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Backstepping control of a wave PDE with unstable source terms and

dynamic boundary

Christophe Roman1, Delphine Bresch-Pietri2, Eduardo Cerpa3, Christophe Prieur1 and Olivier Sename1

Abstract—This paper presents the design of an exponentially
stabilizing controller for a one-dimensional wave partial dif-
ferential equation (PDE). The control is acting on a Robin’s
boundary condition while the opposite boundary satisfies an
unstable dynamic. The wave is also subject to unstable in-domain
source terms. Closed-loop exponential stabilization is obtained via
a full-state backstepping controller. The existence and uniqueness
of this backstepping transformation is proven, using the method
of successive approximations.

I. INTRODUCTION

We investigate the feedback control problem of the follow-

ing system

utt(x, t) = uxx(x, t)+λut(x, t)+βu(x, t) (1)

ux(1, t) = a1ut(1, t)+a2u(1, t)+U(t) (2)

utt(0, t) = b1ut(0, t)+b2ux(0, t)+b3u(0, t) (3)

in which U is a scalar control input. The scalar values a1,

and a2 are coefficients of the controlled boundary, λ is an

in-domain velocity source term, β is an in-domain position

source term, and the dynamical boundary coefficients are b1,

b2 6= 0, and b3. All parameters are supposed to be known.

The main specificity of (1)-(3) consists in its boundary

condition (3) (for information about wave PDEs and corre-

sponding boundary conditions, see [5] and p.30 in particular).

This second-order dynamical boundary condition naturally

arises when applying Newton second law of motion. Yet, it

has seldom been considered in the literature. More specifically,

one can refer to [6] for a study of a one-dimensional wave

equation subject to a Wentzell boundary condition. System (1)-

(3) can indeed be reformulated as such, replacing the derivative

utt in (3) with the help of (1). One can also refer to [4],

[10] for higher order systems. However, this framework is not

state-of-the-art and the stabilization of (1)-(3) remains an open

problem.

In the present paper, the proposed control design is based on

backstepping. Note that there exists a fair amount of alternative

control techniques. Indeed, most of the finite dimensional con-

trol tools have been extended to infinite dimensional systems

through the theory of semigroup, e.g. frequency based control,

LQR (see [2] for an introduction on semigroup theory and
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semigroup based-control techniques). Among other control

strategies (see for example [9], in which the flatness-based

tracking of a pure wave PDE (λ = β = 0) with two second-

order dynamic boundary conditions is presented) backstepping

is acknowledged for its relative simplicity for practitioners

(see the monograph [7] which presents the main concepts of

backstepping for infinite dimensional systems). It has already

been applied in the literature in related yet different contexts.

For example, we refer the reader to [14] for a treatment of

a wave PDE with space-dependent in-domain velocity and

position source terms (λ (x), β (x)) associated with Dirich-

let’s boundary conditions (see references therein for further

references about the control of the wave equation). Also, in

[16], a pure wave PDE (λ = β = 0) with a first-order dynamic

anti-damped boundary condition is considered. The controller

and the boundary observer have both been designed using

backstepping.

The framework of coupled PDE-ODEs can also be con-

sidered in order to deal with dynamic boundary conditions.

For example in [13], the authors express the system (1)-(3)

(with β = b3 = a1 = a2 = 0) as a wave PDE with Dirichlet’s

boundary conditions coupled with an ODE (Ordinary Differ-

ential Equation) to perform backstepping. But they need an

additional assumption on the state space regularity. Another

approach is to consider coupled hyperbolic PDE-ODE, as

done in [8]. However, the reformulation of the wave PDE into

the former framework, using Riemann invariants, may not be

straightforward since it involves the position terms (u(., t)).
Note that there seems to be no problem if β = a2 = b3 = 0.

For these reasons, we propose a more direct approach. As

far as we know, there is no design stabilizing (1)-(3).

Our first objective is to improve our control design from

[12], by allowing a change of in-domain viscous damping be-

tween the original system and the target system and thus giving

an additional degree of freedom to the designer. Futhermore,

in [12], the system under consideration does not involve any

position source terms (case where β = b3 = a1 = a2 = 0). As

a result, the control problem considered here is different: in

[12], the system is exponentially stabilized toward an attractor

(by considering a functional of ‖ut‖L2
, ‖ux‖L2

, and ut(0, t)
2),

and in the present paper the system is stabilized toward the

origin.

