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Abstract— The latest technological progress in sensors, ac-
tuators and energy storage devices enables the developments
of miniature VTOL1 systems. In this paper we present the
results of two nonlinear control techniques applied to an
autonomous micro helicopter called Quadrotor. A backstep-
ping and a sliding-mode techniques. We performed various
simulations in open and closed loop and implemented several
experiments on the test-bench to validate the control laws.
Finally, we discuss the results of each approach. These
developments are part of the OS42 project in our lab.

Index Terms— Quadrotor Architecture, VTOL Control,
Nonlinear control, Backstepping, Sliding-mode.

I. INTRODUCTION

Flying objects have always exerted a great fascination on

man encouraging all kinds of research and development.

The important recent technological progress in sensors,

actuators, processors and power storage devices represents

a real jump ahead. Enabling by the way the emergence

of new applications like the indoor micro aerial robots.

Compared with the other flying principles, VTOL systems

have specific characteristics which allow the execution of

applications that would be difficult or impossible other-

wise, such as building surveillance and intervention in

hostile environments. The OS4 project, initiated at the Au-

tonomous Systems Laboratory (EPFL), focuses on micro

VTOL vehicles evolving towards a full autonomy in indoor

environments. The approach advocated for this project is to

simultaneously work on design and control. The first step

in this project after the prototype building is to develop

a reliable control system for configuration stabilization

and trajectory tracking. In this paper we present two

nonlinear control techniques simulated and tested for OS4
configuration stabilization.

A. Quadrotor Configuration

The Quadrotor concept has been around for a long time.

The Breguet-Richet Quadrotor helicopter Gyroplane No.1

built in 1907 is reported to have lifted into flight. One

can describe the vehicle as having four propellers in cross

configuration. The two pairs of propellers (1,3) and (2,4)

turn in opposite directions. By varying the rotor speed,

1Vertical Take-Off and Landing
2Omnidirectional Stationary Flying Outstretched Robot

Fig. 1. Quadrotor concept motion description, the arrow width is
proportional to propeller rotational speed.

one can change the lift force and create motion. Thus, in-

creasing or decreasing the four propeller’s speeds together

generates vertical motion. Changing the 2 and 4 propeller’s

speed conversely produces roll rotation coupled with lateral

motion. Pitch rotation and the corresponding lateral motion

result from 1 and 3 propeller’s speed conversely modified

as described in Fig. 1. Yaw rotation is more subtle, as it

results from the difference in the counter-torque between

each pair of propellers. In spite of the four actuators,

the Quadrotor is still an underactuated and dynamically

unstable system.

II. QUADROTOR DYNAMIC MODELLING

Micro VTOL are highly dynamic systems thus, an

appropriate model ideally includes the gyroscopic effects

resulting from both the rigid body rotation in space and

the four propulsion groups rotation [1]. The latter effect

includes the propellers, the gearbox and the motor rotation

in case of a relatively high motor inertia like for the

outer-rotor BLDC3. Let us consider earth fixed frame E
and body fixed frame B, as seen in Fig. 2. Using Euler

angles parametrization, the airframe orientation in space is

given by a rotation R from B to E, where R ∈ SO3 is

the rotation matrix. The dynamic model is derived using

Newton-Euler formalism as shown in [2]. The dynamics of

a rigid body under external forces applied to the center of

mass and expressed in the body fixed frame are formulated

in (1) as shown in [3].
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Fig. 2. Quadrotor configuration frame system with a body fixed frame
B and the inertial frame E. The circular arrows indicate the direction of
rotation of each propeller.
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(1)

Where I ∈ <(3x3) the inertia matrix, V the body linear

speed vector and ω the body angular speed. In the frame

system Fig. 2, the equations of motion for the helicopter

can be written as in [4]:















ζ̇ = ν
mν̇ = RFb

Ṙ = Rω̂
Jω̇ = −ω × Jω + τa

(2)

The first-level approximate model (3) of the Quadrotor

can be rewritten as:














ζ̇ = ν
ν̇ = −ge3 + Re3(

b
m

∑

Ω2
i )

Ṙ = Rω̂
Iω̇ = −ω × Iω −

∑

Jr(ω × e3)Ωi + τa

(3)

where :

Symbol definition

ζ position vector

R rotation matrix

ω̂ skew symmetric matrix

φ roll angle

θ pitch angle

ψ yaw angle

Ω rotor speed

Ix,y,z body inertia

Jr rotor inertia

Jm motor inertia

Jp propeller inertia

τa torque on airframe body

b thrust factor

d drag factor

l lever

The torque applied on the vehicle’s body along an axis

is the difference between the torque generated by each

propeller on the other axis.

