturbances as air flow.
This disturbancemagnitude was heuristically estimated in the
vehicle outdoor flight. In this way, one can guarantee that the
altitude z will remain close to the desired set-point in finite
time. Furthermore, trajectory ratio, in terms of its desired
parametric equations (34), gives a circle with diameter of
20 meters. The initial conditions of the real time process, are
around the origin of the system frame.
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TABLE 1. Parameters for the aerial mission using the backstepping
control.

FIGURE 2. Position in the x , y and z axes applying the BS and SM
controllers.

FIGURE 3. Velocities of the vehicle during the mission.

Figures 2-3, show the UAV translational positions and
its velocities respectively. These figures are split into three
subfigures: the first one depicts the trajectory performance
along the X , the second one shows the system task in the Y .
Finally, the UAV altitude performance is presented in the last
subfigure. As depicted in Figure 2, where the system is in
closed loop with the designed controllers, the translational
positions in blue line have a good performance with respect to
the desired values in red line. The deviation of the trajectory
can be explained by the presence of external disturbances and
the GPS devise accuracy.
The translational performance of the UAV, in the X − Y

space is shown in Figure 4. This figure shows how the system
tracks the desired trajectory in task space.
Figure 5 shows the errors during the tracking of the trajectory.
Notice that while the reference is changing in both axes,
these errors may increase or decrease, but when the reference
becomes constant these errors remain close to zero. Addition-
ally, the measurements of the translational variables given

FIGURE 4. Trajectory x vs y during the task, applying a BS and SM
controller.

FIGURE 5. Signal of errors during the tracking of the trajectory.

FIGURE 6. Attitude of the vehicle during the mission.

by GPS, have a relative larger errors (from 0.6 m to 0.9 m)
than the sensors used in the indoor environment (artificial
vision for example); please notice that, the mean velocity
of the vehicle, 3 km/h, and the cross wind presents along to
the test, increase the tracking error. This explains the relative
large error observed in the trajectory tracking displacement
task.

Figure 6, depicts the vehicle’s attitude. It is important here
to notice that the Pitch, Yaw and Roll angles are around the
UAV body frame.

Furthermore, the four control input signals in PWM (Pulse
Width Modulation) percent, for altitude, pitch, yaw and roll
respectively are presented in Figure 7. These control inputs
are obtained with the modified BS and SMC algorithms
and are applied in real experiments for tracking the desired
trajectory. As can be seen from the figure, the maximum
duty cycle is smaller than 40% and in some cases less
than 20%, which represent less energy consumption and
smoother control signals. This is an important issue when a
nonlinear control is tuned in real time applications.
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FIGURE 7. Control signals (BS and SM control).

FIGURE 8. Position in the x , y and z axes applying a PD controller.

FIGURE 9. Velocities of the vehicle during the mission using a PD
controller.

FIGURE 10. Trajectory x vs y during the task, applying a PD controller.

Figures 8-9, display the vehicle translational positions and
its velocities respectively, for a PD control. This performance
is compared to the proposed controllers by the calculation of
the IAE performance index.
The translational performance in the X −Y space of the UAV
using a PD controller is shown in Figure 10.
Figure 11 shows the errors during the tracking of the tra-
jectory when a PD controller is used. Figure 12, depicts the
vehicle’s attitude for a PD control.
The four control input signals in PWM (Pulse Width Modu-
lation) percent, for altitude, pitch, yaw and roll respectively
are presented in Figure 13.

FIGURE 11. Signal of errors during the tracking of the trajectory when a
PD controller is used.

FIGURE 12. Attitude of the vehicle during the mission when a PD control
is used.

FIGURE 13. Control signals (PD control).

TABLE 2. Comparison of IAE during the aerial mission.

Finally, in order to demonstrate the effectiveness of the
control and the repetitiveness of the experimental results,
10 tests were performed using the proposed modified BS,
SMC and the PD controllers. These tests validated the exper-
imental robustness of the proposed control laws in different
outdoor scenarios with external disturbances. Furthermore,
these results are summarized in Table 2, where the Integral
Absolute Error (IAE) was obtained for each experiment,
the standard deviation of the mean error was also added
and it gives experimental evidence of the repetitiveness and
reliability of our proposed control algorithms.

These tests also prove the feasibility of the proposed con-
trol algorithm. Actually, from this analysis, one concludes
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that the system behavior of the proposed controller is
very efficient. Also, according to the obtained experimental
results, the BS and SMC have a better performance than the
PD controller and more repeatability of the PD control.

V. CONCLUSIONS

Two control strategies were proposed to deal with the tra-
jectory tracking problem of the quadrotor vehicle in out-
door environment. The altitude control is based on the SMC
approach and guarantees the finite time convergence of the
altitude and its velocity under the presence of bounded distur-
bances, in contrast to the PD controller which was tuned with
the linear model. The finite time convergence of the state and
the simplicity of the control law for the vehicle altitude allow
the obtention of a simplified version of a modified BS control
strategy for the translational and rotational variables, because
the altitude control is a time function. Experimental results
performed outdoors prove the feasibility, repetitiveness and
reliability of the proposed control algorithms.
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