The main contribution of this paper is the design of a

backstepping control law which exponentially stabilizes the

system (1)-(3). Standardly, we use a Volterra transformation

mapping the original system into a stable target system and

prove existence and uniqueness of this transformation using

the method of successive approximations. The originality of

our approach lies in our methodology to handle the dynamic

boundary conditions, both in the establishment of the kernel
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integral equation and the method of successive approxima-

tions.

The paper is organized as follows. First, in Section II, the

control law is defined and the corresponding stability result

is stated. Then, Section III is dedicated to the proof of the

stability result. Finally, we draw some perspectives for future

works in Section IV.

Notation In this paper, we consider the following norms

‖u‖2
L2

:=
∫ 1

0
u(x)2dx, ‖u‖2

H1
:= ‖u‖2

L2
+

∫ 1

0
ux(x)

2dx (4)

|Ω(.)|∞ := sup
i=1...n

{|Ωi(.)|} , ‖Ω‖L∞ := sup
i = 1...n

(x,y) ∈ [0,1]2

{|Ωi(x,y)|}

where Ω is a vector of n elements Ωi ∈ L∞([0,1]
2;R). For a

function k : (x,y) 7→ k(x,y), k′(x,x) is used to denote the total

derivative of k evaluated at (x,x), i.e.,

k′(x,x) :=
∂k

∂x

∣

∣

∣

∣

(x,x)

+
∂k

∂y

∣

∣

∣

∣

(x,x)

(5)

II. BACKSTEPPING STATE FEEDBACK CONTROL

The objective of this section is to present the backstepping

transformation that maps (1)-(3), along with its correspond-

ing feedback control law, into an exponentially stable target

system. This target system is chosen as

wtt(x, t) = wxx(x, t)−λwwt(x, t)−βww(x, t) (6)

wx(1, t) =−c1wt(1, t)− c2w(1, t) (7)

wtt(0, t) =−d1wt(0, t)+d2wx(0, t)−d3w(0, t) (8)

in which the boundary parameters c1, c2, d1, d2, and d3 are

positive constants. λw > 0 is an in-domain velocity source term

and βw > 0 is an in-domain position source term. As all these

parameters are positive, this target system is exponentially

stable (see Lemma 3 in Section III-D).

To solve the previously introduced control objective, the

following backstepping transformation is selected

w(x, t) = u(x, t)−
∫ x

0
KT (x,y)χ(y, t)dy− γ(x)ut(0, t) (9)

in which K and χ are defined as

K(x,y) :=





k(x,y)
s(x,y)
m(x,y)



 , χ(x, t) :=





u(x, t)
ut(x, t)
ux(x, t)



 (10)

and the kernel (K, γ) is chosen as the unique solution (see

Lemma 2, Section III-B) of the following system

Kxx(x,y)−Kyy(x,y) = BKKy(x,y)+CKK(x,y) (11)

K′(x,x) = DKK(x,x)+EK (12)
[

ky(x,0)
my(x,0)

]

= HKK(x,0) (13)

sxx(x,0) = b2sy(x,0)+HSK(x,0) (14)
[

K(0,0)
sx(0,0)

]

= JK (15)

γ(x) =
s(x,0)

b2
(16)

in which
BT

K :=−(Θ2Θ1 +Θ1Θ2 +λwΘ2) (17)

CT
K := Θ2

1 +λwΘ1 +βwI3 (18)

DT
K :=

1

2
(Θ2Θ1 +Θ1Θ2 +λwΘ2) (19)

ET
K :=−

1

2

[

β +βw λ +λw 0
]

(20)

HK :=

[

λw β − (λw +b1)
b3
b2

b3

1 λ −b1 b2

]

(21)

HS :=
[

0 βw +b3 +λwb1 +b2
1 −(b2λw +b2b1)

]

(22)

where

Θ1 :=





0 1 −1

β λ 0

0 0 0



 , Θ2 :=





1 0 0

0 0 1

0 1 0



 (23)

JK :=−
1

d2









d3 +b3

0

b2 −d2

(b1 +d1)b2









(24)

The construction of (9) is inspired by [13] and by [16]

for the integral terms. However, the kernel equations (11)-

(16) are different from both papers. Indeed, (11) presents an

additional source term which reveals troublesome to handle

in the subsequent analysis. Moreover, note that the boundary

condition (13) is similar to the one of [15]. However, the

boundary condition in [15] is scalar, and contains in addition

an integral term. The considered boundary (13) is, on the one

hand, simpler as there is no integral term, but, on the other

hand, it is a vectorial one coupled with another boundary

condition. Yet, the recursive assumption we use in the method

of successive approximations (Section III-B) is different from

[15] and new, up to our knowledge.