τa =





lb(Ω2
4 − Ω2

2)
lb(Ω2

3 − Ω2
1)

d(Ω2
2 + Ω2

4 − Ω2
1 − Ω2

3)



 (4)

If we consider the motor inertia and a reversing gearbox

with a negligible inertia, the rotor (propulsion group) inertia

is then:

Jr = Jp − Jmr (5)

The full Quadrotor dynamic model with the x,y,z mo-

tions as a consequence of a pitch or roll rotation is:
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:

φ̈ = θ̇ψ̇(
Iy−Iz

Ix
) − Jr

Ix
θ̇Ω + l

Ix
U2

θ̈ = φ̇ψ̇( Iz−Ix
Iy

) + Jr
Iy

φ̇Ω + l
Iy

U3

ψ̈ = φ̇θ̇(
Ix−Iy

Iz
) + 1

Iz
U4

z̈ = −g + (cos φ cos θ) 1

m
U1

ẍ = (cos φ sin θ cos ψ + sin φ sin ψ) 1

m
U1

ÿ = (cos φ sin θ sin ψ − sin φ cos ψ) 1

m
U1

(6)

The first term in the orientation subsystem (φ, θ, ψ) is the

gyroscopic effect resulting from the rigid body rotation in

space and the second one is due to the propulsion group

rotation. The system’s inputs are posed U1, U2, U3, U4 and

Ω a disturbance, obtaining:























U1 = b(Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4)
U2 = b(Ω2

4 − Ω2
2)

U3 = b(Ω2
3 − Ω2

1)
U4 = d(Ω2

2 + Ω2
4 − Ω2

1 − Ω2
3)

Ω = Ω2 + Ω4 − Ω1 − Ω3

(7)

A. Rotor Dynamics

The rotors are driven by DC-motors with the well known

equations [5]:







L di
dt

= u − Ri − keωm

J dωm

dt
= τm − τd

(8)

As we use a small motor with a very low inductance, the

second order DC-motor dynamics may be approximated:

J
dωm

dt
= −

k2
m

R
ωm − τd +

km

R
u (9)

By introducing the propeller and the gearbox models,

the equation (9) may be rewritten:











ω̇m = − 1
τ
ωm − d

ηr3Jt
ω2

m + 1
kmτ

u

with :
1
τ

=
k2

m

RJt

(10)

The equation (10) can be linearized (see [6]) around an

operation point ẇ0 to the form ẇm = −Awm + Bu + C
with:

A =
(

1
τ

+ 2dw0

ηr3Jt

)

, B =
(

1
kmτ

)

, C =
(

dω2

0

ηr3Jt

)

(11)

Symbol Definition

u motor input

τ motor time-constant

R motor internal resistance

ke back EMF constant

km torque constant

ωm motor angular speed

τm motor torque

τd motor load

r gear box reduction ratio

η gear box efficiency

Jt total inertia seen by the motor
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Fig. 3. Simulation: Natural response of the roll and pitch angles to an
initial angular speed. The oscillations are strongly and rapidly amplified.

Fig. 4. Simulation: Roll and pitch angles interdependencies in natural
response. This behavior was also observed on the real system.

III. OPEN LOOP BEHAVIOR

It is well known that the VTOL systems are dynamically

unstable and thus very hard to control. In order to enhance

our understanding of the system, we performed several

simulations in open-loop mode. These simulations were

particularly useful for the recognition of the contribution of

each modelled effect to the dynamics of the system. Also,

knowing the natural behavior of the system could be useful

for establishing adapted control laws. The Fig. 3 shows

the system natural response to an initial roll (or pitch)

angular speed excitation. The system gains mechanical

energy, starts to oscillate and tends to amplify rapidly

these oscillations. As a perfect cross configuration was as-

sumed for our Quadrotor, the roll and pitch angles behaves

similarly, the phase shift being the only main difference.