Finally, the corresponding control law is

U(t) := KT (1,1)χ(1, t)+
∫ 1

0
KT

x (1,y)χ(y, t)dy+ γ ′(1)ut(0, t)

− (a1 + c1)ut(1, t)− (a2 + c2)u(1, t)+ c2[γ(1)ut(0, t)

+
∫ 1

0
KT (1,y)χ(y, t)dy]+ c1

[

[KT (1,y)Θ2χ(y, t)]1y=0

+
∫ 1

0

[

KT Θ1 −KT
y Θ2

]

(1,y)χ(y, t)dy+ γ(1)Θ3χ(0, t)
]

(25)

in which Θ3 :=
[

b3 b1 b2

]

(26)

Theorem 1: Consider the closed-loop system consisting of

the plant (1)-(3) with b2 6= 0, together with the control law

(25) in which the kernel (K, γ) is the solution of (11)-(16).

Define the functional (the L2 and H1 norms are defined in (4))

Γ
(

u,ut

)

:= ‖u‖2
H1

+‖ut‖
2
L2
+u(1, t)2+u(0, t)2+ut(0, t)

2 (27)

There exist ρ > 0 and R > 0 such that

Γ(u(t),ut(t))6 RΓ
(

u(0),ut(0)
)

e−ρt
, t > 0 (28)

i.e., the closed-loop system is exponentially stable.

Note that the control law U (25) is expressed in terms of u,

ut and ux but can also be written, using integration by parts, in

terms of u and ut only. Yet, it requires full-state measurement,

which is seldom the case in practice. Future work will focus

on relieving this constraint.
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III. PROOF OF THEOREM 1

First, Section III-A presents the derivation of the backstep-

ping kernel equations (11)-(16). Second, the existence and

uniqueness of a solution to these equations is proven in Section

III-B. In Section III-C, we analyze the invertibility of the

backstepping transformation. The proof of the target system

stability is established in Section III-D, through a Lyapunov

analysis. Then, in Section III-E, the equivalence between the

target system Lyapunov functional and the functional Γ defined

in (27) is established. Finally, using all previous developments,

we conclude the proof of Theorem 1 in Section III-F.

A. Backstepping transformation

This section is devoted to the establishment of (11)-(16).

Before stating the corresponding lemma, consider the vector

χ(x, t) defined in (10). Using the system equation (1) together

with the boundary condition (3), it is straightforward to show

that

χt(x, t) = Θ1χ(x, t)+Θ2χx(x, t) (29)

utt(0, t) = Θ3χ(0, t) (30)

χt(0, t) = Θ4χ(0, t) (31)

χ(0, t) = Θ5χ(0, t) (32)

where Θ1, Θ2, and Θ3 are defined in (23) and (26), and with

χ(0, t) : =
[

u(0, t) ut(0, t) ux(0, t) uxt(0, t)
]T

(33)

Θ4 : =





0 1 0 0

b3 b1 b2 0

0 0 0 1



 , Θ5 :=





1 0 0 0

0 1 0 0

0 0 1 0



 (34)

Note that Θ1 and Θ2 such that (29) holds are not unique.

The choice made in (23) however guarantees that Θ2
2 = I3, a

property which we use in the sequel.

Lemma 1: If
(

K, γ
)

in (9) is solution of (11)-(16), then

the backstepping transformation (9) along the control law (25)

map (1)-(3) into the target system (6)-(8) .

Proof of Lemma 1: Consider the time derivative of (9)

wt(x, t) = ut(x, t)−
∫ x

0
KT (x,y)χt(y, t)dy− γ(x)utt(0, t) (35)

Using (29), an integration by parts and (30), one expresses

(35) as

wt(x, t) = ut(x, t)−
[

KT (x,y)Θ2χ(y, t)
]x

y=0
(36)

−
∫ x

0

[

KT Θ1 −KT
y Θ2

]

(x,y)χ(y, t)dy− γ(x)Θ3χ(0, t)

Consider the time derivative of (36). Using (1), (29), the fact

that Θ2
2 = I3, and an integration by parts, one obtains

wtt(x, t) = uxx(x, t)+λut(x, t)+βu(x, t)

−

[

KT (x,y)Θ2χt(y, t)+(KT (x,y)Θ1Θ2 −KT
y (x,y))χ(y, t)

]x

y=0

−
∫ x

0

[

(KT Θ1 −KT
y Θ2)Θ1 − (KT

y Θ1Θ2 −KT
yy)

]

(x,y)χ(y, t)dy

− γ(x)Θ3χt(0, t) (37)

Consider the first and second space derivatives of (9), which

can be written as

wx(x, t) = ux(x, t)−KT (x,x)χ(x, t)−
∫ x

0
KT

x (x,y)χ(y, t)dy

− γ ′(x)ut(0, t) (38)

wxx(x, t) = uxx(x, t)− (K′T (x,x)+KT
x (x,x))χ(x, t)

−KT (x,x)χx(x, t)−
∫ x

0
KT

xx(x,y)χ(y, t)dy− γ ′′(x)ut(0, t) (39)

Gathering (9), (36), (37), and (39) the target system equation

(6) holds if the kernel (K, γ) satisfies the following conditions

KT (x,y)Θ2
1 −KT

y (x,y)Θ2Θ1 −KT
y (x,y)Θ1Θ2 +KT

yy(x,y)

−KT
xx(x,y)+λwKT (x,y)Θ1 −λwKT

y (x,y)Θ2 +βwKT (x,y) = 0

(40)
KT (x,x)Θ2χt(x, t)−λΘ6χ(x, t)−βΘ8χ(x, t)

+ [KT (x,x)Θ1Θ2 −KT
y (x,x)]χ(x, t)−λwΘ6χ(x, t)

+λwKT (x,x)Θ2χ(x, t)−βwΘ8χ(x, t)

− (K′T (x,x)+KT
x (x,x))χ(x, t)−KT (x,x)χx(x, t) = 0 (41)

γ(x)Θ3χt(0, t)+(−KT (x,0)Θ1Θ2 +KT
y (x,0))χ(0, t)

−KT (x,0)Θ2χt(0, t)− γ ′′(x)Θ6χ(0, t)−λwKT (x,0)Θ2χ(0, t)

+λwγ(x)Θ3χ(0, t)+βwγ(x)Θ6χ(0, t) = 0 (42)

in which
Θ6 :=

[

0 1 0
]

, Θ8 :=
[

1 0 0
]

(43)

Following the definitions (17)-(18) of BK and CK , (40) can

be rewritten as (11). Moreover, using (29), (41) can be

reformulated as (12). Furthermore, using (31) and (32), one

obtains that (42) is equivalent to the four following scalar

conditions

β s(x,0)− ky(x,0)+λwk(x,0)+b3m(x,0)

−λwb3γ(x)−b1b3γ(x) = 0 (44)

−βwγ(x)− sy(x,0)+ γ ′′(x)+λwm(x,0)−b3γ(x)

−λwb1γ(x)+b1m(x,0)−b2
1γ(x) = 0 (45)

k(x,0)−my(x,0)+λ s(x,0)+b2m(x,0)

−λwb2γ(x)−b1b2γ(x)+λws(x,0) = 0 (46)

s(x,0)−b2γ(x) = 0 (47)

which can be reformulated as (13), (14), and (16).

Now, the boundary condition (8) gives one last condition

on the kernel. As, from (9), (36), (37), and (38),














wtt(0, t) = [Θ3Θ5 − γ(0)Θ3Θ4]χ(0, t)

wt(0, t) = [Θ6 − γ(0)Θ3]Θ5χ(0, t)

wx(0, t) = [Θ7 −KT (0,0)− γ ′(0)Θ6]Θ5χ(0, t)

w(0, t) = [Θ8 − γ(0)Θ6]Θ5χ(0, t)

(48)

in which Θ7 :=
[

0 0 1
]

, thus, a sufficient condition for (8)

to hold is








b3 +d3

b1 +d1

b2 −d2

0









=−d2









k(0,0)
s(0,0)
m(0,0)

0









+ γ(0)









∗
∗
∗
b2









− γ ′(0)









0

d2

0

0









(49)

which, using (47), is (15).