This is highlighted in Fig. 4 were the roll and pitch

interdependencies are plotted through time. This simulated

behavior was also observed on the real system. On the

other hand, we used the same simulations to perform a

mechanical system optimization in order to reduce the

natural instability of the system. But this is out of the scope

of this paper.

IV. OS4 TEST-BENCH

The design of a control system for a flying robot

requires the usage of an adequate test-bench at least for the

preliminary experiments. For our control experiments, we

developed the test-bench in Fig. 5. From a PC and through

a standard RS232 port, one can send orders to the test-

bench (see Fig. 6). The RS232 to I2C module translates the

serial signals to the I2C bus motor modules. These modules

integer a PID regulator on a PIC16F876 microcontroller.

Fig. 5. OS4 test-bench for stabilization strategies testing, 3DOF are
locked, the cross is made with carbon rods and the flying system weight
is about 240g. 1)RS232 to I2C translator, 2)Motor modules, 3)3D captured
universal joint, 4)Micro IMU, 5)Propulsion group.

Fig. 6. OS4 test-bench block-diagram

The MT9-B IMU4 estimates with a kalman filter the 3D

orientation angles which reduces the drift. It gives also

the calibrated data of acceleration and angular velocity. It

weights about 33g and communicates at 115kbps. The OS4
test-bench has 4 propulsion groups, each one is composed

of a 25g motor, a 6g gear box and a 6g propeller. To design

the propulsion group, a test, evaluation and comparison

method was developed.

V. BACKSTEPPING CONTROL OF ”OS4” VTOL

SYSTEM

The model (6) developed in section II can be rewritten

in a state-space form Ẋ = f(X,U) by introducing X =
(x1...x12)

T ∈ <12 as state vector of the system.

x1 = φ x7 = z

x2 = ẋ1 = φ̇ x8 = ẋ7 = ż
x3 = θ x9 = x

x4 = ẋ3 = θ̇ x10 = ẋ9 = ẋ
x5 = ψ x11 = y

x6 = ẋ5 = ψ̇ x12 = ẋ11 = ẏ

(12)

From (6) and (12) we obtain:

f(X, U) =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

x2

x4x6a1 + x4a2Ω + b1U2

x4

x2x6a3 + x2a4Ω + b2U3

x6

x4x2a5 + b3U4

x8

−g + (cos x1 cos x3)
1

m
U1

x10

ux
1

m
U1

x12

uy
1

m
U1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(13)
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Fig. 7. Connection of the two ideal subsystems of the overall dynamical
system described by mapping (13).

With:
a1 = (Iy − Iz)/Ix b1 = l/Ix

a2 = −JR/Ix b2 = l/Iy

a3 = (Iz − Ix)/Iy b3 = l/Iz

a4 = JR/Iy

a5 = (Ix − Iy)/Iz

(14)

ux = (cos x1 sin x3 cos x5 + sin x1 sin x5)
uy = (cos x1 sin x3 sin x5 − sin x1 cos x5)

(15)

It is worthwhile to note in the latter system that the angles

and their time derivatives do not depend on translation

components. On the other hand, the translations depend

on the angles. We can ideally imagine the overall system

described by (13) as constituted of two subsystems, the

angular rotations and the linear translations, see Fig. 7.

The control scheme advocated for the overall system is

then logically divided in a position controller and a rotation

controller as schematized in Fig. 8.

Fig. 8. Control Scheme: One set the desired (xd, yd, zd, ψd), the posi-
tion controller generates the required (φR, θR) to the rotation controller.
The measured quantities are then fed-back to both the controllers.

A. Backstepping Control of the Rotations Subsystem

Using the backstepping approach, one can synthesize

the control law forcing the system to follow the desired

trajectory. Refer to [7] and [8] for more details. For the

first step we consider the tracking-error:

z1 = x1d − x1 (16)

And we use the Lyapunov theorem by considering the Lya-

punov function z1 positive definite and it’s time derivative

negative semi-definite:

V (z1) =
1

2
z2
1 (17)

V̇ (z1) = z1(ẋ1d − x2) (18)

The stabilization of z1 can be obtained by introducing a

virtual control input x2:

x2 = ẋ1d + α1z1 with : α1 > 0 (19)

The equation (18) is then:

V̇ (z1) = −α1z
2
1 (20)

let us proceed to a variable change by making:

z2 = x2 − ẋ1d − α1z1 (21)

For the second step we consider the augmented Lya-

punov function:

V (z1, z2) =
1

2
(z2

1 + z2
2) (22)

And it’s time derivative is then:

V̇ (z1z2) = z2(a1x4x6 + a2x4Ω + b1U2)

− z2(ẍ1d − α1(z2 + α1z1))

− z1z2 − α1z
2

1 (23)

The control input U2 is then extracted (ẍ1,2,3d = 0),
satisfying V̇ (z1z2) < 0:

U2 =
1

b1
(z1 − a1x4x6 − a2x4Ω − α1(z2 + α1z1) − α2z2)

(24)

The term α2z2 with α2 > 0 is added to stabilize z1.

The same steps are followed to extract U3 and U4.

U3 = 1
b2

(z3 − a3x2x6 − a4x2Ω − α3(z4 + α3z3) − α4z4)

U4 = 1
b3

(z5 − a5x2x4 − α5(z6 + α5z5) − α6z6)
(25)

with:














z3 = x3d − x3

z4 = x4 − ẋ3d − α3z3

z5 = x5d − x5

z6 = x6 − ẋ5d − α5z5

(26)

B. Backstepping Control of the Linear Translations Sub-

system

1) Altitude Control: The altitude control U1 is obtained

using the same approach described in V-A.

U1 =
m

cos x1 cos x3
(z7 + g−α7(z8 +α7z7)−α8z8) (27)

with:
{

z7 = x7d − x7

z8 = x8 − ẋ7d − α7z7
(28)

2) Linear x and y Motion Control: From the model

(6) one can see that the motion through the axes x and

y depends on U1. In fact U1 is the total thrust vector

oriented to obtain the desired linear motion. If we consider

ux and uy the orientations of U1 responsible for the motion

through x and y axis respectively, we can then extract

from (15) the roll and pitch angles necessary to compute

the controls ux and uy satisfying V̇ (z1z2) < 0. The yaw

control is then given as a desired angle (see Fig. 8).

ux = (m/U1)(z9 − α9(z10 + α9z9) − α10z10)
uy = (m/U1)(z11 − α11(z12 + α11z11) − α12z12)

(29)
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Fig. 9. Simulation: The system has to reach the position (2, 2, 2)m from
(0, 0, 0)m and keep the same heading.

Fig. 10. Simulation: The backstepping controller has to stabilize the
system and maintain the roll, pitch and yaw angles to zero.

C. Backstepping Controller Simulation

We performed several simulations on Simulink using the

dynamic model (6) with the 12 parameters (α1, ..., α12)

controller. The task was to reach the position xd = yd =
zd = 2 m and ψd = 0 rad. The simulated performance

was satisfactory as showed in Fig. 9. Before to test the

controller on the real system which has only the 3D ori-

entation sensor (IMU), we performed different simulations

considering only the angular rotations subsystem and its

corresponding controller. This controller has only 6 param-

eters (α1, ..., α6), tuned simultaneously using the Nonlinear

Control Design blockset (NCD) from the Optimization

Toolbox under Matlab. The initial condition was π/4 rad

for the three angles. The results were very satisfactory as

shown in Fig. 10.

D. Backstepping Controller on the Real System

In order to validate the control law developed in the

previous section, we implemented the controller in C

under Linux on a machine running at 450Mhz simulating

Fig. 11. Experiment: The backstepping controller has to stabilize the
system and maintain the roll, pitch and yaw angles to zero. It works well
in spite of a hard initial conditions. Few yaw angle drift is observed due
to the vibrations and EMI influence on the yaw sensor.

the future integration of a Single Board Computer5. We

performed several experiments on the real system, were

the task was to control the vehicle orientation as showed

in Fig. 11. The altitude was then fixed by the test-bench.