Finally the control law (25) can be obtained from (7) with

(9), (36), (38), and using (2). �
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B. Existence and uniqueness of the solution of (11)-(15)

The PDE (11)-(15) presents two different types of boundary

conditions at (x,0), namely (13) and (14). The key idea in the

sequel is to address each condition separately. First, consider

the following change of variable

G(ζ ,η) = e
1
2 BK(ζ−η)K(ζ +η ,ζ −η) (50)

The idea behind (50) is, on one hand, to gather the high

order derivatives (Kxx−Kyy) in (11) into one term (Gηζ ), with

x = ζ +η and y = ζ −η , and, on the other hand, to cancel

the term in Ky in (11), which is done with G = e
1
2 BKyK.

Consider also the following definitions

φk,m :=

[

1 0 0

0 0 1

]

, φs :=
[

0 1 0
]

(51)

Kk,m := φk,mK, Gk,m := φk,mG, Ks := φsK, Gs := φsG (52)

Note that G = φ T
k,mGk,m +φ T

s Gs (53)

Proposition 1: The two following statements are equivalent

(i). K is a solution of (11)-(15).

(ii). G is a solution of

Gζ η(ζ ,η) =CG(ζ ,η)G(ζ ,η) (54)

G(ζ ,0) = FG(ζ ) (55)

G
k,m

ζ
(η ,η) = HGG(η ,η)+G

k,m
η (η ,η) (56)

Gs(η ,η) = 2

∫ η

0

∫ z

0

[

b2(G
s
ζ (µ,µ)−Gs

η(µ,µ))

+HGSG(µ,µ)
]

dµdz+ JGS(2η) (57)

in which

CG(ζ ,η) = e
1
2 BK(ζ−η)(CK −

1

4
B2

K)e
− 1

2 BK(ζ−η) (58)

FG(ζ ) = e
1
2 BKζ FK(ζ ) (59)

FK(ζ ) = K(x,x) = eDKxJGK +
∫ x

0
eDK(x−s)EKds (60)

HG = 2HK +φk,mBK , HGS = 2HS −b2φsBK (61)

JGS(x) :=
[

0 1 0 x
]

JK , JGK := Θ5JK (62)

Proof : (i)⇒ (ii). The establishment of (54) and (55) is

straightforward. Besides, from the fact that

s(x,0) =
∫ x

0

∫ s

0
sxx(z,0)dzds+ xsx(0,0)+ s(0,0) (63)

using (14), (16), (62), and z = 2µ , one gets

s(x,0) =
∫ x

0

∫ s
2

0

[

2b2sy(2µ,0)+2HSK(2µ,0)
]

dµds+ JGS(x)

(64)

From (50), it holds

Gζ (η ,η)−Gη(η ,η) = 2Ky(2η ,0)+BKK(2η ,0) (65)

Thus multiplying (65) by φs defined in (51), one writes

2sy(2η ,0) = Gs
ζ (η ,η)−Gs

η(η ,η)−φsBKG(η ,η) (66)

Replacing (66) into (64), for x = 2η , and 2z = s, one obtains

Gs(η ,η) =
∫ η

0
2

∫ z

0

[

b2(G
s
ζ (µ,µ)−Gs

η(µ,µ) (67)

−φsBKG(µ,µ))+2HSG(µ,µ)
]

dµdz+ JGS(2η)

and (57) holds. Finally, multiplying (65) by φk,m, one gets (56).

(ii)⇒ (i). This implication follows from the previous one

and the fact that the change of variable (50) is bijective (as

the composition of two bijective changes of variable). �

Lemma 2: The system (54)-(57) has a unique solution G,

G(ζ ,η) =
∞

∑
n=0

(∆G)n(ζ ,η) (68)

given as the cumulative sum of the following sequence, which

exponentially converges towards zero,

(∆G)n+1(ζ ,η) = F ((∆G)n(ζ ,η)) (69)

(∆G)0(ζ ,η) = φ T
k,mφk,m[2FG(η)−FG(0)] (70)

+φ T
s

[

JGS(2η)−2b2ηφsFG(0)
]