The initial condition was about 32 degrees for the roll

angle and we obtained the stabilization in less than 5
seconds. It was difficult to give the same initial angular

speed to the roll angles on the test-bench as in simulation.

In spite of the test-bench limitations in term of delays and

errors introduced by the tethering system, the experimental

results obtained show that the proposed controller is able

to stabilize the system even for relatively critical initial

conditions.

VI. SLIDING-MODE CONTROL OF ”OS4” VTOL

SYSTEM

A. Sliding Control of the Angular Rotations Subsystem

The mapping (13) is partially used to design the sliding-

mode controller for the rotations subsystem of the OS4
helicopter. The first step in this design is similar to the one

for the backstepping approach [9], except for the equation

(19) were S2 (Surface) is used instead of z2 for more

clearance.

s2 = x2 − ẋ1d − α1z1 (30)

For the second step we consider the augmented Lyapunov

function:

V (z1, s2) =
1

2
(z2

1 + s2
2) (31)

The chosen law for the attractive surface is the time
derivative of (30) satisfying (sṡ < 0):

ṡ2 = −k1sign(s2) − k2s2

= ẋ2 − ẍ1d − α1ż1

= a1x4x6 + a2x4Ω + b1U2 − ẍ1d + α1(z2 + α1z1)

(32)

5X-board from www.kontron.com
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Fig. 12. Simulation: The sliding-mode controller has to stabilize the
system and maintain the roll, pitch and yaw angles to zero.

As for the backstepping approach, the control U2 is

extracted:

U2 =
1

b1
(−a1x4x6 − a2x4Ω−α2

1z1 − k1sign(s2)− k2s2)

(33)

The same steps are followed to extract U3 and U4.

U3 = 1
b2

(−a3x2x6 − a4x2Ω − α2
2z3 − k3sign(s3) − k4s3)

U4 = 1
b3

(−a5x2x4 − α2
3z5 − k5sign(s4) − k6s4)

(34)

with: 













z3 = x3d − x3

s3 = x4 − ẋ3d − α2z3

z5 = x5d − x5

s4 = x6 − ẋ5d − α3z5

(35)

B. Sliding-mode Controller Simulation

For these simulations we considered only the angular

rotations subsystem in order to be able to verify the

development on the real system. The controller above

contains 09 parameters (α1, ..., α3, k1, ..., k6) tuned also

using NCD. The initial conditions were π/4 rad for the

three angles as shown in Fig. 12.

C. Sliding-mode Controller on the Real System

The experimental conditions were similar to the ones

applied for the backstepping controller, see Fig. 13. The

task was to control the vehicle orientation and the altitude

was fixed by the test-bench. The initial condition was

about 26 degrees for the roll angle and we obtained the

stabilization in less than 8 seconds. The experimental

results obtained show that the proposed controller is able

to stabilize the roll and pitch angles but the shattering

effect, even if reduced, disturbs the measurements and this

is visible especially for the yaw angle.

VII. CONCLUSION

In this paper, we presented the application of two differ-

ent control techniques ”Backstepping” and ”Sliding-mode”

to a micro Quadrotor called OS4. As it can be seen from

Fig. 13. Experiment: The Sliding-mode controller has to stabilize the
system and maintain the roll, pitch and yaw angles to zero. The controller
stabilizes well the system for the roll and pitch angles while the shattering
effect is present. The big negative overshot in the pitch angle is due to
the huge initial condition for the yaw angle.

the experimental plots, the controller introduced using the

sliding-mode approach provides average results. This is

partly due to switching nature of the controller which in-

troduces high frequency, low amplitude vibrations causing

the sensor to drift. On the other hand, the backstepping

controller proves the ability to control the orientation angles

in the presence of a relatively high perturbations confirming

by the way some previous studies on underactuated systems

[4]. Our future work is to develop a fully autonomous

vehicle with an enhanced full state backstepping controller.

The positive results obtained through this development

enhances our knowledge of this highly unstable system and

encourages us to continue towards the fully autonomous

indoor Quadrotor.
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