+FG(ζ )−FG(η)

in which φk,m, φs are defined in (51), and

F (G(ζ ,η)) :=
∫ ζ

η

∫ η

0
CG(ζ ,η)G(s,z)dzds

+φ T
k,m

[

−
∫ η

0
HGG(s,s)ds

+2φk,m

∫ η

0

∫ s

0
CG(ζ ,η)G(s,z)dzds

]

+φ T
s

[

∫ η

0

∫ z

0
4b2

∫ µ

0
φsCG(ζ ,η)G(µ,s)dsdµdz

+
∫ η

0
4b2φsG(z,0)dz−2b2

∫ η

0
φsG(z,z)dz

+
∫ η

0
2

∫ z

0
HGSG(µ,µ)dµdz

]

(71)

Proof : Let us first notice that

G(ζ ,η) =
∫ ζ

η

∫ η

0
Gζ η(s,z)dzds+G(η ,η)+G(ζ ,0)

−G(η ,0) (72)

On the one hand, the integration of Gζ η(ζ ,η) with respect

to η from 0 to ζ gives
∫ ζ

0
Gζ η(ζ ,s)ds = Gζ (ζ ,ζ )−Gζ (ζ ,0) (73)

using the fact that

Gζ (µ,µ)−Gη(µ,µ) = 2Gζ (µ,µ)−G′(µ,µ) (74)

and (52), it holds

[Gs
ζ −Gs

η ](µ,µ) = φs[
∫ µ

0
Gζ η(µ,s)ds+2Gζ (µ,0)−G′(µ,µ)]

(75)

Therefore from (57), and (54), using (75) one gets

Gs(η ,η) = 4b2

∫ η

0

∫ z

0

∫ µ

0
φsCG(µ,s)G(µ,s)dsdµdz

+
∫ η

0
4b2Gs(z,0)dz−4b2ηGs(0,0)−2b2

∫ η

0
Gs(z,z)dz

+2b2ηGs(0,0)+2

∫ η

0

∫ z

0
HGSG(µ,µ)dµdz+ JGS(2η) (76)

On the other hand, and, according to (56), one can get

d Gk,m(ζ ,ζ )

dζ
=−HGG(ζ ,ζ )+2G

k,m

ζ
(ζ ,ζ ) (77)

Gathering both previous equations along with (52) and (54),
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it holds

Gk,m(ζ ,ζ ) =−
∫ ζ

0
HGG(s,s)ds+2Gk,m(ζ ,0) (78)

+2φk,m

∫ ζ

0

∫ s

0
CG(s,z)G(s,z)dzds−Gk,m(0,0)

Finally, using (54) in (72), and using (53), it holds

G(η ,η) = φ T
k,mGk,m(η ,η)+φ T

s Gs(η ,η) (79)

thus with (76) and (78), one gets

G(ζ ,η) = F (G(ζ ,η))+(∆G)0(ζ ,η) (80)

in which (∆G)0(ζ ,η) and F (.) are defined in (70) and (71).

Now, we use a standard iterative method to prove that (80)

has a unique solution. The initial guess is (∆G)0 defined in

(70), and initiates the induction (69) for n∈N. Define M ∈R
+

as an upper bound of (∆G)0. By the definition of | · |∞ and

‖ · ‖L∞ below (4), and the fact that η 6 1, one gets

|(∆G)0(ζ ,η)|∞ 6 ‖JGS‖L∞ +(5+2b2)‖F‖L∞ =: M (81)

Assume that there a scalar exists κ such that

κ > (5+8|b2|)‖CG‖L∞ +2|HG|∞ +8|b2|+4|HGS|∞ (82)

and the following inequality is true for a given rank n ∈ N

|(∆G)n(ζ ,η)|∞ 6 Mκn ζ n +ηn

n!
(83)

From (69), it follows

|(∆G)n+1(ζ ,η)|∞ 6 ‖CG‖L∞

∫ ζ

η

∫ η

0
|(∆G)n(s,z)|∞dzds

+ |HG|∞

∫ η

0
|(∆G)n(s,s)|∞ds

+2‖CG‖L∞

∫ η

0

∫ s

0
|(∆G)n(s,z)|∞dzds

]

+4|b2|‖CG‖L∞

∫ η

0

∫ z

0

∫ µ

0
|(∆G)n(µ,s)|∞dsdµdz

+4b2

∫ η

0
|(∆G)n(z,0)|∞dz+2|b2|

∫ η

0
|(∆G)n(z,z)|∞dz

+2|HGS|∞

∫ η

0

∫ z

0
|(∆G)n(µ,µ)|∞dµdz

]

(84)

Consequently, using the recursive hypothesis (83), it holds

|∆Gn+1(ζ ,η)|∞ 6
Mκn

(n+1)!

(

‖CG‖L∞

(

ηζ n+1 +ζ ηn+1 +4ηn+2

+8|b2|η
n+3

)

+2|HG|∞ηn+1 +8|b2|η
n+1 +4|HGS|∞ηn+2

)

(85)

From the fact that ζ ,η 6 1, and (82), one concludes

|(∆G)n+1(ζ ,η)|∞ 6
Mκn+1

(n+1)!
(ζ n+1 +ηn+1) (86)

As the estimate (83) is proven for n = 0 in (83), it follows

by induction that (∆G)n exponentially converges and that the

solution of (54)-(57) is given by (68). �

Remark 1: It is worth pointing out that the upper bound

we consider in the induction assumption (83) is not standard.

Indeed [14], [15], among others, introduce the bound
(ζ+η)n

n!
,

which cannot be used here. Indeed the integration of this bound

for the specific boundaries (56)-(57) would cause the recursive

method to fail. For example, in order to perform the iterative

method, one needs to integrate
∫ η

0

∫ s
0 |(∆G)n(z,s)|∞dzds (which

appear in (71) and in (84)). However, using the previous upper

bound, one has
∫ η

0

∫ s

0

(z+ s)n

n!
dzds = (2n+1 −1)

ηn+2

(n+2)!
(87)

The 2n+1 term is too large to be compatible with the recursive

hypothesis. This is why, instead, we suggest to consider (83),

which is a smaller bound. ◦

C. invertibility of the backstepping transformation

Let us denote Π the map that transforms the system (1)-(3)

with U(t) defined in (25) into the target system (6)-(8). It can

be expressed as

Π : H → H

(q1,q2,q3,q4,q5) 7→ (z1,z2,z3,z4,z5)
(88)

with

z1(x) = q1(x)−
∫ x

0
KT (x,y)





q1

q2

q′1



(y)dy− γ(x)q5 (89)

z2(x) = q2(x)−
[

q1(x) q2(x) q′1(x)
]

Θ2K(x,x)

−
∫ x

0

[

KT (x,y)Θ1 −KT
y (x,y)Θ2

]





q1

q2

q′1



(y))dy (90)

+(k(x,0)− γ(x)b3)q4 +(m(x,0)− γ(x)b1)q5

z3 = q3 −
∫ 1

0

[

q1 q2 q′1
]

(y)K(x,y)dy− γ(1)q5 (91)

z4 = q4, z5 = q5 (92)

where K is defined in (10) as the unique solution of (11)-(15),

γ in (16), and with Θ1 and Θ2 defined in (23).

Let us check that z ∈ H. As q ∈ H, using Cauchy-

Schwarz’s inequality, it holds z1 ∈ L2(0,1). Similarly, one

gets that z′1 ∈ L2(0,1). Therefore z1 ∈ H1(0,1). Using Cauchy-

Schwarz’s inequality on (90), one gets that z2 ∈ L2(0,1). The

fact that (z3, z4, z5) ∈ R
3 is straightforward. Finally, one

obtains that z1(1) = z3, as q3 = q1(1), and that z1(0) = z4 as

γ(0) = 0 and q4 = q1(0). Therefore z ∈ H.

Note that by construction γ(0) = 0 and γ(x) = s(x,0)
b2

which

allows the backstepping transformation to map H→ H. Indeed,

γ(x) = s(x,0)
b2

is a necessary condition for z2 to be in L2(0,1).

The former does not hold otherwise as a z′1(0) term appears,

which may be unbounded. Similarly γ(0) = 0 is a necessary

condition for z5 to be in R.

The existence of the inverse map Π−1 can then be obtained

by simply replacing λ , β , ai and bi with respectively λw, βw,

ci and di in the previous analysis.

D. Target system exponential stability

Consider the target system defined in (6)-(8) and the fol-

lowing Lyapunov functional candidate

V (w,wt) =
∫ 1

0

[

w wt wx

]

P0

[

w wt wx

]T
(93)

+w(1)P1w(1)+
[

w(0) wt(0)
]

P2

[

w(0)
wt(0)

]

in which P0 ∈ R
3×3, P1 ∈ R and P2 ∈ R

2×2 are symmetric

positive definite matrices.
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Lemma 3: For all λw > 0, βw > 0, ci > 0, and di > 0, there

exist P0, P1 and P2 symmetric positive definite matrices such

that, it holds for a suitable ρ > 0

V̇ (w,wt)6−ρV (w,wt) (94)

in which V is defined in (93).

Proof of Lemma 3: Considering

P0 =





βw σ 0

∗ 1 0

∗ ∗ 1



 , P1 = c2, P2 =

[

d3+σd1
d2

σ
d2

∗ 1
d2

]

(95)

with

0 < σ < min

{

√

βw, λw,
4βwλw

λ 2
w +4βw

,
4c2

c1
, d1

}

(96)

which is well-defined as βw, λw, c1, c2, and d1 are positive.

With (96), the matrices P0 and P2 are positive definite. Com-

puting the derivative of V along the solution (93) leads to

(6)-(8)

V̇ (w,wt) =−
∫ 1

0

[

w wt wx

]

Q0

[

w wt wx

]T
(97)

−
[

w(1) wt(1)
]

Q1

[

w(1)
wt(1)

]

−
[

w(0) wt(0)
]

Q2

[

w(0)
wt(0)

]

in which

Q0 =





2βwσ λwσ 0

∗ 2λw −2σ 0

∗ ∗ 2σ



 (98)

Q1 =

[

2c2σ c1σ
∗ 2c1

]

, Q2 =

[

2σd3
d2

0

∗ 2d1
d2

− 2σ
d2

]

(99)

From (96) the matrices Q0, Q1, and Q2, are positive definite.

Therefore, (94) holds. �

This Lyapunov functional candidate (93) is inspired by [14].

We have added the P1 and P2 terms to handle the dynamic

boundaries under consideration.

E. Stability in terms of Γ

To conclude on the exponential stability of (1)-(3) under the

control law (25), the equivalence between V (w,wt) in (93) and

Γ(u,ut) in (27) is proven in the following lemma.

Lemma 4: There exist µ1,µ2 > 0 such that

Γ(u,ut)6 µ1V (w,wt) (100)

V (w,wt)6 µ2Γ(u,ut) (101)

Proof : Only the establishment of (101) is detailed, as

similar arguments hold for (100) using the inverse backstep-

ping transformation (see Section III-C). From (9), (36), and

(38), there exist c1, c2, c3, c4 > 0 such that

‖w‖2
L2

6c1[‖u‖2
H1

+‖ut‖
2
L2
+ut(0, t)

2] (102)

w(1, t)2
6c2[‖u‖2

H1
+‖ut‖

2
L2
+ut(0, t)

2 +u(1, t)2] (103)

‖wt‖
2
L2

6c3

[

‖u‖2
H1

+‖ut‖
2
L2
+u(0, t)2 +ut(0, t)

2
]

(104)

‖wx‖
2
L2

6c4

[

‖u‖2
H1

+‖ut‖
2
L2
+ut(0, t)

2
]

(105)

From (102)-(105) and the fact that w(0, t) = u(0, t) and

wt(0, t) = ut(0, t) (as γ(0) = 0 from (15)-(16)), one obtains

(101). �

F. Final proof of Theorem 1

Using Lemma 2, there exists a unique solution to (11)-

(16). From Lemma 1, this solution defines a backstepping

transformation which maps the system (1)-(3) into (6)-(8) with

the control law U defined in (25). Moreover, from Lemma 3,

one gets that (6)-(8) is exponentially stable if all its parameters

are positive. Therefore, using Lemma 4, one establishes (28).

IV. CONCLUSION

We have proposed a full-state feedback for a system where

both the PDE and boundary conditions are unstable. In particu-

lar, we have generalized the control in [12], allowing a change

of the in-domain viscous coefficient between the original and

the target system. Our on-going works focus on the design of

a collocated observer for the system (1)-(3).
A future direction of study could be to extend this design

for a PDE such as ytt(x, t) = (a(x)yx)x(x, t) + λ (x)yt(x, t) +
β (x)y(x, t) with two second order boundaries as considered in
[1], [3], [11].
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